JP2009110581A - 光ディスク装置及び光ディスク処理方法 - Google Patents
光ディスク装置及び光ディスク処理方法 Download PDFInfo
- Publication number
- JP2009110581A JP2009110581A JP2007280763A JP2007280763A JP2009110581A JP 2009110581 A JP2009110581 A JP 2009110581A JP 2007280763 A JP2007280763 A JP 2007280763A JP 2007280763 A JP2007280763 A JP 2007280763A JP 2009110581 A JP2009110581 A JP 2009110581A
- Authority
- JP
- Japan
- Prior art keywords
- recording
- light
- pulse
- optical disc
- relaxation oscillation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/004—Recording, reproducing or erasing methods; Read, write or erase circuits therefor
- G11B7/0045—Recording
- G11B7/00456—Recording strategies, e.g. pulse sequences
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/125—Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
- G11B7/126—Circuits, methods or arrangements for laser control or stabilisation
- G11B7/1267—Power calibration
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Recording Or Reproduction (AREA)
- Optical Head (AREA)
Abstract
【課題】 緩和振動を用いた記録処理のためのライトストラテジにより最適な状態で記録処理を行なう光ディスク装置及び光ディスク処理方法を提供する。
【解決手段】 レーザ光を光ディスクに照射する光源部20と、緩和振動をもった光パルスのレーザ光を光源部に照射させるべく駆動電流を供給する駆動部29と、光ディスクの記録層から反射された反射光を受光する光検出部26と、光検出部から出力された信号に基づいて再生信号を出力する演算部27と、駆動部と演算部を制御して、緩和振動をもった光パルスを用いて光ディスクの記録層に試し書きを行い、この試し書きした領域にレーザ光を照射しこの反射光を検出し検出結果に基づいてライトストラテジを決定し、決定したライトストラテジに基づいて緩和振動をもった光パルスを用いて光ディスクに記録処理を行なう制御部31をもつ光ディスク装置。
【選択図】図1
【解決手段】 レーザ光を光ディスクに照射する光源部20と、緩和振動をもった光パルスのレーザ光を光源部に照射させるべく駆動電流を供給する駆動部29と、光ディスクの記録層から反射された反射光を受光する光検出部26と、光検出部から出力された信号に基づいて再生信号を出力する演算部27と、駆動部と演算部を制御して、緩和振動をもった光パルスを用いて光ディスクの記録層に試し書きを行い、この試し書きした領域にレーザ光を照射しこの反射光を検出し検出結果に基づいてライトストラテジを決定し、決定したライトストラテジに基づいて緩和振動をもった光パルスを用いて光ディスクに記録処理を行なう制御部31をもつ光ディスク装置。
【選択図】図1
Description
本発明は、レーザ光の緩和振動を用いた記録処理を行なう光ディスク装置及び光ディスク処理方法に関する。
近年、情報の記録、再生及び消去(繰り返し記録)に適した記録媒体として、光ディスクが広く利用されている。この光ディスクは、記録容量で区別すると、CD規格、DVD(デジタル多用途ディスク)規格に分類される。特に、映像および音声(音楽データ)の記録には、DVD規格とDVD規格を更に発展させたHD DVDおよびBD(ブルーレイディスク)が、記録容量の点で、幅広く使われている。
このような光ディスクへの記録方法として、記録パルス長さが1ns(ナノ秒)よりも小さい急峻なパルスを利用して、より高密度で情報を記録する方法が開発されている。この記録方法は、例えばサブナノパルス記録方法、あるいは緩和振動を利用した記録方法と称される。
特許文献1は、上述した緩和振動を利用して光ディスクにマーク列を記録するレーザ駆動方法およびこれを用いた光ディスク装置が記載されている。
特開2002−123963号公報
しかし、特許文献1の従来技術は、通常の記録パルスと緩和振動との両者を利用して光ディスクにマーク列を記録することが記載されているが、この場合のライトストラテジがどのように決定されどう利用されるべきかについて何ら言及されていない。
本発明は、緩和振動を用いた記録処理のためのライトストラテジにより最適な状態で記録処理を行なう光ディスク装置及び光ディスク処理方法を提供することを目的とする。
課題を解決するための一実施形態は、
レーザ光を光ディスク(D)に照射する光源部(20)と、
緩和振動をもった光パルスのレーザ光を前記光源部に照射させるべく駆動電流を前記光源部に供給する駆動部(29)と、
前記光ディスクの記録層から反射された反射光を受光する光検出部(26)と、
前記光検出部から出力された信号に基づいて再生信号を出力する演算部(27)と、
前記駆動部と前記演算部を制御して、緩和振動をもった光パルスを用いて前記光ディスクの記録層に試し書きを行い、この試し書きした領域にレーザ光を照射しこの反射光を検出し検出結果に基づいてライトストラテジを決定し、決定したライトストラテジに基づいて緩和振動をもった光パルスを用いて前記光ディスクに記録処理を行なう制御部(31)を、具備することを特徴とする光ディスク装置である。
レーザ光を光ディスク(D)に照射する光源部(20)と、
緩和振動をもった光パルスのレーザ光を前記光源部に照射させるべく駆動電流を前記光源部に供給する駆動部(29)と、
前記光ディスクの記録層から反射された反射光を受光する光検出部(26)と、
前記光検出部から出力された信号に基づいて再生信号を出力する演算部(27)と、
前記駆動部と前記演算部を制御して、緩和振動をもった光パルスを用いて前記光ディスクの記録層に試し書きを行い、この試し書きした領域にレーザ光を照射しこの反射光を検出し検出結果に基づいてライトストラテジを決定し、決定したライトストラテジに基づいて緩和振動をもった光パルスを用いて前記光ディスクに記録処理を行なう制御部(31)を、具備することを特徴とする光ディスク装置である。
レーザ光の緩和振動を用いたキャリブレーションを行なってライトストラテジを決定することで、最適のピーク電流やパルス幅によって、緩和振動を用いた光ディスクへの記録処理を確実に行なうことができ、消費電力も約5分の1程度に抑えることができる。
以下に、本発明の一実施形態に係る光ディスク装置について図面を参照して説明する。
<本発明の一実施形態である光ディスク装置の一例>
初めに、本発明の一実施形態に係る光ディスク装置の構成を説明する。図1は、本発明の一実施形態に係る光ディスク装置の構成を概略的に示すブロック図である。図2は、同じく光ディスク装置の半導体レーザ駆動回路の構成を示すブロック図である。
初めに、本発明の一実施形態に係る光ディスク装置の構成を説明する。図1は、本発明の一実施形態に係る光ディスク装置の構成を概略的に示すブロック図である。図2は、同じく光ディスク装置の半導体レーザ駆動回路の構成を示すブロック図である。
本実施形態に係る光ディスク装置では、光源には短波長の半導体レーザ光源20が用いられる。その出射光の波長は、例えば400nm〜410nmの範囲の紫色波長帯のものである。
半導体レーザ光源20からの出射光100は、コリメートレンズ21により平行光となり偏光ビームスプリッタ22、λ/4板23を透過する。そして、対物レンズ24に入射する。その後、光ディスクDの基板を透過し、目的とする情報記録層に集光される。光ディスクDの情報記録層による反射光101は、再び光ディスクDの保護層2を透過し、対物レンズ24、λ/4板23を透過し、偏光ビームスプリッタ22で反射された後、集光レンズ25を透過して光検出器26に入射する。
光検出器26の受光部は通常複数に分割されており、それぞれの受光部から光強度に応じた電流を出力する。出力された電流は、図示しないI/Vアンプにより電圧に変換された後、演算回路27により、ユーザデータ情報を再生するHF信号及び光ディスクD上の光源によるビームスポット位置を制御するためのフォーカス誤差信号及びトラック誤差信号などに演算処理される。演算回路27は、制御部31によって制御される。制御部31は、特に緩和振動によるキャリブレーション部32を含んでいる。
対物レンズ24はアクチュエータ28にて上下方向、ディスクラジアル方向に駆動可能であり、サーボドライバ30によって光ディスクD上の情報トラックに追従するように制御される。光ディスクDは情報の書き込みが可能な記録形ディスクであり、半導体レーザ光源20の出射光100により情報が記録される。半導体レーザ光源20は半導体レーザ駆動回路29により、出射光100の光量が制御可能であり、光ディスクDへの情報記録時には半導体レーザ光源20の緩和振動パルスが出射されるように制御される。半導体レーザ駆動回路29は制御部31によって制御される。光ディスクDへの情報記録時の記録パルスについては後に詳しく述べる。
半導体レーザ駆動回路29は、図2に示すように、制御部31や緩和振動によるキャリブレーション部32から制御信号を受け、ピーク電流値やパルス幅等の記録処理の際に用いられるライトストラテジ情報を格納したライトストラテジ部41と、制御部31や緩和振動によるキャリブレーション部32から制御信号を受けるI/F部42と、デジタル信号でピーク電流指令値を与えられるピークD/Aコンバータ43と、デジタル信号でイレーズ電流指令値を与えられるイレーズD/Aコンバータ44と、デジタル信号でリード電流指令値を与えられるリードD/Aコンバータ45と、デジタル信号でバイアス電流指令値を与えられるバイアスD/Aコンバータ46を有している。
更に、半導体レーザ駆動回路29は、図2に示すように、ピークD/Aコンバータ43からアナログ値のピーク電流指令値を受け後段にピーク電流を供給するピーク電流源47と、イレーズD/Aコンバータ44からアナログ値のイレーズ電流指令値を受け後段にイレーズ電流を供給するイレーズ電流源48と、リードD/Aコンバータ45からアナログ値のリード電流指令値を受け後段にリード電流を供給するリード電流源49と、バイアスピークD/Aコンバータ46からアナログ値のバイアス電流指令値を受け後段にバイアス電流を供給するバイアス電流源50と、各電流源から各電流を供給されタイミング信号に応じて一つを選択し後段の半導体レーザ光源20に供給するセレクタ51を有している。
なお、これら各部の構成は、データを送受信するための内部バスBにそれぞれが接続されている。
(キャリブレーション処理)
次に、本発明の一実施形態である光ディスクのレーザ光の緩和振動を用いた記録処理のために行なわれるキャリブレーション処理について、図面を用いて詳細に説明する。図3は、同じく光ディスク装置のキャリブレーション処理の一例を示すフローチャートである。
次に、本発明の一実施形態である光ディスクのレーザ光の緩和振動を用いた記録処理のために行なわれるキャリブレーション処理について、図面を用いて詳細に説明する。図3は、同じく光ディスク装置のキャリブレーション処理の一例を示すフローチャートである。
後述するレーザ光の緩和振動による記録処理を行なうためには、少なくともライトストラテジを決定しなければならない。制御部31の緩和振動によるキャリブレーション部32は、半導体レーザ駆動回路29に制御信号を供給することで、以下のようにキャリブレーションを実行する。
制御部31の緩和振動によるキャリブレーション部32は、図3のフローチャートに示すように、初めに、光ディスクDまたはサーボドライバ30に用意された初期設定条件を読み込む(ステップS11)。次に、緩和振動によるキャリブレーション部32は、読み込んだ初期設定値に基づいて、例えば5種類等のピーク電流値、駆動パルス幅の中から一つのピーク電流、駆動パルス幅を仮決定する(ステップS12)。
次に、緩和振動によるキャリブレーション部32は、記録再生に用いる光ピックアップヘッドの空間周波数伝達特性に対して、十分に変調度が得られる長いマークを含む信号を記録信号として用い、変調度が十分に得られるようにピーク電流のキャリブレーションを行う(ステップS13)。ここで、十分に変調度が得られる長いマークとは、11Tであるが、これは、一例として6T乃至13Tの中のどれかであれば可能である。
そして、この値で発光した緩和振動をもったレーザ光により光ディスクD上に試し書きされた領域について、この試し書きした領域に今度はリード用のレーザ光を照射しこの反射光を検出し(ステップS14)、検出結果に基づいてライトストラテジを決定する。たとえば設定するピーク電流を徐々に上げていき、反射光の検出信号の振幅が最大となるかどうかを判断し(ステップS15)、振幅が最大であるとなった際のピーク電流値について、ライトストラテジのピーク電流値として決定し、ライトストラテジ部41等の記憶領域に記憶する(ステップS16)。
次に、緩和振動によるキャリブレーション部32は、最短長マークと十分に長いマークを混在した記録信号、例えば6T乃至13Tの中のどれか、例えば11Tのマーク、スペース及び、最短マーク長である2Tのマーク、スペースの混在信号等を用いて、パルス幅のキャリブレーションを行なう。すなわち、仮決定されたパルス幅について、この値で発光した緩和振動をもったレーザ光により光ディスクD上に試し書きを行なう(ステップS17)。次に、緩和振動によるキャリブレーション部32は、ステップS12で緩和振動をもったレーザ光により光ディスクD上に試し書きされた領域について、この試し書きした領域に今度はリード用のレーザ光を照射しこの反射光を検出する(ステップS18)。
そして、緩和振動によるキャリブレーション部32は、その再生信号のアシンメトリを計算し、およそゼロになるようにパルス幅を調整する(ステップS19)。そして、この時点でのパルス幅をストラテジとして決定し、ライトストラテジ部41等の記憶領域に記憶する(ステップS20)。
上記アシンメトリは、再生RF信号を高域フィルタを通過させることによりACカップルした状態で0Vを基準に正側(上側)の振幅レベルをピークレベル検出回路で検出した信号をA1(通常は正の値)とし、0Vを基準に負側(下側)の振幅レベルをボトムレベル検出回路で検出した信号をA2(通常は負の値)として、以下のように表される値を用いるとよい。
アシンメトリ値=(A1+A2)/(A1−A2)
また、ここで、パルス幅の決定方法として、未記録領域の再生信号レベルから11Tの連続パターンを記録パターンとして用いた場合の検出信号の振幅中心までの信号レベルが、未記録領域の再生信号レベルから最短長マーク(2T)の連続パターンを記録パターンとして用いた場合の検出信号の振幅中までの信号レベルの略2倍となるような関係を実現するパルス幅を探し、このパルス幅をストラテジとして決定し、ライトストラテジ部41等の記憶領域に記憶することでも、同等の効果を得ることができる。
また、ここで、パルス幅の決定方法として、未記録領域の再生信号レベルから11Tの連続パターンを記録パターンとして用いた場合の検出信号の振幅中心までの信号レベルが、未記録領域の再生信号レベルから最短長マーク(2T)の連続パターンを記録パターンとして用いた場合の検出信号の振幅中までの信号レベルの略2倍となるような関係を実現するパルス幅を探し、このパルス幅をストラテジとして決定し、ライトストラテジ部41等の記憶領域に記憶することでも、同等の効果を得ることができる。
このように、緩和振動の記録処理に用いられるストラテジは、従来の記録処理のように記録マーク長さ毎のパルスエッジタイミング、及び前後のマーク長/スペース長と記録マーク長毎に適応されるエッジタイミング補償値で定義されるのではなく、最短パルス幅のみで定義されることが特徴的である。
このようにして求めライトストラテジ部41に記憶されたライトストラテジは、制御部31の制御下において、データの記録処理の際に読み出される。光レーザの緩和振動を用いた記録処理は、読み出されたライトストラテジに基づいて、ピーク電流値及びイレーズ電流値等が決定され、光ディスクへの記録処理が行なわれる(ステップS21)。
・緩和振動による記録処理の概要
ここで、緩和振動による記録処理の概要を図4及び図5を用いて説明する。ここで、図4は、同じく光ディスク装置の2Tマーク及び3Tマークを形成する場合の各信号の一形態を示すタイミングチャート、図5は、同じく光ディスク装置の4Tマークを形成する場合の一形態を示すタイミングチャートである。
