JP2009115046A - Refuse power generation method - Google Patents

Refuse power generation method Download PDF

Info

Publication number
JP2009115046A
JP2009115046A JP2007291427A JP2007291427A JP2009115046A JP 2009115046 A JP2009115046 A JP 2009115046A JP 2007291427 A JP2007291427 A JP 2007291427A JP 2007291427 A JP2007291427 A JP 2007291427A JP 2009115046 A JP2009115046 A JP 2009115046A
Authority
JP
Japan
Prior art keywords
power generation
waste
steam
steam turbine
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007291427A
Other languages
Japanese (ja)
Other versions
JP4823998B2 (en
Inventor
Masaya Kurita
雅也 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2007291427A priority Critical patent/JP4823998B2/en
Publication of JP2009115046A publication Critical patent/JP2009115046A/en
Application granted granted Critical
Publication of JP4823998B2 publication Critical patent/JP4823998B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refuse power generation method that improves power generating efficiency of refuse power generation by using latent heat of turbine exhaust thermally little utilized in refuse power generation. <P>SOLUTION: The refuse power generation method is for generating steam by exhaust gas upon burning refuse or applying a melting treatment on the refuse and generating power by driving a steam turbine by the steam. A water-cooled condenser is used as a condenser for cooling exhaust gas of the steam turbine, and as cooling water used in the condenser, water condensed in a thermal power generation facility is used to collect latent heat contained in exhaust gas of the steam turbine. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、廃棄物を焼却または溶融処理する際の排ガスにより蒸気を発生させ、その蒸気により蒸気タービンを駆動して発電を行う廃棄物発電方法に関する。   The present invention relates to a waste power generation method in which steam is generated by exhaust gas when incinerating or melting waste and power is generated by driving a steam turbine with the steam.

具体的には、廃棄物発電における熱利用が困難なタービン排気の潜熱を利用することにより、廃棄物発電の熱利用効率を向上させる廃棄物発電方法に関する。   More specifically, the present invention relates to a waste power generation method that improves the heat utilization efficiency of waste power generation by using latent heat of turbine exhaust, which is difficult to use heat in waste power generation.

京都議定書への批准を始め、CO2に対する削減要求は高く、バイオマス等の再生可能エネルギーの利用に関する要求が高まっていている。 Starting with ratification of the Kyoto Protocol, the demand for CO 2 reduction is high, and the demand for the use of renewable energy such as biomass is increasing.

特に、一般廃棄物については、規模が小さいこと、排ガス中の塩素濃度が高く、腐食性が高いため蒸気温度を上げることができないことから高効率発電には限界があり、発電効率は高いものでも20%程度と、火力発電設備の40%以上とは大きな隔たりがあった。   Especially for general waste, high-efficiency power generation is limited because the scale is small, the chlorine concentration in the exhaust gas is high, and the corrosiveness makes it impossible to raise the steam temperature. There was a big gap between about 20% and over 40% of thermal power generation facilities.

従来は、廃棄物を燃焼または溶融処理する際の排ガスの持つ熱を廃熱回収ボイラにて回収し、ボイラで得られた蒸気を用いてタービンを駆動し、発電を行っていた。   Conventionally, the heat of exhaust gas when burning or melting waste is recovered by a waste heat recovery boiler, and the turbine is driven using steam obtained by the boiler to generate power.

廃熱回収ボイラを用いた廃棄物発電システムについては、従来から種々の提案がなされており、例えば特開2001-065311号公報(下記特許文献1)には、都市ゴミを熱分解するドラムと、該ドラムで生成した生成ガスを燃料とし、ドラムから排出した可燃物を燃焼させると共にその燃焼灰を溶融させる溶融炉と、該溶融炉の後流に設けた廃熱回収 ボイラと、該ボイラで生成した蒸気を用いて発電機を駆動する蒸気タービンと、熱風炉を備え、熱風炉で生成した熱風をドラムの熱源及びボイラで発生した飽和蒸気を過熱する過熱器の熱源とすることにより、エアヒーターから熱分解ドラムに加熱空気を供給する送風ファンの動力費を抑制する一方、発電に供する蒸気温度を改善する方法が記載されている。   Various proposals have conventionally been made on a waste power generation system using a waste heat recovery boiler. For example, Japanese Patent Laid-Open No. 2001-065311 (Patent Document 1 below) discloses a drum for thermally decomposing municipal waste, Using the generated gas generated in the drum as fuel, combusting combustibles discharged from the drum and melting the combustion ash, a waste heat recovery boiler provided downstream of the melting furnace, and generated in the boiler A steam turbine that drives a generator using the generated steam, and a hot air furnace, and the hot air generated in the hot air furnace is used as a heat source for the drum and a superheater that superheats the saturated steam generated in the boiler. Describes a method for reducing the power cost of a blower fan that supplies heated air to the pyrolysis drum while improving the temperature of steam used for power generation.

