JP2009114001A - Ozone generator - Google Patents

Ozone generator Download PDF

Info

Publication number
JP2009114001A
JP2009114001A JP2007285794A JP2007285794A JP2009114001A JP 2009114001 A JP2009114001 A JP 2009114001A JP 2007285794 A JP2007285794 A JP 2007285794A JP 2007285794 A JP2007285794 A JP 2007285794A JP 2009114001 A JP2009114001 A JP 2009114001A
Authority
JP
Japan
Prior art keywords
water
electrode
voltage
ozone
ground electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007285794A
Other languages
Japanese (ja)
Other versions
JP5438893B2 (en
Inventor
Shizuyasu Yoshida
静安 吉田
Yasuhiro Kato
康弘 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2007285794A priority Critical patent/JP5438893B2/en
Publication of JP2009114001A publication Critical patent/JP2009114001A/en
Application granted granted Critical
Publication of JP5438893B2 publication Critical patent/JP5438893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make an underwater discharge length larger as well as to set the distance of a discharge space with high accuracy by easy distance adjustment of a gap which becomes a discharge space, so that uniform stable discharge can be achieved and capacity can easily be made larger through easy connection. <P>SOLUTION: This ozone generator comprises a cylindrical ground electrode 1, a high-voltage electrode 2 disposed inside the ground electrode 1, a gap support 4 forming a gap which becomes a generation space 3 between the ground electrode 1 and the high-voltage electrode 2, and insulating layers 5a, 5b formed on the electrode surfaces of the ground electrode 1 and the high-voltage electrode 2. Water in which oxygen-containing gas is dispersed as bubbles is supplied to the generation space 3 and discharge is caused in the underwater bubbles present in the generation space 3 by applying a voltage between the ground electrode 1 and the high-voltage electrode 2 to generate ozone gas and ozone water. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水中気泡内あるいは、放電空間の流れ移動する部分的な空気層で放電させてオゾン化ガス及びオゾン水を生成するオゾン発生装置に関するものである。   The present invention relates to an ozone generator that generates ozonized gas and ozone water by discharging in a bubble in water or in a partial air layer that flows and moves in a discharge space.

従来、上下水処理施設、化学工場、薬品工場、食品工場等において、ウイルス、細菌類、カビ類および酵母などの殺菌、アルデヒド、イオウ化合物、窒素化合物等の臭気物質の脱臭、し尿や染料廃液の脱色、有機溶剤などの有害物質の無害化をするために、オゾン発生装置が用いられている。   Conventionally, in water and sewage treatment facilities, chemical factories, pharmaceutical factories, food factories, etc., sterilization of viruses, bacteria, molds and yeasts, deodorization of odorous substances such as aldehydes, sulfur compounds, nitrogen compounds, human waste and dye waste liquids Ozone generators are used to decolorize and detoxify harmful substances such as organic solvents.

図5は、無声放電型オゾン発生装置の概念図である。
同図に示す無声放電型オゾン発生装置は、対向する平板の金属電極31a,31bの一方の面に誘電体からなる絶縁層32を配置した構成となっている。この金属電極31a,31bは、交流の高電圧電源33と接続されており、対向する金属電極31a,31bと誘電体の絶縁層32で構成される放電空間34において無声放電35の放電柱が形成される。
FIG. 5 is a conceptual diagram of a silent discharge ozone generator.
The silent discharge type ozone generator shown in the figure has a configuration in which an insulating layer 32 made of a dielectric is disposed on one surface of opposing flat metal electrodes 31a and 31b. The metal electrodes 31a and 31b are connected to an AC high voltage power source 33, and a discharge column of a silent discharge 35 is formed in a discharge space 34 formed by the opposing metal electrodes 31a and 31b and a dielectric insulating layer 32. Is done.

放電空間34に酸素を含んだ原料ガス36を供給することにより、無声放電35の放電柱により生じた電子と酸素分子が衝突し、酸素原子に解離後、解離をしていない酸素分子と結合しオゾン化ガスが生成される。   By supplying the source gas 36 containing oxygen to the discharge space 34, electrons generated by the discharge column of the silent discharge 35 collide with oxygen molecules, and after dissociating into oxygen atoms, they are combined with undissociated oxygen molecules. Ozonized gas is generated.

図6は無声放電型オゾン発生装置の一つとして円筒電極を用いた円筒電極型オゾン発生装置の概略図である。円筒電極型オゾン発生装置の電極構造は、基本的に平板を円筒に置き換えた形式となっている。図6では図5中の平板の金属電極31a,31bに相当する電極として、円筒の接地電極37と、絶縁層38が形成された高圧電極39とを備えている。図中には明記されていないが、図6のオゾン発生装置には、電極を冷却する装置を接地電極37の外周面と高圧電極39の内周面のどちらか一方の電極あるいは両電極に付加している。   FIG. 6 is a schematic view of a cylindrical electrode type ozone generator using a cylindrical electrode as one of silent discharge type ozone generators. The electrode structure of the cylindrical electrode type ozone generator basically has a form in which a flat plate is replaced with a cylinder. In FIG. 6, a cylindrical ground electrode 37 and a high voltage electrode 39 on which an insulating layer 38 is formed are provided as electrodes corresponding to the flat metal electrodes 31a and 31b in FIG. Although not clearly shown in the drawing, the ozone generator shown in FIG. 6 has a device for cooling the electrode added to one or both of the outer peripheral surface of the ground electrode 37 and the inner peripheral surface of the high-voltage electrode 39. is doing.

これらのオゾン発生装置は、平行に配置された電極(31a,31b)、(37,39)間に交流高電圧を印加し、その放電空間34に酸素を含むガスを供給し、無声放電を生じさせてオゾンを生成する。発生したオゾン化ガスを上水原水、下水処理水等に直接注入し、殺菌、脱色、脱臭等の処理、有害物質の無害化に用いている。また、このオゾン化ガスを水に溶解して医療機器や食品などの洗浄殺菌にも用いることができる。   These ozone generators apply an alternating high voltage between the electrodes (31a, 31b) and (37, 39) arranged in parallel, supply a gas containing oxygen to the discharge space 34, and generate silent discharge. To generate ozone. Generated ozonized gas is directly injected into raw water and sewage treated water, etc., and used for sterilization, decolorization, deodorization, and detoxification of harmful substances. In addition, this ozonized gas can be dissolved in water and used for cleaning and sterilization of medical devices and foods.

一方、水中内に酸素を含む原料ガスを気泡化し、その気泡内で放電させオゾン化ガスおよびオゾン水を生成する水中気泡発生型オゾン発生装置が提案されている(例えば、特許文献1,2参照)。   On the other hand, an underwater bubble generation type ozone generator has been proposed in which a source gas containing oxygen in water is bubbled and discharged in the bubbles to generate ozonized gas and ozone water (see, for example, Patent Documents 1 and 2). ).

図7は平面電極を用いた水中気泡発生型オゾン発生装置の概念図である。この装置は、容器41の中に平行な対向する金属電極42a,42bを配置し、該容器41内を原水43で満たし、金属電極42a,42b間の下方部より酸素を含む原料ガス44を導入する。この原料ガス44は、金属電極42a,42bの下方部に設置した気泡発生機45から供給される微小の気泡46であり、金属電極42a,42b間を上昇する。   FIG. 7 is a conceptual diagram of an underwater bubble generating ozone generator using a planar electrode. This apparatus arranges parallel metal electrodes 42a and 42b in a container 41, fills the container 41 with raw water 43, and introduces a source gas 44 containing oxygen from the lower part between the metal electrodes 42a and 42b. To do. The source gas 44 is a minute bubble 46 supplied from a bubble generator 45 installed below the metal electrodes 42a and 42b, and rises between the metal electrodes 42a and 42b.

上記水中気泡発生型オゾン発生装置において、金属電極42a,42bの間に高電圧電源47より交流高電圧を印加する。この電圧は、正弦波やパルス波で容器41内の水を介して、酸素を含む原料ガス気泡46の気泡径の耐電極方向に印加される。これにより、気泡内で放電が生じ、気泡内で電子と酸素分子が衝突し、酸素原子に解離し、他の酸素分子と結合してオゾン化ガスが生成される。また、このオゾン化ガスが水に溶解し、オゾン水が生成される。生成したオゾン化ガスおよびオゾン水は、出口48より取り出される。   In the underwater bubble generating ozone generator, an alternating high voltage is applied from a high voltage power supply 47 between the metal electrodes 42a and 42b. This voltage is applied to the electrode resistance direction of the bubble diameter of the source gas bubble 46 containing oxygen via water in the container 41 by a sine wave or a pulse wave. As a result, discharge occurs in the bubbles, electrons collide with oxygen molecules in the bubbles, dissociate into oxygen atoms, and combine with other oxygen molecules to generate ozonized gas. Moreover, this ozonized gas melt | dissolves in water and ozone water is produced | generated. The generated ozonized gas and ozone water are taken out from the outlet 48.

上記水中気泡発生型オゾン発生装置では、金属電極42a,42bの間隔を狭くすることにより、電極間の水中にある気泡に高い電圧を印加することができ、オゾン発生効率を高めることが出来る。またはオゾン発生効率を維持したままで、印加電圧を低くすることが出来る。   In the underwater bubble generation type ozone generator, by narrowing the distance between the metal electrodes 42a and 42b, a high voltage can be applied to bubbles in the water between the electrodes, and the ozone generation efficiency can be increased. Alternatively, the applied voltage can be lowered while maintaining the ozone generation efficiency.

また、絶縁係数が異なる2種以上の媒質を用いることで低い印加電圧で放電可能なオゾン発生装置が提案されている(例えば、特許文献3参照)。   Further, an ozone generator that can be discharged at a low applied voltage by using two or more types of media having different insulation coefficients has been proposed (see, for example, Patent Document 3).

図8は特許文献3に記載されたオゾン発生装置の構成図である。このオゾン発生装置は、水中放電部50に一対の平面電極51a,51bを配置し、平面電極51a,51bの対向面を絶縁体52a,52bで絶縁する。そして、平面電極51a,51b間にイオン除去水53(水層)と空気54(ガス層)の二界面を形成している。   FIG. 8 is a block diagram of an ozone generator described in Patent Document 3. In this ozone generator, a pair of planar electrodes 51a and 51b are disposed in the underwater discharge section 50, and the opposing surfaces of the planar electrodes 51a and 51b are insulated by insulators 52a and 52b. Then, two interfaces of ion-removed water 53 (water layer) and air 54 (gas layer) are formed between the planar electrodes 51a and 51b.

上記オゾン発生装置において、平面電極51a,51bによってイオン除去水53と空気54の混合媒質に電圧を印加した場合、空気54に形成される電界EAは媒質が空気だけの時より大きくなることから、低い電位を加えても容易に放電することになる。
特開2001−9463号公報 特開2001−10808号公報 特表2005−502456号公報
In the ozone generator, when a voltage is applied to the mixed medium of the ion-removed water 53 and the air 54 by the planar electrodes 51a and 51b, the electric field EA formed in the air 54 becomes larger than when the medium is only air. Even if a low potential is applied, the battery is easily discharged.
JP 2001-9463 A Japanese Patent Laid-Open No. 2001-10808 Special table 2005-502456 gazette

しかしながら、特許文献1,2に記載の水中気泡発生型のオゾン発生装置は、タンク壁面の内部または外部に電極を設けているため、電極間の距離が長く、処理水中のその気泡内の酸素等を含むガス中で放電させるには、高い印加電圧を必要としていた。   However, the underwater bubble generation type ozone generators described in Patent Documents 1 and 2 are provided with electrodes inside or outside the tank wall surface, so the distance between the electrodes is long, oxygen in the bubbles in the treated water, etc. In order to discharge the gas in a gas containing a high applied voltage.

また、図7に記載の水中気泡発生型のオゾン発生装置は、容器内でオゾン化ガスおよびオゾン水を発生させる構造であるので、水道水や工業利用水を原水とした大量の水を処理することが出来なかった。また、これらの原水の抵抗値は不安定で低いため、電極の電解腐食を高め、電極の消耗や発生オゾンおよびオゾン水の純度を低下させる。さらに水中の耐電圧および絶縁抵抗が低下し、水中内の漏れ電流が増大して損失が大きくなると共に放電が低下し、オゾン発生の低下、電極間での短絡、急激な温度上昇による突沸が生じる恐れがある。   Moreover, since the underwater bubble generation type ozone generator shown in FIG. 7 has a structure for generating ozonized gas and ozone water in a container, it treats a large amount of water using tap water or industrial water as raw water. I couldn't. Moreover, since the resistance values of these raw waters are unstable and low, the electrolytic corrosion of the electrodes is increased, and the consumption of the electrodes and the purity of generated ozone and ozone water are lowered. In addition, the withstand voltage and insulation resistance in water decrease, leakage current in water increases, loss increases and discharge decreases, resulting in decreased ozone generation, short circuit between electrodes, and bumping due to rapid temperature rise. There is a fear.

また、図7及び特許文献3に記載のオゾン発生装置は、平面電極の対向平面電極構造であるため、均一な安定放電を得ることが難しかった。特許文献3の水中放電部50は、平行電極で形成される放電空間構造で、絶縁された電極間に酸素の微細気泡を含む水層とガス層の2層があるが、水層とガス層の層厚さ(空隙)を均一な距離に維持しなければ、放電は安定しない。オゾン発生の放電空間において、効率よく、かつ安定に放電させるには、放電空間の距離が1mm以下の狭い空間を必要とする。ところが、特許文献3のような平面電極の対向平面電極構造であると、高い精度で水平を維持しないと、これらの放電空間を維持することが出来ない。また、水中放電部50に注入する水量が多くなると、水面が変動し、液面の高さ(波打つ)一定に保つことが出来ない。空気(酸素を含む)も同様である。従って、装置の振動、傾き、風量の増加に対して、大型化できる構成を要していなかった。   Moreover, since the ozone generator of FIG. 7 and patent document 3 is an opposing plane electrode structure of a plane electrode, it was difficult to obtain uniform stable discharge. The underwater discharge part 50 of Patent Document 3 is a discharge space structure formed by parallel electrodes, and there are two layers, an aqueous layer containing fine oxygen bubbles and a gas layer, between the insulated electrodes. If the layer thickness (void) is not maintained at a uniform distance, the discharge is not stable. In order to discharge efficiently and stably in the discharge space where ozone is generated, a narrow space with a distance of 1 mm or less is required. However, in the opposed planar electrode structure of planar electrodes as in Patent Document 3, these discharge spaces cannot be maintained unless the level is maintained with high accuracy. Further, when the amount of water injected into the underwater discharge unit 50 increases, the water surface fluctuates, and the liquid level cannot be kept constant. The same applies to air (including oxygen). Therefore, a configuration that can be increased in size is not required with respect to the vibration, inclination, and increase in air volume of the apparatus.

本発明は、かかる点に鑑みてなされたものであり、放電空間となるギャップの間隔調整が容易で放電空間の距離を高精度に設定できると共に水中放電長を長く取れ、均一な安定放電を得ることができ、連結が容易で大容量化にも優れたオゾン発生装置を提供することを目的とする。   The present invention has been made in view of the above point, and it is easy to adjust the gap distance as a discharge space, and the distance of the discharge space can be set with high accuracy, and the underwater discharge length can be increased to obtain a uniform stable discharge. It is an object of the present invention to provide an ozone generator that can be easily connected and has an excellent capacity.

本発明のオゾン発生装置は、円筒状をなす接地電極と、前記接地電極の内側に配置された高圧電極と、前記接地電極と前記高圧電極との間に放電空間となるギャップを形成するスペーサと、前記放電空間を形成している前記接地電極及び前記高圧電極の両方又は一方の電極表面に形成された絶縁層とを備え、前記放電空間に酸素を含むガスを気泡分散した水を供給すると共に、前記接地電極と前記高圧電極との間に電圧を印加して前記放電空間に存在する気泡をオゾン化ガスに変え、オゾン水を生成することを特徴とする。   The ozone generator according to the present invention includes a cylindrical ground electrode, a high-voltage electrode disposed inside the ground electrode, and a spacer that forms a gap serving as a discharge space between the ground electrode and the high-voltage electrode. And an insulating layer formed on the surface of one or both of the ground electrode and the high-voltage electrode forming the discharge space, and supplying water in which oxygen-containing gas is dispersed in the discharge space A voltage is applied between the ground electrode and the high-voltage electrode to convert bubbles present in the discharge space into ozonized gas, thereby generating ozone water.

この構成によれば、接地電極と前記高圧電極との間に電圧を印加することで、放電空間に存在する水中気泡内あるいは、多量の気泡の集中や大きな気泡による放電空間の流れ移動する部分的に空気層となっている箇所で放電させて、オゾン化ガスに変えてオゾン化ガスやオゾン水を生成することができる。そして、円筒状の接地電極内部に高圧電極を配置してスペーサを介して放電空間を形成するので、構造的なギャップにより放電・電圧印加空間を構成でき、放電空間を固定できる。しかも、オゾン発生装置の設置位置・向き等に制約が無く、オゾン発生装置の連結も可能であることから、大容量化および大型化を容易に実現できる。また、気泡を含む水を円筒状のギャップで形成される放電空間で、その水を介して、気泡内に高電圧を印加し、気泡内で放電とオゾンの生成を可能としているため、特許文献3のような水層とガス層の2層の放電空間を持たず、気泡内のみでの放電とオゾン発生を実現することができる。   According to this configuration, by applying a voltage between the ground electrode and the high-voltage electrode, partial movement of the discharge space in the discharge space or in the discharge space due to the concentration of a large amount of bubbles or large bubbles is caused. In addition, it is possible to generate an ozonized gas or ozone water by discharging at a location that is an air layer and changing to an ozonized gas. Since the high-voltage electrode is disposed inside the cylindrical ground electrode and the discharge space is formed via the spacer, the discharge / voltage application space can be configured by the structural gap, and the discharge space can be fixed. In addition, there is no restriction on the installation position and orientation of the ozone generator, and the ozone generator can be connected. Therefore, it is possible to easily realize large capacity and large size. In addition, since water containing bubbles is formed in a discharge space formed by a cylindrical gap, a high voltage is applied to the bubbles via the water, and discharge and ozone can be generated in the bubbles. No discharge space of two layers of water layer and gas layer as in FIG. 3, and discharge and ozone generation only in the bubbles can be realized.

また、円筒状の接地電極内部に高圧電極を配置して放電空間を形成するので、スペーサを用いて容易に電極間距離を短い距離に設定することができる。したがって、水中気泡に印加される電圧(電界強度)が高くなるので、電子のエネルギー分布が高くなり、発生オゾン濃度を高くすることができる。また、放電空間を流れる酸素ガスを含む気泡分散した水に比較的低い電圧を印加し、効率良くオゾン化ガスおよびオゾン水を得ることができる。   Further, since the discharge space is formed by arranging the high voltage electrode inside the cylindrical ground electrode, the distance between the electrodes can be easily set to a short distance by using the spacer. Therefore, since the voltage (electric field strength) applied to the bubbles in water is increased, the energy distribution of electrons is increased, and the generated ozone concentration can be increased. In addition, a relatively low voltage is applied to water dispersed in bubbles containing oxygen gas flowing in the discharge space, so that the ozonized gas and ozone water can be obtained efficiently.

また、接地電極及び高圧電極の双方又は片側の表面を絶縁層で被覆したことにより、安定したオゾン発生を実現できる。例えば、図4(a)に示すように、放電空間(生成空間3)における気泡分散水の気泡が電極にまたがる気泡径の場合には電極間に空隙13が生じるが、接地電極及び又は高圧電極の表面を絶縁層で被覆することで、気泡が電極にまたがる気泡径であっても絶縁層により火花放電14(図4(b))の様な過電流の発生を防止できる。   Moreover, stable ozone generation can be realized by covering both the ground electrode and the high-voltage electrode or the surface of one side with an insulating layer. For example, as shown in FIG. 4A, when the bubble dispersed water bubbles in the discharge space (generation space 3) have a bubble diameter across the electrodes, a gap 13 is generated between the electrodes. By covering the surface with an insulating layer, it is possible to prevent the occurrence of overcurrent such as spark discharge 14 (FIG. 4B) by the insulating layer even if the bubble has a bubble diameter spanning the electrode.

上記オゾン発生装置において、前記絶縁層は、セラミックス材料又は金属酸化物の無機物で構成することが望ましい。水中にある接地電極及び又は高圧電極に絶縁層を形成したことにより、電極表面(金属)と水との接触が無くなり、水接触や金属表面での部分放電による表面侵食を防止でき、溶出する金属イオンや微粒子によるオゾン化ガスおよびオゾン水の純度低下、不純物混入といった不具合を排除でき、電極の寿命も長期に維持できる。また、接地電極及び又は高圧電極を表面保護層となる絶縁層で被覆することにより、その被覆面で絶縁層が水中の抵抗より高くなり、供給される水の絶縁抵抗が低い場合でも高電圧を印加できる。   In the above ozone generator, the insulating layer is preferably made of a ceramic material or a metal oxide inorganic material. By forming an insulating layer on the ground electrode and / or high-voltage electrode in water, the contact between the electrode surface (metal) and water is eliminated, and surface erosion due to water contact or partial discharge on the metal surface can be prevented, and the eluted metal Problems such as a decrease in purity of ozone gas and ozone water caused by ions and fine particles and contamination of impurities can be eliminated, and the life of the electrode can be maintained for a long time. In addition, by covering the ground electrode and / or the high voltage electrode with an insulating layer serving as a surface protective layer, the insulating layer becomes higher than the resistance in water on the coated surface, and a high voltage can be applied even when the supplied water has a low insulating resistance. Can be applied.

上記オゾン発生装置において、接地電極と前記高圧電極との間の印加電圧として高周波電圧を印加するように構成でき、電圧波形は、正弦波、パルス波又はノコギリ波とすることができる。   The ozone generator can be configured to apply a high-frequency voltage as an applied voltage between the ground electrode and the high-voltage electrode, and the voltage waveform can be a sine wave, a pulse wave, or a sawtooth wave.

さらに、電圧を印加してオゾン発生装置から発生したオゾン化ガスとオゾン水を、エゼクタポンプに通して、オゾン化ガスの溶解を高め、その後に、オゾン化ガスとオゾン水とを分離するガス分離機を設けて、ガス分離機で分離したオゾン化ガスを循環経路によりエゼクタポンプに戻し、再度オゾン化ガスを溶解するようにすると、オゾン水の生成率を高めることができる。
また本発明は、上記オゾン発生装置において、前記放電空間へ供給する水を冷却して、オゾン化ガス及びオゾン水の生成で生じる熱を冷却することを特徴とする。
Furthermore, the gas separation that separates the ozonized gas and the ozone water by passing the ozonized gas and the ozone water generated from the ozone generator by applying the voltage through the ejector pump to enhance the dissolution of the ozonized gas. If the ozonized gas separated by the gas separator is returned to the ejector pump through the circulation path and the ozonized gas is dissolved again, the production rate of ozone water can be increased.
Further, the present invention is characterized in that, in the ozone generator, water supplied to the discharge space is cooled, and heat generated by generation of ozonized gas and ozone water is cooled.

この構成により、オゾン発生装置へ供給する水を冷却することから、オゾン発生効率を上げることができると共に、接地電極と高圧電極に付属する外周部、内周部の冷却部が不要となり、構造を簡略化および軽量化することができる。   With this configuration, the water supplied to the ozone generator is cooled, so that the ozone generation efficiency can be increased, and the outer and inner cooling portions attached to the ground electrode and the high-voltage electrode are not required. It can be simplified and reduced in weight.

また本発明は、上記オゾン発生装置において、有機物質又は臭い物質を含む未処理水を原水に混入して前記放電空間へ供給することを特徴とする。   Further, the present invention is characterized in that in the above ozone generator, untreated water containing an organic substance or an odorous substance is mixed into raw water and supplied to the discharge space.

この構成により、原水中に有機物質や臭い物質を含む未処理水を混入することで、原水中に発生するオゾンおよびオゾン水によって当該原水中の有機物質や臭い物質を連続的に無害化処理することができる。   With this configuration, by mixing untreated water containing organic substances and odorous substances in the raw water, the organic substances and odorous substances in the raw water are continuously rendered harmless by ozone and ozone water generated in the raw water. be able to.

本発明によれば、放電空間となるギャップの間隔調整が容易で放電空間の距離を高精度に設定できると共に水中放電長を長く取れ、均一な安定放電を得ることができ、連結が容易で大容量化にも優れたオゾン発生装置を提供できる。   According to the present invention, the gap of the discharge space can be easily adjusted, the distance of the discharge space can be set with high accuracy, the discharge length in water can be increased, and a uniform and stable discharge can be obtained. An ozone generator excellent in capacity can be provided.

以下、本発明の一実施の形態について添付図面を参照して詳細に説明する。
図1は一実施の形態に係るオゾン発生装置の概念図であり、図2は図1に示すオゾン発生装置を用いて処理するシステムの構成図である。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a conceptual diagram of an ozone generator according to an embodiment, and FIG. 2 is a configuration diagram of a system for processing using the ozone generator shown in FIG.

図1に示すように、本実施の形態に係るオゾン発生装置は、円筒状をなす接地電極1の内部空間に高圧電極2を配置し、接地電極1の内壁面と高圧電極2の外周面との間に適切な生成空間3をスペーサとしてのギャップ支持体4で形成している。接地電極1及び高圧電極2の対向面には絶縁層5a,5bがそれぞれ形成されている。接地電極1と高圧電極2との間に印加する高周波又はパルスの高電圧を高電圧電源6が発生する。高電圧電源6の一方の電極は接地電極1に接続し、他方の電極は接地電極1に設けた絶縁端子7を介して高圧電極2に接続している。円筒状をなす接地電極1の下面には生成空間3へ酸素を含むガスを気泡分散した水を供給する供給口8を設け、接地電極1の上面にはオゾン化ガスおよびオゾン水を排出する出口9を設けている。   As shown in FIG. 1, the ozone generator according to the present embodiment has a high voltage electrode 2 disposed in an internal space of a cylindrical ground electrode 1, and an inner wall surface of the ground electrode 1 and an outer peripheral surface of the high voltage electrode 2. An appropriate generation space 3 is formed between the gap supports 4 as spacers. Insulating layers 5a and 5b are formed on the opposing surfaces of the ground electrode 1 and the high-voltage electrode 2, respectively. A high voltage power supply 6 generates a high frequency or high voltage pulse applied between the ground electrode 1 and the high voltage electrode 2. One electrode of the high voltage power supply 6 is connected to the ground electrode 1, and the other electrode is connected to the high voltage electrode 2 through an insulating terminal 7 provided on the ground electrode 1. The lower surface of the cylindrical ground electrode 1 is provided with a supply port 8 for supplying water in which oxygen-containing gas is dispersed into the generation space 3. The upper surface of the ground electrode 1 is an outlet for discharging ozonized gas and ozone water. 9 is provided.

絶縁層5a、5bは、高電圧を印加するために高い絶縁特性を備え、耐電圧性に優れた均一な絶縁体で構成されることが望ましい。また、絶縁層5a、5bを、接地電極1と高圧電極2の表面保護層として機能させるには、電極材料から水にイオン等溶出や劣化が無く、且つ絶縁性から高抵抗を有し、ピンホールが無い均一な層を構成する必要がある。また、金属表面との密着性が高く、熱膨張係数の整合が取れ、耐熱、耐温度変化に対して割れや剥離しないことが求められる。このような要求に応えるため、絶縁層5a、5bを複数層で構成するようにしても良い。尚、この絶縁層5a、5bは、接地電極1と高圧電極2のいずれか一方に形成することでも本発明の効果が得られる。   The insulating layers 5a and 5b are desirably formed of a uniform insulator having high insulating characteristics for applying a high voltage and having excellent voltage resistance. Moreover, in order to make the insulating layers 5a and 5b function as surface protective layers for the ground electrode 1 and the high-voltage electrode 2, there is no elution or deterioration of ions from the electrode material to water, and there is high resistance from insulation. It is necessary to form a uniform layer without holes. In addition, it is required to have high adhesion to the metal surface, match the thermal expansion coefficient, and not crack or peel off against changes in heat resistance and temperature resistance. In order to meet such a requirement, the insulating layers 5a and 5b may be composed of a plurality of layers. The effects of the present invention can also be obtained by forming the insulating layers 5a and 5b on either the ground electrode 1 or the high voltage electrode 2.

接地電極1及び高圧電極2の素管金属材料として、不錆鋼であるステンレス材または鉄、鉄−ニッケル材、アルミニユウム材を用いることができ、これら接地電極1の内周面および高圧電極2の外周面に絶縁層5a,5bを形成する。たとえば、アルミナ、シリカ、カルシユウム、マグネシウム、チタン、バリウム、ジルコニアを主剤とする酸化物にナトリウム、カリウム、リチウム、ホウ素を溶剤とする酸化化合物を誘電絶縁体として接地電極1の内周面および高圧電極2の外周面に被覆して緻密化し、耐電圧の優れた均一な絶縁層5a、5bを形成する。   As the raw tube metal material of the ground electrode 1 and the high-voltage electrode 2, stainless steel or iron, iron-nickel material, aluminum material which is non-rust steel can be used. Insulating layers 5a and 5b are formed on the outer peripheral surface. For example, the inner peripheral surface and the high-voltage electrode of the ground electrode 1 using an oxide mainly composed of alumina, silica, calcium, magnesium, titanium, barium, and zirconia as an oxide compound containing sodium, potassium, lithium, and boron as solvents. 2 is coated and densified to form uniform insulating layers 5a and 5b having excellent withstand voltage.

絶縁層5a、5bの具体的な材料としては、アルミナ、ムライト、ステアタイトなどのセラミックス材料、ホウケイ酸ガラス、ソーダライムガラスなどのガラス材料、シリカ、ナトリウム、カリユウムを含むホウロウ材料などがあり、これらは塗布される金属材料の耐熱性、熱膨張係数、形成する膜の厚さにより、選択される。   Specific materials for the insulating layers 5a and 5b include ceramic materials such as alumina, mullite, and steatite, glass materials such as borosilicate glass and soda lime glass, and enamel materials including silica, sodium, and potassium. Is selected depending on the heat resistance, thermal expansion coefficient, and thickness of the film to be formed.

絶縁層5a、5bの形成方法として、電極表面に、酸化物単身または酸化化合物の無機系化合物を高温のバーナーや放電を用いて溶射する方法、また有機溶剤に分散しスラリー化したものをスプレー、スピナーコート、刷毛、デッピング、スクリーン印刷等により厚さ100〜1000μm程度に塗布し、高温焼結炉により500℃以上で焼結する方法がある。   As a method for forming the insulating layers 5a and 5b, a method of spraying an oxide compound or an inorganic compound of an oxide compound on a surface of an electrode using a high-temperature burner or discharge, or spraying a slurry dispersed in an organic solvent, There is a method of applying to a thickness of about 100 to 1000 μm by spinner coating, brushing, dipping, screen printing, etc., and sintering at 500 ° C. or higher in a high temperature sintering furnace.

金属表面と無機系化合物との密着性を高めるため、必要に応じて素管金属表面をブラスト等により粗面化し、又は絶縁層5a、5bを形成する前に金属表面に下地材として、強固な酸化膜層や金属メッキなどを形成しておくことができる。   In order to enhance the adhesion between the metal surface and the inorganic compound, the base metal surface is roughened by blasting or the like as necessary, or the metal surface is solidly used as a base material before forming the insulating layers 5a and 5b. An oxide film layer, metal plating, or the like can be formed.

この絶縁層5a、5bの形成において、絶縁層5a、5bとして所要の膜厚と必要な耐電圧を得るために、絶縁層5a、5bの形成を数回繰り返し行う。   In forming the insulating layers 5a and 5b, the insulating layers 5a and 5b are repeatedly formed several times in order to obtain a required film thickness and a required withstand voltage as the insulating layers 5a and 5b.

図2は本オゾン発生装置を用いて処理するシステム構成図である。
同図に示す処理システムでは、原水21を冷却機22で冷却後、ガス供給装置23から酸素並びに酸素を含むガスあるいは空気ガスが供給される気泡発生機24に原水21を供給する。気泡発生機24は、散気管、超音波振動子又は回転式はね分散機等の水中に気泡を発生させる機構を備える。気泡発生機24にて原水中に散気させ、水中に100μm以下の気泡を発生させる。気泡が大きいと、浮力が生じ、装置内で集合し、大きな気泡となり、水に分散せず、かつ水の流れに沿って、オゾン装置内を均一に流れなくなる。
FIG. 2 is a system configuration diagram for processing using the present ozone generator.
In the treatment system shown in the figure, after the raw water 21 is cooled by the cooler 22, the raw water 21 is supplied from the gas supply device 23 to the bubble generator 24 to which oxygen and a gas containing oxygen or air gas are supplied. The bubble generator 24 includes a mechanism for generating bubbles in water, such as an air diffuser, an ultrasonic vibrator, or a rotary splash disperser. Air bubbles are diffused into the raw water by the bubble generator 24 to generate bubbles of 100 μm or less in the water. When the bubbles are large, buoyancy is generated, and the bubbles gather in the apparatus, become large bubbles, do not disperse in water, and do not flow uniformly in the ozone apparatus along the flow of water.

以上のように気泡分散した原水を、オゾン発生装置25に供給する。オゾン発生装置25は、図1に示す構成を有する。オゾン発生装置25には、高電圧電源装置26が提供する高電圧電源6から接地電極1および高圧電極2の間に、例えば400〜10kHzの正弦波の交流高電圧4kV〜20kVが印加される。なお、この電極間に印加する電圧は、正弦波の他にパルス波、ノコギリ波等でも良い。   The raw water dispersed in bubbles as described above is supplied to the ozone generator 25. The ozone generator 25 has a configuration shown in FIG. A high-voltage power supply 6 provided by the high-voltage power supply device 26 is applied to the ozone generator 25 between the ground electrode 1 and the high-voltage electrode 2, for example, a sine wave AC high voltage 4 kV to 20 kV of 400 to 10 kHz. The voltage applied between the electrodes may be a pulse wave, a sawtooth wave or the like in addition to the sine wave.

接地電極1および高圧電極2の絶縁層5a、5bを介して生成空間3にある水中に電圧が加えられる。水中には気泡があり、水中の気泡の両端に電圧が加わり、気泡内の酸素および酸素を含むガス内で放電が生じる。気泡内の放電により、酸素分子の一部がイオン化し、更に酸素分子と結合し、オゾンが発生する。また、原水中の気泡内のオゾンが水中に溶解してオゾン水となる。このようにして、オゾン化ガスとオゾン水が生成される。オゾン化ガス及びオゾン水は水中に含まれる色や臭い成分及び有害物質を酸化・分解して無害化処理する。オゾン化ガス及びオゾン水により無害化処理された水はオゾン発生装置25より排出される。   A voltage is applied to the water in the generation space 3 via the insulating layers 5 a and 5 b of the ground electrode 1 and the high-voltage electrode 2. There are bubbles in the water, a voltage is applied to both ends of the bubbles in the water, and discharge occurs in the gas containing oxygen and oxygen in the bubbles. Due to the discharge in the bubbles, some of the oxygen molecules are ionized and further combined with the oxygen molecules, generating ozone. In addition, ozone in the bubbles in the raw water dissolves in the water and becomes ozone water. In this way, ozonized gas and ozone water are generated. Ozonized gas and ozone water are detoxified by oxidizing and decomposing color and odor components and harmful substances contained in water. Water detoxified with ozonized gas and ozone water is discharged from the ozone generator 25.

オゾン発生装置25より排出された水は、エゼクタポンプ30でオゾン化ガスと水との気液混合が更に行なわれる。その後、ガス分離機27へ導入され、そこでオゾンを含むガスと水とに分離される。ガス分離機27で分離された水は処理水として排出口28より排出され、再利用または放流される。一方、ガス分離機27で分離されたオゾン化ガスは、廃オゾン処理装置29で無害化処理された後、酸素または空気として再利用または大気中に放出される。また、ガス分離機27で分離されたオゾン化ガスを回収して、循環経路でエゼクタポンプ30に戻し、再び気液混合すると、オゾン水の生成率を高めることができる。   The water discharged from the ozone generator 25 is further subjected to gas-liquid mixing of the ozonized gas and water by the ejector pump 30. Thereafter, the gas is introduced into the gas separator 27 where it is separated into a gas containing ozone and water. The water separated by the gas separator 27 is discharged from the discharge port 28 as treated water and reused or discharged. On the other hand, the ozonized gas separated by the gas separator 27 is detoxified by the waste ozone treatment device 29, and then reused or released into the atmosphere as oxygen or air. Further, when the ozonized gas separated by the gas separator 27 is recovered, returned to the ejector pump 30 through the circulation path, and mixed again with gas and liquid, the production rate of ozone water can be increased.

以上のように構成された本実施の形態では、水中にある接地電極1と高圧電極2に各種セラミックス材料や金属酸化物の無機物を塗布・焼付け、又は溶射により絶縁層5a,5bを形成したことにより、電極表面(金属)と水との接触が無くなり、水接触や金属表面での部分放電による表面侵食が無く、溶出する金属イオンや微粒子によるオゾン化ガスおよびオゾン水の純度低下や不純物混入といった不具合を排除でき、電極の寿命も長期に維持できる。また、接地電極1と高圧電極2を表面保護層となる絶縁層5a、5bで被覆することにより、その被覆面で絶縁層が水中の抵抗より高く維持できることから、供給される水の絶縁抵抗が低い場合でも高電圧を印加できる。   In the present embodiment configured as described above, the insulating layers 5a and 5b are formed by applying and baking various ceramic materials or metal oxide inorganic substances on the ground electrode 1 and the high-voltage electrode 2 in water, or by thermal spraying. This eliminates contact between the electrode surface (metal) and water, eliminates surface erosion due to water contact or partial discharge on the metal surface, reduces purity of ozonized gas and ozone water due to eluting metal ions and fine particles, and mixes impurities. Defects can be eliminated and the life of the electrode can be maintained for a long time. In addition, by covering the ground electrode 1 and the high voltage electrode 2 with insulating layers 5a and 5b serving as surface protective layers, the insulating layer can be maintained higher than the resistance in water on the covering surface, so that the insulation resistance of the supplied water is A high voltage can be applied even when the voltage is low.

オゾンの生成を向上させるためは、気泡に加わる電圧を高くすることが必要である。この方法として、電極に加える電圧を高くする方法と、電極を近付けることにより気泡内での放電電力を増加する方法とがある。しかし、単純に印加電圧を高くする方法や、電極間を近付ける方法を採ると、水の破壊電圧以上の電圧となり、絶縁層を被覆しない金属電極間では、水中の電極間で放電が起こり、短絡が生じる。   In order to improve the generation of ozone, it is necessary to increase the voltage applied to the bubbles. As this method, there are a method of increasing the voltage applied to the electrode and a method of increasing the discharge power in the bubbles by bringing the electrode closer. However, if you simply increase the applied voltage or bring the electrodes closer together, the voltage will be higher than the breakdown voltage of the water, and between the metal electrodes that do not cover the insulating layer, a discharge will occur between the electrodes in the water, causing a short circuit. Occurs.

本実施の形態のように、接地電極1および高圧電極2の表面に絶縁層5a、5bを形成した電極を用いることにより、接地電極1および高圧電極2の絶縁層5a、5bの破壊電圧を水の破壊電圧よりも高くすることがきできる。従来装置では5〜10mmが限界であった生成空間3の電極間距離を、本実施の形態では生成空間3の電極間距離を0.3〜1mmまで近づけたところ、図4(b)に示すような生成空間3を跨る様な空隙13が生じても、火花放電14や放電による過電流が発生しないで、安定した高電圧を印加できることを確認できた。また、電極に印加する電圧が同じ印加電圧であれば、従来装置よりも電極を近づける事が出来るため、気泡に加わる電圧を高電圧にでき、オゾンの発生効率を改善することができる。   As in the present embodiment, by using the electrodes in which the insulating layers 5a and 5b are formed on the surfaces of the ground electrode 1 and the high voltage electrode 2, the breakdown voltage of the insulating layers 5a and 5b of the ground electrode 1 and the high voltage electrode 2 can be reduced. Can be higher than the breakdown voltage. FIG. 4B shows the distance between the electrodes in the generation space 3 that was 5 to 10 mm in the conventional apparatus, and the distance between the electrodes in the generation space 3 in the present embodiment was reduced to 0.3 to 1 mm. It was confirmed that a stable high voltage could be applied without generating a spark discharge 14 or an overcurrent due to a discharge even when such a gap 13 straddling the generation space 3 was generated. Moreover, if the voltage applied to the electrode is the same applied voltage, the electrode can be brought closer to that of the conventional device. Therefore, the voltage applied to the bubbles can be increased, and the ozone generation efficiency can be improved.

更に、一般的にオゾン発生装置に使われる原水21は高抵抗の水が用いられるが、水の抵抗が安定しないため、印加電圧を安定に維持することが出来なかった。本実施の形態のオゾン発生装置では、接地電極1の内周面および高圧電極2の外周面にセラミックス材等の緻密化した耐電圧の優れた均一な絶縁層5a、5bで被覆することにより、絶縁性で維持されるため、2MΩ・cm以上の抵抗値を示す原水であればオゾン発生と原水中の有害物質などのオゾン処理を同時に、少ないオゾン発生でも効率良く、より効果的に行うことができた。ここでの原水は、高い抵抗値を示す水に限定されるものでは無く、例えば2MΩ・cm以下の抵抗値を示す水や、NaやK、Clイオンが含むイオン導電性を示す水、塩類を含む抵抗値の低い水であっても、オゾンの発生と水中の有害物質のオゾン処理を行うことは可能である。   Furthermore, high-resistance water is generally used as the raw water 21 used for the ozone generator, but the applied voltage cannot be stably maintained because the resistance of the water is not stable. In the ozone generator according to the present embodiment, the inner peripheral surface of the ground electrode 1 and the outer peripheral surface of the high-voltage electrode 2 are covered with a dense insulating layer 5a, 5b having excellent withstand voltage, such as a ceramic material, Since it is maintained in an insulating state, if it is raw water that shows a resistance value of 2 MΩ · cm or more, ozone generation and ozone treatment of harmful substances in the raw water can be performed simultaneously and efficiently even with low ozone generation. did it. The raw water here is not limited to water having a high resistance value. For example, water showing a resistance value of 2 MΩ · cm or less, water showing an ionic conductivity contained in Na, K, and Cl ions, and salts. Even water with low resistance value can generate ozone and treat ozone with harmful substances in water.

従って、有害物質などを含む原料水の無害化処理として、直接その水中でオゾン化ガスおよびオゾン水を生成し、殺菌、脱色、脱臭等の有害物質の無害化処理が可能であった。   Therefore, as a detoxification treatment of raw material water containing harmful substances, ozonized gas and ozone water were directly generated in the water, and detoxification treatment of harmful substances such as sterilization, decolorization, and deodorization was possible.

また本実施の形態によれば、円筒状の接地電極1の内部に高圧電極2を配置してギャップ支持体4で生成空間3を形成するので、構造的なギャップにより放電・電圧印加空間を構成でき、放電空間を固定できる。本実施の形態では、放電ギャップは接地電極1と高圧電極2の内外形寸法によって決まり、その放電ギャップ距離は、高圧電極2の表面に設けられたスペ−サであるギャップ支持体4によって維持される。従って、ギャップ支持体4と管寸法が決定されれば、高圧電極2にギャップ支持体4を設置したものを接地電極1内に挿入することにより、一定の生成空間が得られる。   Further, according to the present embodiment, the high voltage electrode 2 is arranged inside the cylindrical ground electrode 1 and the generation space 3 is formed by the gap support 4, so that the discharge / voltage application space is configured by the structural gap. And the discharge space can be fixed. In this embodiment, the discharge gap is determined by the inner and outer dimensions of the ground electrode 1 and the high-voltage electrode 2, and the discharge gap distance is maintained by the gap support 4 that is a spacer provided on the surface of the high-voltage electrode 2. The Therefore, if the gap support 4 and the tube dimensions are determined, a fixed generation space can be obtained by inserting the high voltage electrode 2 with the gap support 4 installed into the ground electrode 1.

また、接地電極1と高圧電極2との間は、接地電極1内の絶縁層5aまたは高圧電極2の表面層に設けられた絶縁層5bの距離を長くすることにより、容易に絶縁を確保することができ、複雑な絶縁構造を設けることなく絶縁を確保することができる。   Further, the insulation between the ground electrode 1 and the high voltage electrode 2 is easily ensured by increasing the distance between the insulating layer 5a in the ground electrode 1 or the insulating layer 5b provided on the surface layer of the high voltage electrode 2. Insulation can be ensured without providing a complicated insulation structure.

また、上記円筒状の電極構造(接地電極1及び高圧電極2)では、電極に汚れおよび電極管の不具合が発生した場合、高圧電極2を取り出し、洗浄や交換を容易に行うことが出来る。接地電極1を、フランジ構造を利用して取り付け固定する構成とすれば、接地電極1の交換も容易に行うことができる。   Further, in the cylindrical electrode structure (the ground electrode 1 and the high voltage electrode 2), when the electrode is soiled and a defect of the electrode tube occurs, the high voltage electrode 2 can be taken out and easily cleaned or replaced. If the ground electrode 1 is mounted and fixed using a flange structure, the ground electrode 1 can be easily replaced.

また本実施の形態によれば、接地電極1及び高圧電極2からなる各電極対を並列に増設し、又は直列に連結することにより、オゾン化ガス及びオゾン水の生成能力および水内の有害物を無害化する能力を増加させることができる。さらに、これらのオゾン発生装置を並列運転することにより、より多くのオゾンおよびオゾン水の生成、処理水中内の有害物の無害化が可能となる。   In addition, according to the present embodiment, each electrode pair composed of the ground electrode 1 and the high-voltage electrode 2 is added in parallel or connected in series, thereby generating ozonized gas and ozone water and harmful substances in the water. The ability to detoxify can be increased. Furthermore, by operating these ozone generators in parallel, it becomes possible to generate more ozone and ozone water and to detoxify harmful substances in the treated water.

また本実施の形態によれば、オゾン発生装置の向きを任意に変えることが出来、図1で示される縦位置では、多量の気泡が集合し、発生機内に大きな気泡や気体空間が生じても、それらの気泡が液体の流れおよび浮力により上昇し、発生機外に容易に排出できるため、オゾン生成のための放電を安定に保つことができる。   In addition, according to the present embodiment, the direction of the ozone generator can be arbitrarily changed, and even if a large amount of bubbles gather in the vertical position shown in FIG. 1 and a large bubble or gas space is generated in the generator, These bubbles rise due to the flow and buoyancy of the liquid and can be easily discharged out of the generator, so that the discharge for generating ozone can be kept stable.

また、本実施の形態では、オゾン発生装置25へ供給する原水21を冷却機22で冷却するので、オゾン発生効率を上げることができる。また、接地電極1と高圧電極2に付属する外周部、内周部の冷却部が不要となり、構造を簡略化および軽量化を図ることができる。従来の無声放電型オゾン発生装置では、オゾン発生効率を高くするため、電極の周辺、円筒型では、接地電極の外周部や高圧電極の内部を冷却するための冷却部を付加する必要があった。   Moreover, in this Embodiment, since the raw | natural water 21 supplied to the ozone generator 25 is cooled with the cooler 22, ozone generation efficiency can be raised. In addition, the outer peripheral part and the inner peripheral cooling part attached to the ground electrode 1 and the high voltage electrode 2 are not required, and the structure can be simplified and reduced in weight. In the conventional silent discharge type ozone generator, in order to increase the ozone generation efficiency, it was necessary to add a cooling part for cooling the outer periphery of the ground electrode and the inside of the high-voltage electrode in the periphery of the electrode and the cylindrical type. .

また、上記一実施の形態に係るオゾン発生装置において、オゾン発生装置25へ供給する水道水又は純粋水等の原水中に有機物質や臭い物質等の有害物質を含む未処理水を供給することとしても良い。   Moreover, in the ozone generator which concerns on the said one embodiment, as raw water, such as tap water or pure water supplied to the ozone generator 25, supplies untreated water containing harmful substances such as organic substances and odorous substances Also good.

このように、原水中に有機物質や臭い物質等の有害物質を含む未処理水を混入することで、原水中に発生するオゾンおよびオゾン水によって当該原水中の有害物質を連続的に無害化処理することができる。これまでのオゾン化ガスおよびオゾンイオン水による水処理では、オゾン化ガスおよびオゾン水をオゾン発生装置で生成し、この生成されたオゾン化ガスおよびオゾン水を処理すべき原水に注入し、分解・酸化処理し無害化していたため、処理工程で複雑であると共に長時間を要していた。   In this way, by mixing untreated water containing harmful substances such as organic substances and odorous substances into the raw water, the harmful substances in the raw water are continuously detoxified by ozone and ozone water generated in the raw water. can do. In conventional water treatment with ozonized gas and ozone ionized water, the ozonized gas and ozone water are generated by an ozone generator, and the generated ozonized gas and ozone water are injected into the raw water to be treated for decomposition / Since it was oxidized and rendered harmless, the treatment process was complicated and took a long time.

図3は接地電極及び高圧電極からなる電極対を並列に増設した変形例の構造図である。
同図に示すように、円筒状をなす容器11の内壁に沿って該容器11の内径と同じ外径を有する円筒状の外側接地電極1aを設置している。円筒状の外側接地電極1aの内側には外側接地電極1aとの間に形成されたギャップを介して円筒状の外側高圧電極2aが配置されている。さらに、外側高圧電極2aの内側には外側高圧電極2aとの間に形成されたギャップを介して円筒状の内側接地電極1bが配置され、内側接地電極1bの内側には内側接地電極1bとの間に形成されたギャップを介して円筒状の内側高圧電極2bが配置されている。
FIG. 3 is a structural diagram of a modified example in which electrode pairs including a ground electrode and a high-voltage electrode are added in parallel.
As shown in the figure, a cylindrical outer ground electrode 1 a having the same outer diameter as the inner diameter of the container 11 is installed along the inner wall of the cylindrical container 11. Inside the cylindrical outer ground electrode 1a, a cylindrical outer high-voltage electrode 2a is disposed through a gap formed between the outer ground electrode 1a and the outer cylindrical ground electrode 1a. Further, a cylindrical inner ground electrode 1b is disposed inside the outer high-voltage electrode 2a via a gap formed between the outer high-voltage electrode 2a and the inner ground electrode 1b is connected to the inner ground electrode 1b. A cylindrical inner high voltage electrode 2b is arranged through a gap formed therebetween.

なお、外側接地電極1aと外側高圧電極2aとの間、並びに外側高圧電極2aと内側接地電極1bとの間には図示されていないギャップ支持体が設けられている。同様に、内側接地電極1bと内側高圧電極2bとの間には図示されていないギャップ支持体が設けられている。また、互いに対向する外側接地電極1a及び外側高圧電極2aの双方又は片方に図示していない絶縁層が形成され、外側高圧電極2a及び内側接地電極1bの対向する双方又は片方の面にも図示していない絶縁層が形成されている。さらに、内側接地電極1bと内側高圧電極2bの対向する双方又は片方の面にも図示していない絶縁層が形成されている。   A gap support (not shown) is provided between the outer ground electrode 1a and the outer high-voltage electrode 2a and between the outer high-voltage electrode 2a and the inner ground electrode 1b. Similarly, a gap support (not shown) is provided between the inner ground electrode 1b and the inner high-voltage electrode 2b. Further, an insulating layer (not shown) is formed on both or one of the outer ground electrode 1a and the outer high-voltage electrode 2a facing each other, and is also shown on both surfaces or one surface of the outer high-voltage electrode 2a and the inner ground electrode 1b facing each other. An insulating layer is not formed. Further, an insulating layer (not shown) is formed on both or one of the opposing surfaces of the inner ground electrode 1b and the inner high-voltage electrode 2b.

上記外側高圧電極2a及び内側高圧電極2bは高電圧端子12を介して高電圧電源6に接続されている。また、容器11の底面には気泡分散された原水を容器11内に供給するための供給口8が設けられており、容器11の上面にはガス及び原水を取り出す出口9が設けられている。   The outer high voltage electrode 2 a and the inner high voltage electrode 2 b are connected to a high voltage power supply 6 through a high voltage terminal 12. A supply port 8 is provided on the bottom surface of the container 11 to supply the raw water dispersed in bubbles into the container 11, and an outlet 9 is provided on the top surface of the container 11 for extracting gas and raw water.

以上のように構成されたオゾン発生装置においても、上記一実施の形態と同様の作用効果を奏することができ、さらに処理能力を増強することができる。   Also in the ozone generator configured as described above, the same operational effects as those of the above-described embodiment can be obtained, and the processing capability can be further enhanced.

一実施の形態に係るオゾン発生装置の概念図Schematic diagram of ozone generator according to one embodiment 図1に示すオゾン発生装置を用いた処理システムの構成図Configuration diagram of a processing system using the ozone generator shown in FIG. 接地電極及び高圧電極からなる電極対を並列に増設した変形例の構成図Configuration diagram of a modified example in which an electrode pair consisting of a ground electrode and a high-voltage electrode is added in parallel (a)絶縁層を設けた電極にまたがる気泡径の場合の模式図、(b)絶縁層を設けていない電極にまたがる気泡径の場合の模式図(A) Schematic diagram in the case of a bubble diameter spanning an electrode provided with an insulating layer, (b) Schematic diagram in the case of a bubble diameter spanning an electrode not provided with an insulating layer 従来の無声放電型オゾン発生装置の概念図Conceptual diagram of conventional silent discharge ozone generator 従来の円筒電極を用いた円筒電極型オゾン発生装置の概略図Schematic diagram of a conventional cylindrical electrode type ozone generator using a cylindrical electrode 従来の平面電極を用いた水中気泡発生型オゾン発生装置の概念図Conceptual diagram of an underwater bubble generation type ozone generator using a conventional flat electrode 水中放電部に二界面を有する従来のオゾン発生装置の構成図Configuration diagram of a conventional ozone generator with two interfaces in the underwater discharge section

符号の説明Explanation of symbols

1…接地電極、2…高圧電極、3…生成空間、4…ギャップ支持体、5a,5b…絶縁層、6…高電圧電源、7…絶縁端子、8…供給口、9…出口、13…空隙、31a,31b…平板金属電極、32…絶縁層、33…交流高電圧電源、34…放電空間、35…無声放電、36…原料ガス、37…接地電極、38…絶縁層、39…高圧電極、41…容器、42a,42b…金属電極、43…原水、44…原料ガス、45…気泡発生機、46…気泡   DESCRIPTION OF SYMBOLS 1 ... Ground electrode, 2 ... High voltage electrode, 3 ... Production space, 4 ... Gap support body, 5a, 5b ... Insulating layer, 6 ... High voltage power supply, 7 ... Insulated terminal, 8 ... Supply port, 9 ... Outlet, 13 ... Air gap, 31a, 31b ... Flat metal electrode, 32 ... Insulating layer, 33 ... AC high voltage power supply, 34 ... Discharge space, 35 ... Silent discharge, 36 ... Source gas, 37 ... Ground electrode, 38 ... Insulating layer, 39 ... High pressure Electrode, 41 ... container, 42a, 42b ... metal electrode, 43 ... raw water, 44 ... source gas, 45 ... bubble generator, 46 ... bubble

Claims (7)

円筒状をなす接地電極と、前記接地電極の内側に配置された高圧電極と、前記接地電極と前記高圧電極との間に放電空間となるギャップを形成するスペーサと、前記放電空間を形成している前記接地電極及び前記高圧電極の両方又は一方の電極表面に形成された絶縁層とを備え、前記放電空間に酸素を含むガスを気泡分散した水を供給すると共に、前記接地電極と前記高圧電極との間に電圧を印加してオゾン化ガス及びオゾン水を生成することを特徴とするオゾン発生装置。   A cylindrical ground electrode, a high-voltage electrode disposed inside the ground electrode, a spacer that forms a gap serving as a discharge space between the ground electrode and the high-voltage electrode, and the discharge space. An insulating layer formed on the surface of one or both of the ground electrode and the high-voltage electrode, supplying water in which oxygen-containing gas is dispersed in the discharge space, and the ground electrode and the high-voltage electrode An ozone generator characterized by generating an ozonized gas and ozone water by applying a voltage between them. 前記放電空間に存在する水中気泡内で放電させてオゾン化ガス及びオゾン水を生成することを特徴とする請求項1記載のオゾン発生装置。   The ozone generator according to claim 1, wherein an ozonized gas and ozone water are generated by discharging in an underwater bubble existing in the discharge space. 前記絶縁層は、セラミックス材料又は金属酸化物の無機物で構成したことを特徴とする請求項1又は請求項2記載のオゾン発生装置。   The ozone generator according to claim 1 or 2, wherein the insulating layer is made of a ceramic material or a metal oxide inorganic material. 前記接地電極と前記高圧電極の間の印加電圧として高周波電圧を印加することを特徴とする請求項1〜請求項3記載のオゾン発生装置。   The ozone generator according to claim 1, wherein a high frequency voltage is applied as an applied voltage between the ground electrode and the high voltage electrode. 電圧を印加して発生したオゾン化ガスとオゾン水を通過させるエゼクタポンプと、オゾン化ガスとオゾン水とを分離するガス分離機と、前記ガス分離機で分離したオゾン化ガスを前記エゼクタポンプに戻す循環経路とを有することを特徴とする請求項1〜請求項4のいずれかに記載のオゾン発生装置。   An ejector pump for passing ozonized gas and ozone water generated by applying a voltage, a gas separator for separating ozonized gas and ozone water, and the ozonized gas separated by the gas separator to the ejector pump The ozone generator according to claim 1, further comprising a return circulation path. 前記放電空間へ供給する水を冷却して、オゾン化ガス及びオゾン水の生成で生じる熱を冷却することを特徴とする請求項1〜請求項5のいずれかに記載のオゾン発生装置。   The ozone generator according to any one of claims 1 to 5, wherein water supplied to the discharge space is cooled to cool heat generated by generation of ozonized gas and ozone water. 有機物質又は臭い物質を含む未処理水を原水に混入して前記放電空間へ供給することを特徴とする請求項1〜請求項6のいずれかに記載のオゾン発生装置。
The ozone generator according to any one of claims 1 to 6, wherein untreated water containing an organic substance or an odorous substance is mixed into raw water and supplied to the discharge space.
JP2007285794A 2007-11-02 2007-11-02 Ozone generator Active JP5438893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007285794A JP5438893B2 (en) 2007-11-02 2007-11-02 Ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007285794A JP5438893B2 (en) 2007-11-02 2007-11-02 Ozone generator

Publications (2)

Publication Number Publication Date
JP2009114001A true JP2009114001A (en) 2009-05-28
JP5438893B2 JP5438893B2 (en) 2014-03-12

Family

ID=40781574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007285794A Active JP5438893B2 (en) 2007-11-02 2007-11-02 Ozone generator

Country Status (1)

Country Link
JP (1) JP5438893B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103508424A (en) * 2012-06-20 2014-01-15 福建新大陆环保科技有限公司 Ozone generation unit and ozone generator using same
KR101354145B1 (en) * 2012-01-05 2014-01-27 아름다운 환경건설(주) Ozone generator
CN103922457A (en) * 2014-04-21 2014-07-16 厦门大学 Plasma discharging device
US9452979B2 (en) 2013-09-10 2016-09-27 Pm Dimensions Kabushiki Kaisha Method for synthesizing organic matter and submerged plasma device
JP6430076B1 (en) * 2018-03-14 2018-11-28 三菱電機株式会社 Water treatment equipment
WO2019175998A1 (en) * 2018-03-14 2019-09-19 三菱電機株式会社 Water treatment apparatus and water treatment method
CN114349210A (en) * 2021-12-30 2022-04-15 吴秀敏 Printing and dyeing wastewater treatment deodorizing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109607674A (en) * 2019-01-11 2019-04-12 合肥中科远望环保科技有限公司 A kind of gas-liquid two-phase plasma liquid waste treating apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430691A (en) * 1987-07-27 1989-02-01 Sanshu Kaken Kogyo Kk Method and device for water treatment
JPH04310503A (en) * 1991-04-03 1992-11-02 Mitsubishi Heavy Ind Ltd Ozonizer
JPH05319807A (en) * 1991-03-28 1993-12-03 Mitsubishi Heavy Ind Ltd Submerged ozonator
JP2000000289A (en) * 1998-06-15 2000-01-07 Nissin Electric Co Ltd Sterilization apparatus for liquid
JP2001009463A (en) * 1999-06-24 2001-01-16 Kobe Steel Ltd Underwater electric discharge method and apparatus
JP2001010808A (en) * 1999-06-24 2001-01-16 Kobe Steel Ltd Formation of highly oxidative water and apparatus therefor
JP2002126480A (en) * 2000-10-20 2002-05-08 Yaskawa Electric Corp Ozonized water treatment equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430691A (en) * 1987-07-27 1989-02-01 Sanshu Kaken Kogyo Kk Method and device for water treatment
JPH05319807A (en) * 1991-03-28 1993-12-03 Mitsubishi Heavy Ind Ltd Submerged ozonator
JPH04310503A (en) * 1991-04-03 1992-11-02 Mitsubishi Heavy Ind Ltd Ozonizer
JP2000000289A (en) * 1998-06-15 2000-01-07 Nissin Electric Co Ltd Sterilization apparatus for liquid
JP2001009463A (en) * 1999-06-24 2001-01-16 Kobe Steel Ltd Underwater electric discharge method and apparatus
JP2001010808A (en) * 1999-06-24 2001-01-16 Kobe Steel Ltd Formation of highly oxidative water and apparatus therefor
JP2002126480A (en) * 2000-10-20 2002-05-08 Yaskawa Electric Corp Ozonized water treatment equipment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013001168; 見市知昭,外: '水中気泡内放電によるオゾン生成' 電気学会論文誌 A Vol.121-A, No.5, 20010501, p.448-452, 電気学会 *
JPN6013001169; MIICHI, T. et al: 'Generation of Radicals using Discharge inside Bubbles in Water for Water Treatment' Reports of Faculty of Science and Engineering Vol.31, No.1, 20020630, p.49-52, Saga Univ. *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101354145B1 (en) * 2012-01-05 2014-01-27 아름다운 환경건설(주) Ozone generator
CN103508424A (en) * 2012-06-20 2014-01-15 福建新大陆环保科技有限公司 Ozone generation unit and ozone generator using same
US9452979B2 (en) 2013-09-10 2016-09-27 Pm Dimensions Kabushiki Kaisha Method for synthesizing organic matter and submerged plasma device
CN103922457A (en) * 2014-04-21 2014-07-16 厦门大学 Plasma discharging device
CN103922457B (en) * 2014-04-21 2015-05-13 厦门大学 Plasma discharging device
JP6430076B1 (en) * 2018-03-14 2018-11-28 三菱電機株式会社 Water treatment equipment
WO2019175998A1 (en) * 2018-03-14 2019-09-19 三菱電機株式会社 Water treatment apparatus and water treatment method
WO2019175997A1 (en) * 2018-03-14 2019-09-19 三菱電機株式会社 Water treatment device
CN111886204A (en) * 2018-03-14 2020-11-03 三菱电机株式会社 Water treatment device
CN114349210A (en) * 2021-12-30 2022-04-15 吴秀敏 Printing and dyeing wastewater treatment deodorizing device

Also Published As

Publication number Publication date
JP5438893B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5438893B2 (en) Ozone generator
Yang et al. Plasma discharge in liquid: water treatment and applications
KR100967878B1 (en) Underwater plasma producing apparatus and method using thereof
JPS61275107A (en) Ozonator
KR100932377B1 (en) Method of water purification using high density underwater plasma torch
KR101579349B1 (en) Water treatment apparatus using plasma-membrane and method using the same
JP5638678B1 (en) Liquid dielectric barrier discharge plasma apparatus and liquid purification system
JP2005058887A (en) Waste water treatment apparatus using high-voltage pulse
KR100924649B1 (en) Generator and method of high desity underwater plasma torch
JP2013211204A (en) Submerged plasma generating method, submerged plasma generating device, processed liquid purifying device, and ion containing liquid creating device
KR20090110060A (en) Underwater plasma producing apparatus and method using thereof
KR101497591B1 (en) Apparatus for treating water using discharge in reactor
JP2000093967A (en) Method and apparatus for liquid treatment
JP6161839B2 (en) Water treatment apparatus and water treatment method
JP2015085297A (en) Liquid treatment apparatus and produced water treatment method
KR20190043257A (en) System and method for producing plasma activated water
JP2010137212A (en) Apparatus for generating plasma
CN211570217U (en) Organic waste liquid treatment device of cylinder type DBD plasma
JP2013049015A (en) Water treatment apparatus
JP6511440B2 (en) Plasma irradiation method and plasma irradiation apparatus
US9868655B1 (en) Water treatment apparatus and water treatment method
JP6020844B2 (en) Submerged plasma device and liquid purification system
KR100650051B1 (en) Apparatus for producting active ions and the purification method of atmosphere, sewage and waste water
JP2015056407A5 (en)
JP2009234900A (en) Underwater ozonizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5438893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250