JP6020844B2 - Submerged plasma device and liquid purification system - Google Patents

Submerged plasma device and liquid purification system Download PDF

Info

Publication number
JP6020844B2
JP6020844B2 JP2014206217A JP2014206217A JP6020844B2 JP 6020844 B2 JP6020844 B2 JP 6020844B2 JP 2014206217 A JP2014206217 A JP 2014206217A JP 2014206217 A JP2014206217 A JP 2014206217A JP 6020844 B2 JP6020844 B2 JP 6020844B2
Authority
JP
Japan
Prior art keywords
liquid
electrode
discharge
plasma apparatus
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014206217A
Other languages
Japanese (ja)
Other versions
JP2015056407A5 (en
JP2015056407A (en
Inventor
達夫 森田
達夫 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PM DIMENSIONS KABUSHIKI KAISHA
Original Assignee
PM DIMENSIONS KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PM DIMENSIONS KABUSHIKI KAISHA filed Critical PM DIMENSIONS KABUSHIKI KAISHA
Priority to JP2014206217A priority Critical patent/JP6020844B2/en
Publication of JP2015056407A publication Critical patent/JP2015056407A/en
Publication of JP2015056407A5 publication Critical patent/JP2015056407A5/ja
Application granted granted Critical
Publication of JP6020844B2 publication Critical patent/JP6020844B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

非平衡プラズマによって形成された反応生成物を化学反応に供して、新たに物質を合成、もしくは変性、分解する分野に用いられる装置である。特にプラズマ領域が、プラズマによって処理されるべき物質に隣接し、且つ処理物と混在することなく独立に存在すべきところにおいてその特徴が発揮される。例えば液中プラズマ処理である。液中プラズマに於いて、プラズマは液中に単相状態で形成される。具体的には浄排水場、飲料水、食品工場、半導体工場、液晶工場、養魚水槽、および水族館などにおける殺菌処理、汚染水処理における有機物の分解、工場廃液の処理、溶液中での材料合成、などが挙げられる。気体中プラズマ処理においては、プラズマ領域と反応領域を分離したリモートプラズマCVD、リモートプラズマ表面処理などが挙げられる。また大気中の汚染物質を分解する空気清浄機としても用いることができる。 It is an apparatus used in the field where a reaction product formed by non-equilibrium plasma is subjected to a chemical reaction to newly synthesize, modify, or decompose a substance. In particular, the characteristics are exhibited where the plasma region is adjacent to the material to be processed by the plasma and should exist independently without being mixed with the object to be processed. For example, in-liquid plasma treatment. In the liquid plasma, the plasma is formed in a single phase state in the liquid. Specifically, sterilization treatment in water purification plants, drinking water, food factories, semiconductor factories, liquid crystal factories, fish tanks, aquariums, etc., decomposition of organic matter in contaminated water treatment, treatment of factory waste liquid, synthesis of materials in solution, Etc. In the plasma treatment in the gas, remote plasma CVD in which the plasma region and the reaction region are separated, remote plasma surface treatment, and the like can be given. It can also be used as an air purifier that decomposes pollutants in the atmosphere.

本発明の背景をなす基本技術の第一は大気圧非平衡誘電体バリア放電プラズマに関わる技術である。該技術はオゾン発生装置として既に実用化がされており、150年以上の歴史を有する。オゾンは浄水場における最終処理や下水処理場における汚泥減容処理などにおいて大規模に用いられている(例えば非特許文献1参照)。オゾン処理装置は空気あるいは酸素を原料として、大気圧誘電体バリア放電により発生させたオゾンを気流によって輸送し、処理水中に導入して気液接触により処理を行うものである。   The first basic technology that forms the background of the present invention is a technology related to atmospheric pressure non-equilibrium dielectric barrier discharge plasma. This technology has already been put into practical use as an ozone generator and has a history of more than 150 years. Ozone is used on a large scale in final treatment at water purification plants and sludge volume reduction treatment at sewage treatment plants (see Non-Patent Document 1, for example). The ozone treatment apparatus uses air or oxygen as a raw material, transports ozone generated by atmospheric dielectric barrier discharge by airflow, introduces it into treated water, and performs treatment by gas-liquid contact.

本発明の背景技術の第二は液中放電技術である。液中でプラズマを形成し、水質の改善や廃液処理を行う技術開発が進行している。目的は水溶液中の難分解性有機物質の分解や殺菌である。オゾンでは分解できないダイオキシンなどの難分解性有機物をプラズマと水との反応によって形成されるヒドロキシラジカル(・OH)によって分解することを特徴とする。これは促進酸化法と呼ばれ、他に紫外線を用いる方法や、過酸化水素を用いる方法などが知られている。液中で放電プラズマを生成する方法は、大別して直流、および低周波によるものと、高周波、およびマイクロ波によるものがある。前者の例として直流パルス放電による水中のストリーマ、アーク放電(非特許文献参照)と誘電体バリア放電(特許文献1、2、3参照)を挙げることができる。誘電体バリア放電の場合は積極的に気体を介在させ、該気体内に放電プラズマを誘起する方法が用いられる。特許文献1、2、3では、いずれも気泡と水から成る2相領域を電極で挟持する構造を用いている。後者の例としてはRF放電、およびマイクロ波放電が挙げられる。この場合も気泡が援用されている。導入あるいは生成された気泡が電磁波のエネルギーを吸収してプラズマが生成される(非特許文献2、3 参照)。水中放電技術全般については、非特許文献にレビューされている。 The second background art of the present invention is a submerged discharge technique. Technological development is progressing to form plasma in liquid to improve water quality and waste liquid treatment. The purpose is to decompose or sterilize persistent organic substances in aqueous solution. It is characterized in that a hardly decomposable organic substance such as dioxin that cannot be decomposed by ozone is decomposed by hydroxy radicals (.OH) formed by the reaction between plasma and water. This is called an accelerated oxidation method, and other methods using ultraviolet rays, methods using hydrogen peroxide, and the like are known. Methods for generating discharge plasma in a liquid are roughly classified into those using direct current and low frequency, and those using high frequency and microwave. Examples of the former include underwater streamers by DC pulse discharge, arc discharge (see Non-Patent Document 4 ), and dielectric barrier discharge (see Patent Documents 1, 2, and 3 ). In the case of dielectric barrier discharge, a method of actively interposing a gas and inducing a discharge plasma in the gas is used. In each of Patent Documents 1 , 2 , and 3 , a structure in which a two-phase region composed of bubbles and water is sandwiched between electrodes is used. Examples of the latter include RF discharge and microwave discharge. Again, bubbles are used. The introduced or generated bubbles absorb the energy of the electromagnetic wave to generate plasma (see Non-Patent Documents 2 and 3 ). Non-patent document 2 reviews the overall underwater discharge technology.