その際、発電効率を上げる方法として、過熱器管の材質に高級合金鋼を採用し、蒸気条件を高温高圧(例えば4MPa、400℃程度)に上げていた。   At that time, as a method of increasing the power generation efficiency, high-grade alloy steel was adopted as the material of the superheater tube, and the steam conditions were raised to high temperature and high pressure (eg, about 4 MPa, about 400 ° C.).

しかし蒸気温度を上げると、廃棄物に含まれる塩素によって、溶融塩腐食を引き起こすため、蒸気温度には限界があった。(Max450℃、一般的には400℃以下)。   However, when the steam temperature is raised, the chlorine contained in the waste causes molten salt corrosion, so the steam temperature has a limit. (Max 450 ℃, generally 400 ℃ or less).

また、蒸気タービンを用いた発電システムではタービンの排気を復水する際に膨大な熱量を大気等に放散するため、発電効率の向上には限界がある。   Further, in a power generation system using a steam turbine, a huge amount of heat is dissipated to the atmosphere when condensing the exhaust of the turbine, so there is a limit to improving the power generation efficiency.

一部の廃棄物発電設備では天然ガスを用いて、タービンを駆動し、その排ガスを用いて廃棄物の廃熱ボイラにて得られた蒸気を過熱し、蒸気温度を上げることで発電効率の向上を図っていた。   In some waste power generation facilities, natural gas is used to drive the turbine, and the exhaust gas is used to superheat the steam obtained in the waste heat boiler and raise the steam temperature to improve power generation efficiency. I was trying.

このようにガスタービンの排ガスを用いることで、蒸気の過熱度が上げられるが、排ガスの温度を高くするとガスタービンの効率が低下することもあり、蒸気温度があまり上げれないため、450℃が限界だった。   By using the exhaust gas from the gas turbine in this way, the degree of superheat of the steam can be increased. However, if the exhaust gas temperature is increased, the efficiency of the gas turbine may decrease, and the steam temperature cannot be increased so much, so 450 ° C is the limit. was.

また、設備規模は廃棄物の処理にあわせる必要があり、ガスを利用した発電設備としてはかなり低い発電効率しか得ることができなかった。   In addition, the scale of the facility must be adapted to the disposal of waste, and as a power generation facility using gas, only a considerably low power generation efficiency could be obtained.

そこで、火力発電設備と、廃棄物処理設備を隣接させ、廃棄物発電設備で得られた蒸気を石炭火力ボイラに通し、過熱することで、高い発電効率を得ることは容易に発想できる。   Therefore, it is easy to conceive that high power generation efficiency can be obtained by adjoining a thermal power generation facility and a waste treatment facility and passing the steam obtained from the waste power generation facility through a coal-fired boiler and heating it.

しかし、高温の蒸気を用いて、高効率発電するためには圧力も高くする必要があり、廃棄物廃熱ボイラの製作コストが多く必要であると共に、得られる蒸気量が少ないことから、蒸気タービンには一般的な復水タービンを用いることが必要で、タービン自体の熱効率は火力発電に比較すると低いままとなる。一方で、廃棄物発電設備の稼動を火力発電設備に合わせる必要があり、廃棄物発電設備が非常停止した際に、火力発電設備も停止させる必要があった。さらに、既に設置された火力発電所に廃棄物発電設備を隣接させる際、火力発電所の大規模な改造工事が必要となり、コスト面で大きな負担となる。   However, it is necessary to increase the pressure for high-efficiency power generation using high-temperature steam, and the production cost of waste waste heat boilers is high, and the amount of steam that can be obtained is small. It is necessary to use a general condensate turbine, and the thermal efficiency of the turbine itself remains low compared to thermal power generation. On the other hand, it is necessary to match the operation of the waste power generation facility with that of the thermal power generation facility, and when the waste power generation facility is stopped in an emergency, it is also necessary to stop the thermal power generation facility. Furthermore, when a waste power generation facility is placed adjacent to a thermal power plant that has already been installed, a large-scale remodeling work of the thermal power plant is required, resulting in a large cost burden.

また、火力発電設備と、廃棄物処理設備を隣接させ、廃棄物発電設備で得られた蒸気を火力ボイラの蒸気と混合し、火力発電設備で発電することで、高い発電効率を得ることは容易に発想できる。   In addition, it is easy to obtain high power generation efficiency by making thermal power generation equipment and waste treatment equipment adjacent to each other, mixing the steam obtained from the waste power generation equipment with the steam of the thermal boiler, and generating power with the thermal power generation equipment. I can think of it.

しかし、火力発電設備に合わせて、蒸気圧力を高くする必要があり、廃棄物廃熱ボイラの製作コストが多く必要であると共に、廃棄物発電設備の稼動を火力発電設備に合わせる必要があり、廃棄物発電設備が非常停止した際に、火力発電設備も停止させる必要があった。さらに、既に設置された火力発電所に廃棄物発電設備を隣接させる際、火力発電所の大規模な改造工事が必要となり、コスト面で大きな負担となる。
特開2001-065311号公報
However, it is necessary to increase the steam pressure in accordance with the thermal power generation equipment, and the production cost of the waste waste heat boiler is high, and the operation of the waste power generation equipment needs to be adjusted to the thermal power generation equipment. It was necessary to stop the thermal power generation facility when the power generation facility stopped in an emergency. Furthermore, when a waste power generation facility is placed adjacent to a thermal power plant that has already been installed, a large-scale remodeling work of the thermal power plant is required, resulting in a large cost burden.
JP 2001-065311 A

本発明は、前述のような従来技術の問題点を解決し、廃棄物発電における熱利用が困難なタービン排気の潜熱を利用することにより、廃棄物発電の発電効率を向上させる廃棄物発電方法を提供することを課題とする。   The present invention provides a waste power generation method that solves the problems of the prior art as described above and improves the power generation efficiency of waste power generation by utilizing the latent heat of turbine exhaust that is difficult to use heat in waste power generation. The issue is to provide.

本発明は、前述の課題を解決するために鋭意検討の結果、廃棄物発電における熱利用が困難なタービン排気の潜熱を、低温で腐食を伴わない熱源を必要とする火力発電設備の給水を加熱する熱源として利用することにより、廃棄物発電の発電効率を向上させる廃棄物発電方法を提供するものであり、その要旨とするところは特許請求の範囲に記載したとおりの下記内容である。
(1)廃棄物を焼却または溶融処理する際の排ガスにより蒸気を発生させ、その蒸気により蒸気タービンを駆動して発電を行う廃棄物発電方法であって、前記蒸気タービンの排気を冷却する復水器として水冷式復水器を用い、該復水器に用いる冷却水として、火力発電設備の復水を使用することにより前記蒸気タービンの排気が有する潜熱を回収することを特徴とする廃棄物発電方法。
(2)前記蒸気タービンの排気を冷却する冷却水の入口温度が25℃から50℃であることを特徴とする(1)に記載の廃棄物発電方法。
(3)前記蒸気タービンの排気ダクトに圧力検出端を設け、さらに前記火力発電設備の復水による冷却水配管にバイパスライン及び流量調節機構を設け、前記蒸気タービンの排気圧力が一定となるように、流量調節機構により該冷却水の流量を調整することを特徴とする(1)または(2)に記載の廃棄物発電方法。
(4)前記火力発電設備の復水の給水ポンプと廃棄物発電タービンの排気冷却用の給水ポンプとを別個に設置することを特徴とする(1)乃至(3)のいずれか一項に記載の廃棄物発電方法。
(5)前記蒸気タービンの排気の復水器として、水冷式復水器と空冷式復水器を併設し、前記火力発電設備の稼動状態により復水器を切り替えて運用することを特徴とする(1)乃至(4)のいずれか一項に記載の廃棄物発電方法。
<作用>
(1)の発明によれば、廃棄物発電における熱利用が困難なタービン排気の潜熱を回収し、することにより、低温で腐食を伴わず、熱源として利用することが可能な火力発電設備の給水を加熱する熱源として利用することにより、廃棄物発電の熱効率を向上させることができる。
(2)の発明によれば、蒸気タービンの排気を冷却する冷却水の入口温度を25℃から50℃として熱の授受を比較的低温域とすることにより、熱供給の過程で生じる熱放散を低減することができる。
(3)の発明によれば、火力発電設備の復水による冷却水配管にバイパスラインを設け、前記蒸気タービンの排気圧力が一定となるように、該冷却水の流量を調整することにより、廃棄物発電の蒸気タービンの操業を安定化させることができる。
(4)の発明によれば、火力発電設備の復水の給水ポンプと廃棄物発電タービンの排気冷却用の給水ポンプとを別個に設置するので、それぞれの設備に必要な給水量の調整を容易に行うことができる。
(5)の発明によれば、蒸気タービンの排気の復水器として、水冷式復水器と空冷式復水器を併設するので、火力発電設備の稼動状態により復水器を切り替えて運用することができる。
As a result of intensive studies to solve the above-mentioned problems, the present invention heats the latent heat of turbine exhaust, which is difficult to use heat in waste power generation, and heat supply water for thermal power generation facilities that require a heat source that does not corrode at low temperatures. The present invention provides a waste power generation method that improves the power generation efficiency of waste power generation by using it as a heat source, and the gist thereof is as follows.
(1) A waste power generation method in which steam is generated by exhaust gas when incinerating or melting waste, and a steam turbine is driven by the steam to generate electric power, the condensate cooling the exhaust of the steam turbine A waste-water power generation system that uses a water-cooled condenser as a condenser and recovers the latent heat of the exhaust of the steam turbine by using the condensate of a thermal power generation facility as the cooling water used in the condenser. Method.
(2) The waste power generation method according to (1), wherein an inlet temperature of cooling water for cooling the exhaust of the steam turbine is 25 ° C to 50 ° C.
(3) A pressure detection end is provided in the exhaust duct of the steam turbine, and further, a bypass line and a flow rate adjusting mechanism are provided in the cooling water piping by the condensate of the thermal power generation facility so that the exhaust pressure of the steam turbine becomes constant. The waste power generation method according to (1) or (2), wherein the flow rate of the cooling water is adjusted by a flow rate adjusting mechanism.
(4) The water supply pump for the condensate of the thermal power generation facility and the water supply pump for exhaust cooling of the waste power generation turbine are installed separately, as described in any one of (1) to (3) Waste power generation method.
(5) The steam turbine exhaust condenser is provided with a water-cooled condenser and an air-cooled condenser, and is operated by switching the condenser according to the operating state of the thermal power generation facility. The waste power generation method according to any one of (1) to (4).
<Action>
According to the invention of (1), the water supply of a thermal power generation facility that can be used as a heat source without being corroded at a low temperature by recovering the latent heat of the turbine exhaust, which is difficult to use heat in waste power generation. By using as a heat source for heating, the thermal efficiency of waste power generation can be improved.
According to the invention of (2), the heat dissipation generated in the process of supplying heat can be reduced by setting the inlet temperature of the cooling water for cooling the exhaust of the steam turbine to 25 ° C. to 50 ° C. and making the heat transfer relatively low. Can be reduced.
According to the invention of (3), the bypass line is provided in the cooling water piping by the condensate of the thermal power generation facility, and discarded by adjusting the flow rate of the cooling water so that the exhaust pressure of the steam turbine is constant. The operation of steam turbines for power generation can be stabilized.
According to the invention of (4), the water supply pump for condensate of the thermal power generation facility and the water supply pump for exhaust cooling of the waste power generation turbine are installed separately, so that it is easy to adjust the amount of water supply required for each facility Can be done.
According to the invention of (5), since the water-cooled condenser and the air-cooled condenser are provided side by side as the condenser for exhausting the steam turbine, the condenser is operated by switching according to the operating state of the thermal power generation facility. be able to.

本発明によれば、廃棄物発電における熱利用が困難なタービン排気の潜熱を、低温で腐食を伴わない熱源を必要とする火力発電設備の給水を加熱する熱源として利用し、火力発電設備での発電電力として得られることにより、廃棄物発電の熱効率を向上させる廃棄物発電方法を提供することができるなど、産業上有用な著しい効果を奏する。   According to the present invention, the latent heat of turbine exhaust, which is difficult to use heat in waste power generation, is used as a heat source for heating feed water of a thermal power generation facility that requires a heat source that does not corrode at a low temperature. By obtaining the generated power, it is possible to provide a waste power generation method that improves the thermal efficiency of the waste power generation, and there are significant industrially useful effects.

本発明を実施するための最良の形態について図1乃至図3を用いて詳細に説明する。 The best mode for carrying out the present invention will be described in detail with reference to FIGS.

図1は、本発明の廃棄物発電方法の実施形態を例示する図である。   FIG. 1 is a diagram illustrating an embodiment of the waste power generation method of the present invention.

図1乃至図3において、1は廃棄物処理設備、2は蒸気タービン(廃棄物処理設備用)、2´は蒸気タービン(火力発電設備用)、3は復水器(廃棄物処理設備用)、3´は復水器(火力発電設備用)、4は火力発電設備、5は冷却水配管、6は給水ポンプ(廃棄物処理設備用)、6´は給水ポンプ(火力発電設備用)、7はバイパスライン、8は流量調整弁、9は給水加熱器、10は脱気器、11は圧力検出端(PIC)を示し、同じ要素については同じ記号を用いることにより説明の重複を避ける。   1 to 3, 1 is a waste treatment facility, 2 is a steam turbine (for waste treatment facility), 2 'is a steam turbine (for thermal power generation facility), and 3 is a condenser (for waste treatment facility). 3 'is a condenser (for thermal power generation equipment), 4 is thermal power generation equipment, 5 is cooling water piping, 6 is a water supply pump (for waste treatment equipment), 6' is a water supply pump (for thermal power generation equipment), 7 is a bypass line, 8 is a flow regulating valve, 9 is a feed water heater, 10 is a deaerator, 11 is a pressure detection end (PIC), and the same symbols are used for the same elements to avoid duplication of explanation.

まず、都市ごみなどの廃棄物を廃棄物処理設備1により焼却または溶融処理する際に発生する排ガスにより蒸気を発生させ、その蒸気により蒸気タービン2を駆動して発電を行う。   First, steam is generated by exhaust gas generated when waste such as municipal waste is incinerated or melted by the waste treatment facility 1, and the steam turbine 2 is driven by the steam to generate electric power.

蒸気タービン2の排気は、復水器3により冷却されて60〜70℃の水に戻されされるが、本発明においては、復水器として冷却効率の高い水冷式復水器を用いる。   The exhaust of the steam turbine 2 is cooled by the condenser 3 and returned to water at 60 to 70 ° C. In the present invention, a water-cooled condenser with high cooling efficiency is used as the condenser.

次に、火力発電設備4からの排ガスにより蒸気を発生させ、その蒸気により蒸気タービン2´を駆動して発電を行う。   Next, steam is generated by the exhaust gas from the thermal power generation facility 4, and the steam turbine 2 'is driven by the steam to generate power.

蒸気タービン2´の排気は、例えば水冷式の復水器3´により冷却されて30〜40℃の水に戻される。   The exhaust from the steam turbine 2 ′ is cooled by, for example, a water-cooled condenser 3 ′ and returned to water at 30 to 40 ° C.

本発明は、上記の火力発電設備4の30〜40℃の復水を用いて、廃棄物発電設備1の蒸気タービン2の排気を冷却することにより熱交換して、火力発電設備4の復水を40〜60℃に昇温させた後に火力発電設備の給水加熱器9および脱気器10に供給することにより、廃棄物処理設備の蒸気タービン2の排気が有する潜熱を回収することにより、廃棄物発電における熱利用が困難なタービン排気の潜熱を回収し、廃棄物発電の発電効率を著しく向上させることができる。   The present invention uses the 30-40 ° C. condensate of the thermal power generation facility 4 to exchange heat by cooling the exhaust of the steam turbine 2 of the waste power generation facility 1, thereby condensing the thermal power generation facility 4. Is heated to 40-60 ° C. and then supplied to the feed water heater 9 and the deaerator 10 of the thermal power generation facility to recover the latent heat of the exhaust gas from the steam turbine 2 of the waste treatment facility. The latent heat of turbine exhaust, which is difficult to use heat in physical power generation, can be recovered, and the power generation efficiency of waste power generation can be significantly improved.

なお、図1に示すように、給水加熱器は複数段設けられるが、昇温した復水は、復水と同等の比較的低温で操業される1段目の給水加熱器に供給することが好ましい。   As shown in FIG. 1, the feed water heater is provided in a plurality of stages, but the condensate whose temperature has been raised can be supplied to the first stage feed water heater operated at a relatively low temperature equivalent to the condensate. preferable.

また、前記蒸気タービン2の排気が有する潜熱を、火力発電設備4の給水を加熱する熱源として利用することにより、廃棄物発電の発電効率をさらに向上させることができる。   Further, by using the latent heat of the exhaust of the steam turbine 2 as a heat source for heating the water supply of the thermal power generation facility 4, the power generation efficiency of the waste power generation can be further improved.

この際、蒸気タービン2の排気を冷却する冷却水の入口温度を25℃から50℃として熱の授受を比較的低温域とすることにより、熱供給の過程で生じる熱放散を低減することができる。   At this time, the heat dissipation generated in the heat supply process can be reduced by setting the inlet temperature of the cooling water for cooling the exhaust of the steam turbine 2 to 25 ° C. and setting the heat transfer to a relatively low temperature range. .

さらに、前記火力発電設備4の復水による冷却水配管5にバイパスライン7を設け、このバイパスライン7に流量調整弁8を設け、廃棄物処理設備4の蒸気タービン2の排気圧力が一定となるように、流量調整弁8の開度を調節することにより、冷却水の流量を調整して廃棄物発電の蒸気タービンの操業を安定化させることができる。
また、加熱後の火力発電設備の復水は復水器に戻しても良い。
Furthermore, a bypass line 7 is provided in the cooling water pipe 5 by the condensate of the thermal power generation equipment 4, and a flow rate adjusting valve 8 is provided in the bypass line 7 so that the exhaust pressure of the steam turbine 2 of the waste treatment equipment 4 becomes constant. As described above, by adjusting the opening degree of the flow rate adjusting valve 8, the flow rate of the cooling water can be adjusted to stabilize the operation of the steam turbine for waste power generation.
Further, the condensate of the thermal power generation facility after heating may be returned to the condenser.

また、通常、石炭等を用いる火力発電設備4と廃棄物処理設備1の発電設備とでは、運用形態が大きく異なる。   In general, the thermal power generation facility 4 using coal or the like and the power generation facility of the waste treatment facility 1 are greatly different in operation form.

例えば、廃棄物発電における蒸気を火力発電設備4に送る場合には、それぞれが停止した場合に、もう一方も停止させる必要があるが、本発明を用いると、廃棄物処理設備1に最低限の冷却塔などからなる復水器3と、火力発電設備4の復水を復水器3に供給する冷却水配管5を備え、この復水の流れを流量調整弁8使って操作するだけで、独立した運転が可能となる。   For example, in the case where steam in waste power generation is sent to the thermal power generation facility 4, it is necessary to stop the other when each stops, but when the present invention is used, the waste treatment facility 1 has a minimum amount. A condenser 3 composed of a cooling tower and a cooling water pipe 5 for supplying the condensate of the thermal power generation facility 4 to the condenser 3 are provided. Independent operation is possible.

また、本発明では熱の授受を約30〜70℃と比較的低温で実施するため、熱供給の過程で生じる熱の放散が少なくてすむ。また、蒸気での授受が必要ないため、配管のサイズか小さくすみ、実現に必要なコストを抑えることが可能であるうえ、すでに設置されている設備の改造に容易に対応できる。   Further, in the present invention, since heat is transferred at a relatively low temperature of about 30 to 70 ° C., heat dissipation generated during the heat supply process can be reduced. In addition, since there is no need to send and receive with steam, it is possible to reduce the size of the piping, and to reduce the cost required for realization, and it is possible to easily cope with the modification of the already installed equipment.

なお、既設の火力発電設備との統合化を実施する場合にはバイパスライン7は既設の給水加熱器を通し、温度を上げることが望ましい。   In addition, when integrating with the existing thermal power generation equipment, it is desirable to raise the temperature of the bypass line 7 through an existing water heater.

図2および図3は、本発明の廃棄物発電方法において給水ポンプを並列させた実施形態を例示する図である。   2 and 3 are diagrams illustrating an embodiment in which feed water pumps are arranged in parallel in the waste power generation method of the present invention.

図2に示すように、火力発電設備4の復水の給水ポンプ6´と廃棄物発電タービンの2排気冷却用の給水ポンプ6とを別個に設置することにより、それぞれの設備に必要な給水量の調整を容易に行うことができる。   As shown in FIG. 2, the water supply amount necessary for each facility is provided by separately installing the feed water pump 6 ′ for condensate of the thermal power generation facility 4 and the feed water pump 6 for cooling the exhaust gas of the waste power generation turbine 2. Can be easily adjusted.

この際、蒸気タービン2の排気ダクトに圧力検出端11を設け、さらに前記火力発電設備の復水による冷却水配管にバイパスライン及び流量調整弁8(流量調節機構)を設け、前記蒸気タービン2の排気圧力が一定となるように、流量調整弁8(流量調節機構)により該冷却水の流量を調整することにより、廃棄物発電の蒸気タービンの操業を安定化させることができる。   At this time, the pressure detection end 11 is provided in the exhaust duct of the steam turbine 2, and further, a bypass line and a flow rate adjusting valve 8 (flow rate adjusting mechanism) are provided in the cooling water piping by the condensate of the thermal power generation facility. By adjusting the flow rate of the cooling water by the flow rate adjustment valve 8 (flow rate adjustment mechanism) so that the exhaust pressure becomes constant, the operation of the waste power generation steam turbine can be stabilized.

また、前記蒸気タービン2の排気の復水器として、水冷式復水器と空冷式復水器を併設することにより、前記火力発電設備の稼動状態により復水器を切り替えて運用することができる。   Further, by providing a water-cooled condenser and an air-cooled condenser as the exhaust condenser of the steam turbine 2, the condenser can be switched and operated depending on the operating state of the thermal power generation facility. .

また、図3に示すように、火力発電設備4の復水の給水ポンプ6´と廃棄物発電タービンの2排気冷却用の給水ポンプ6への給水配管を別個に設置することにより、それぞれの設備に必要な給水量の調整をさらに容易に行うことができる。   In addition, as shown in FIG. 3, by separately installing water supply pipes to the condensate water supply pump 6 'of the thermal power generation equipment 4 and the water discharge pump 6 for cooling the exhaust gas of the waste power generation turbine, It is possible to adjust the amount of water supply required for the process more easily.

本発明の廃棄物発電方法を石炭火力発電設備に併設される廃棄物処理設備に適用する場合について下記条件でシミュレーションを行った。
<実施条件>
・ 廃棄物発電用蒸気タービンの排気圧力: 0.25ata
・ 廃棄物発電用蒸気タービンの復水温度: 64℃
・火力発電設備の復水温度 :30-36℃
・火力発電設備の復水の昇温温度 :10-20℃
シミュレーションの結果、火力発電設備では1-3%程度燃料の消費量を削減することができ、廃熱回収分を含めると廃棄物発電の発電効率を約50%にすることができることがわかり本発明の効果が確認できた。
A simulation was performed under the following conditions when the waste power generation method of the present invention was applied to a waste treatment facility attached to a coal-fired power generation facility.
<Conditions for implementation>
・ Exhaust pressure of steam turbine for power generation: 0.25ata
・ Condensate temperature of steam turbine for waste power generation: 64 ℃
・ Condensate temperature of thermal power generation equipment: 30-36 ℃
-Temperature rise of condensate in thermal power generation facilities: 10-20 ° C
As a result of the simulation, it is understood that the thermal power generation facility can reduce the fuel consumption by about 1 to 3%, and the waste generation power generation efficiency can be reduced to about 50% when the waste heat recovery component is included. The effect of was confirmed.

本発明によれば、火力発電設備の復水を用いて廃棄物処理設備の蒸気タービンの排気を冷却する冷却水配管を設けることにより、廃棄物発電における熱利用が困難なタービン排気の潜熱を回収することができるので、火力発電設備と廃棄物処理設備を近接して設置する場合に極めて有用であり、今後の火力発電設備の計画、廃棄物処理施設の設置計画を行ううえで将来性が期待される。   According to the present invention, by providing a cooling water pipe for cooling the exhaust of the steam turbine of the waste treatment facility using the condensate of the thermal power generation facility, the latent heat of the turbine exhaust that is difficult to use heat in the waste power generation is recovered. Therefore, it is extremely useful when installing thermal power generation facilities and waste treatment facilities close to each other, and the future is expected in planning future thermal power generation facilities and waste treatment facilities. Is done.

また、火力発電設備と廃棄物処理設備の事業者が異なる場合には、火力発電設備事業者が廃棄物処理業者に復水の昇温費用を支払うことにより、火力発電設備の発電効率を向上させるというビジネスモデルの実現が期待できる。   In addition, when the thermal power generation facility and the waste treatment facility are different, the thermal power generation facility operator pays the temperature for condensate to the waste disposal contractor to improve the power generation efficiency of the thermal power generation facility. The realization of the business model can be expected.

本発明の廃棄物発電方法の基本的な実施形態を例示する図である。It is a figure which illustrates basic embodiment of the waste power generation method of this invention. 本発明の廃棄物発電方法において給水ポンプを並列させた実施形態を例示する図である。It is a figure which illustrates embodiment which paralleled the feed water pump in the waste power generation method of this invention. 本発明の廃棄物発電方法の給水ポンプを並列させた実施形態を例示する図である。It is a figure which illustrates embodiment which arranged the feed water pump of the waste power generation method of this invention in parallel.

符号の説明Explanation of symbols

1 廃棄物処理設備
2 蒸気タービン(廃棄物処理設備用)
2´蒸気タービン(火力発電設備用)
3 復水器(廃棄物処理設備用)
3´復水器(火力発電設備用)
4 火力発電設備
5 冷却水配管
6 給水ポンプ(廃棄物処理設備用)
6´給水ポンプ(火力発電設備用)
7 バイパスライン
8 流量調整弁
9 給水加熱器
10 脱気器
11 圧力検出端(PIC)
1 Waste treatment facility 2 Steam turbine (for waste treatment facility)
2 'steam turbine (for thermal power generation equipment)
3 Condenser (for waste treatment equipment)
3 'condenser (for thermal power generation facilities)
4 Thermal power generation equipment 5 Cooling water piping 6 Water supply pump (for waste treatment equipment)
6 'water supply pump (for thermal power generation equipment)
7 Bypass line 8 Flow control valve 9 Feed water heater 10 Deaerator 11 Pressure detection end (PIC)

Claims (5)

廃棄物を焼却または溶融処理する際の排ガスにより蒸気を発生させ、その蒸気により蒸気タービンを駆動して発電を行う廃棄物発電方法であって、前記蒸気タービンの排気を冷却する復水器として水冷式復水器を用い、該復水器に用いる冷却水として、火力発電設備の復水を使用することにより前記蒸気タービンの排気が有する潜熱を回収することを特徴とする廃棄物発電方法。   A waste power generation method in which steam is generated by exhaust gas when incinerating or melting waste, and a steam turbine is driven by the steam to generate power, and water cooling is used as a condenser for cooling the exhaust of the steam turbine. A waste power generation method, wherein a latent heat possessed by the exhaust gas from the steam turbine is recovered by using a condensate of a thermal power generation facility as a cooling water used for the condenser, using a steam condenser. 前記蒸気タービンの排気を冷却する冷却水の入口温度が25℃から50℃であることを特徴とする請求項1に記載の廃棄物発電方法。 The waste power generation method according to claim 1, wherein an inlet temperature of cooling water for cooling the exhaust of the steam turbine is 25 ° C to 50 ° C. 前記蒸気タービンの排気ダクトに圧力検出端を設け、さらに前記火力発電設備の復水による冷却水配管にバイパスライン及び流量調節機構を設け、前記蒸気タービンの排気圧力が一定となるように、流量調節機構により該冷却水の流量を調整することを特徴とする請求項1または請求項2に記載の廃棄物発電方法。   A pressure detection end is provided in the exhaust duct of the steam turbine, and further, a bypass line and a flow rate adjusting mechanism are provided in the cooling water piping by the condensate of the thermal power generation facility, and the flow rate is adjusted so that the exhaust pressure of the steam turbine becomes constant. The waste power generation method according to claim 1 or 2, wherein the flow rate of the cooling water is adjusted by a mechanism. 前記火力発電設備の復水の給水ポンプと廃棄物発電タービンの排気冷却用の給水ポンプとを別個に設置することを特徴とする請求項1乃至請求項3のいずれか一項に記載の廃棄物発電方法。 The waste according to any one of claims 1 to 3, wherein a water supply pump for condensate of the thermal power generation facility and a water supply pump for exhaust cooling of the waste power generation turbine are separately installed. Power generation method. 前記蒸気タービンの排気の復水器として、水冷式復水器と空冷式復水器を併設し、前記火力発電設備の稼動状態により復水器を切り替えて運用することを特徴とする請求項1乃至請求項4のいずれか一項に記載の廃棄物発電方法。   2. A water-cooled condenser and an air-cooled condenser are provided as the condenser for exhausting the steam turbine, and the condenser is operated by switching depending on the operating state of the thermal power generation facility. The waste power generation method according to any one of claims 1 to 4.
JP2007291427A 2007-11-09 2007-11-09 Waste power generation method Expired - Fee Related JP4823998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007291427A JP4823998B2 (en) 2007-11-09 2007-11-09 Waste power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007291427A JP4823998B2 (en) 2007-11-09 2007-11-09 Waste power generation method

Publications (2)

Publication Number Publication Date
JP2009115046A true JP2009115046A (en) 2009-05-28
JP4823998B2 JP4823998B2 (en) 2011-11-24

Family

ID=40782437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007291427A Expired - Fee Related JP4823998B2 (en) 2007-11-09 2007-11-09 Waste power generation method

Country Status (1)

Country Link
JP (1) JP4823998B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6193523B1 (en) * 2016-12-12 2017-09-06 株式会社 ユーリカ エンジニアリング Power generation system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6198673B2 (en) * 2014-05-15 2017-09-20 株式会社神戸製鋼所 Thermal energy recovery device and control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821209A (en) * 1994-07-06 1996-01-23 Hitachi Zosen Corp Power generating facility by steam turbine utilising exhaust heat

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821209A (en) * 1994-07-06 1996-01-23 Hitachi Zosen Corp Power generating facility by steam turbine utilising exhaust heat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6193523B1 (en) * 2016-12-12 2017-09-06 株式会社 ユーリカ エンジニアリング Power generation system

Also Published As

Publication number Publication date
JP4823998B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5897302B2 (en) Steam turbine power generation system
JP5420750B2 (en) High efficiency steam generator and method
CN102656407B (en) Method and arrangement for recovering heat from bottom ash
CN101788233B (en) Heating-furnace cogeneration system and method thereof
JP6034154B2 (en) Waste heat recovery equipment, waste heat recovery method and waste treatment furnace
JP5769066B2 (en) Heat recovery system from incinerator exhaust gas
JP3042394B2 (en) Power generation system utilizing waste incineration heat
CN106839790B (en) Electricity converter flue gas waste heat power generation system
JP5060313B2 (en) Operation method of waste treatment facility with power generation equipment
EP2513477B1 (en) Solar power plant with integrated gas turbine
JP4823998B2 (en) Waste power generation method
JP5843391B2 (en) Waste power generation system
NL2021512B1 (en) System for generating energy in a working fluid from hydrogen and oxygen and method of operating this system
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
JP2006009574A (en) Thermal power plant
JP2009174745A (en) Draft system in steam power generation facility
JP5321340B2 (en) Steam injection gas turbine generator
JP2016041939A (en) Waste power generation system
JP2008101856A (en) Operation method of boiler superheater in waste treatment facility, and boiler superheater of waste treatment facility
JP2006266085A (en) Regenerative cycle type gas turbine power generation system
JP2004020140A (en) Air heating equipment and thermal power generation facility
JP2009180101A (en) Decompression arrangement equipped with energy recovery capability
JP2006266086A (en) Regenerative cycle type gas turbine power generation system
CN218409878U (en) Subcritical gas power generation system
JP3725862B2 (en) Boiler blow water treatment method for exhaust gas treatment system in waste melting treatment facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees