JP2008101856A - Operation method of boiler superheater in waste treatment facility, and boiler superheater of waste treatment facility - Google Patents

Operation method of boiler superheater in waste treatment facility, and boiler superheater of waste treatment facility Download PDF

Info

Publication number
JP2008101856A
JP2008101856A JP2006285462A JP2006285462A JP2008101856A JP 2008101856 A JP2008101856 A JP 2008101856A JP 2006285462 A JP2006285462 A JP 2006285462A JP 2006285462 A JP2006285462 A JP 2006285462A JP 2008101856 A JP2008101856 A JP 2008101856A
Authority
JP
Japan
Prior art keywords
steam
pipe
superheated steam
boiler superheater
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006285462A
Other languages
Japanese (ja)
Other versions
JP4733612B2 (en
Inventor
Masafumi Takeda
雅文 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2006285462A priority Critical patent/JP4733612B2/en
Publication of JP2008101856A publication Critical patent/JP2008101856A/en
Application granted granted Critical
Publication of JP4733612B2 publication Critical patent/JP4733612B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To elongate a service life of a boiler superheater by equalizing reduction in thickness caused by high-temperature corrosion of the boiler superheater in a boiler of a waste treatment facility. <P>SOLUTION: In the boiler superheater 2 comprising a low-temperature portion side to which steam is supplied and a high-temperature portion side which heats the steam supplied to the low-temperature portion side and from which the superheated steam is taken out, a steam supply pipe 3 and a superheated steam taking-out pipe 5 switch the high-temperature portion side from which the superheated steam is taken out to the low-temperature portion side to which the steam is supplied, and switch the low-temperature side to which the steam is supplied to the high-temperature portion side from which the superheated steam is taken out, by two bypass pipes composed of a steam supplying switching pipe 8 for switching the high-temperature portion side from which the superheated steam is taken out to the low-temperature portion side to which the steam is supplied, and a superheated steam taking-out supplying pipe 9 for switching the low-temperature side to which the steam is supplied to the high-temperature portion side from which the superheated steam is taken out, at a time point when the boiler superheater 2 is used for a specific period, and the reduction of thickness at the high-temperature portion side reaches design limit. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、廃棄物処理設備のボイラ過熱器の腐食を均一化させてボイラ過熱器の寿命を延長することができる廃棄物処理設備のボイラ過熱器の運転方法及び廃棄物処理設備のボイラ過熱器に関する。   The present invention relates to a method of operating a boiler superheater of a waste treatment facility and a boiler superheater of a waste treatment facility capable of extending the life of the boiler superheater by uniformizing corrosion of the boiler superheater of the waste treatment facility. About.

廃棄物焼却炉、廃棄物溶融炉等の廃棄物処理炉を備えた廃棄物処理設備では、廃棄物処理炉で発生した可燃ガスを燃焼させてボイラで熱回収し、発生した蒸気を蒸気タービンへ供給して発電を行っている。   In a waste treatment facility equipped with a waste treatment furnace such as a waste incinerator or a waste melting furnace, the combustible gas generated in the waste treatment furnace is burned and heat is recovered in a boiler, and the generated steam is sent to a steam turbine. Supply and generate electricity.

廃棄物用ボイラのボイラ過熱器の管は、燃焼排ガス中の高濃度の塩化水素や飛灰中の塩化物、硫化物により過酷な高温腐食環境に晒されるため、ボイラ過熱器の材質としてボイラ用鋼管(STB等)を使用する場合は、高温腐食を防止するため蒸気温度の上限が約300℃に制限される。例えば、特許文献1には、ごみ焼却炉におけるボイラ過熱器の高温部側の管壁温度を測定し、管壁温度が所定温度以上になると冷却水を混合して所定温度以下にしてボイラ過熱器の高温腐食を防止することが開示されている。   Boiler superheater tubes for waste boilers are exposed to severe high-temperature corrosive environments due to high-concentration hydrogen chloride in combustion exhaust gas, chlorides in fly ash, and sulfides. When a steel pipe (STB or the like) is used, the upper limit of the steam temperature is limited to about 300 ° C. in order to prevent high temperature corrosion. For example, in Patent Document 1, the tube wall temperature on the high temperature side of a boiler superheater in a waste incinerator is measured, and when the tube wall temperature becomes a predetermined temperature or higher, cooling water is mixed to make the boiler superheater lower than the predetermined temperature. It is disclosed to prevent high temperature corrosion.

一方で、発電効率を上昇させるためには、蒸気の高温・高圧化が有効であることから、ボイラの発生蒸気温度を高めている。例えば、特許文献2には、ごみ焼却炉におけるボイラ過熱器の材質を耐高温腐食性のある高Niステンレスやスーパーメタルにすることが記載されている。   On the other hand, in order to increase the power generation efficiency, it is effective to increase the steam temperature and pressure, so the steam temperature generated by the boiler is increased. For example, Patent Document 2 describes that the material of a boiler superheater in a garbage incinerator is high Ni stainless steel or super metal having high temperature corrosion resistance.

図4は廃棄物処理設備に配置されている従来のボイラ過熱器の一例を示す概念図である。図4において、ボイラは、水を蒸発させて蒸気を発生させる蒸発器1と、蒸発器1から供蒸気供給配管3から配管4に供給された約300℃の蒸気をさらに加熱して約350℃の過熱蒸気を生成するボイラ過熱器2を備えている。約350℃で取り出された過熱蒸気は過熱蒸気取出用配管5で蒸気タービンなどの供給先へ送られる。なお、図中6,7は仕切弁である。
特開平5−280707号公報 特許第2769671号公報
FIG. 4 is a conceptual diagram showing an example of a conventional boiler superheater arranged in a waste treatment facility. In FIG. 4, the boiler further heats the steam at about 300 ° C. supplied from the evaporator 1 to the pipe 4 through the steam supply pipe 3 from the evaporator 1 by evaporating water to generate steam at about 350 ° C. The boiler superheater 2 which produces | generates this superheated steam is provided. The superheated steam taken out at about 350 ° C. is sent to a supply destination such as a steam turbine through the superheated steam extraction pipe 5. In the figure, 6 and 7 are gate valves.
Japanese Patent Laid-Open No. 5-280707 Japanese Patent No. 2769671

しかしながら、特許文献2記載のボイラ過熱器では、高温腐食を防止するために高価な高Niステンレスやスーパーメタルを使用するために、ボイラ用鋼管(STB等)の場合に比べて設備コストが高くなるという欠点がある。一方、ボイラ用鋼管の場合には高温腐食による減肉の問題がある。   However, the boiler superheater described in Patent Document 2 uses expensive high-Ni stainless steel or supermetal to prevent high-temperature corrosion, so that the equipment cost is higher than that of a boiler steel pipe (STB or the like). There is a drawback. On the other hand, in the case of boiler steel pipes, there is a problem of thinning due to high temperature corrosion.

図3は蒸気温度とボイラ過熱器の減肉量の関係を示すグラフである。   FIG. 3 is a graph showing the relationship between the steam temperature and the amount of thinning of the boiler superheater.

ボイラ過熱器の管にボイラ用鋼管を使用して蒸気温度を約300℃から約350℃へ昇温させる場合、図3に示すように、蒸気温度が約300℃では減肉がほとんどないが、約300℃を超える領域では325℃、350℃と温度が上昇するにつれて高温腐食が激しくなり、管の減肉量はほぼ温度上昇と使用時間に比例するものと予測される。そのため、ボイラ過熱器では、蒸気温度がボイラ過熱器入側で最も低く(約300℃)、ボイラ過熱器出側で最も高温(約350℃)となるため、ガス温度条件が同一ならばボイラ過熱器出側での減肉量が最大となり、ボイラ過熱器入側では減肉量はほぼ0である。ボイラ過熱器出側では高温腐食による減肉量が大きいために設定された減肉量になるとボイラ過熱器を定期的(2〜3年)に交換しなければならないのでボイラ過熱器の寿命が短く、また、イニシャルコスト又はランニングコストを高騰させるという課題があった。   When the steam temperature is increased from about 300 ° C. to about 350 ° C. using a boiler steel pipe as the boiler superheater tube, as shown in FIG. 3, there is almost no thinning at the steam temperature of about 300 ° C. In the region exceeding about 300 ° C., the high temperature corrosion becomes severe as the temperature rises to 325 ° C. and 350 ° C., and the amount of thinning of the pipe is predicted to be almost proportional to the temperature rise and the use time. Therefore, in the boiler superheater, the steam temperature is the lowest (about 300 ° C) on the boiler superheater inlet side and the highest temperature (about 350 ° C) on the boiler superheater outlet side. The thinning amount on the outlet side becomes the maximum, and the thinning amount on the boiler superheater inlet side is almost zero. The boiler superheater has a short life because the boiler superheater must be replaced periodically (2 to 3 years) when the set amount of thinning is high because the amount of thinning due to high-temperature corrosion is large on the boiler superheater outlet side. In addition, there is a problem that initial cost or running cost is increased.

そこで、本発明は、廃棄物処理設備におけるボイラのボイラ過熱器の高温腐食による減肉を均一化させてボイラ過熱器の寿命を延長させることを目的とするものである。   Then, this invention aims at equalizing the thinning by the high temperature corrosion of the boiler superheater of the boiler in a waste treatment facility, and extending the lifetime of a boiler superheater.

本発明の廃棄物処理設備のボイラ過熱器の運転方法は、蒸気が供給される低温部側と、低温部側へ供給された蒸気を加熱して過熱蒸気を取り出す高温部側とを備えた、廃棄物処理設備のボイラ過熱器の運転方法において、ボイラ過熱器を一定期間使用し、高温部側の減肉量が設計限界になった、あるいは近づいた時点で、過熱蒸気を取り出していた高温部側を蒸気が供給される低温部側に切り替えるとともに、蒸気を供給していた低温側を過熱蒸気が取り出される高温部側に切り替えることを特徴とする。この構成において、前記低温部側が高温腐食が起こらない蒸気温度であり、前記高温部側が高温腐食が起こる過熱蒸気温度である。   The operation method of the boiler superheater of the waste treatment facility of the present invention comprises a low temperature part side to which steam is supplied, and a high temperature part side to extract the superheated steam by heating the steam supplied to the low temperature part side, In the operation method of the boiler superheater of the waste treatment facility, the boiler superheater has been used for a certain period of time, and when the amount of thinning on the high temperature part has reached or approached the design limit, the high temperature part from which superheated steam was taken out The side is switched to the low temperature part side to which steam is supplied, and the low temperature side to which the steam is supplied is switched to the high temperature part side from which superheated steam is taken out. In this configuration, the low temperature portion side has a steam temperature at which high temperature corrosion does not occur, and the high temperature portion side has a superheated steam temperature at which high temperature corrosion occurs.

また、本発明の廃棄物処理設備のボイラ過熱器は、廃棄物処理設備のボイラ過熱器の蒸気入側となる低温部側が蒸気供給用配管で接続され、ボイラ過熱器の過熱蒸気出側となる高温部側に過熱蒸気取出用配管が接続され、蒸気供給用配管と過熱蒸気取出用配管が、過熱蒸気を取り出していた高温部側を蒸気が供給される低温部側に切り替える蒸気供給切替用配管と、蒸気を供給していた低温側を過熱蒸気が取り出される高温部側に切り替える過熱蒸気取出切替用配管からなる2本のバイパス管で接続されていることを特徴とする。ボイラ過熱器は、蒸気供給用配管には第1仕切弁、過熱蒸気取出用配管には第2仕切弁が設けられ、蒸供給用配管と過熱蒸気取出用配管は蒸気供給切替用配管及び過熱蒸気取出用配管からなる2本のバイパス管で接続され、蒸気供給切替用配管の一端は蒸気供給用配管の第1仕切弁の入側に接続され他端は過熱蒸気取出用配管の第2仕切弁の入側に接続され、過熱蒸気取出切替用配管の一端は過熱蒸気取出用配管の第1仕切弁の出側に接続され他端は過熱蒸気取出用配管の第2仕切弁の出側に接続され、蒸気供給切替用配管には第3仕切弁、過熱蒸気取出切替用配管には第4仕切弁が設ける構成とすることができる。また、切り替え時に弁を設けることなく、外部の管をバイパス改造して切り替えできるようにしてもよい。   Moreover, the boiler superheater of the waste treatment facility of the present invention is connected to the steam input pipe at the low temperature part side which is the steam inlet side of the boiler superheater of the waste treatment facility, and becomes the superheated steam outlet side of the boiler superheater. A steam supply switching pipe that connects the superheated steam extraction pipe to the high temperature part side, and the steam supply pipe and superheated steam extraction pipe switch the high temperature part from which superheated steam was taken out to the low temperature part side to which steam is supplied. And two bypass pipes composed of a superheated steam extraction switching pipe for switching the low temperature side supplying the steam to the high temperature portion side from which the superheated steam is taken out. The boiler superheater is provided with a first gate valve for the steam supply pipe, and a second gate valve for the superheated steam take-out pipe. The steam supply pipe and the superheated steam take-out pipe are the steam supply switching pipe and the superheated steam. Connected by two bypass pipes consisting of extraction pipes, one end of the steam supply switching pipe is connected to the inlet side of the first gate valve of the steam supply pipe, and the other end is the second gate valve of the superheated steam extraction pipe One end of the superheated steam take-out switching pipe is connected to the outlet side of the first gate valve of the superheated steam take-out pipe, and the other end is connected to the outlet side of the second gate valve of the superheated steam take-out pipe The steam supply switching pipe may be provided with a third gate valve, and the superheated steam extraction switching pipe may be provided with a fourth gate valve. Further, it may be possible to change the external pipe by bypass modification without providing a valve at the time of switching.

本発明は、ボイラ過熱器を一定期間使用し、ボイラ過熱器高温部の減肉量が設計限界に近づいた時点で蒸気及び過熱蒸気の流れを逆転させて、高温腐食により大きく減肉された高温部側を減肉がほとんどない低温部側に切り替えて高温腐食を低減させて減肉を抑え、減肉がほとんどなかった低温部側を高温腐食される高温部側に切り替えることによりボイラ過熱器管全体の減肉量を均一化させることができ、その結果、ボイラ過熱器の寿命を従来より約2倍延ばすことが可能となる。   The present invention uses a boiler superheater for a certain period, reverses the flow of steam and superheated steam when the amount of thinning of the boiler superheater high temperature part approaches the design limit, and the high temperature greatly reduced by high temperature corrosion. The boiler superheater tube is switched by switching the low temperature part side to the low temperature part side where there is almost no thinning to reduce the high temperature corrosion to suppress the thinning and switching the low temperature part side where there was almost no thinning to the high temperature part side where high temperature corrosion occurs. The overall thickness reduction can be made uniform, and as a result, it is possible to extend the life of the boiler superheater about twice as much as before.

以下、図面に基づき本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明のボイラ過熱器の一実施例を示す概念図である。   FIG. 1 is a conceptual diagram showing an embodiment of a boiler superheater according to the present invention.

ボイラは、水を蒸発させ蒸気を発生させる蒸発器1と、蒸発器1から供給される蒸気をさらに加熱して過熱蒸気を生成するボイラ過熱器2を備えている。蒸発器1の蒸気出側とボイラ過熱器2の配管4の蒸気入側は蒸気供給用配管3で接続され、ボイラ過熱器2の配管4の過熱蒸気出側は過熱蒸気取出用配管5に接続される。蒸気供給用配管3、ボイラ過熱器2の配管4には、高価な高Niステンレスやスーパーメタルに比べて安価な、例えばボイラ用鋼管(STB)を使用する。   The boiler includes an evaporator 1 that evaporates water and generates steam, and a boiler superheater 2 that further heats the steam supplied from the evaporator 1 to generate superheated steam. The steam outlet side of the evaporator 1 and the steam inlet side of the pipe 4 of the boiler superheater 2 are connected by the steam supply pipe 3, and the superheated steam outlet side of the pipe 4 of the boiler superheater 2 is connected to the superheated steam extraction pipe 5. Is done. The steam supply pipe 3 and the pipe 4 of the boiler superheater 2 use, for example, boiler steel pipe (STB) which is cheaper than expensive high Ni stainless steel or super metal.

蒸気供給用配管3には第1仕切弁6、過熱蒸気取出用配管5には第2仕切弁7が設けられる。   The steam supply pipe 3 is provided with a first gate valve 6, and the superheated steam extraction pipe 5 is provided with a second gate valve 7.

蒸気供給用配管3と過熱蒸気取出用配管5は、蒸気供給切替用配管8及び過熱蒸気取出切替用配管9からなる2本のバイパス管で接続される。蒸気供給切替用配管8の一端は蒸気供給用配管3の第1仕切弁6の入側に接続され、他端は過熱蒸気取出用配管7の第2仕切弁7の入側に接続され、また、過熱蒸気取出切替用配管9の一端は過熱蒸気取出用配管5の第1仕切弁6の出側に接続され、他端は過熱蒸気取出用配管5の第2仕切弁7の出側に接続される。   The steam supply pipe 3 and the superheated steam take-out pipe 5 are connected by two bypass pipes including a steam supply change-over pipe 8 and a superheated steam take-out change-over pipe 9. One end of the steam supply switching pipe 8 is connected to the inlet side of the first gate valve 6 of the steam supply pipe 3, and the other end is connected to the inlet side of the second gate valve 7 of the superheated steam extraction pipe 7. One end of the superheated steam extraction switching pipe 9 is connected to the outlet side of the first gate valve 6 of the superheated steam outlet pipe 5, and the other end is connected to the outlet side of the second gate valve 7 of the superheated steam outlet pipe 5. Is done.

蒸気供給切替用配管8には第3仕切弁10、過熱蒸気取出切替用配管9には第4仕切弁11が設けられる。   The steam supply switching pipe 8 is provided with a third gate valve 10, and the superheated steam extraction switching pipe 9 is provided with a fourth gate valve 11.

以上の構成からなる本実施例のボイラ加熱器において、蒸気及び過熱蒸気の流れの切り替え運転について説明する。   In the boiler heater of the present embodiment configured as described above, the switching operation of the flow of steam and superheated steam will be described.

図1に示すように、切り替え前は、蒸気供給用配管3の第1仕切弁6及び過熱蒸気取出用配管5の第2仕切弁7を開にし、蒸気供給切替用配管8の第3仕切弁10及び過熱蒸気取出切替用配管9の第4仕切弁11を閉にしておく。この状態で、図1の矢印で示すように、蒸発器1で発生した約300℃の蒸気は、蒸気供給用配管3、第1仕切弁6を通ってボイラ過熱器2の配管4に供給される。ボイラ過熱器2で約350℃に過熱された過熱蒸気はボイラ過熱器2を出て、過熱蒸気取出用配管5、第2仕切弁7を通って供給先へ送られる。   As shown in FIG. 1, before switching, the first gate valve 6 of the steam supply pipe 3 and the second gate valve 7 of the superheated steam extraction pipe 5 are opened, and the third gate valve of the steam supply switching pipe 8 is opened. 10 and the fourth gate valve 11 of the superheated steam extraction switching pipe 9 are closed. In this state, as shown by the arrow in FIG. 1, the steam of about 300 ° C. generated in the evaporator 1 is supplied to the pipe 4 of the boiler superheater 2 through the steam supply pipe 3 and the first gate valve 6. The The superheated steam superheated to about 350 ° C. by the boiler superheater 2 exits the boiler superheater 2 and is sent to the supply destination through the superheated steam extraction pipe 5 and the second gate valve 7.

前記の状態でボイラ過熱器2を一定期間使用し、年に1〜2回停止時にマンホールから鋼管の厚みを超音波肉厚計を用いて測定し、ボイラ過熱器出側の高温部側の配管の減肉量が設計限界に近づいた時点、例えば、設計肉厚2mm、採用厚み8mmの場合、過熱蒸気出口部分が最も減肉するが、ここが、例えば、3〜4mm(減肉量5〜4mm)時点でボイラ過熱器2における蒸気供給側と過熱蒸気の取り出し側を逆にする流れの切り替えを行う。   In the above state, the boiler superheater 2 is used for a certain period, and when it stops once or twice a year, the thickness of the steel pipe is measured from the manhole using an ultrasonic wall thickness gauge, and the piping on the high temperature side on the boiler superheater outlet side When the thinning amount of the metal nears the design limit, for example, when the design wall thickness is 2 mm and the adopted thickness is 8 mm, the superheated steam outlet portion is thinned most, but this is, for example, 3 to 4 mm (thickening amount 5 to 4 mm), the flow is switched so that the steam supply side and the superheated steam take-out side in the boiler superheater 2 are reversed.

図2は切り替え後の蒸気及び過熱蒸気の流れを示す図である。   FIG. 2 is a diagram showing the flow of steam and superheated steam after switching.

図2において、蒸気及び過熱蒸気の流れを逆に切り替えるため、第1仕切弁6及び第2仕切弁7を閉にし、第3仕切弁10及び第4仕切弁11を開にする。この状態で、図2の矢印で示すように、約300℃の蒸気が蒸発器1から蒸気供給用配管3、第3仕切弁10、蒸気供給切替用配管8を流れてボイラ過熱器2に入る。切り替え前は約350℃の過飽和蒸気の取り出し側の高温部側が入側に切り替わって約300℃の蒸気が供給されることになり、減肉量が設計限界に近づいていたボイラ過熱器出側の高温部側が低温部側になることによって高温腐食による減肉を停止させることが可能となる。   In FIG. 2, the first gate valve 6 and the second gate valve 7 are closed and the third gate valve 10 and the fourth gate valve 11 are opened to switch the flow of steam and superheated steam in reverse. In this state, as shown by the arrow in FIG. 2, steam at about 300 ° C. flows from the evaporator 1 through the steam supply pipe 3, the third gate valve 10, and the steam supply switching pipe 8 and enters the boiler superheater 2. . Before switching, the high temperature part on the take-out side of supersaturated steam at about 350 ° C. is switched to the inlet side, and steam at about 300 ° C. is supplied, so that the amount of thinning is near the design limit. When the high temperature part side becomes the low temperature part side, it is possible to stop the thinning due to high temperature corrosion.

ボイラ過熱器2で約350℃に加熱された過熱蒸気はボイラ過熱器2を出て、蒸気供給用配管3、第4仕切弁11、過熱蒸気取出切替用配管9、過熱蒸気取出用配管5を通って供給先へ送られる。   The superheated steam heated to about 350 ° C. by the boiler superheater 2 exits the boiler superheater 2 and is connected to the steam supply pipe 3, the fourth gate valve 11, the superheated steam take-out switching pipe 9, and the superheated steam take-out pipe 5. And sent to the supplier.

切り替え前は約300℃の蒸気の入側であった、減肉がほとんどなかった低温部側が過熱蒸気の約350℃の高温部側に切り替わることになり、減肉がほとんどなかった低温部側の配管の高温腐食が進み、減肉量が高温部側での設計限界に近づくまで使用可能となる。その後、減肉量が設計限界に近づいた時点でボイラ過熱器全体を交換する。   Before switching, the low-temperature part where there was almost no thinning, which was on the steam inlet side of about 300 ° C, was switched to the high-temperature part side of superheated steam, about 350 ° C. It can be used until the high-temperature corrosion of the piping advances and the amount of thinning approaches the design limit on the high-temperature part side. Then, when the amount of thinning approaches the design limit, the entire boiler superheater is replaced.

このように使用途中でボイラ過熱器の蒸気及び過熱蒸気の入側及び出側を切り替えることで、減肉が均一化されて、従来、ボイラ過熱器を2〜3年で交換していたを、本発明の切り替により4〜6年に延長が可能となって、寿命を約2倍に延長することが可能となる。   In this way, by switching between the inlet side and the outlet side of the steam and superheated steam of the boiler superheater during use, the thinning is made uniform, and conventionally, the boiler superheater was replaced in 2 to 3 years. By switching the present invention, it can be extended to 4 to 6 years, and the life can be extended about twice.

本発明のボイラ過熱器の一実施例を示す概念図である。It is a conceptual diagram which shows one Example of the boiler superheater of this invention. 本発明のボイラ過熱器の切り替え後の蒸気及び過熱蒸気の流れを示す図である。It is a figure which shows the flow after the switching of the boiler superheater of this invention, and the flow of superheated steam. 蒸気温度とボイラ過熱器の減肉量の関係を示すグラフである。It is a graph which shows the relationship between steam temperature and the amount of thinning of a boiler superheater. 廃棄物処理設備に配置されている従来のボイラ過熱器の一例を示す概念図である。It is a conceptual diagram which shows an example of the conventional boiler superheater arrange | positioned at a waste treatment facility.

符号の説明Explanation of symbols

1:蒸発器
2:ボイラ過熱器
3:蒸気供給用配管
4:ボイラ過熱器の配管
5:過熱蒸気取出用配管
6:第1仕切弁
7:第2仕切弁
8:蒸気供給切替用配管
9:過熱蒸気取出切替用配管
10:第3仕切弁
11:第4仕切弁
1: Evaporator 2: Boiler superheater 3: Steam supply pipe 4: Boiler superheater pipe
5: Pipe for superheated steam extraction 6: First gate valve 7: Second gate valve 8: Pipe for switching steam supply 9: Pipe for switching superheated steam extraction 10: Third gate valve 11: Fourth gate valve

Claims (4)

蒸気が供給される低温部側と、低温部側へ供給された蒸気を加熱して過熱蒸気を取り出す高温部側とを備えた、廃棄物処理設備のボイラ過熱器の運転方法において、
ボイラ過熱器を一定期間使用し、高温部側の減肉量が設計限界になった、あるいは近づいた時点で、過熱蒸気を取り出していた高温部側を蒸気が供給される低温部側に切り替えるとともに、蒸気を供給していた低温部側を過熱蒸気が取り出される高温部側に切り替えることを特徴とする廃棄物処理設備のボイラ過熱器の運転方法。
In a method for operating a boiler superheater of a waste treatment facility, comprising a low-temperature part side to which steam is supplied and a high-temperature part side for heating the steam supplied to the low-temperature part side and taking out superheated steam,
When the boiler superheater is used for a certain period of time, and the amount of thinning on the high-temperature part side reaches or approaches the design limit, the high-temperature part side where the superheated steam was taken out is switched to the low-temperature part side where steam is supplied A method for operating a boiler superheater of a waste treatment facility, characterized in that the low temperature part side supplying steam is switched to a high temperature part side from which superheated steam is taken out.
前記低温部側が高温腐食が起こらない蒸気温度であり、前記高温部側が高温腐食が起こる過熱蒸気温度であることを特徴とする請求項1記載の廃棄物処理設備のボイラ過熱器の運転方法。   2. The method of operating a boiler superheater of a waste treatment facility according to claim 1, wherein the low temperature portion side has a steam temperature at which high temperature corrosion does not occur, and the high temperature portion side has a superheated steam temperature at which high temperature corrosion occurs. 廃棄物処理設備のボイラ過熱器の蒸気入側となる低温部側が蒸気供給用配管で接続され、ボイラ過熱器の過熱蒸気出側となる高温部側に過熱蒸気取出用配管が接続され、
蒸気供給用配管と過熱蒸気取出用配管が、過熱蒸気を取り出していた高温部側を蒸気が供給される低温部側に切り替える蒸気供給切替用配管と、蒸気を供給していた低温側を過熱蒸気が取り出される高温部側に切り替える過熱蒸気取出切替用配管からなる2本のバイパス管で接続されていることを特徴とする廃棄物処理設備のボイラの過熱器。
The low temperature part which is the steam inlet side of the boiler superheater of the waste treatment facility is connected by a steam supply pipe, and the superheated steam extraction pipe is connected to the high temperature part which is the superheated steam outlet side of the boiler superheater,
Steam supply piping and superheated steam extraction piping are used to switch the steam supply switching piping that switches the high-temperature part from which superheated steam has been taken out to the low-temperature part to which steam is supplied, and the low-temperature side that has supplied steam is superheated steam A boiler superheater of a waste treatment facility, characterized in that it is connected by two bypass pipes composed of a superheated steam take-out switching pipe for switching to a high-temperature part side from which water is taken out.
蒸気供給用配管には第1仕切弁、過熱蒸気取出用配管には第2仕切弁が設けられ、蒸供給用配管と過熱蒸気取出用配管は蒸気供給切替用配管及び過熱蒸気取出用配管からなる2本のバイパス管で接続され、蒸気供給切替用配管の一端は蒸気供給用配管の第1仕切弁の入側に接続され他端は過熱蒸気取出用配管の第2仕切弁の入側に接続され、過熱蒸気取出切替用配管の一端は過熱蒸気取出用配管の第1仕切弁の出側に接続され他端は過熱蒸気取出用配管の第2仕切弁の出側に接続され、蒸気供給切替用配管には第3仕切弁、過熱蒸気取出切替用配管には第4仕切弁が設けられることを特徴とする請求項1記載の廃棄物処理設備のボイラの過熱器。   The steam supply pipe is provided with a first gate valve, and the superheated steam take-out pipe is provided with a second gate valve. The steam supply pipe and the superheated steam take-out pipe are composed of a steam supply switching pipe and a superheated steam take-out pipe. Connected by two bypass pipes, one end of the steam supply switching pipe is connected to the inlet side of the first gate valve of the steam supply pipe, and the other end is connected to the inlet side of the second gate valve of the superheated steam outlet pipe One end of the superheated steam take-out switching pipe is connected to the outlet side of the first gate valve of the superheated steam take-out pipe, and the other end is connected to the outlet side of the second gate valve of the superheated steam take-out pipe to switch the steam supply The boiler superheater of the waste treatment facility according to claim 1, wherein a third gate valve is provided in the pipe for use and a fourth gate valve is provided in the pipe for switching over the superheated steam extraction.
JP2006285462A 2006-10-19 2006-10-19 Boiler superheater for waste treatment equipment Expired - Fee Related JP4733612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285462A JP4733612B2 (en) 2006-10-19 2006-10-19 Boiler superheater for waste treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006285462A JP4733612B2 (en) 2006-10-19 2006-10-19 Boiler superheater for waste treatment equipment

Publications (2)

Publication Number Publication Date
JP2008101856A true JP2008101856A (en) 2008-05-01
JP4733612B2 JP4733612B2 (en) 2011-07-27

Family

ID=39436319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285462A Expired - Fee Related JP4733612B2 (en) 2006-10-19 2006-10-19 Boiler superheater for waste treatment equipment

Country Status (1)

Country Link
JP (1) JP4733612B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122075A (en) * 2008-11-19 2010-06-03 Mitsubishi Heavy Ind Ltd Method of estimating corrosion rate
JP2011027289A (en) * 2009-07-22 2011-02-10 Chugoku Electric Power Co Inc:The Repair method of heat exchanger
JP2012083095A (en) * 2010-10-12 2012-04-26 Martin Gmbh Fuer Umwelt- & Energietechnik Device including heat exchanger, and method of operating heat exchanger of steam generator
CN104214763A (en) * 2013-06-05 2014-12-17 中国石油天然气股份有限公司 Saliferous saturated steam preparation method and device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599404A (en) * 1982-07-09 1984-01-18 バブコツク日立株式会社 Pressure changing operating boiler
JPH0579201U (en) * 1992-03-31 1993-10-29 日立造船株式会社 Heat recovery boiler equipment
JPH0712486A (en) * 1990-06-19 1995-01-17 Anton Steinecker Entwicklungs Gmbh & Co Wart boiler device with outside boiler
JPH1026010A (en) * 1996-07-10 1998-01-27 Takuma Co Ltd High efficiency power generating method, exhaust gas treating method and exhaust gas treating device in waste treatment plant
JPH11201407A (en) * 1998-01-19 1999-07-30 Takuma Co Ltd Heat accumulative superheater
JP2002267131A (en) * 2001-03-06 2002-09-18 Takuma Co Ltd Incinerator
JP2003216244A (en) * 2002-01-25 2003-07-31 Ren Dan Bridge type gas, liquid flow direction, flow rate controlling method and temperature controlling device by the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599404A (en) * 1982-07-09 1984-01-18 バブコツク日立株式会社 Pressure changing operating boiler
JPH0712486A (en) * 1990-06-19 1995-01-17 Anton Steinecker Entwicklungs Gmbh & Co Wart boiler device with outside boiler
JPH0579201U (en) * 1992-03-31 1993-10-29 日立造船株式会社 Heat recovery boiler equipment
JPH1026010A (en) * 1996-07-10 1998-01-27 Takuma Co Ltd High efficiency power generating method, exhaust gas treating method and exhaust gas treating device in waste treatment plant
JPH11201407A (en) * 1998-01-19 1999-07-30 Takuma Co Ltd Heat accumulative superheater
JP2002267131A (en) * 2001-03-06 2002-09-18 Takuma Co Ltd Incinerator
JP2003216244A (en) * 2002-01-25 2003-07-31 Ren Dan Bridge type gas, liquid flow direction, flow rate controlling method and temperature controlling device by the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122075A (en) * 2008-11-19 2010-06-03 Mitsubishi Heavy Ind Ltd Method of estimating corrosion rate
JP2011027289A (en) * 2009-07-22 2011-02-10 Chugoku Electric Power Co Inc:The Repair method of heat exchanger
JP2012083095A (en) * 2010-10-12 2012-04-26 Martin Gmbh Fuer Umwelt- & Energietechnik Device including heat exchanger, and method of operating heat exchanger of steam generator
CN104214763A (en) * 2013-06-05 2014-12-17 中国石油天然气股份有限公司 Saliferous saturated steam preparation method and device
CN104214763B (en) * 2013-06-05 2016-03-09 中国石油天然气股份有限公司 A kind of preparation method of saliferous saturated vapor and device thereof

Also Published As

Publication number Publication date
JP4733612B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
KR101317222B1 (en) High efficiency feedwater heater
EP1023558A1 (en) Method and apparatus for generating electric power by combusting wastes
JP2008032367A (en) Control method for once-through waste heat recovery boiler
JP4733612B2 (en) Boiler superheater for waste treatment equipment
TW201819752A (en) System and method for providing supercritical steam
JP2011169186A (en) Waste power generator utilizing solar heat
KR101728263B1 (en) Boiler operation method and boiler
CN101225961A (en) Anticorrosion superheater for refuse incineration exhaust-heating boiler
CN201050778Y (en) Garbage combustion residual heat boiler anticorrosion superheater device for outputting high temperature overheated steam
JP5843391B2 (en) Waste power generation system
JP2001280863A (en) Heat exchanger and electric power generator comprising it
JP5137598B2 (en) Ventilation system in steam power generation facilities
JP2001520360A (en) Waste combustion power generation method and apparatus
JP4823998B2 (en) Waste power generation method
CN114909193A (en) Thermal power generating unit flexible operation system based on molten salt heat storage
JP7286530B2 (en) Water treatment equipment, power plant, and water treatment method
JP2016041939A (en) Waste power generation system
JPH11325406A (en) Feed water heating device for thermal power generation facility
JP2008179487A (en) Gas reformer
JP2020046138A (en) Combined cycle power generation facility and operation method for the combined cycle power generation facility
CN213630388U (en) Boiler feed water preheating and deoxidizing system in comprehensive energy system
JP5690954B1 (en) Conventional thermal power plant and conventional thermal power generation method
Skiles Improve the performance of your boiler system
JP7455781B2 (en) Ammonia supply unit for power generation plants, ammonia vaporization treatment method for power generation plants, and power generation plants
CZ33207U1 (en) Exhaust refrigerant evaporator for low power ORC units

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4733612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees