JP2009111243A - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JP2009111243A
JP2009111243A JP2007283377A JP2007283377A JP2009111243A JP 2009111243 A JP2009111243 A JP 2009111243A JP 2007283377 A JP2007283377 A JP 2007283377A JP 2007283377 A JP2007283377 A JP 2007283377A JP 2009111243 A JP2009111243 A JP 2009111243A
Authority
JP
Japan
Prior art keywords
seal ring
electrostatic chuck
substrate
protrusions
projections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007283377A
Other languages
Japanese (ja)
Other versions
JP5126662B2 (en
JP2009111243A5 (en
Inventor
Takuma Tsuda
拓真 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2007283377A priority Critical patent/JP5126662B2/en
Publication of JP2009111243A publication Critical patent/JP2009111243A/en
Publication of JP2009111243A5 publication Critical patent/JP2009111243A5/ja
Application granted granted Critical
Publication of JP5126662B2 publication Critical patent/JP5126662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic chuck having a small contact surface area with a substrate, which can prevent variations at the temperature of a substrate caused by irregular contact, in particular, at a seal ring portion. <P>SOLUTION: The electrostatic chuck has a plurality of projections. When the projections have an arrangement pitch a and the center of one of the plurality of projections closest to a seal ring is spaced from the inner periphery of the seal ring by a shortest distance b, a relationship, b≥a×0.3, is satisfied. Moreover, the plurality of projections are arranged so that tip ends of the projections are flush with the upper surface of the seal ring. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、主にプラズマCVD、エッチャー、露光装置等の半導体製造装置において、各種基板を保持するために用いられる静電チャックに関するものである。   The present invention relates to an electrostatic chuck used to hold various substrates mainly in semiconductor manufacturing apparatuses such as plasma CVD, etchers, and exposure apparatuses.

半導体製造装置内における基板保持には、真空環境でも基板を吸着可能なこと、またメカチャックに見られるような機構部分からの発塵が無いこと等の理由により、静電気で基板を吸着する静電チャックが広く利用されている。   For holding the substrate in the semiconductor manufacturing equipment, the substrate can be adsorbed by static electricity due to the fact that the substrate can be adsorbed even in a vacuum environment and there is no dust generation from the mechanical part as seen in the mechanical chuck. Chuck is widely used.

近年、半導体製造プロセスの微細化に伴い、基板を保持する静電チャックに求められる平面精度は年々厳しくなってきている。静電チャック自体の平面度は言うまでも無いが、それ以上に静電チャック吸着面と基板へとの間に挟み込まれるパーティクルの低減が強く求められるようになった。   In recent years, with the miniaturization of the semiconductor manufacturing process, the planar accuracy required for an electrostatic chuck for holding a substrate has become more and more severe year by year. Needless to say, the flatness of the electrostatic chuck itself, but further reduction of the particles sandwiched between the electrostatic chuck attracting surface and the substrate has been strongly demanded.

パーティクルの発生源は、静電チャックが使用される工程にもよるが、例えば搬送ハンドから発生した摺動異物、レジストを始めとする各種異物等様々であるため、基板裏面に付着するパーティクルを0にすることは実質不可能と言ってよい。   Although the particle generation source depends on the process in which the electrostatic chuck is used, for example, there are various kinds of foreign matters such as sliding foreign matters generated from the transfer hand, various kinds of foreign matters including resists, and the like. It can be said that it is practically impossible.

このようなパーティクルの挟み込みにより発生する半導体素子の不良を抑制するためには、特許文献1に示されるように、基板を吸着した際の基板と吸着面の接触面積をできるだけ小さくすることが有効である。即ち吸着面を形成する突起の径を小さくし、またこれら突起を包含するシールリングの幅を狭くすることで、それぞれにおいて基板とほぼ点接触、線接触とみなせるような形状の静電チャックが開発・利用されている。   In order to suppress such a defect of the semiconductor element caused by the sandwiched particles, it is effective to reduce the contact area between the substrate and the suction surface as much as possible as shown in Patent Document 1. is there. In other words, by reducing the diameter of the protrusions that form the suction surface and narrowing the width of the seal ring that includes these protrusions, electrostatic chucks with shapes that can be regarded as point contact and line contact with the substrate have been developed. ·It's being used.

ところで、近年までの静電チャックは、その吸着原理により大きく2つに分類されていた。一つは電極上に体積抵抗率の非常に大きい誘電層を設け、誘電層の厚みを薄くし且つ吸着電圧を非常に大きくして電極と被吸着体とで構成される並行平板コンデンサモデルによって説明される所謂クーロン力タイプであり、もう一つは誘電体の体積抵抗率,誘電層厚み,表面粗さを一定の範囲に調整することによってジョンセンラーベック効果を生じさせ強い吸着力を発現する所謂ジョンセンラーベック型静電チャックである(特許文献2参照)。   By the way, electrostatic chucks up to recent years have been roughly classified into two according to the principle of adsorption. One is explained by a parallel plate capacitor model consisting of an electrode and an object to be adsorbed by providing a dielectric layer with a very large volume resistivity on the electrode, reducing the thickness of the dielectric layer and increasing the adsorption voltage. The other is the so-called Coulomb force type, and the other is to adjust the volume resistivity, dielectric layer thickness, and surface roughness of the dielectric to a certain range, thereby producing the Johnsen-Rahbek effect and developing a strong adsorption force This is a so-called Johnsen-Rabeck type electrostatic chuck (see Patent Document 2).

これらは基本的に、静電チャックと基板とが物理的に接触した部分にのみ吸着力が働く構造となっていたため、同様の構造で先述のような接触面積の小さい静電チャックを製作すると、十分な吸着力が得られないという問題があった。これを解決するために、誘電体の体積抵抗率を小さくし、突起高さを低くすることで、基板の被接触部分に対しても吸着力が働き、結果強い吸着力を得ることのできる新しい類型の静電チャックが開発されている(特許文献3参照)。これにより、パーティクル挟み込み防止のために接触面積を小さくしながらも、強い吸着力で基板を保持する静電チャックを実現できる。   Since these basically have a structure in which the adsorption force works only on the part where the electrostatic chuck and the substrate are in physical contact with each other, if an electrostatic chuck with a similar structure and a small contact area as described above is manufactured, There was a problem that sufficient adsorption power could not be obtained. In order to solve this problem, by reducing the volume resistivity of the dielectric and lowering the height of the protrusion, an attractive force acts on the contacted part of the substrate, resulting in a new attractive force. A type of electrostatic chuck has been developed (see Patent Document 3). Thereby, it is possible to realize an electrostatic chuck that holds the substrate with a strong suction force while reducing the contact area to prevent the particles from being caught.

本発明者らは上記のような目的から、例えば突起径0.2mm、ドッ及びシールリングの高さ50μm、シールリング幅0.5mmという条件の下で、それぞれ突起の配置(粗密)が異なる静電チャックを複数種類製作し性能評価を行った。静電チャックの吸着性能に関しては全ての静電チャックにおいて設計どおりの性能が得られたが、突起の配置を疎(突起の間隔10mm以上)にした静電チャックにおいては、基板の冷却性能にムラが発生するという現象が見られた。   For the purposes described above, the inventors of the present invention, for example, have different projection arrangements (roughness and density) under the conditions of a projection diameter of 0.2 mm, a height of a dock and a seal ring of 50 μm, and a seal ring width of 0.5 mm. Several types of electric chucks were manufactured and evaluated. As for the electrostatic chuck adsorption performance, the performance as designed was obtained for all the electrostatic chucks. However, the electrostatic chuck with sparsely arranged protrusions (interval of protrusions of 10 mm or more) had uneven cooling performance of the substrate. The phenomenon that occurs occurs.

この原因を調査したところ、静電チャック最外周近くに配置された一部の突起がシールリングに近接している場合、静電チャック吸着力により基板が変形すると図3に示したように最外周突起を支点にウェハの縁が持ち上がり、局所的にシールリングと基板とが非接触となるためその箇所で冷却ガスの漏洩及び固体接触の熱伝導経路が切れることにより冷却性能が落ちていることが判明した。   As a result of investigating the cause, when some protrusions arranged near the outermost periphery of the electrostatic chuck are close to the seal ring, the outermost periphery as shown in FIG. The edge of the wafer rises with the protrusion as a fulcrum, and the seal ring and the substrate are not in contact with each other locally, so that the cooling performance is deteriorated due to the leakage of cooling gas and the disconnection of the heat conduction path of solid contact at that point. found.

このような現象は静電チャックと基板の接触面積を小さくする目的で、突起における基板の支持が点支持であること、及びシールリング幅が狭いためシールリング上面と基板との間に働く吸着力が小さいことに起因している。   Such a phenomenon is intended to reduce the contact area between the electrostatic chuck and the substrate, and the support of the substrate at the protrusion is point support, and because the seal ring width is narrow, the attractive force acting between the upper surface of the seal ring and the substrate Is due to the smallness.

半導体装置内部では、例えばCVD成膜装置においては成膜速度不均一による膜厚ばらつきの原因となり、またエッチング装置内部においてはエッチング速度のばらつきの原因となるおそれがある。   In the semiconductor device, for example, the CVD film forming apparatus may cause film thickness variation due to non-uniform film forming speed, and the etching apparatus may cause etching speed variation.

特開2003−86664号公報JP 2003-86664 A 特開平7−283297号公報JP-A-7-283297 特開2000−340640号公報JP 2000-340640 A

本発明は、上記問題を解決するためになされたもので、本発明の課題は、基板との接触面積の小さい静電チャックにおいて、特にシールリング部における接触ムラに起因する基板の温度ばらつきが起きない静電チャックを提供することである。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to cause a temperature variation of the substrate due to contact unevenness particularly in the seal ring portion in an electrostatic chuck having a small contact area with the substrate. There is no electrostatic chuck.

上記目的を達成するために本発明によれば、被処理基板を載置し静電気力により吸着固定する静電チャックであって、前記被処理基板を載置する面側に複数の突起と、前記複数の突起を囲むようにシールリングとを備え、前記複数の突起の配置ピッチをaとし、
前記複数の突起の内、最も前記シールリングへ近接した突起の中心と前記シールリングの内周部との最短距離をbとしたとき、
b≧a×0.3
であり、
かつ前記複数の突起先端と前記シールリングの上面が同一平面上となるように前記複数の突起を配置したことにより、吸着時の基板変形によってシールリング部と基板とが非接触となる現象、及びそれに起因する基板の温度ムラを防止することを可能とした。
In order to achieve the above object, according to the present invention, there is provided an electrostatic chuck for mounting a substrate to be processed and attracting and fixing it by electrostatic force, a plurality of protrusions on the surface side on which the substrate to be processed is mounted, A seal ring is provided so as to surround the plurality of protrusions, and the arrangement pitch of the plurality of protrusions is a,
When the shortest distance between the center of the projection closest to the seal ring and the inner peripheral portion of the seal ring among the plurality of projections is b,
b ≧ a × 0.3
And
And the plurality of protrusions are arranged so that the tips of the plurality of protrusions and the upper surface of the seal ring are on the same plane, whereby the seal ring part and the substrate are not in contact with each other due to substrate deformation during suction, and It was possible to prevent temperature unevenness of the substrate due to this.

また、本発明の好ましい形態においては、前記シールリングの内周が円形状であり、前記吸着面上に配置された前記複数の突起の内少なくとも最外周に設けられた突起が、前記シールリングの内周と同心円上に等間隔配置した静電チャックとした。   In a preferred embodiment of the present invention, an inner periphery of the seal ring is circular, and projections provided on at least an outermost periphery of the plurality of projections arranged on the suction surface are formed on the seal ring. The electrostatic chuck was arranged at equal intervals on a concentric circle with the inner circumference.

また、本発明の好ましい形態においては、前記シールリングの幅が1mm以下である静電チャックとした。   Moreover, in the preferable form of this invention, it was set as the electrostatic chuck whose width | variety of the said seal ring is 1 mm or less.

また、本発明の好ましい形態においては、前記シールリング及び前記突起の高さが、20μm以下である静電チャックとした。   Moreover, in the preferable form of this invention, it was set as the electrostatic chuck whose height of the said seal ring and the said protrusion is 20 micrometers or less.

また、本発明の好ましい形態においては、前記複数の突起の内、最も前記シールリングへ近接した突起の中心と前記シールリングの内周部との最短距離をbとしたとき、
a≧b≧a×0.3 である静電チャックとした。
Further, in a preferred embodiment of the present invention, when the shortest distance between the center of the projection closest to the seal ring and the inner peripheral portion of the seal ring among the plurality of projections is b,
The electrostatic chuck satisfying a ≧ b ≧ a × 0.3.

本発明によれば、基板との接触面積の小さい静電チャックにおいて、特にシールリング部における接触ムラに起因する基板の温度ばらつきが起きない静電チャックを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrostatic chuck with which the temperature variation of the board | substrate caused by the contact nonuniformity in a seal ring part does not occur can be provided in the electrostatic chuck with a small contact area with a board | substrate.

図2に示したのは微小接触面積を有する静電チャック1の従来例を示す上面図であり、図4は図2に示した静電チャック1の吸着面2の一部(外周部付近)抜粋して拡大したものである。尚、図2においては突起3の配置の概略を示すため突起3の径を拡大して描いており、図4においては静電チャック1の表面形状の理解のため、シールリング4及び突起3の高さ方向のスケールを実際よりも拡大して描いている。   FIG. 2 is a top view showing a conventional example of the electrostatic chuck 1 having a small contact area, and FIG. 4 is a part of the attracting surface 2 of the electrostatic chuck 1 shown in FIG. Excerpts and enlargements. In FIG. 2, the diameter of the protrusion 3 is enlarged to show the outline of the arrangement of the protrusion 3. In FIG. 4, the seal ring 4 and the protrusion 3 are shown for understanding the surface shape of the electrostatic chuck 1. The scale in the height direction is drawn larger than the actual scale.

複数の突起3先端及び前記シールリング4上面に接するよう被処理基板を載置し静電気力により吸着固定する。 A substrate to be processed is placed in contact with the tips of the plurality of protrusions 3 and the upper surface of the seal ring 4, and is adsorbed and fixed by electrostatic force.

突起3の径は、φ1mm以下が好ましい。 The diameter of the protrusion 3 is preferably 1 mm or less.

実際の突起3の径は例えば0.2mm、シールリング4の幅は0.5mm、それに対し突起3及びシールリング4の高さは10〜20μm程度である。 The actual diameter of the protrusion 3 is, for example, 0.2 mm, the width of the seal ring 4 is 0.5 mm, and the height of the protrusion 3 and the seal ring 4 is about 10 to 20 μm.

また突起3の配置パターンは様々なものが製作されているが、図2に示したように互いに正三角形の頂点を形成するような配置が最も一般的である。このような突起3の配置において、以後説明のため突起3の配置ピッチをaとする。更に最もシールリング4へ近接し配置された突起3とシールリング4の内周部との最短距離をbとする。 Various arrangement patterns of the protrusions 3 are manufactured, but the arrangement that forms the vertices of equilateral triangles as shown in FIG. 2 is the most common. In such an arrangement of the protrusions 3, the arrangement pitch of the protrusions 3 is a for the sake of explanation. Further, b is the shortest distance between the protrusion 3 that is disposed closest to the seal ring 4 and the inner peripheral portion of the seal ring 4.

接触面積を小さくするためにaを大きく(10mm以上)とした場合、基板5は突起3との接触部を支点に大きくたわむ。これは言うまでも無く基板5全体で起きる現象であるが、最外周に設けられた突起3近傍に注目すると、bがaに比べて小さい場合、即ちシールリング4に近接するように最外周の突5を設けた場合、図3に示したように突起5よりも外側は基板5の変形により静電チャック1から離れる方向へ変位し、シールリング4と基板5とが一部非接触の状態となってしまう。 When a is set large (10 mm or more) in order to reduce the contact area, the substrate 5 bends largely with the contact portion with the protrusion 3 as a fulcrum. Needless to say, this is a phenomenon that occurs in the entire substrate 5, but focusing on the vicinity of the protrusion 3 provided on the outermost periphery, when b is smaller than a, that is, the outermost periphery so as to be close to the seal ring 4. When the protrusion 5 is provided, the outer side of the protrusion 5 is displaced in the direction away from the electrostatic chuck 1 due to the deformation of the substrate 5 as shown in FIG. 3, and the seal ring 4 and the substrate 5 are not in contact with each other. End up.

この現象で、実際にシールリング4近傍においてどのような基板5の変形が起きるかをCAE解析にて求めた結果を図5に示した。同図は図4に示された静電チャック1上に基板5を搭載し吸着した際の基板5の変形を示したもので、高さ方向の変形量を拡大して描いている。同図にて明らかなように、突起3が近接したシールリング4近傍においては、基板5とシールリング4とが一部非接触となっている様子がわかる。 FIG. 5 shows the result of CAE analysis to determine what kind of deformation of the substrate 5 actually occurs in the vicinity of the seal ring 4 due to this phenomenon. This figure shows the deformation of the substrate 5 when the substrate 5 is mounted on the electrostatic chuck 1 shown in FIG. 4 and sucked, and the deformation in the height direction is enlarged. As can be seen from the figure, it can be seen that the substrate 5 and the seal ring 4 are not in contact with each other in the vicinity of the seal ring 4 where the protrusions 3 are close to each other.

ここで、実際に発生する変形量の程度とそれによる問題を述べる。変形量は1μ以下の微小量であり、直接測定することが困難であったため、CAEにより変形量を算出した。径0.2mm、高さ10μmの突起3を10mmピッチで配置し、最外周部のシールリング4の幅を0.5mmとした8インチ静電チャック1上に、基板5として厚さ0.7mmのシリコンウェハを吸着し、吸着力が30000Pa(約1kVの印可電圧に相当)働いたときの基板5の変形を解析したところ、シールリング4と基板5との間で最大0.14μmの隙間が開くという結果であった。   Here, the extent of deformation that actually occurs and the problems caused by it will be described. Since the deformation amount was a minute amount of 1 μm or less and it was difficult to directly measure, the deformation amount was calculated by CAE. Protrusions 3 having a diameter of 0.2 mm and a height of 10 μm are arranged at a pitch of 10 mm, and a thickness of 0.7 mm is formed as a substrate 5 on an 8-inch electrostatic chuck 1 in which the outermost seal ring 4 has a width of 0.5 mm. When the silicon wafer was adsorbed and the deformation of the substrate 5 was analyzed when the adsorbing force was 30000 Pa (corresponding to an applied voltage of about 1 kV), a gap of 0.14 μm at maximum was found between the seal ring 4 and the substrate 5. It was a result of opening.

この程度の隙間であれば、静電チャック1−基板5間に封入されたガスのリークは10−5Pam3/s台程度であるため、封入ガスの圧力分布及び静電チャック1周辺の圧力分布は影響を受けないが、基板5の変形量は突起3の配置ピッチのほぼ3乗に比例し、更にガスリーク量は隙間(即ち変形量)のほぼ2乗に比例して増加するため、突起3の配置ピッチを10mmよりも大きく設計した場合、ガスリークの影響は無視できなくなる。 If this gap is present, the leakage of the gas sealed between the electrostatic chuck 1 and the substrate 5 is on the order of 10 −5 Pam 3 / s, so the pressure distribution of the sealed gas and the pressure distribution around the electrostatic chuck 1 are Although not affected, the deformation amount of the substrate 5 is proportional to approximately the third power of the arrangement pitch of the protrusions 3 and the gas leak amount increases in proportion to approximately the square of the gap (that is, the deformation amount). When the arrangement pitch is designed to be larger than 10 mm, the influence of gas leak cannot be ignored.

大まかな計算例をあげると、例えば突起3の配置ピッチを12mmとすると、ガスリーク量は10−4Pam/s台まで増加し、封入ガスの圧力分布は数%のばらつきが見られるようになる。突起3の配置ピッチを15mmとすると、ガスリーク量は及び封入ガスの圧力分布ばらつきは更に倍増するため、もはやその影響を無視することは出来ない。封入ガスの圧力分布ばらつきに応じた温度ばらつきが基板5上に現れるため、半導体製造装置の性能に悪影響を及ぼしてしまう。 As a rough calculation example, for example, when the arrangement pitch of the protrusions 3 is set to 12 mm, the amount of gas leak increases to the order of 10 −4 Pam 3 / s, and the pressure distribution of the sealed gas has a variation of several percent. . If the arrangement pitch of the protrusions 3 is 15 mm, the gas leak amount and the pressure distribution variation of the sealed gas are further doubled, so the influence can no longer be ignored. Since the temperature variation according to the pressure distribution variation of the filled gas appears on the substrate 5, it adversely affects the performance of the semiconductor manufacturing apparatus.

上記のような隙間の大きさは図3から明らかなように、突起3の配置ピッチa、及び最もシールリングへ近接し配置された突起3とシールリング4の内周部との最短距離bとにより変化する。これらa及びbにより、隙間の大きさがどのように影響を受けるかについてもCAE解析により調査した。その結果、基板5にかかる吸着力の大きさが一定の場合、シールリング4近傍に現れる隙間の大きさはa及びbの絶対値ではなく、a及びbの比率により決定されることが判明した。この結果を、縦軸を隙間の大きさを示す無次元値、横軸をb/aとしてグラフにしたものが図6である。図6によれば、b/aが約0.15のときにおいて隙間は最大となり、b/aが0.3を超えると最小となることがわかる。 As is apparent from FIG. 3, the size of the gap as described above is the arrangement pitch a of the projections 3 and the shortest distance b between the projections 3 arranged closest to the seal ring and the inner periphery of the seal ring 4. It depends on. It was also investigated by CAE analysis how the size of the gap is affected by a and b. As a result, it was found that when the magnitude of the attractive force applied to the substrate 5 is constant, the size of the gap appearing in the vicinity of the seal ring 4 is determined not by the absolute values of a and b but by the ratio of a and b. . FIG. 6 is a graph of this result, with the vertical axis representing a dimensionless value indicating the size of the gap and the horizontal axis representing b / a. According to FIG. 6, it can be seen that the gap is maximum when b / a is about 0.15, and is minimum when b / a exceeds 0.3.

この結果に基づけば、突起3の配置ピッチaを12mmとした例では、最もシールリング4へ近接し配置された突起3とシールリング4の内周部との最短距離bが3.6mm(=12×0.3)以上となるように突起3を配置することで、シールリング4近傍に現れる隙間の大きさを最低限に抑えることができる。 Based on this result, in the example in which the arrangement pitch a of the protrusions 3 is 12 mm, the shortest distance b between the protrusion 3 arranged closest to the seal ring 4 and the inner peripheral portion of the seal ring 4 is 3.6 mm (= By disposing the projections 3 so as to be 12 × 0.3) or more, the size of the gap appearing in the vicinity of the seal ring 4 can be minimized.

本発明の一実施例を図1に示す。 An embodiment of the present invention is shown in FIG.

図2に示したような正三角形を形成するようなパターンで突起3を配置する場合、b≧a×0.3を満足するように配置したとしても最外周に配置された突起3とシールリング4との距離は場所により異なりばらついてしまうため、シールリング4における基板5との接触圧も一様でなくなり、シールリング4近傍におけるの固体接触を介した熱流特性の設計精度に悪影響を及ぼす。これに対し本実施例である図1のように同心円状に突起3を配置した場合(この例において、最外周に配置された突起3の位置はa=10mm、b=3mmであり、b≧a×0.3を満足する)、シールリング4における基板5との接触圧はほぼ一定となるため、設計どおりの熱流特性を得ることができる。   When the projections 3 are arranged in a pattern that forms an equilateral triangle as shown in FIG. 2, even if the projections 3 are arranged so as to satisfy b ≧ a × 0.3, the projections 3 and the seal ring arranged on the outermost periphery Since the distance to 4 varies depending on the location, the contact pressure between the seal ring 4 and the substrate 5 is not uniform, which adversely affects the design accuracy of the heat flow characteristics through solid contact in the vicinity of the seal ring 4. On the other hand, when the projections 3 are arranged concentrically as shown in FIG. 1 as the present embodiment (in this example, the positions of the projections 3 arranged on the outermost periphery are a = 10 mm, b = 3 mm, and b ≧ a × 0.3 is satisfied), and the contact pressure between the seal ring 4 and the substrate 5 is substantially constant, so that the heat flow characteristics as designed can be obtained.

上述のように、シールリング4と基板5との隙間を防止する目的においてはb≧a×0.3さえ満足すればよく、特にbの上限は定まらない。しかしながらbがaより大きくなると基板5の変形量は図7に示したように指数関数的に大きくなるため、結局基板5の冷却性能が均一でなくなってしまう。このため、bがa≧b≧a×0.3を満たすように突起を配置するのが理想的である。   As described above, for the purpose of preventing the gap between the seal ring 4 and the substrate 5, it is sufficient that b ≧ a × 0.3 is satisfied, and the upper limit of b is not particularly determined. However, when b is larger than a, the deformation amount of the substrate 5 increases exponentially as shown in FIG. 7, so that the cooling performance of the substrate 5 is not uniform. For this reason, it is ideal to arrange the protrusions so that b satisfies a ≧ b ≧ a × 0.3.

基板吸着の際のパーティクル挟み込み防止のために基板との接触面積を微小とした静電チャックにおいて、特にシールリング部における接触圧を均等に発生させ、ガスの漏洩を防止し、基板の温度ムラの発生を防止することができる。
In an electrostatic chuck with a small contact area with the substrate to prevent the trapping of particles during the adsorption of the substrate, in particular, the contact pressure in the seal ring part is evenly generated to prevent gas leakage and to prevent the temperature unevenness of the substrate. Occurrence can be prevented.

本発明の一実施例である静電チャックにおける突起の配置を示した上面図である。It is the top view which showed arrangement | positioning of the protrusion in the electrostatic chuck which is one Example of this invention. 従来の静電チャックにおける突起の配置を示した上面図である。It is the top view which showed arrangement | positioning of the protrusion in the conventional electrostatic chuck. 基板外周部における基板の変形を模式的に表した断面図である。It is sectional drawing which represented the deformation | transformation of the board | substrate in a board | substrate outer peripheral part typically. 基板外周部における静電チャック吸着面の形状を模式的に表した斜視図である。It is the perspective view which represented typically the shape of the electrostatic chuck adsorption surface in a board | substrate outer peripheral part. 基板外周部における基板の変形をCAE解析により描いた図である。It is the figure which drawn the deformation | transformation of the board | substrate in a board | substrate outer peripheral part by CAE analysis. シールリング近傍の突起の配置と、シールリング部において発生する隙間との関係を示したグラフである。It is the graph which showed the relationship between arrangement | positioning of the protrusion of a seal ring vicinity, and the clearance gap which generate | occur | produces in a seal ring part. 突起間距離と基板変軽量との関係を示したグラフである。It is the graph which showed the relationship between the distance between processus | protrusions, and board | substrate variable light weight.

符号の説明Explanation of symbols

1…静電チャック
2…吸着面
3…突起
4…シールリング
5…基板
6…ベースプレート
7…ボルト穴
8…ガス供給穴
DESCRIPTION OF SYMBOLS 1 ... Electrostatic chuck 2 ... Adsorption surface 3 ... Protrusion 4 ... Seal ring 5 ... Substrate 6 ... Base plate 7 ... Bolt hole 8 ... Gas supply hole

Claims (5)

被処理基板を載置し静電気力により吸着固定する静電チャックであって、前記被処理基板を載置する面側に複数の突起と、前記複数の突起を囲むようにシールリングとを備え、
前記複数の突起の配置ピッチをaとし、
前記複数の突起の内、最も前記シールリングへ近接した突起の中心と前記シールリングの内周部との最短距離をbとしたとき、
b≧a×0.3
であり、
かつ前記複数の突起先端と前記シールリングの上面が同一平面上となるように前記複数の突起を配置したことを特徴とする静電チャック。
An electrostatic chuck for mounting a substrate to be processed and attracting and fixing by electrostatic force, comprising a plurality of protrusions on a surface side on which the substrate to be processed is mounted, and a seal ring so as to surround the plurality of protrusions,
The arrangement pitch of the plurality of protrusions is a,
When the shortest distance between the center of the protrusion closest to the seal ring and the inner periphery of the seal ring is b among the plurality of protrusions,
b ≧ a × 0.3
And
The electrostatic chuck is characterized in that the plurality of protrusions are arranged so that tips of the plurality of protrusions and an upper surface of the seal ring are on the same plane.
前記シールリングの内周が円形状であり、前記吸着面上に配置された前記複数の突起の内少なくとも最外周に設けられた突起が、前記シールリングの内周と同心円上に等間隔配置してあることを特徴とする請求項1に記載の静電チャック。 The inner periphery of the seal ring is circular, and at least the protrusions provided on the outermost periphery of the plurality of protrusions disposed on the adsorption surface are arranged at equal intervals on the concentric circle with the inner periphery of the seal ring. The electrostatic chuck according to claim 1, wherein the electrostatic chuck is provided. 前記シールリングの幅が1mm以下であることを特徴とする請求項1または2に記載の静電チャック。 The electrostatic chuck according to claim 1, wherein a width of the seal ring is 1 mm or less. 前記シールリング及び前記突起の高さが、20μm以下であることを特徴とする請求項1〜3のいずれか1項に記載の静電チャック。 The electrostatic chuck according to claim 1, wherein the seal ring and the protrusion have a height of 20 μm or less. 前記複数の突起の内、最も前記シールリングへ近接した突起の中心と前記シールリングの内周部との最短距離をbとしたとき、
a≧b≧a×0.3
であることを特徴とする請求項1〜5のいずれか1項に記載の静電チャック。
When the shortest distance between the center of the protrusion closest to the seal ring and the inner periphery of the seal ring is b among the plurality of protrusions,
a ≧ b ≧ a × 0.3
The electrostatic chuck according to claim 1, wherein
JP2007283377A 2007-10-31 2007-10-31 Electrostatic chuck Active JP5126662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007283377A JP5126662B2 (en) 2007-10-31 2007-10-31 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007283377A JP5126662B2 (en) 2007-10-31 2007-10-31 Electrostatic chuck

Publications (3)

Publication Number Publication Date
JP2009111243A true JP2009111243A (en) 2009-05-21
JP2009111243A5 JP2009111243A5 (en) 2010-12-16
JP5126662B2 JP5126662B2 (en) 2013-01-23

Family

ID=40779402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007283377A Active JP5126662B2 (en) 2007-10-31 2007-10-31 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP5126662B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9466518B2 (en) 2013-05-31 2016-10-11 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device
JP2018101705A (en) * 2016-12-20 2018-06-28 日本特殊陶業株式会社 Electrostatic chuck
US11328948B2 (en) 2018-08-30 2022-05-10 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device and method of manufacturing electrostatic chuck device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163848A (en) * 1989-11-22 1991-07-15 Hitachi Ltd Vacuum suction base
JP2001185607A (en) * 1999-12-27 2001-07-06 Canon Inc Substrate suction holding device and device manufacturing method
WO2001056074A1 (en) * 2000-01-28 2001-08-02 Hitachi Tokyo Electronics Co., Ltd. Wafer chuck, exposure system, and method of manufacturing semiconductor device
JP2003086664A (en) * 2001-09-13 2003-03-20 Sumitomo Osaka Cement Co Ltd Suction fixing device and its manufacturing method
JP2003249542A (en) * 2001-12-20 2003-09-05 Nikon Corp Substrate holder, aligner, and method of manufacturing device
JP2004022889A (en) * 2002-06-18 2004-01-22 Anelva Corp Electrostatic chuck

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163848A (en) * 1989-11-22 1991-07-15 Hitachi Ltd Vacuum suction base
JP2001185607A (en) * 1999-12-27 2001-07-06 Canon Inc Substrate suction holding device and device manufacturing method
WO2001056074A1 (en) * 2000-01-28 2001-08-02 Hitachi Tokyo Electronics Co., Ltd. Wafer chuck, exposure system, and method of manufacturing semiconductor device
JP2003086664A (en) * 2001-09-13 2003-03-20 Sumitomo Osaka Cement Co Ltd Suction fixing device and its manufacturing method
JP2003249542A (en) * 2001-12-20 2003-09-05 Nikon Corp Substrate holder, aligner, and method of manufacturing device
JP2004022889A (en) * 2002-06-18 2004-01-22 Anelva Corp Electrostatic chuck

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9466518B2 (en) 2013-05-31 2016-10-11 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device
JP2018101705A (en) * 2016-12-20 2018-06-28 日本特殊陶業株式会社 Electrostatic chuck
US11328948B2 (en) 2018-08-30 2022-05-10 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device and method of manufacturing electrostatic chuck device

Also Published As

Publication number Publication date
JP5126662B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5945616B2 (en) Electrostatic chuck with polymer protrusions
JP5796076B2 (en) Highly conductive electrostatic chuck
JP6001675B2 (en) Mounting member and manufacturing method thereof
TWI554159B (en) Electrolyte processing device
JP6139698B2 (en) Electrostatic chuck
JP5126662B2 (en) Electrostatic chuck
JP4407793B2 (en) Electrostatic chuck and equipment equipped with electrostatic chuck
US20170084477A1 (en) Substrate support unit and substrate treatment apparatus comprising the same
IL295864A (en) Object holder, tool and method of manufacturing an object holder
TWI692057B (en) Substrate support unit
KR20060121362A (en) Apparatus for measuring esc edge ring
JP2005032977A (en) Vacuum chuck
JP6089918B2 (en) Imprint mold manufacturing method and substrate
JP2012204447A (en) Electrostatic chuck
JP6319474B2 (en) Imprint mold
WO2019163214A1 (en) Wafer holding stage
JP2019062044A (en) Substrate holding member and substrate holding method
JP7478323B2 (en) Substrate holding device
TWI569359B (en) Mounting apparatus for mounting of a structured wafer
US20140291942A1 (en) Chuck structure for substrate cleansing equipment
TW201712796A (en) Chip carrier and corresponding plasma processing apparatus capable of preventing a dielectric material layer on the surface of the chip carrier from being punctured
JP2003158174A (en) Electrostatic chuck, its manufacturing method and securing/holding method
JP3862676B2 (en) Plasma etching method
CN116762161A (en) Vacuum tab bond fixture for substrate table and compliant burl application
JP2014529884A (en) Mounting device for mounting patterned wafers

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120423

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5126662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3