ここで、緩和振動による記録処理の概要を図4及び図5を用いて説明する。ここで、図4は、同じく光ディスク装置の2Tマーク及び3Tマークを形成する場合の各信号の一形態を示すタイミングチャート、図5は、同じく光ディスク装置の4Tマークを形成する場合の一形態を示すタイミングチャートである。
2Tマークを形成する場合、図4に示すように、一例として、(B)2Tマークを形成するために、半導体レーザ駆動回路29から一つのパルスを半導体レーザ光源20に供給する。ここでパルス幅WT、ピーク電流IP、バイアス電流IB、イレーズ電流IEが示されている。また、(B)3Tマークを形成するために、半導体レーザ駆動回路29から二つのパルスを半導体レーザ光源20に供給する。半導体レーザ光源20から照射されるレーザ光は、(D)パルス状に非常に急峻なパワーを示しており、数回の振動波形、すなわち緩和振動が見られるものである。
また、図5において、(G)半導体レーザ駆動回路29から従来の駆動電流を供給して、ほぼ4Tマーク長に対応するレーザ光を発光させ、(F)光ディスクの記憶層に4Tマークを形成する場合と、本発明の一実施形態である(H)急峻なパルス状の駆動電流を供給して、緩和振動を伴う急峻なパルス状のレーザ光を発光させ、(F)光ディスクの記憶層に4Tマークを形成する場合を対比させている。
ここで特筆すべきことは、本発明の一実施形態に係る緩和振動方式は、消費電力について従来方法と比べると、略5分の1という非常に少ないエネルギーによって同等の記録処理が可能となることである。すなわち、一例として、
従来方法では、4Tマークを記録するのにピークパワー10mw、電流値80mA、マルチパルス幅の合計30nsにより、約300pJ(ピコジュール)のエネルギーが必要となるのに比べて、
緩和振動方式では、ピークパワー40mw、電流値150mA、信号時間幅1.5nsの緩和振動を伴ったパルスが20pJ、4Tマークを記録するのに3発のパルスを用いると、必要エネルギーは約60pJ(ピコジュール)と、略5分の1の非常に少ないエネルギーによって同等の4Tマークの記録が可能となる。
従来方法では、4Tマークを記録するのにピークパワー10mw、電流値80mA、マルチパルス幅の合計30nsにより、約300pJ(ピコジュール)のエネルギーが必要となるのに比べて、
緩和振動方式では、ピークパワー40mw、電流値150mA、信号時間幅1.5nsの緩和振動を伴ったパルスが20pJ、4Tマークを記録するのに3発のパルスを用いると、必要エネルギーは約60pJ(ピコジュール)と、略5分の1の非常に少ないエネルギーによって同等の4Tマークの記録が可能となる。
<緩和振動による記録処理の詳細>
次に、上述した光ディスク装置における緩和振動による記録処理の具体的な特徴を図面を用いて詳細に説明する。
次に、上述した光ディスク装置における緩和振動による記録処理の具体的な特徴を図面を用いて詳細に説明する。
(光ディスクD)
初めに、光ディスク装置にて使用される光ディスクDの一例について説明する。図6に本実施形態に係る光ディスク装置にて使用する光ディスクDの断面図の例を示す。ポリカーボネートから成る基板1上に誘電体から成る保護層2を介して例えば相変化記録膜である記録層3が形成される。その上には更に誘電体から成る保護層2が形成され、更にその上に導電性の反射層4が形成される。更に、この上には接着層5を挟んで、ポリカーボネートからなる別の基板1が形成されている。
初めに、光ディスク装置にて使用される光ディスクDの一例について説明する。図6に本実施形態に係る光ディスク装置にて使用する光ディスクDの断面図の例を示す。ポリカーボネートから成る基板1上に誘電体から成る保護層2を介して例えば相変化記録膜である記録層3が形成される。その上には更に誘電体から成る保護層2が形成され、更にその上に導電性の反射層4が形成される。更に、この上には接着層5を挟んで、ポリカーボネートからなる別の基板1が形成されている。
全体の構造から言うと、光ディスクDは、少なくとも一方の基板上に記録膜を含む情報記録層が形成されたディスクを2枚反対向きに貼り合わせたものである。1つの基板の厚さは例えば約0.6mmで、光ディスクD全体の厚さは約1.2mmである。
なお、この実施形態では、情報記録層が4層から成る光ディスクの例を示したが、記録層3の上下に界面層を設けるなど、5層以上からなる情報記録層を持つ光ディスクにも本発明は適用可能である。また、この実施形態では情報記録層が1層の場合を示したが、本発明は2層以上の情報記録層を持つ光ディスクにも適用可能である。更に、本実施形態では、円盤状の光ディスクを記録媒体として用いているが、たとえばカード状の記録媒体でも、本発明は適用可能である。
(半導体レーザ光源の一部である半導体チップ部)
次に、光ディスク装置にて使用される半導体レーザ光源の一部である半導体チップ部について図面を用いて詳細に説明する。図7は本実施形態に係る光ディスク装置における光源に用いる半導体レーザ光源20の例である。
次に、光ディスク装置にて使用される半導体レーザ光源の一部である半導体チップ部について図面を用いて詳細に説明する。図7は本実施形態に係る光ディスク装置における光源に用いる半導体レーザ光源20の例である。
図7に図示されているのは、半導体レーザの発光体となる半導体チップ部10のみであり、通常はこの半導体チップ部10がヒートシンクとなる金属ブロックに固定され、更に基材およびガラス窓付キャップ等により構成される。
ここでは、レーザ発光に直接関係する半導体チップ部10のみを用いて説明する。半導体チップ部10は、一例として厚さ(図の面内上下方向)が0.15mm、長さ(図中L)が0.5mm、横幅(図中奥行き方向)が0.2mm程度の微小ブロックである。レーザチップは、上端電極11および下端電極12をもっており、上端電極11が−(マイナス)電極、下端電極12が+(プラス)電極である。
レーザ光を発光するのは中央の活性層13であり、これを挟んで上下に上側クラッド層14および下側クラッド層15が形成されている。上側クラッド層14は電子が多数存在するn型クラッド層、下側クラッド層15は正孔が多数存在するp型クラッド層である。
下端電極12と上端電極11間に下端電極12から上端電極11に対して順方向に電圧を印可する、すなわち、下端電極12から上端電極11に向かって電流を流すと、活性層13内で励起した多数の正孔と電子が再結合し、その際に失うエネルギーに相当する光を放出することになる。上側クラッド層14および下側クラッド層15の屈折率は活性層13の屈折率に対して低くなるよう材料選択されており(一例として5%低下)、活性層13にて発生した光は上下のクラッド層14、15との境界を反射しながら活性層13内を図中左右に進行する光波となる。
図中左右の端面は鏡面Mとなっており、活性層13はそれ自体で光共振器を形成するものとなる。活性層13内を左右に進行し、かつ左右両端の鏡面にて反射した光波は活性層13内で増幅され、最終的にレーザ光として図の右端(および左端)から放出される。この際、半導体レーザ光源20の共振器長とは図中の左右方向の長さLである。
半導体レーザ光源20は半導体レーザ(LD: Laser Diode)駆動回路29により生成される駆動電流によって、出射波形が制御される。半導体レーザ駆動回路29の駆動電流により、光ディスクDの記録に用いる記録パルスを生成する様子を図8A乃至図8Dを用いて説明する。
(緩和振動による記録処理)
次に、本発明の一実施形態であるレーザ光の緩和振動による記録処理について、図面を用いて詳細に説明する。図8A、および図8Bが通常の半導体レーザ駆動電流と半導体レーザ出射波形を表し、図8C、および図8Dが緩和振動パルスを生成する際の半導体レーザ駆動電流と半導体レーザ出射波形を表す。
次に、本発明の一実施形態であるレーザ光の緩和振動による記録処理について、図面を用いて詳細に説明する。図8A、および図8Bが通常の半導体レーザ駆動電流と半導体レーザ出射波形を表し、図8C、および図8Dが緩和振動パルスを生成する際の半導体レーザ駆動電流と半導体レーザ出射波形を表す。
駆動電流は、図8A、および図8Cに示すバイアス電流Ibiとピーク電流Ipeの2レベルに制御されている。なお、バイアス電流が更に2つのレベル、あるいは、3つのレベルに細分化されて制御される場合もあるがここでは、説明の簡易化のため、バイアス電流Ibiとピーク電流Ipeがそれぞれ1レベルずつの場合を用いて説明する。
通常の記録パルス生成の場合、半導体レーザ駆動回路29は、図8Aに示すように、半導体レーザ光源20がレーザ発振を開始する閾値電流Ithよりもやや高いレベルに設定されたバイアス電流Ibiをまず生成し、半導体レーザ光源20を駆動する。その後、時刻Aにて、所望のピークパワーを得るためのピーク電流Ipeが印可され、一定時間、ピーク電流Ipeが印可されたのち、時刻Bにて再度、バイアス電流Ibiへと引き下げられる。このときの、半導体レーザ光源20の出射光強度の時間変化を図8Bに示す。
図8Bに示すように、バイアス電流Ibiにより駆動されている時刻Aまでは出射光強度は光ディスクDへデータ記録が不可能な極く低いパワーであるが、ピーク電流Ipeが印可されるとともに、記録パワーまで強度が引き上げられ、時刻Bにて駆動電流がバイアス電流Ibiレベルまで引き下げられるまでこのレベルを維持する。時刻B以降は出射光強度は再び低パワーとなる。こうして時刻AからBまでの期間に記録パルスが出射されるように半導体レーザ光源20は制御されることとなる。
より詳細に出射光強度を観測すると、時刻Aにおいて強度が記録パワーまで引き上げられた際に、定常の記録パワーに安定するまでに、強度が瞬間的に上昇して低下する様子が伺える(図中の破線円部分)。これが、半導体レーザ光源20の緩和振動によるものであり、通常の記録パルス生成においては、この緩和振動がなるべく小さくなるように制御を行なう。
緩和振動とは、このように半導体レーザにおいて、駆動電流があるレベルから、閾値電流を大きく超える一定のレベルまで急激に上昇した際に生ずる、過渡的な振動現象である。緩和振動は、振動を繰り返す毎に小さくなり、やがて振動は収まる。
本実施形態に係る光ディスク装置においては、この緩和振動を積極的に記録に利用するものである。緩和振動を記録パルスとして用いる場合には、図8Cに示すように、半導体レーザ駆動回路29は半導体レーザ光源20の閾値電流Ithより低いレベルに設定されたバイアス電流Ibiをまず生成し、半導体レーザ光源20を駆動する。
その後、時刻Aにて、通常の記録パルス生成よりも、早い立ち上がり時間で、急激に駆動電流をピーク電流レベルIpeまで引き上げ、通常の記録パルス生成よりも短い時間ののち、時刻Cにて再度、バイアス電流Ibiへと引き下げられる。このときの、半導体レーザ光源20の出射光強度の時間変化を図8Dに示す。
図8Dに示すように、閾値電流Ithより低いバイアス電流Ibiにより駆動されている時刻Aまでは、半導体レーザ光源20はレーザ発振を開始しておらず、無視レベル程度の発光ダイオードとしての光出射がある程度である。その後、時刻Aにて急激な電流印可に伴い、緩和振動が開始され、出射光強度は急激に上昇する。その後、印可電流が再度閾値電流以下に戻される時刻Cまでの間、緩和振動による光出射が持続する。この例の場合、緩和振動の2周期目のパルスが生成されたタイミングで時刻Cに到達し、記録パルス生成が終了している。
このように、緩和振動によるパルスは、通常の記録パルスに比べて、非常に短い時間で出射光強度が上昇し、半導体レーザの構造によって決まる一定の周期で出射光強度が低下するという特徴を持っている。従って、緩和振動によるパルスを記録パルスに用いることにより、通常の記録パルスでは得られない、短い立ち上がり・立下り時間を持ち、かつ強いピーク強度を持った短パルスを得ることが可能となるのである。
一般的に知られた関係として、共振器長Lと緩和振動周期Tには以下の関係がある。
T = k・{2 nL /c} …(1)
ここで、kは定数、nは半導体レーザの活性層の屈折率、cは光速(3.0×108 (m/s))である。従って、共振器長Lと緩和振動周期T、ひいては、緩和振動パルス幅は、比例関係にあることが分かる。
ここで、kは定数、nは半導体レーザの活性層の屈折率、cは光速(3.0×108 (m/s))である。従って、共振器長Lと緩和振動周期T、ひいては、緩和振動パルス幅は、比例関係にあることが分かる。
このことから、緩和振動パルス幅を長くしたい場合は、共振器長Lを長く、緩和振動パルス幅を短くしたい場合には、共振器長Lを短くすればよいことになる。すなわち、緩和振動パルス幅は共振器長Lによって制御可能であると言える。
図9は、共振器長Lが650μmの半導体レーザによる緩和振動波形の計測結果である。緩和振動パルス幅は半値全幅でおよそ81psであることが分かる。上述の式(1)から、共振器長Lと緩和振動パルス幅は比例関係にあることが判っていることから、半導体レーザの共振器長Lと得られる緩和振動パルス幅(FWHM)Wrの変換式として以下の関係が得られる。
Wr (ps) = L (μm) / 8.0 (μm/ps)…(2)
次に、本実施形態に係る光ディスク装置における光記録媒体へのデータの記録について述べる。光ディスクDは例えば、DVD−RAM、DVD−RW、HD DVD−RW、HD DVD−RAMといった書換え形ディスクであり、記録層に相変化材料を用いている。相変化形光ディスクでは、データビットの記録と消去とは記録層に集光されるパルス状のレーザ光の強度を制御することによって行なわれる。
次に、本実施形態に係る光ディスク装置における光記録媒体へのデータの記録について述べる。光ディスクDは例えば、DVD−RAM、DVD−RW、HD DVD−RW、HD DVD−RAMといった書換え形ディスクであり、記録層に相変化材料を用いている。相変化形光ディスクでは、データビットの記録と消去とは記録層に集光されるパルス状のレーザ光の強度を制御することによって行なわれる。
(アモルファスマークの形成からみた緩和振動による記録処理)
次に、アモルファスマークの形成からみた緩和振動による記録処理を図面を用いて詳細に説明する。図10Aは、従来の記録パルスにより形成されたアモルファスマークについて説明するための図である。図10Bは、短パルスにより形成されたアモルファスマークについて説明するための図である。
次に、アモルファスマークの形成からみた緩和振動による記録処理を図面を用いて詳細に説明する。図10Aは、従来の記録パルスにより形成されたアモルファスマークについて説明するための図である。図10Bは、短パルスにより形成されたアモルファスマークについて説明するための図である。
記録は、記録層の結晶状態に初期化された領域にアモルファスのマークを形成することを意味する。アモルファスマークは、相変化材料が溶融し、直後に急冷されることにより形成される。このためには、比較的短くて高いパワーのパルス状レーザ光を相変化記録層に集光し、局所的な温度を相変化材料の融点Tmを超える温度にまで上昇させて、局所的な溶融を生じさせる必要がある。その後、記録パルスが途切れると溶融した局所領域は急激に冷やされ、溶融−急冷過程を経た固体のアモルファスマークが形成される。
一方、記録されたデータビットの消去は、アモルファスマークを再結晶化することにより行なわれる。結晶化は、今度は局所的なアニーリングにより実現される。記録層にレーザ光を集光し、記録パワーよりやや低いレベルに制御することで、相変化記録層の局所的な温度を結晶化温度Tg以上にまで上昇させるとともに、融点Tmよりは低い温度に保つ。
このとき、一定の時間に渡り、局所的な温度を結晶化温度Tgと融点Tmとの間に保つことで、アモルファスマークを結晶状態に相変化させることが出来る。こうして記録マークの消去が可能となるのである。
なお、このとき結晶化するのに要求される、結晶化温度Tgと融点Tmとの間に保つべき時間を結晶化時間と呼ぶ。記録されたデータビットの再生には、記録層を相変化させない程度に低いパワー、すなわち再生パワーのDCレーザ光を情報記録層に照射する。
本実施形態に係る光ディスク装置では、データビットの記録に用いる記録パルスを緩和振動パルスのような短パルスとすることを特徴としている。従来の記録パルスによって形成されたアモルファスマークは上述のように相変化材料の溶融−急冷過程を経て形成される際、図10Aに示すようにアモルファスマークの周縁部に再結晶化の環状領域(再結晶化リング)を生ずる。
これは、アモルファスマークの周縁部で一旦溶融された領域が冷却過程で結晶化温度Tgと融点Tmとの間の温度領域を結晶化時間以上経ることで、再結晶化されたものである。これは、アモルファスマークのサイズを結果的に小さくする効果(セルフシャープニング効果)があるものの、マーク周縁部での再生信号のジッタ(ゆらぎ)や、トラック上の前後のマーク同士の熱的干渉や、隣接トラックに形成されたマークの部分的消去(クロスイレーズ)を引き起こす場合がある。
一方、本実施形態に係る光ディスク装置の緩和振動パルスのような短パルスにより形成されたアモルファスマークは図10Bのように、アモルファスマークの周縁部に再結晶化リングを生じない。これは、短パルスにより短時間に高いパワーのレーザ光を照射することで、レーザ光照射直後に相変化層を溶融させ、溶融領域が熱伝導により周縁部に有意に広がる前に照射を終了させることにより、レーザ光照射直後の溶融部のみをアモルファスマーク化することによるものである。
このように、短パルスによる再結晶化リングを生じないアモルファスマークでは、マーク周縁部のジッタが低減することや、トラック上の前後のマーク同士の熱的干渉によるマーク変形やエッジシフトや、隣接トラックに形成されたマークのクロスイレーズが生じないといった利点がある。
勿論、短パルスによる記録には上記のような記録マークの質的向上といった利点があると共に、短時間にマークを記録出来ることから、高転送レート記録に適しているという利点があることは言うまでもない。
光ディスクにおいて、大容量化と共に、高転送レートに対する要求は強く、HD DVD−RやHD DVD−RWでも、標準の1倍速(線速度 6.61m/s)に対して、2倍速の規格が既に発行されている。今後も、4倍速や8倍速といった高倍速化が期待されている状況である。
高転送レートを達成するためには、記録マークを高速に、すなわち短時間に記録する必要がある。相変化形ディスクでは、これはとりもなおさずアモルファスマークを短パルスにより記録することを意味する。例えば、HD DVDでは、8倍速になるとチャネルクロックレートは、518.4Mbpsとなり、1チャネルビットに相当する時間は1.929nsとなる。
本実施形態に係る光ディスク装置で言う短パルス記録に要求されるパルス幅は、アモルファスマーク形成時に再結晶化リングを生じないようなパルス幅である。アモルファスマーク形成時に再結晶化リングとなる領域は、上述のようにアモルファスマーク周縁部で一旦溶融された、すなわち、相変化材料の融点を超えた、領域である。このとき、融点をわずかに超えた領域のみが、再結晶化される。
なぜなら、融点を大きく超えた温度まで昇温された領域は、温度低下の勾配が大きく、比較的急峻に冷却されるため、アモルファス化されるからである。これは、温度勾配δT/δx と、熱流量密度 q(W/m2)との良く知られた関係(フーリエの熱伝導則)q=K・δT/δx から分かるように、温度勾配が大きいほど、温度が高い領域から低い領域への熱流量が大きくなるからである。ここでK(W/m・K)は熱伝導率、xは温度差を持った界面での熱伝導の方向(界面の法線ベクトル方向)の距離である。
短パルス記録の場合、レーザ光照射直後に光スポット中央部が融点を超えるように、高いパワーのレーザ光を照射する。図11A及び図11Bは、記録トラック上の温度分布を説明する図であり、図11A及び図11Bの各々の上段が記録パルス照射直後のトラック上の融点超過領域、中段が記録パルス終了時の融点超過領域、下段が中段のA−A’断面での温度分布を表している。
図11Aが短パルス記録の場合、図11Bが従来の記録パルスによる記録の場合を表している。なお、本来は、記録ビームスポット(図11Aで破線で表した領域)は、パルス照射中に図の上下方向に移動するが、この例では説明の簡易化のため、移動しないものとした。
いずれの記録パルスの場合も、パルス照射直後からパルスが終了するまでの間に、光スポット中央の融点を超えた領域は、伝熱により拡大する。しかし、短パルスの場合は、パルス照射時間が短いため、ほとんど拡大しない。
短パルス記録の場合、パルス終了時の光スポット中央を含む断面における温度分布は、光ビーム照射直後とほぼ同一のガウス分布形状となっており、融点以上と融点以下の境界前後では急峻な温度勾配となっている。このため、再結晶化する領域、すなわち融点をわずかに超える範囲の領域(図中、融点Tmと温度Tm2との間の温度を持つ領域)は、平面方向にはほとんど広がりを持っていない。従って、伝熱による光スポット中央の融点以上の領域の拡大が無視できる程度の時間でレーザパワーが0となれば、再結晶化リングはごく狭い領域に限られることとなる。
一方、従来の記録パルスによるマーク形成の場合、比較的低いパワーを長時間照射するため、光スポット中央の融点を超える領域は徐々に拡大していく(図11B上段から中段)。この際、光スポット中央を含む断面における温度分布はもはやガウス分布ではなく、よりなだらかな温度勾配を有する形状となる(図11B下段)。
このため、再結晶化する領域は、平面方向に比較的大きな広がりを持つこととなる。図11B中段の破線は再結晶化限界を示しており、この破線の内部がアモルファスマークとなる領域である。このように、従来の記録パルスでは、マーク形成時に大きな再結晶化リングを伴うこととなる。
この再結晶化リングの平面方向の幅は、パルス照射時間における融点領域の平面方向の拡散距離とほぼ同様になると考えられる。一般的な相変化材料として、熱伝導率K=0.005 J/cm/s/℃、 比熱 C=1.5 J/cm3/℃、とすると、パルス照射時間内における熱拡散距離を推定することが出来る。時間tの間に、熱は距離L = (Kt/C)1/2だけ拡散すると考えられることから、再結晶化リングの領域が、HD DVD−RWの最短マーク長0.204μmの10%以下の範囲に限られる、すなわち、一方向で、10.2nm以下の範囲に限られるためには、パルス照射時間は0.44nsとなる。これが、短パルス記録に要求されるパルス幅と言える。
既に述べたように、半導体レーザの共振器長Lと得られる緩和振動パルス幅Wrの関係として式(2)が得られていることから、短パルス記録には、440ps以下のパルス幅を用いること、すなわち、共振器長3520μm以下の半導体レーザを用いる必要があることが分かった。
一方、再結晶化リングを縮小する観点から言えば、パルス照射時間は短いほど良いことになるが、現実には相変化材料を融点以上に昇温するためのエネルギーを与えるのが困難になる。すなわち極めて高いパワーを短時間に照射する必要が生じる。従って、現実的にはパルス照射時間は50ps程度以上は必要と考えてよい。これは、式(2)の関係を用いると、共振器長400μm以上の半導体レーザが必要となることに相当する。
式(2)から分かるように、緩和振動パルスを光ディスクDへの情報記録に用いるとき、光ディスク装置に用いる半導体レーザ光源20の共振器長が決まると、緩和振動パルス幅が一意に決まることになる。上述したように、パルス幅が短い場合には、高いパワーを照射することで相変化材料を融点以上に昇温することになるが、半導体レーザ光源20の最高パワーで照射しても融点以上に達しない場合もある。このような場合には、緩和振動パルスを複数回照射することが有用である。
・3回発生した緩和振動パルス
図12は、図13に示すように緩和振動パルスが3回発生するように、半導体レーザ光源20の駆動パルスを制御した場合の、光パルス波形である。緩和振動パルスを3回発生させることでパルスによる照射エネルギー(図中のパルスによる時間積分値)が増加することで、相変化材料を融点以上に上昇させることが可能となる。しかし、図からわかるように、1回目の緩和振動パルスに比べて、2回目、3回目のパルス強度が徐々に低下する。このため、これ以上の複数回のパルスの照射は、余り有効でない。
図12は、図13に示すように緩和振動パルスが3回発生するように、半導体レーザ光源20の駆動パルスを制御した場合の、光パルス波形である。緩和振動パルスを3回発生させることでパルスによる照射エネルギー(図中のパルスによる時間積分値)が増加することで、相変化材料を融点以上に上昇させることが可能となる。しかし、図からわかるように、1回目の緩和振動パルスに比べて、2回目、3回目のパルス強度が徐々に低下する。このため、これ以上の複数回のパルスの照射は、余り有効でない。
このように、半導体レーザ光源20の緩和振動パルスを用いて光記録媒体にデータを記録する光ディスク装置では、レーザの共振器長に応じて、緩和振動パルスのパルス数を加減することが必要となる。また、半導体レーザの定格出力が低いレーザを用いる場合にも、複数回の緩和振動パルスを用いることは有用である。
<駆動電流値の調整による記録パルス長の安定化>
次に、他の実施形態として、駆動電流値の調整による記録パルス長の安定化、すなわち、緩和振動を伴って発生するサブナノクラスのレーザ光のパルス幅、つまり記録パルス長が安定化されることを図面を用いて説明する。これにより、記録密度を向上することができる。
次に、他の実施形態として、駆動電流値の調整による記録パルス長の安定化、すなわち、緩和振動を伴って発生するサブナノクラスのレーザ光のパルス幅、つまり記録パルス長が安定化されることを図面を用いて説明する。これにより、記録密度を向上することができる。
図13において、光ディスクDの記録膜上のレーザ光の集光点が記録マークを形成しない場所にある領域(K)の区間では、半導体レーザ光源20から出射されるレーザ光のパワーは、光ディスク上の位置情報を読み出すためと、サーボをかけておくために光ディスクDから情報を再生する際に用いられる再生用のパワーに制御されている。すなわち、レーザ発振可能な駆動電流の閾値であるIthよりも大きなI2の大きさの駆動電流が半導体レーザ光源20に供給される。
また、区間(M)においては、I2よりも更に大きなI3のレーザ駆動電流が半導体レーザ光源20に供給され、最大値がP1に達する緩和振動パルスレーザ光が出力される。
なお、緩和振動パルス光が出力される領域(M)の直前の時間T1の間、すなわち領域(L)の間、閾値Ithよりも小さいI1の大きさのレーザ駆動電流が、半導体レーザ光源20に供給される。
また、緩和振動終了後すなわち領域(N)におけるレーザ駆動電流の大きさは、再び、閾値Ithよりも大きな前述のI2としている。
すなわち、緩和振動により得られる急峻なパルスレーザを用いて光ディスクDに情報を記録する本発明においては、光ディスクDに記録されている情報を再生するために必要なレーザパワー(再生パワー)に比較して、記録時に照射するレーザ光の時間平均パワーが小さく、光ディスクDから情報を再生した直後に記録を始めた場合には、レーザから出射される平均レーザパワーを変動させる。
平均レーザパワーが変動することにより半導体レーザ光源20の温度が変化して半導体レーザ光源20の閾値電流も変動することになる。
この閾値の変動は、同じ電流を半導体レーザ光源20に駆動している場合においても温度変化の前後で、レーザ強度を変化させる。よって、このような閾値の変化は、光ディスクDの記録膜に良好なマークを記録するためには、生じないことが望ましい。
このような問題を避けるために、再生時と記録時のレーザの平均パワーを略等しくすることが望ましい。なお、記録時と再生時のレーザの平均パワーは、例えば再生時に用いる第1の平均パワー(K)と、記録時に用いる第2の平均パワー(L)について、
0.8 < A/B < 1.2
の範囲内において、概ね温度変化の影響を無視できる程度であることが確認されている。
0.8 < A/B < 1.2
の範囲内において、概ね温度変化の影響を無視できる程度であることが確認されている。
図14は、半導体レーザ光源20に供給される駆動時間の電流値をI1に設定する時間T1と緩和振動のピークパワーP1との関係を示している。半導体レーザ光源20は波長405nm、共振器長800μmレーザ発振閾値35mAで、駆動電流を20mAから立ち上がり時間150psで急激に駆動電流を120mAまで流している。
既に説明した通り、緩和振動は、半導体レーザ(発振系)において、駆動電流があるレベルから閾値電流を大きく超える一定のレベルまで急激に上昇した際に生ずる、過渡的な振動現象であるから、記録パルスとして利用するためには、パルス幅(記録パルス長)が安定であることが必須である。なお、時間T1が小さい場合には、緩和振動によって生じるレーザのピークパワーP1が小さく、T1が長くなるにつれて、定常発振パワーの2.2倍程度までは、P1も大きくなることが確認されている。また、P1は、その後収束するが、本実施例では、緩和振動が収束した後のレーザ強度を、0.45×P1としている。
緩和振動の先頭のピークパワーP1が大きい場合には、定常パワー発振での記録に比べて、トータルの記録エネルギーが小さくなることが分かっている。これは熱記録(レーザ光として供給される熱エネルギー量)によって記録マークが記録される光ディスクにおいては、通常の低パワーで長時間レーザを照射してマークを記録する場合に比較して熱拡散時間が1ns程度であるために、これより長い時間で記録する通常の記録波形では、レーザを照射している間も熱が拡散してしまうのに対して、緩和振動では、1ns以下の短い時間に大きなパワーを照射するために、レーザを照射している時間は熱の拡散が小さい。そのために、通常の1nsを超える記録方法に比べて、パワーを時間積分した記録エネルギーは緩和振動を使った記録方法のほうが、小さくなる。上記のような、先頭の緩和振動のピークパワーP1が通常の定常レーザ強度の2.2倍になる場合には、記録エネルギーが通常の定常発振レーザの40%程度に低下する。これによって、ピックアップヘッドの消費エネルギーも小さくなり、ピックアップヘッドの温度上昇が抑えられる。ピックアップヘッドの対物レンズやミラーなどの光学素子は温度上昇によって、熱膨張を起こし、変形するために、対物レンズで集光されるスポット径が大きくなり、記録されるマークの大きさが大きくなる。しかしながら緩和振動を使って記録を行えば、温度上昇が抑えられるために、このような問題を小さくすることができる。
特に、このような通常の定常なレーザの照射に比べて、記録エネルギーが小さくなる効果は、P1が定常レーザの2倍以上ある場合にこのような効果が顕著に見られるために、緩和振動を使ってマークを記録する場合には、P1が飽和する値の90%の値になる、T1の期間が1ns以上であることが望ましいことがわかる。
更に、T1が3ns以上であればほぼ飽和パワーと等しくなり、これ以上ではT1の期間のレーザ出力に対する影響がほぼ無いことが確認されている。従って、T1は、3ns以上であれば更に望ましい。
反面、半導体レーザ駆動回路29から半導体レーザ光源20に入射される電流の立ち上がり時間Trと立ち下がり時間Tf(それぞれ、半導体レーザ光源20に流れる最大電流の10%から90%まで変動するのに要する時間とする)は、半導体レーザ光源20,半導体レーザ駆動回路29及び、半導体レーザ駆動回路29から半導体レーザ光源20までの図示しない配線の電気容量、誘導係数を全て考慮した状態で、それぞれ150psである。
なお、立ち下がり時間が遅い場合には、半導体レーザ駆動回路29に閾値以下の電流値に設定してから半導体レーザ光源20に実際に流れる電流値が閾値以下になるまでの時間が長くなる。この時間は、ほぼ立ち下がり時間Tfと等しいため、適当な大きさの緩和振動を発生させるためには、Tf+0.85ns以上の間隔のTを用意することが有益である。すなわち、Tfが150psであれば、T1は、1000ps以上であることが好ましい。
図16は、図15に示すような駆動電流を半導体レーザ光源20に加えた場合の半導体レーザ光源20からのレーザ出力の波形である。つまり、以下の様にして電流を流す。レーザ発振閾値Ith以下のI10A電流から、急激に半導体レーザ光源20に閾値以上の電流I10Bを流し、その後この電流を維持する。その場合に図16に示されるようなレーザ波形が得られる。つまり一定時間の間、4〜5回緩和振動が発生した後に定常出力のレーザ発振になる。
図16に示すように、半導体レーザ光源20の半導体チップ部10の共振器長が800μmである場合、ピークパワーP1を「1」とした場合に、0.45×P1に収束する時間は、概ね1ns(図16の範囲を、緩和振動と規定した場合であっても1.5ns)である。なお、緩和振動が収束するまでの発生する緩和振動の回数は半導体レーザ光源20の共振器長に依らない。一方、緩和振動の周期は前記のように、共振器長に比例するために、共振器長Lt(μm)に対して、緩和振動が収束するまでの時間はLt/800(ns)である。また、緩和振動を使った記録の場合には、緩和振動を伴わない定常パワーレーザ出力が長い場合には、マークの品位が低下する。これは、レーザが緩和振動している状態で、レーザを照射した時のディスクの記録層の上昇温度が、レーザが定常状態になっている状態でレーザを照射した時の上昇温度に比べて大きい。そのために、レーザが緩和振動している状態で記録したマーク幅はレーザが定常状態になっている状態で記録したマークに比べて幅が大きくなる。これによって、マークの幅が不均一になってしまい、マーク品位が低下する。よって、このような問題を防ぐために、記録パルス幅は緩和振動が定常状態に移行する時間よりも小さいことが望ましい。
従って、共振器長が800μmである場合には、記録パルス長、すなわち図13における区間(M)の長さは、1500ps(1.5ns)よりも短い長さであればよい。
以上説明したように、緩和振動を使った記録においては、緩和振動により誘発された急峻な記録レーザパルスのパルス幅が、一般的な駆動電流の供給により生じるレーザ出力に比較して、1.5ns以下と短く、ピークパワーP1が大きなレーザ光が出射される。
これにより、熱記録(レーザ光として供給される熱エネルギー量)によって記録マークが記録される光ディスクにおいては、通常の低パワーで長時間レーザを照射してマークを記録する場合に比較して、緩和振動を使った記録方法では、記録エネルギーを小さくできる。
すなわち、緩和振動により得られる記録パルスを用いることで、光ディスクDの記録膜にレーザ光が照射される時間は、緩和振動がないレーザ光を用いる場合よりも短縮されることにより、光ディスクの記録層のレーザが照射されている場所から他の場所に拡散する熱量が小さくなる。
このことは、記録パルスとして要求される平均のレーザパワーも、従来の記録方法に比べて小さくできることを示している。
なお、上述した「サブナノパルス記録」においては、光ディスク(情報記録媒体)に記録される記録マーク列の1つひとつであるマーク長に対してレーザの発光時間が10%を切る(1%−10%)ようなレーザのパルス発光が行われるため、レーザ光の記録時のパワーの平均値は、再生時のパワーを下回ることがある。
一方で、記録媒体としての光ディスクの材質により、マーク部とスペース部の反射率差が低いものがある。このため、みかけ上のコントラストを向上させるため、情報記録が行なわれた状態のとき、マーク部またはスペース部の反射率が2%程度まで下がるようにした記録媒体が開発されている。
このような記録媒体への情報記録に、サブナノパルスによる記録方法を適用した場合、記録中に光ヘッド内の光検出器に戻ってくる平均光量が極めて小さくなる。このため検出信号の信号品位が著しく劣化し、そこから誤差信号を得て対物レンズを記録層の所定位置にとどめる動作(フォーカス・トラッキングサーボ)が不可能になることがある。
そこで発明者は、記録パルス間に高周波信号を重畳することにより平均光量を上げて、サブナノパルスによる記録を行いながら、かつ、正常にフォーカストラッキングサーボを実行できるようにした情報記録再生装置として、図1に示した光ディスク装置を提案済みである。
しかし、サブナノパルスを用いて記録パルスを生成した場合において、記録パルス間に高周波信号が重畳されたとき、記録パルスのエッジの電位(又電流)レベルに連続する高周波信号の電位(又は電流)レベルとの差が大きいと、半導体レーザ光源20に、不要な(意図しない)緩和振動を発生される虞がある。不要な緩和振動があると、レーザ光にムラが生じ、記録マークの乱れ、再生信号の乱れを生じることになる。
そこで、不要な緩和振動を生じさせないように高周波信号を、記録パルス間に重畳するようにしている。
重畳期間(V2)を含むとき、記録パルス63は、マーク部61で1回もしくは複数回出力される。また、記録パルス期間(V1)以外では、高周波信号64が、マーク部61、スペース部62に関係なく出力される。これにより、レーザダイオードの平均光強度が維持される。
記録パルス期間(V1)の駆動電流により、半導体レーザ光源20は、高周波信号重畳期間(V2)の発光強度よりも記録パルス期間(V1)で強く発光する。この強発光により、光ディスクの記録層に熱変化が発生し、記録マークが形成される。高周波信号重畳期間(V2)の駆動電流は、レーザダイオードの平均光強度が光ディスクの記録層に熱または光変化を起こさせない程度の強度となるような電流値である。
この光強度は、多くの場合、光ディスクの記録層から情報を読み出すときの強度である。図に示す閾値電流のレベルは、レーザダイオードが発光を開始する或いは発光を停止する境目となるレベルである。緩和振動を得るためには、レーザダイオードは、この閾値電流レベル以下のレベルから急峻に変化する記録パルスが必須である。従って、記録のためには、光ディスクの記録層から情報を読み出すときの光強度を得る電流値から、一旦、閾値電流以下に低下させて、急峻に変化する記録パルス63を得る必要がある。記録モードにおいて、光ディスクから情報を読み出すときの光強度としては、アドレスなどを読取るときに必要である。なお、記録パルス63と高周波信号64の間には、駆動電流が、バイアス電流として一定になる期間が設けられてもよい。
上記したように、サブナノパルスを使用した記録では、レーザダイオードに緩和振動と呼ばれる状態を作り出し、高い発光強度の光を得る。そのため、記録パルス63以後駆動電流を止めた後も、発光強度が減衰しながら発光が持続する。緩和振動が収まるまで記録パルス63の後に駆動電流が一定のバイアス期間を設けることにより、安定な記録が可能となる。なお、記録パルス63は、図1に示した半導体レーザ光源20に、図示しないが、高周波信号64を出力可能に、高周波重畳回路を追加すればよいことは、容易に理解される。
上記した説明において、レーザダイオードの駆動電流と、NRZI波形の関係については、説明をわかりやすくするために、図17のように1種類を示した。しかし、チャンネルデータに応じてNRZI波形としては各種の波形が用いられる。またこのNRZI波形に応じて、記録媒体に対して効果的にマーク部、スペース部を形成するための記録パルスが生成される。
なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。例えば、上述の実施例では、相変化材料を用いた書換え形光ディスクを例に用いたが、これは例えば1回記録形(追記形)の光ディスクであっても、本発明は適用可能である。
以上記載した様々な実施形態により、当業者は本発明を実現することができるが、更にこれらの実施形態の様々な変形例を思いつくことが当業者によって容易であり、発明的な能力をもたなくとも様々な実施形態へと適用することが可能である。従って、本発明は、開示された原理と新規な特徴に矛盾しない広範な範囲に及ぶものであり、上述した実施形態に限定されるものではない。
31…制御部、32…緩和振動によるキャリブレーション部、Ibi…バイアス電流、Ipe…ピーク電流、Ith…閾値電流、L…共振器長、D…光ディスク(記録媒体)、20…半導体レーザ光源、21…コリメートレンズ、24…対物レンズ、26…光検出器、27…演算回路、29…半導体レーザ駆動回路、30…サーボドライバ。
Claims (10)
- レーザ光を光ディスクに照射する光源部と、
緩和振動をもった光パルスのレーザ光を前記光源部に照射させるべく駆動電流を前記光源部に供給する駆動部と、
前記光ディスクの記録層から反射された反射光を受光する光検出部と、
前記光検出部から出力された信号に基づいて再生信号を出力する演算部と、
前記駆動部と前記演算部を制御して、緩和振動をもった光パルスを用いて前記光ディスクの記録層に試し書きを行い、この試し書きした領域にレーザ光を照射しこの反射光を検出し検出結果に基づいてライトストラテジを決定し、決定したライトストラテジに基づいて緩和振動をもった光パルスを用いて前記光ディスクに記録処理を行なう制御部を、
具備することを特徴とする光ディスク装置。 - 前記ライトストラテジは、前記駆動電流の最適なピーク電流及びパルス幅を含むことを特徴とする請求項1記載の光ディスク装置。
- 前記ピーク電流は、6T乃至13Tの中のどれかの連続パターンで緩和振動をもった光パルスにより前記光ディスクの記録層に試し書きを行い、この試し書きした領域にレーザ光を照射しこの反射光に応じた検出信号の振幅値が最大となるべく決定されることを特徴とする請求項2記載の光ディスク装置。
- 前記パルス幅は、6T乃至13Tの中のどれかのマークスペース及び2Tマークスペースの混在パターンで緩和振動をもった光パルスにより前記光ディスクの記録層に試し書きを行い、この試し書きした領域にレーザ光を照射しこの反射光に応じた検出信号のアシンメトリがゼロとなるべく決定されることを特徴とする請求項2記載の光ディスク装置。
- 前記パルス幅は、未記録領域の再生信号レベルから11Tの連続パターンを記録パターンとして用いた場合の検出信号の振幅中心までの信号レベルが、未記録領域の再生信号レベルから最短長マーク2Tの連続パターンを記録パターンとして用いた場合の検出信号の振幅中心までの信号レベルの略2倍となるような関係を実現するパルス幅とすることを特徴とする請求項2記載の光ディスク装置。
- 前記光源部は、共振器長が3520μm以下の共振器を含んでいることを特徴とする請求項1記載の光ディスク装置。
- 前記駆動部が前記光源部に照射させる光パルスは、単一のパルスの半値全幅が440ps以下であることを特徴とする請求項1記載の光ディスク装置。
- 前記駆動部は、前記緩和振動を発生させるタイミングより以前のタイミングにおいて、前記駆動電流の値を、前記レーザ光が出力可能な駆動電流の最小の電流値(閾値)よりも小さい値に設定すると供に、
前記緩和振動を発生させるタイミングより以降のタイミングにおいて、前記駆動電流を、前記光源部からレーザ光が出力可能な駆動電流の最小の電流値(閾値)よりも大きな電流値に設定することを特徴とする請求項1記載の光ディスク装置。 - 前記駆動部は、前記緩和振動をもった光パルスのレーザ光の維持時間が1.5ns以下となるように駆動電流を前記光源部に供給することを特徴とする請求項1記載の光ディスク装置。
- レーザ光の光源部に駆動電流を供給することで、光ディスクの記録層に緩和振動をもった光パルスを照射して試し書きを行い、
レーザ光をこの試し書きした領域に照射して反射光を検出し、
この反射光の検出結果に基づいてライトストラテジを決定し、
決定したライトストラテジに基づく駆動電流をレーザ光の光源部に供給し、光ディスクの記録層に緩和振動をもった光パルスを照射して記録処理を行なうことを特徴とする光ディスク処理方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007280763A JP2009110581A (ja) | 2007-10-29 | 2007-10-29 | 光ディスク装置及び光ディスク処理方法 |
US12/256,365 US20090109816A1 (en) | 2007-10-29 | 2008-10-22 | Optical disc apparatus and optical disc processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007280763A JP2009110581A (ja) | 2007-10-29 | 2007-10-29 | 光ディスク装置及び光ディスク処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009110581A true JP2009110581A (ja) | 2009-05-21 |
Family
ID=40582659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007280763A Pending JP2009110581A (ja) | 2007-10-29 | 2007-10-29 | 光ディスク装置及び光ディスク処理方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20090109816A1 (ja) |
JP (1) | JP2009110581A (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110056257A (ko) * | 2008-10-03 | 2011-05-26 | 소니 주식회사 | 광 픽업, 광 정보 기록 방법 및 광 디스크 장치 |
JP5181989B2 (ja) * | 2008-10-03 | 2013-04-10 | ソニー株式会社 | 短パルス光源装置、レーザ駆動方法、光ピックアップ及び光ディスク装置 |
JP2013041005A (ja) * | 2011-08-11 | 2013-02-28 | Sharp Corp | 光学部品及び光学モジュール |
CN103501402B (zh) * | 2013-08-13 | 2017-10-13 | 格科微电子(上海)有限公司 | 一种用于摄像头模组的控制方法及摄像头模组 |
US9865290B1 (en) * | 2017-03-08 | 2018-01-09 | Kabushiki Kaisha Toshiba | Single surface in-drive erase |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW382703B (en) * | 1997-03-14 | 2000-02-21 | Hitachi Ltd | Signal recording method, phase difference detecting circuit, and information apparatus |
JP3496628B2 (ja) * | 2000-05-31 | 2004-02-16 | ヤマハ株式会社 | 光ディスク記録方法および光ディスク記録装置 |
US7295500B2 (en) * | 2002-09-30 | 2007-11-13 | Nec Corporation | Recording condition setting method and information recorder using same |
JP4154304B2 (ja) * | 2003-05-08 | 2008-09-24 | 株式会社日立製作所 | 記録媒体、光ディスク装置、および、記録方法 |
-
2007
- 2007-10-29 JP JP2007280763A patent/JP2009110581A/ja active Pending
-
2008
- 2008-10-22 US US12/256,365 patent/US20090109816A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20090109816A1 (en) | 2009-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7139230B2 (en) | Information recording apparatus and information recording method | |
US20090141760A1 (en) | Drive control apparatus and drive control method of semiconductor laser | |
JP2009110581A (ja) | 光ディスク装置及び光ディスク処理方法 | |
EP1347444B1 (en) | Method and apparatus for recording data on optical recording medium | |
JP4309939B2 (ja) | 半導体レーザ駆動装置,光ヘッド,および光ディスク装置 | |
JP2008034017A (ja) | 記録ストラテジ決定方法、光ディスク記録方法、光ディスク及び光ディスク装置 | |
JP2002123963A (ja) | 半導体レーザ駆動方法およびこれを用いた光ディスク装置 | |
JP2008004182A (ja) | 光ディスク記録方法及び光ディスク記録装置 | |
KR100590206B1 (ko) | 광픽업장치 및 광디스크의 정보기록 재생장치 | |
JP2009181661A (ja) | 情報記録装置及びその制御方法 | |
US20090196142A1 (en) | Information recording medium, information recording method, and information recording and reproducing apparatus | |
JP2009110602A (ja) | 光ディスク装置及び光ディスク処理方法 | |
US7742374B2 (en) | Method of recording data on optical recording media and optical recording device | |
US20060023591A1 (en) | Test-write method, information recording method, and information recording apparatus | |
US8077586B2 (en) | Optical recording head device, optical recording apparatus, and recording method | |
JP4377944B2 (ja) | 光記録ヘッド装置、光記録装置、および記録方法 | |
JP2009301653A (ja) | 光ヘッド装置およびそれを用いた情報記録再生装置 | |
JP2009289302A (ja) | 光記録パルス生成方法とその装置および情報記録再生装置 | |
JP2009245557A (ja) | 情報記録方法および情報記録装置 | |
JP4030472B2 (ja) | 光情報記録媒体及びその記録方法 | |
JP2005209309A (ja) | 情報記録装置及び情報記録方法 | |
US20090109808A1 (en) | Optical head device and information | |
JP2011014237A (ja) | 光ディスク記録方法、光ディスク記録装置及び光ディスク | |
US20090196157A1 (en) | Information recording medium | |
JP2010118148A (ja) | 光ディスク記録方法、光ディスク記録装置及び光ディスク |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090309 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090414 |