特開2010−137212号公報JP 2010-137212 A 特開2004−268003号公報JP 2004-268003 A 特開2009−114001号公報JP 2009-11001 A

「オゾンと水処理」(海賀信好著、2008年、技報堂出版社刊)"Ozone and water treatment" (Nobuyoshi Kaiga, 2008, published by Gihodo Publisher) 「水中プラズマの形成とその特性」(安岡康一他、J.PlasmaFusionRes.Vol.84,No.10(2008)666-673)"Formation of underwater plasma and its characteristics" (Yasuoka Yasuoka et al., J. PlasmaFusionRes.Vol.84, No.10 (2008) 666-673) PLASMACHEMISTRYAlexanderFridman著CambridgeUniversityPress刊 2008年Published by CambridgeUniversityPress by PLASMACHEMISTRYAlexanderFridman 2008 「WaterPurificationbyPlasmas:WhichReactorsareMostEnergyEfeeicient?」MuhammadArifMalik 著 PlasmaChemPlasmaprocess(2010)30:21-31`` WaterPurificationbyPlasmas: WhichReactorsareMostEnergyEfeeicient? '' By MuhammadArifMalik PlasmaChemPlasmaprocess (2010) 30: 21-31

オゾン生成装置及びオゾン処理装置においてはエネルギー効率の向上が課題である。 化学反応化1)から導出されるオゾン量は1.25g/Whであるが、実機において、酸素を原料として誘電体バリア放電で生成されるオゾン量は0.05g/Whから0.07g/Wh程度であり、そのエネルギー効率
(化1) 3/2O2 → O3 ΔH=1.5eV
は4%〜6%である。空気を原料とした場合は2%〜3%であり、窒素が三体反応に寄与する結果となっている。エネルギー効率が低い最大の原因は反応メカニズムに起因するが、理論および実験の結果を参照すると理論効率の30%までは期待できる(非特許文献参照)。しかしながら実用機になると効率はさらに低下する。原因は、生成場から反応場への輸送途中におけるオゾンの分解消滅である。その主たる要因は輸送管壁や他粒子との衝突によるオゾン分子の分解、さらには温度上昇による分解の促進である。実用システムにおいてはさらにガス循環ポンプや冷却機などの付帯動力負荷が大きく、システムとしてのエネルギー効率はさらに低下する。エネルギー効率が低下すると装置は大掛かりなものとなり、実用化は大型プラントに限られてくる。
In the ozone generator and the ozone treatment apparatus, improvement of energy efficiency is a problem. The amount of ozone derived from the chemical reaction formula (Chemical Formula 1 ) is 1.25 g / Wh, but in an actual machine, the amount of ozone generated by dielectric barrier discharge using oxygen as a raw material is 0.05 g / Wh to 0.07 g. / Wh, and its energy efficiency
(Chemical formula 1) 3/2 O 2 → O 3 ΔH = 1.5 eV
Is 4% to 6%. When air is used as a raw material, it is 2% to 3%, and nitrogen contributes to the three-body reaction. The largest cause of low energy efficiency is due to the reaction mechanism, but up to 30% of the theoretical efficiency can be expected by referring to the results of theory and experiment (see Non-Patent Document 3 ). However, the efficiency is further reduced when it becomes a practical machine. The cause is decomposition and extinction of ozone during transportation from the production field to the reaction field. The main factor is the decomposition of ozone molecules due to collision with the transport pipe wall and other particles, and further the promotion of decomposition due to temperature rise. In practical systems, additional power loads such as gas circulation pumps and coolers are greater, and the energy efficiency of the system is further reduced. When energy efficiency is reduced, the equipment becomes large, and its practical application is limited to large plants.

水中あるいは液中放電における課題は、電源容量の低減とプラズマ反応領域の拡大である。水の絶縁破壊電界強度は1MV/cm以上である。直流パルス放電によってストリーマ放電を水中に生成するためには、電界集中効果を利用しても20V以上の電圧供給が必要なのが現状である。そして、放電反応領域を広げるためには電極面積を拡大する必要がある。従って電源容量は大きく、装置は大掛かりなものとなっているのが現状である。水中へ気泡を導入することで放電は容易になる。誘電体バリア放電の場合、開始電圧は低減できるが、そのためには電極間距離は短く保ち、電極間を気泡が架橋した構造が安定して得られることが必要となる。誘電体バリア放電は安定したストリーマコロナ放電と考えられており、必要な放電開始電圧はパッシェンの式(数1)で与えられる値(Vs)よりも低くなる。
(数1) Vs=Bpd/ln(Apd/ln(1+1/γ))
A、B : 定数
p: 圧力
γ : γ係数
d : 電極間距離
しかしながら既報の液中誘電体バリア放電では特許文献1、2、3に示されるように、気泡と液体の2相混合領域を電極で挟持する方法を用いている。該方法によると、負荷容量が大きくなるとともに外部動力をもって2相流を形成する必要がある。また、電極間を気泡が架橋した構造をとることが放電の条件となるが、これを定常的に得ることは困難である。一方、高周波放電では気泡中での電荷のトラップによりVsは下がるが、プラズマによる高周波電力の吸収が大きくなり電源容量は大きくなってしまう。
The problem in submerged or submerged discharge is to reduce the power supply capacity and expand the plasma reaction region. The dielectric breakdown electric field strength of water is 1 MV / cm or more. To generate a streamer discharge in water by a DC pulse discharge, the even using an electric field concentration effect required voltage supply over 20 k V at present. And in order to expand a discharge reaction area | region, it is necessary to expand an electrode area. Therefore, the power supply capacity is large and the apparatus is currently large. Discharging is facilitated by introducing bubbles into the water. In the case of dielectric barrier discharge, the starting voltage can be reduced, but in order to do so, it is necessary to keep the distance between the electrodes short and stably obtain a structure in which bubbles are bridged between the electrodes. The dielectric barrier discharge is considered to be a stable streamer corona discharge, and the required discharge start voltage is lower than the value (Vs) given by Paschen's equation (Equation 1 ).
( Expression 1) Vs = Bpd / ln (Appd / ln (1 + 1 / γ))
A, B: constant p: pressure γ: γ coefficient d: distance between electrodes However, in the reported dielectric barrier discharge in liquid, as shown in Patent Documents 1 , 2, and 3 , two phases of bubbles and liquid A method of sandwiching the mixed region with electrodes is used. According to this method, it is necessary to increase the load capacity and form a two-phase flow with external power. In addition, it is a condition for the discharge to have a structure in which bubbles are cross-linked between the electrodes, but it is difficult to obtain this constantly. On the other hand, in high frequency discharge, Vs decreases due to charge trapping in bubbles, but the absorption of high frequency power by plasma increases and the power supply capacity increases.

以上の既存技術に鑑み、本発明の解決すべき課題を次のように設定した。
1)液中誘電体バリア放電において放電プラズマを安定して定常的に生成すること、且つ
2)該プラズマが該液と接触すること、且つ
3)小型軽量、低消費電力化可能であること。
In view of the above existing technology, the problems to be solved by the present invention are set as follows.
1) It is possible to generate discharge plasma stably and constantly in dielectric barrier discharge in liquid, 2) the plasma is in contact with the liquid, and 3) small size, light weight and low power consumption.

上記課題を解決するため、従来の方法において、気液2層混合相がバリア放電電極で挟持されるのに対し、液相内に気相単独空間を複数の貫通孔を有する電極を用いて分離形成した。また、電極を貫通して設けられた貫通孔を通してプラズマと液の接触を確保した。 In order to solve the above problems, in the conventional method, the gas-liquid two-layer mixed phase is sandwiched between the barrier discharge electrodes, whereas the gas phase single space is separated using an electrode having a plurality of through holes in the liquid phase. Formed. Further, the contact between the plasma and the liquid was ensured through a through hole provided through the electrode.

液中プラズマ生成装置の電源容量を低減し、小型軽量化を実現した。これにより局所場における処理に対応できるとともに、処理量、環境に応じた処理システムの構築が容易になった。また、民生用機器としても液中プラズマを活用することが可能になった。従来のオゾン処理装置に比しては、エネルギー効率が改善され、且つ促進酸化の効果が付与された。   The power supply capacity of the in-liquid plasma generator was reduced, and the size and weight were reduced. As a result, it is possible to cope with processing in a local field, and it is easy to construct a processing system according to the processing amount and environment. In addition, it has become possible to use plasma in liquids as a consumer device. Compared with the conventional ozone treatment apparatus, the energy efficiency was improved and the effect of accelerated oxidation was imparted.

液中誘電体バリア放電プラズマ装置を示す図である It is a figure which shows a dielectric barrier discharge plasma apparatus in a liquid . 液中誘電体バリア放電プラズマ装置の電極部の一部を示す図である It is a figure which shows a part of electrode part of a dielectric barrier discharge plasma apparatus in a liquid . 複数の貫通孔を有する電極の構造を示す図であるIt is a figure which shows the structure of the electrode which has a some through-hole. 複数の貫通孔を有する電極の構造を示す図であるIt is a figure which shows the structure of the electrode which has a some through-hole. 誘電体で被覆された電極の構造を示す図であるIt is a figure which shows the structure of the electrode coat | covered with the dielectric material. 液中で使用している状態を示す図である It is a figure which shows the state currently used in the liquid 配管内で使用している状態を示す図である It is a figure which shows the state currently used in piping . 高電圧発生回路を示す図である It is a figure which shows a high voltage generation circuit メチレンブルー色素分解結果を示す図である It is a figure which shows a methylene blue pigment decomposition result 水中プラズマの発光分光結果を示す図である It is a figure which shows the emission spectroscopy result of underwater plasma . 多孔質材料を用いた複数の貫通孔を有する電極の構造を示す図である It is a figure which shows the structure of the electrode which has several through-holes using a porous material . 貫通孔を有するように微細加工を施したシリコン基板を用いた複数の貫通孔を有する電極の構造を示す図である It is a figure which shows the structure of the electrode which has several through-holes using the silicon substrate which performed the microfabrication so that it may have a through-hole .

実施の形態を添付図に添って具体的に説明する。図1に、本発明による液中誘電体バリア放電プラズマ装置1の断面構造図を示す。放電部10は誘電体で被覆された電極2と複数の貫通孔を有する電極3によって挟まれた空間であり、そのギャップ長は1mm以下である。望ましくは0.5mm±0.1mmが適切である。電極支持基板18と複数の貫通孔を有する電極3で囲まれた空間の機密性はOリング1によって保たれるが、プラズマの原料となる気体は気体導入管7により圧力調整室12へ導かれ、電極支持基板18に設けられた気体導入口8から放電部10へ導入される。放電部10でプラズマガスとなった後、複数の貫通孔を有する電極3に設けられた貫通孔9から液中へ排出される。この時、プラズマは貫通孔9で液と接触する。放電部10への液の侵入は圧力調整弁11によって気体圧力を調整することで達成できる。圧力調整室12 を設けることでその調整はより容易になる。 The embodiment will be specifically described with reference to the accompanying drawings. FIG. 1 shows a sectional structural view of a submerged dielectric barrier discharge plasma apparatus 1 according to the present invention. The discharge part 10 is a space sandwiched between the electrode 2 covered with a dielectric and the electrode 3 having a plurality of through holes , and the gap length is 1 mm or less. Desirably 0.5 mm ± 0.1 mm is appropriate. The confidentiality of the space surrounded by the electrode support substrate 18 and the electrode 3 having a plurality of through holes is maintained by the O-ring 17 , but the gas as the plasma raw material is guided to the pressure adjustment chamber 12 by the gas introduction tube 7. Then, the gas is introduced into the discharge unit 10 from the gas inlet 8 provided in the electrode support substrate 18. After becoming plasma gas in the discharge part 10, it is discharged | emitted in the liquid from the through-hole 9 provided in the electrode 3 which has a several through-hole . At this time, the plasma comes into contact with the liquid through the through hole 9. The penetration of the liquid into the discharge unit 10 can be achieved by adjusting the gas pressure by the pressure adjustment valve 11. By providing the pressure adjusting chamber 12, the adjustment becomes easier.

貫通孔9内に液面をとどめ、放電部10への液の侵入を防ぐことは本発明におけるもっとも重要な事項の一つである。液が侵入し、電極表面を濡らした場合、液に導電性があれば靜電遮蔽により気泡20内に電界は生じない。もし図2に示すように、一部に気泡20が生じ放電が発生したとしても、他の対向電極面は導電性液で短絡し、そのために負荷容量が大きくなり電源容量は増大する。液の侵入を防ぐためには圧力調整が不可欠である。同時に貫通孔9の開口径を適正に決定しなければならない。実験検討を重ねた結果、開口径は電極間距離以下であることが合理的であることを見出した。図3に複数の貫通孔を有する電極3の断面図を示す。通常該電極は接地して使用される。複数の貫通孔を有する電極3は開口部を有することから、導電性があり、熱伝導性が良く、耐食性が良く、且つ加工性のよい金属材料であることが望ましい。具体的には、Al合金、ステンレス鋼、ニッケル合金、チタン合金などを用いることができる。複合材料を用いることも可能である。具体的にはプラスチック樹脂やセラミクスの板に多孔を設け、導電性薄膜をコーティングしたものが挙げられる。開口径をあまり小さくすると、表面張力による液の侵入が懸念される。これを防ぐため、図4に示すように、貫通孔9を液相面32から気相面31に向けて口径が広がるように側壁に傾斜を持たせることが有効である。これは圧力損失の低減にも効果がある。 It is one of the most important matters in the present invention to keep the liquid level in the through-hole 9 and prevent the liquid from entering the discharge part 10. When the liquid penetrates and wets the electrode surface, if the liquid is conductive, no electric field is generated in the bubble 20 due to negative shielding. As shown in FIG. 2, even if bubbles 20 are generated in part and discharge occurs , the other counter electrode surface is short-circuited with the conductive liquid, so that the load capacity increases and the power supply capacity increases. Pressure adjustment is indispensable to prevent liquid from entering. At the same time, the opening diameter of the through hole 9 must be appropriately determined. As a result of repeated examinations, it was found that it is reasonable that the aperture diameter is not more than the distance between the electrodes. FIG. 3 shows a cross-sectional view of the electrode 3 having a plurality of through holes . Usually, the electrode is used while being grounded. Since the electrode 3 having a plurality of through holes has openings, it is desirable that the electrode 3 be a metal material that is conductive, has good thermal conductivity, good corrosion resistance, and good workability. Specifically, Al alloy, stainless steel, nickel alloy, titanium alloy, or the like can be used. It is also possible to use composite materials. Specifically, a plastic resin or ceramic plate provided with a hole and coated with a conductive thin film can be used. If the opening diameter is too small, there is a concern that liquid may enter due to surface tension. In order to prevent this, as shown in FIG. 4, it is effective to incline the side wall so that the diameter of the through-hole 9 increases from the liquid phase surface 32 toward the gas phase surface 31. This is also effective in reducing pressure loss.

図5に誘電体で被覆された電極2の断面構造を示す。通常該電極には高電圧が印加される。電極は金属部34と、誘電体部33とから成り、給電配線A4が接続されている。誘電体部33の放電面35側は放電部10への印加電圧が大きくなるようにできる限り薄いことが望ましいが、誘電体の耐圧、厚さの制御性、機械的強度、加工容易性を考慮して決定される。誘電体部33の支持面36側は、負荷容量の低減と、電極支持基板18への高電圧印加回避のために厚い方が望ましい。金属部34の材料は、誘電体との熱膨張係数差が小さいこと、誘電体との密着性が良いこと、加工が容易なこと、および加工による給電配線A4との接続が可能であることが必要条件である。実験検討の結果、誘電体としてソーダライムガラス、金属としてフェライト系テンレス鋼(SUS403系)もしくはマルテンサイト系ステンレス鋼(SUS410系)板を用い、熱圧着して形成する条件を見いだした。このとき放電面35側の誘電体厚は0.5mm、支持面36側の誘電体厚は20mmであった。またステンレス鋼板の板厚は0.5mmであった。他に、誘電体としてセラミクスを、また金属に代わる導電性物質として半導体を使用してもよく、形成方法もメッキやCVD、蒸着、熱酸化、印刷などの膜形成手法を用いてもよい。 FIG. 5 shows a cross-sectional structure of the electrode 2 covered with a dielectric . Usually, a high voltage is applied to the electrode. The electrode is composed of a metal part 34 and a dielectric part 33, to which a power supply wiring A4 is connected. The discharge surface 35 side of the dielectric portion 33 is desirably as thin as possible so that the voltage applied to the discharge portion 10 is increased, but considering the dielectric strength, thickness controllability, mechanical strength, and ease of processing. To be determined. The support surface 36 side of the dielectric portion 33 is desirably thick in order to reduce the load capacity and avoid application of a high voltage to the electrode support substrate 18. The material of the metal part 34 may have a small difference in thermal expansion coefficient from the dielectric, good adhesion to the dielectric, easy processing, and connection to the power supply wiring A4 by processing. It is a necessary condition. As a result of the experimental study, the conditions for forming by thermocompression bonding using soda-lime glass as the dielectric and ferritic tenres steel (SUS403 series) or martensitic stainless steel (SUS410 series) as the metal were found. At this time, the dielectric thickness on the discharge surface 35 side was 0.5 mm, and the dielectric thickness on the support surface 36 side was 20 mm. The plate thickness of the stainless steel plate was 0.5 mm. In addition, ceramics may be used as a dielectric, and a semiconductor may be used as a conductive substance instead of metal. A film forming method such as plating, CVD, vapor deposition, thermal oxidation, or printing may be used as a forming method.

電極支持基板18、および側壁15は高電圧に対する良好な絶縁性が要求される。通常は加工性のよい樹脂が用いられるが、セラミクスを用いてもよい。特に電極支持基板18にはプラズマに対する耐性が要求される。また、放電による誘電体で被覆された電極2の温度上昇を考慮して耐熱特性の良いものが良い。水処理においては少なくとも100℃で変形のないことが望ましい。具体的には、フッ素系樹脂、ポリアセタール系樹脂、ポリフェニレンサルファイド樹脂などが用いられる。上板14は、金属性ボルト・ナット19を用いる場合は絶縁体である、樹脂、もしくはセラミクスを用いなければならない。金属性ボルト・ナット19に代わって絶縁性の結合方式を用いる場合はアルミ合金やステンレス鋼などの金属材料を用いることができる。 The electrode support substrate 18 and the side wall 15 are required to have good insulation against high voltage. Usually, a resin with good processability is used, but ceramics may be used. In particular, the electrode support substrate 18 is required to have resistance to plasma. In addition, in view of the temperature rise of the electrode 2 covered with a dielectric due to discharge, a material having good heat resistance is preferable . In water treatment, it is desirable that there is no deformation at least at 100 ° C. Specifically, a fluorine resin, a polyacetal resin, a polyphenylene sulfide resin, or the like is used. The upper plate 14 must be made of an insulating resin or ceramic when using a metal bolt / nut 19. When an insulating coupling method is used instead of the metal bolt / nut 19, a metal material such as an aluminum alloy or stainless steel can be used.

図6に本発明に基づく液処理装置の系統図を示す。液中誘電体バリア放電プラズマ装置1が装着された液処理槽26に処理液体21が充填され、気体供給装置24から気体が、 気体導入管7を経て液中誘電体バリア放電プラズマ装置1に送り込まれる。液中誘電体バリア放電プラズマ装置1内でプラズマが生成され、プラズマが液体21と接触するとともに、生成された活性種などのプラズマ反応生成物が気泡20となって液体21中へ送り出される。気泡20は液体21中を浮揚、拡散してフィルター27を通過して外部へ放出される。フィルター27は排ガス中の有害物質を捕獲するために設けられる。放電用電力は給電配線A4、および給電配線B5により高圧電源25から液中誘電体バリア放電プラズマ装置1へ供給される。電源は商用電源29であってもよいし、太陽電池30であってもよい。該液処理装置が屋外に設置され、常時運転が望まれるような場合は補助電源を備えた太陽電池30による電力供給がエコシステムとして合理的である。オゾンを用いた液処理装置である場合は、気体供給装置24は送風ポンプ、もしくは酸素供給装置であり、フィルター27はオゾン分解フィルターとなる。 FIG. 6 shows a system diagram of the liquid processing apparatus according to the present invention. The liquid to be processed 21 is filled in the liquid treatment tank 26 in which the submerged dielectric barrier discharge plasma apparatus 1 is mounted, and gas is supplied from the gas supply device 24 to the submerged dielectric barrier discharge plasma apparatus 1 through the gas introduction pipe 7. It is sent. Plasma is generated in the submerged dielectric barrier discharge plasma apparatus 1, and the plasma comes into contact with the liquid 21, and the generated plasma reaction product such as active species is sent into the liquid 21 as bubbles 20 . The bubble 20 floats and diffuses in the liquid 21 , passes through the filter 27, and is discharged to the outside. The filter 27 is provided to capture harmful substances in the exhaust gas. The electric power for discharge is supplied from the high voltage power supply 25 to the submerged dielectric barrier discharge plasma apparatus 1 through the power supply wiring A4 and the power supply wiring B5. The power source may be a commercial power source 29 or a solar cell 30. When the liquid processing apparatus is installed outdoors and continuous operation is desired, power supply by the solar cell 30 provided with an auxiliary power supply is reasonable as an ecosystem. In the case of a liquid processing apparatus using ozone, the gas supply device 24 is a blower pump or an oxygen supply device, and the filter 27 is an ozone decomposition filter.

図7に、局所場において液中誘電体バリア放電プラズマ装置1を使用する形態を示す。配管28内に液中誘電体バリア放電プラズマ装置1が挿入され、給電配線A4、給電配線B5、および気体導入管7から電力およびプラズマ原料となる気体が送り込まれ、液体21がプラズマ処理される。図に示したように、液の滞留部位などの特定点に液中誘電体バリア放電プラズマ装置1を設置することができる。 FIG. 7 shows a form in which the liquid dielectric barrier discharge plasma apparatus 1 is used in a local field. The submerged dielectric barrier discharge plasma apparatus 1 is inserted into the pipe 28, and power and gas as a plasma raw material are fed from the power supply wiring A4, the power supply wiring B5, and the gas introduction pipe 7, and the liquid 21 is subjected to plasma processing. As shown in the figure, the in- liquid dielectric barrier discharge plasma apparatus 1 can be installed at a specific point such as a liquid retention site.

図8に本発明を実施する際に用いた高電圧駆動回路を示す。発振回路はウイーンブリッジ回路であり、可変抵抗で発振周波数、および利得を調整する。本実施で用いた発振周波数は26Hzであった。誘電体で被覆された電極2の金属部のサイズは2cm×2cm、放電面側誘電体厚さ1mm、支持基板側誘電体厚さ20mm、誘電体電極容量は20pFであった。該金属部としてフェライト系ステンレス鋼を、また該誘電体部としてはソーダライムガラス板を用い、両者を 熱圧着して成型した。電極間距離は0.5mmであった。電極支持基18、上板14、および側壁15はポリアセタール樹脂板を用いて作製した。電源は商用100VACを整流して用い、高圧トランスの巻線比は1:28とした。放電電圧は2.8V、皮相電力は10Wであった。気体供給装置24として吐出量3500cc/分のエアーポンプを用いた。 FIG. 8 shows a high-voltage driving circuit used in carrying out the present invention. The oscillation circuit is a Wien bridge circuit, and the oscillation frequency and gain are adjusted with a variable resistor. Oscillation frequency used in this embodiment was 26 k Hz. The size of the metal part of the electrode 2 covered with the dielectric was 2 cm × 2 cm, the discharge surface side dielectric thickness was 1 mm, the support substrate side dielectric thickness was 20 mm, and the dielectric electrode capacitance was 20 pF. Ferritic stainless steel was used as the metal part, and a soda lime glass plate was used as the dielectric part. The distance between the electrodes was 0.5 mm. Electrode support board 18, upper plate 14, and side walls 15 were prepared using the polyacetal resin plate. The power source used was a rectified commercial 100 VAC, and the winding ratio of the high voltage transformer was 1:28. Discharge voltage 2.8 k V, apparent power was 10 W. An air pump having a discharge rate of 3500 cc / min was used as the gas supply device 24.

これらを用いて全体を図6の様に構成し、色素メチレンブルーの脱色を行った。図9に、処理液の分光透過特性の経時変化を示す。この結果から算出されたメチレンブルー分解エネルギー効率は0.180g/kWhと算出された。当該化学反応は放電プラズマによって生成された酸化性活性種が作用して起こるものである。求められた効率は既報のパルスコロナ放電による結果に比して約2倍から3倍高い結果となっている(非特許文献参照)。図10には本実施例中に測定された、水中プラズマの発光分光の結果を大気中プラズマと対比して示す。水中放電に於いて、明らかにヒドロキシラジカルの発生が認められる。 Using these, the whole was constructed as shown in FIG. 6, and the dye methylene blue was decolorized. FIG. 9 shows the change with time of the spectral transmission characteristics of the treatment liquid. The methylene blue decomposition energy efficiency calculated from this result was calculated to be 0.180 g / kWh. The chemical reaction is caused by the action of oxidizing active species generated by the discharge plasma. The obtained efficiency is about 2 to 3 times higher than the result of the reported pulse corona discharge (see Non-Patent Document 3 ). FIG. 10 shows the results of emission spectroscopy of underwater plasma measured in the present example in comparison with atmospheric plasma. In the discharge in water, the generation of hydroxy radicals is clearly observed.

図11、および図12に、多孔質材料、および貫通孔を有するように微細加工を施したシリコン基板を構成部材の一部とする、複数の貫通孔を有する電極3の構造をそれぞれ示した。いずれの構造においても良好な放電特性が得られた。多孔質材料においては、バルク質、粉体質、および繊維質のいずれの場合でも良好な放電が実現された。この場合、各材質が非導電性であれば電解質である被処理液体が導電性を確保して電極となる。 FIGS. 11 and 12 show the structures of the electrode 3 having a plurality of through holes , each of which includes a porous material and a silicon substrate that has been finely processed so as to have through holes . In any structure, good discharge characteristics were obtained. In the case of the porous material, good discharge was realized in any of bulk, powder, and fiber. In this case, if each material is non-conductive, the liquid to be treated which is an electrolyte ensures conductivity and becomes an electrode.

液体処理の領域において、エネルギー効率のよいオゾン水処理装置、具体的には上水処理、下水処理装置として利用できる。また、エネルギー効率のよい生物処理後の汚泥減容処理装置としても利用できる。同様に水族館やプールにおける殺菌処理に利用できる。さらに半導体や液晶工場における複雑な純水配管内、および食品工場や病院における局所場の滅菌処理に利用できる。また、メッキ工場の排液処理やクリーニング場の廃液処理、化学工場の廃液処理に利用できる。さらに民生用機器として貯水タンクの殺菌処理や給排水管内の除菌、有機物質の除去に利用できる。また、井戸水などの屋外設置飲料用水の殺菌処理に対して太陽電池を電源としたエコシステムを実現できる。さらに消毒、および清掃用オゾン水の製造に利用するこができる。   In the area of liquid treatment, it can be used as an energy efficient ozone water treatment device, specifically, a water treatment device or a sewage treatment device. It can also be used as a sludge volume reduction device after biological treatment with good energy efficiency. Similarly, it can be used for sterilization treatment in aquariums and pools. Furthermore, it can be used for sterilization treatment in complicated pure water pipes in semiconductor and liquid crystal factories and in local fields in food factories and hospitals. It can also be used for wastewater treatment at plating plants, wastewater treatment at cleaning plants, and wastewater treatment at chemical plants. Furthermore, it can be used as a consumer device for sterilization of water storage tanks, disinfection in water supply and drainage pipes, and removal of organic substances. In addition, an ecosystem using a solar cell as a power source can be realized for sterilization treatment of water for outdoor installation such as well water. Furthermore, it can utilize for manufacture of ozone water for disinfection and cleaning.

気体処理の領域にも利用できる。リモートプラズマ装置として水素を用いた還元処理、酸素を用いた酸化処理が可能であることから、界面形成前のイオンダメージのない表面処理に用いられる。具体的には半田接続前の表面処理、半導体や液晶プロセスにおける半導体デバイスの機能性界面形成プロセスなどである。減圧を導入すればリモートプラズマCVD装置としての応用も可能であり、半導体やフラットパネルディスプレイプロセスにおける薄膜形成に利用することができる。民生用機器としては空気清浄機として用いることができる。   It can also be used in the area of gas processing. As a remote plasma apparatus, reduction treatment using hydrogen and oxidation treatment using oxygen are possible, and therefore, it is used for surface treatment without ion damage before the interface formation. Specifically, surface treatment before solder connection, functional interface formation process of a semiconductor device in a semiconductor or liquid crystal process, and the like. If reduced pressure is introduced, it can be applied as a remote plasma CVD apparatus and can be used for thin film formation in semiconductor and flat panel display processes. It can be used as an air cleaner as a consumer device.

液中誘電体バリア放電プラズマ装置
誘電体で被覆された電極
複数の貫通孔を有する電極
4 給電配線A
5 給電配線B
6 絶縁管
7 気体導入管
8 気体導入口
貫通孔
10 放電部
11 圧力調整弁
12 圧力調整室
13 導入管
14 上板
15 側壁
16 フランジ
17 Oリング
18 電極支持基板
19 ボルト・ナット
20 気泡
21 液体
22 電極金属部
23 電極誘電体部
24 気体供給装置
25 高圧電源
26 液処理槽
27 フィルター
28 配管
29 商用電源
30 太陽電池
31 気相面
32 液相面
33 誘電体部
34 金属部
35 放電面
36 支持面
37 多孔質材料
38 貫通孔を有するように微細加工を施したシリコン基板
1 liquid dielectric barrier discharge plasma device 2 electrode covered with dielectric 3 electrode having a plurality of through holes 4 power supply wiring A
5 Power supply wiring B
6 Insulating tube 7 Gas introducing tube 8 Gas introducing port 9 Through hole 10 Discharge portion 11 Pressure adjusting valve 12 Pressure adjusting chamber 13 Introducing tube 14 Upper plate 15 Side wall 16 Flange 17 O-ring 18 Electrode supporting substrate 19 Bolt / nut 20 Bubble 21 Liquid 22 Electrode metal part 23 Electrode dielectric part 24 Gas supply device 25 High voltage power supply 26 Liquid treatment tank 27 Filter 28 Pipe 29 Commercial power supply 30 Solar cell 31 Gas phase surface 32 Liquid phase surface 33 Dielectric part 34 Metal part 35 Discharge surface 36 Support Surface 37 Porous material 38 Silicon substrate finely processed to have through-holes

Claims (9)

誘電体バリア放電を行う液中プラズマ装置であって、
誘電体で被覆され、貫通孔を有しない第1電極と、
放電部と、
前記放電部を介して、前記第1電極に対向し、前記放電部を液体から分離するように配置された金属で形成された第2電極であって、前記放電部の側に位置し、実質的に全面が気体と接する気相面と、前記液体の側に位置し、実質的に全面が液体と接する液相面とを有し、前記気相面と前記液相面とを連結する複数の貫通孔を有する第2電極と、
前記放電部に、前記第2電極よりも前記放電部側から気体を供給し、前記気体と前記液体との界面を前記第2電極における貫通孔内に形成する気体供給装置と、
を備える、液中プラズマ装置。
A submerged plasma apparatus for performing dielectric barrier discharge,
A first electrode coated with a dielectric and having no through-hole;
A discharge part;
A second electrode made of metal, arranged to face the first electrode and separate the discharge part from the liquid via the discharge part, and is located on the discharge part side ; a gas phase surface substantially entirely to contact with the gas, situated on the side of the liquid, and a liquid phase surface substantially entirely to contact with liquid, and the liquid phase surface and the gas phase surface A second electrode having a plurality of through holes to be coupled;
A gas supply device that supplies gas to the discharge portion from the discharge portion side of the second electrode, and forms an interface between the gas and the liquid in a through-hole in the second electrode;
A submerged plasma apparatus.
前記第1電極および前記第2電極は、いずれも平板状である、請求項1に記載の液中プラズマ装置。   The in-liquid plasma apparatus according to claim 1, wherein each of the first electrode and the second electrode has a flat plate shape. 前記複数の貫通孔の各々の開口サイズは、前記第1電極と前記第2電極とによって規定される電極間距離よりも小さい、請求項1または2に記載の液中プラズマ装置。   The in-liquid plasma apparatus according to claim 1 or 2, wherein an opening size of each of the plurality of through holes is smaller than an inter-electrode distance defined by the first electrode and the second electrode. 前記複数の貫通孔の各々の開口サイズは、0.5mmより小さい、請求項1から3のいずれかに記載の液中プラズマ装置。   The in-liquid plasma apparatus according to any one of claims 1 to 3, wherein an opening size of each of the plurality of through holes is smaller than 0.5 mm. 前記複数の貫通孔は、気相面側の開口サイズが液相面側の開口サイズより大きい、請求項1からのいずれかに記載の液中プラズマ装置。 The plurality of through holes, the aperture size of the gas phase side is larger than the aperture size of the liquid-phase side, liquid plasma apparatus according to any one of claims 1 to 4. 前記放電部に連結された圧力調整室を備える、請求項1からのいずれかに記載の液中プラズマ装置。 Comprises a pressure adjusting chamber connected to said discharge portion, liquid plasma apparatus according to any one of claims 1 to 5. 前記第1電極と前記第2電極との間に電圧を印加して誘電体バリア放電を行うように構成された電気回路を備える、請求項1からのいずれかに記載の液中プラズマ装置。 Wherein the first electrode by applying a voltage between the second electrode comprises an electrical circuit configured to perform a dielectric barrier discharge, liquid plasma apparatus according to any one of claims 1 to 6. 静止または流動状態にある前記液体を少なくとも一時的に収容し、前記液体を前記第2電極の前記液相面に接触させる槽を備える、請求項1からのいずれかに記載の液中プラズマ装置。 The in-liquid plasma apparatus according to any one of claims 1 to 7 , further comprising a tank that at least temporarily accommodates the liquid in a stationary or fluid state and contacts the liquid with the liquid phase surface of the second electrode. . 請求項1から8のいずれかに記載の液中プラズマ装置を用いた液体浄化システム。 Fluid purification system using a liquid plasma apparatus according to any one of claims 1 to 8.
JP2014206217A 2014-10-07 2014-10-07 Submerged plasma device and liquid purification system Expired - Fee Related JP6020844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014206217A JP6020844B2 (en) 2014-10-07 2014-10-07 Submerged plasma device and liquid purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014206217A JP6020844B2 (en) 2014-10-07 2014-10-07 Submerged plasma device and liquid purification system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013187574A Division JP5638678B1 (en) 2013-09-10 2013-09-10 Liquid dielectric barrier discharge plasma apparatus and liquid purification system

Publications (3)

Publication Number Publication Date
JP2015056407A JP2015056407A (en) 2015-03-23
JP2015056407A5 JP2015056407A5 (en) 2015-09-24
JP6020844B2 true JP6020844B2 (en) 2016-11-02

Family

ID=52820641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014206217A Expired - Fee Related JP6020844B2 (en) 2014-10-07 2014-10-07 Submerged plasma device and liquid purification system

Country Status (1)

Country Link
JP (1) JP6020844B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6587159B2 (en) 2017-06-26 2019-10-09 パナソニックIpマネジメント株式会社 Liquid processing equipment
EP3684731B1 (en) 2017-10-27 2022-03-30 Samsung Electronics Co., Ltd. Plasma generator
JP7335551B2 (en) * 2017-12-28 2023-08-30 国立大学法人愛媛大学 DEVICE FOR FORMING DIAMOND FILM AND METHOD OF FORMING THE SAME
KR20200060559A (en) * 2018-11-20 2020-06-01 세메스 주식회사 Bonding apparatus and bonding method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3744726B2 (en) * 1999-06-08 2006-02-15 信越化学工業株式会社 Silicon electrode plate
JP5067802B2 (en) * 2006-12-28 2012-11-07 シャープ株式会社 Plasma generating apparatus, radical generating method, and cleaning and purifying apparatus
JP2013049015A (en) * 2011-08-31 2013-03-14 Panasonic Corp Water treatment apparatus
JP5638678B1 (en) * 2013-09-10 2014-12-10 Pmディメンションズ株式会社 Liquid dielectric barrier discharge plasma apparatus and liquid purification system

Also Published As

Publication number Publication date
JP2015056407A (en) 2015-03-23

Similar Documents

Publication Publication Date Title
JP5638678B1 (en) Liquid dielectric barrier discharge plasma apparatus and liquid purification system
US9352984B2 (en) Fluid treatment using plasma technology
KR101535904B1 (en) Uniform electrical field dielectric barrier discharge reactor
Magureanu et al. Decomposition of methylene blue in water using a dielectric barrier discharge: Optimization of the operating parameters
JP6020844B2 (en) Submerged plasma device and liquid purification system
JP4635204B2 (en) Water treatment method and water treatment apparatus
JP2015085297A (en) Liquid treatment apparatus and produced water treatment method
JP2015056407A5 (en)
KR20090097340A (en) Sewage purify method using dbd plasma discharge
KR101211823B1 (en) Apparatus of waste water disposal using plasma and bubble
KR101891438B1 (en) Plasma reactor comprising for water treatment and method for operation thereof
KR100895122B1 (en) The slimming and anaerobic consumption activity enhancing method and apparatus of the wasted-activated sludge
JP2009054557A (en) In-liquid plasma generating device
KR101918147B1 (en) Plasma Water Treatment Apparatus
JP5438893B2 (en) Ozone generator
JP2013049015A (en) Water treatment apparatus
CN203754483U (en) Dam-type DBD (dielectric barrier discharge) plasma based pharmaceutically industrial wastewater treatment device
KR20140069935A (en) Apparatus for treating water using discharge in reactor
US9868655B1 (en) Water treatment apparatus and water treatment method
JP2014032787A (en) In-liquid discharge device
JP5924606B2 (en) Organic synthesis method
WO2012134350A1 (en) Device for removing organic and chemical microbic pollutants from water
JP6430076B1 (en) Water treatment equipment
RU86941U1 (en) PLASMA-BIOCHEMICAL REACTOR
JP5879530B2 (en) Liquid processing equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150806

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150806

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160708

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160920

R150 Certificate of patent or registration of utility model

Ref document number: 6020844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees