JP2009107274A - Method for manufacturing lightweight cellular concrete panel - Google Patents

Method for manufacturing lightweight cellular concrete panel Download PDF

Info

Publication number
JP2009107274A
JP2009107274A JP2007283730A JP2007283730A JP2009107274A JP 2009107274 A JP2009107274 A JP 2009107274A JP 2007283730 A JP2007283730 A JP 2007283730A JP 2007283730 A JP2007283730 A JP 2007283730A JP 2009107274 A JP2009107274 A JP 2009107274A
Authority
JP
Japan
Prior art keywords
foaming
slurry
reinforcing bar
raw material
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007283730A
Other languages
Japanese (ja)
Other versions
JP2009107274A5 (en
JP5080203B2 (en
Inventor
Tsutomu Hotta
勤 堀田
Yoshiyuki Goto
義幸 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clion Co Ltd
Original Assignee
Clion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clion Co Ltd filed Critical Clion Co Ltd
Priority to JP2007283730A priority Critical patent/JP5080203B2/en
Publication of JP2009107274A publication Critical patent/JP2009107274A/en
Publication of JP2009107274A5 publication Critical patent/JP2009107274A5/ja
Application granted granted Critical
Publication of JP5080203B2 publication Critical patent/JP5080203B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the formation of foam blow holes at the upper side of an uppermost reinforcement without hindering the growth of foams inherent in ALC. <P>SOLUTION: This method for manufacturing an ALC panel comprises steps for foaming raw material slurry 2 in a form 10 with reinforcing bars 11 restricted in the vertical and horizontal positions, swinging the form 10 in a swing period including at least a partial period in a range of ≥30 mm selected from an optimum period in which the upper face of the raw material slurry 2 rises above the uppermost reinforcement 3 of reinforcing bars 11 by 20 mm, and reaches a position lower by 10 mm than the completion height of foaming to delay the coagulation of the raw material slurry 2 by swinging. When the upper face of the raw material slurry 2 reaches a position lower by 30 mm to 2 mm than the completion height of foaming, the restriction of the vertical position of the reinforcing bars 11 to the form 11 is released, and the uppermost reinforcement 3 is allowed to follow the volumetric expansion of the raw material slurry 2 to suppress the formation of foam blow holes on the upper side of the uppermost reinforcement 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、補強鉄筋が上下方向位置及び水平方向位置を拘束された型枠内で原料スラリーを発泡させて、軽量気泡コンクリートパネル(以下ALCパネルという)を製造する方法に関する。   The present invention relates to a method for producing a lightweight cellular concrete panel (hereinafter referred to as an ALC panel) by foaming a raw material slurry in a formwork in which reinforcing bars are constrained in a vertical position and a horizontal position.

一般に、ALCパネルの製造にあたっては、鉄筋が格子状に組まれてなる補強鉄筋を型枠内に配設し、石灰質原料と珪酸質原料との混合物にアルミニウム粉末、界面活性剤水溶液等を加えた原料スラリーを前記型枠内に打設し、アルミニウム粉末を発泡させて気泡を形成し、原料スラリーを体積膨張させつつ硬化させる。そして、発泡が終了した半硬化体を脱型し、所定厚さにスライスした後にオートクレープ養生させ、本硬化したパネルの小口表層部を切除して、所要寸法のALCパネルを完成する。   In general, when manufacturing an ALC panel, reinforcing reinforcing bars in which reinforcing bars are assembled in a lattice shape are arranged in a mold, and aluminum powder, an aqueous surfactant solution, or the like is added to a mixture of calcareous raw materials and siliceous raw materials. The raw material slurry is placed in the mold, the aluminum powder is foamed to form bubbles, and the raw material slurry is hardened while volumetrically expanding. Then, the semi-cured body after foaming is removed from the mold, sliced to a predetermined thickness, and then autoclaved, and the surface layer portion of the main cured panel is cut out to complete the ALC panel having the required dimensions.

ところで、原料スラリーの発泡過程では、スラリー上面が補強鉄筋のうちの最上部の鉄筋を通過するときに、この鉄筋に気泡が当って潰れ、気泡から出たガスが最上部鉄筋(型枠内で、補強鉄筋のうちの最上部に位置する、水平方向に延びる鉄筋)の上側に集合して発泡巣(粗大空洞部)を形成する。図8(a)に示すように、この発泡巣4は最上部鉄筋3の上面から約70mm〜80mmの高さまで成長し、ALCパネル51の切断面51aの強度に悪影響を与える。また、ALCパネル51を鉄筋3の延伸方向に切断すると、図8(b)に示すように、発泡巣4が小口面51bに露出し、ALCパネル51の外観を低下させ、商品価値を下げる。   By the way, in the foaming process of the raw material slurry, when the upper surface of the slurry passes through the uppermost reinforcing bar of the reinforcing reinforcing bars, bubbles are struck by the reinforcing bars, and the gas emitted from the bubbles is blown into the uppermost reinforcing bars (in the formwork). The foaming nest (coarse cavity) is formed by gathering on the upper side of the reinforcing bars located in the uppermost part of the reinforcing bars and extending horizontally. As shown in FIG. 8A, the foamed nest 4 grows to a height of about 70 mm to 80 mm from the upper surface of the uppermost reinforcing bar 3 and adversely affects the strength of the cut surface 51 a of the ALC panel 51. Further, when the ALC panel 51 is cut in the extending direction of the reinforcing bar 3, as shown in FIG. 8 (b), the foamed nest 4 is exposed to the fore edge surface 51b, the appearance of the ALC panel 51 is lowered, and the commercial value is lowered.

従来、この種の発泡巣の生成を抑えるために、以下のような方法が提案されている。
特許文献1:棒状振動体を最上部鉄筋近くの原料スラリー中に挿入して回転または水平移動させ、スラリーの粘度を低下させ、余分なガスを上方へ逃がす方法。
特許文献2:水または水溶液を最上部鉄筋近くの原料スラリー中に注入し、スラリーの粘度上昇を遅らせ、余分なガスを上方へ逃がす方法。
特許文献3:空気を原料スラリーの表面に吹き付け、スラリーの表層部を波動させて撹拌し、スラリーを均一に体積膨張させる方法。
Conventionally, the following methods have been proposed to suppress the generation of this type of foamed nest.
Patent Document 1: A method in which a rod-shaped vibrating body is inserted into a raw material slurry near the uppermost reinforcing bar and rotated or horizontally moved to reduce the viscosity of the slurry and allow excess gas to escape upward.
Patent Document 2: A method of injecting water or an aqueous solution into a raw material slurry near the uppermost rebar, delaying the viscosity increase of the slurry, and allowing excess gas to escape upward.
Patent Document 3: A method in which air is blown onto the surface of a raw material slurry, and the surface layer portion of the slurry is waved and stirred to uniformly expand the slurry.

特許文献4:打設直後の原料スラリーに棒状バイブレーターで振動を与え、スラリーの混練中に巻き込まれた粗大気泡をスラリー上面から脱泡する方法。
特許文献5:原料スラリー中の発泡剤が発泡を開始する前の段階で、鉄筋を振動させ、スラリーの打設時に混入した気泡を排出する方法。
特許文献6:発泡剤が少量部分発泡している発泡初期段階で、型枠の底板を振動させ、スラリーの打設時に巻き込まれた気泡を脱泡する方法。
Patent Document 4: A method in which raw material slurry immediately after placement is vibrated with a rod-like vibrator, and coarse bubbles entrained during slurry kneading are defoamed from the upper surface of the slurry.
Patent Document 5: A method in which the reinforcing bars are vibrated and the air bubbles mixed when the slurry is placed are discharged before the foaming agent in the raw material slurry starts foaming.
Patent Document 6: A method of vibrating a bottom plate of a formwork in an initial stage of foaming in which a foaming agent is partially foamed, and defoaming bubbles entrained during the placement of slurry.

特開平8−72035号公報JP-A-8-72035 特開平7−277854号公報Japanese Unexamined Patent Publication No. 7-277854 特開平9−110548号公報Japanese Patent Laid-Open No. 9-110548 特開昭58−20767号公報JP-A-58-20767 特開昭2001−232622号公報JP-A-2001-232622 特開昭60−141683号公報JP-A-60-141683

ところが、従来方法によると次のような問題点があった。
特許文献1:棒状振動体をスラリー中に挿入するため、振動によりALC特有の気泡が潰れ、潰れた気泡が最上部鉄筋の上側に新たな粗大気泡を形成する。
特許文献2:注水チューブをスラリー中に挿入するため、チューブによって正常な気泡が潰れ、チューブの周辺に粗大気泡が発生する。
特許文献3:空気による撹拌作用はスラリー表層部に限られるため、より深い位置の最上部鉄筋の上側で発泡巣の成長を抑制できない。
However, the conventional method has the following problems.
Patent Document 1: Since a rod-shaped vibrating body is inserted into a slurry, bubbles specific to ALC are crushed by vibration, and the crushed bubbles form new coarse bubbles above the uppermost reinforcing bars.
Patent Document 2: Since the water injection tube is inserted into the slurry, normal bubbles are crushed by the tube, and coarse bubbles are generated around the tube.
Patent Document 3: Since the stirring action by air is limited to the slurry surface layer portion, the growth of the foaming nest cannot be suppressed above the uppermost reinforcing bar at a deeper position.

特許文献4:スラリーの混練中に巻き込まれた粗大気泡はスラリー打設直後の振動により脱泡できるが、スラリー自体が生成した粗大気泡は粘度が高くなった段階のスラリーに振動を与えても脱泡することが困難である。
特許文献5:同様、凝結が進み粘度が高くなった段階のスラリーに鉄筋を介して振動を与えても粗大気泡を排出することは困難である。
特許文献6:型枠の底板に与えた振動は最上部鉄筋付近で大幅に減衰するため、スラリー上面が最上部鉄筋を越えた後に生成する発泡巣の成長を抑えることができない。
Patent Document 4: Coarse bubbles entrained during slurry kneading can be defoamed by vibration immediately after the slurry is placed, but coarse bubbles generated by the slurry itself can be removed even if the slurry at a stage where the viscosity is increased is vibrated. Difficult to foam.
Patent Document 5: Similarly, it is difficult to discharge coarse bubbles even if vibration is applied to the slurry at a stage where condensation has progressed and the viscosity has increased via a reinforcing bar.
Patent Document 6: Since vibration applied to the bottom plate of the formwork is greatly damped in the vicinity of the uppermost reinforcing bar, the growth of the foaming nest generated after the upper surface of the slurry exceeds the uppermost reinforcing bar cannot be suppressed.

本発明の目的は、上記課題を解決し、ALC特有の気泡の成長を妨げることなく、最上部鉄筋の上側における発泡巣の生成を効果的に抑制できるALCパネルの製造方法を提供することにある。   An object of the present invention is to provide a method for manufacturing an ALC panel that solves the above-described problems and can effectively suppress the formation of a foaming nest above the uppermost reinforcing bar without hindering the growth of bubbles unique to ALC. .

上記の課題を解決するために、本発明のALCパネルの製造方法は、補強鉄筋が上下方向位置及び水平方向位置を拘束された型枠内で原料スラリーを発泡させ、原料スラリーの上面が補強鉄筋の最上部鉄筋(型枠内で、補強鉄筋のうちの最上部に位置する、水平方向に延びる鉄筋)を越えた後における一部期間を少なくとも含む揺動期間に、型枠を揺動し、該揺動により原料スラリーの凝結を遅らせることに加え、原料スラリーの発泡終期に補強鉄筋の上下方向位置の拘束を解除し、最上部鉄筋を原料スラリーの体積膨張に追従させて上昇させることにより、最上部鉄筋の上側における発泡巣の生成を抑制することを特徴とする。   In order to solve the above-described problems, the method for manufacturing an ALC panel according to the present invention is such that the raw material slurry is foamed in a mold in which the reinforcing bar is constrained in the vertical position and the horizontal position, and the upper surface of the raw material slurry is the reinforcing bar. Oscillating the formwork in a swinging period including at least a partial period after exceeding the uppermost reinforcing bar (the reinforcing bar located in the uppermost part of the reinforcing bar in the formwork and extending horizontally), In addition to delaying the setting of the raw material slurry by the swing, by releasing the restraint of the vertical position of the reinforcing reinforcing bar at the end of foaming of the raw material slurry, by raising the uppermost reinforcing bar to follow the volume expansion of the raw material slurry, It is characterized by suppressing generation of a foaming nest on the upper side of the uppermost reinforcing bar.

上記方法において、型枠を揺動すると、原料スラリーが液状化し、スラリーの凝結が遅れ、液状化したスラリー中に気泡が分布する。このため、気泡が最上部鉄筋と接触しにくくなり、破泡による発泡巣の生成が抑制される。
加えて、発泡終期には、補強鉄筋の上下方向位置の拘束を解除し、最上部鉄筋をスラリーの体積膨張に追従させて上昇させる。このため、最上部鉄筋の上側に空隙が生じにくくなり、集泡による発泡巣の生成が抑制される。この発泡終期では、最上部鉄筋の付近でスラリーが液状化していても、それより下位ではスラリーの凝結が進行しているため鉄筋保持力は強い。従って、補強鉄筋の下部鉄筋ないし中央高さ部鉄筋はほとんど上昇しないが、最上部鉄筋はスラリーの体積膨張に追従して撓むように上昇することになる。
In the above method, when the mold is swung, the raw slurry is liquefied, the aggregation of the slurry is delayed, and bubbles are distributed in the liquefied slurry. For this reason, it becomes difficult for bubbles to come into contact with the uppermost reinforcing bar, and the generation of foaming nests due to bubble breakage is suppressed.
In addition, at the end of foaming, the restraint of the reinforcing reinforcing bars in the vertical direction is released, and the uppermost reinforcing bars are raised following the volume expansion of the slurry. For this reason, it becomes difficult to produce a space | gap on the upper side of the uppermost reinforcing bar, and the production | generation of the foaming nest by foam collection is suppressed. At the end of foaming, even if the slurry is liquefied in the vicinity of the uppermost reinforcing bar, the holding strength of the reinforcing bar is strong because the slurry is condensed at a lower level. Therefore, although the lower reinforcing bar or the central height reinforcing bar of the reinforcing reinforcing bar hardly rises, the uppermost reinforcing bar rises so as to bend following the volume expansion of the slurry.

[1]型枠の揺動距離
ここで、型枠の揺動距離は、特に限定されないが、型枠の揺動方向長さの0.3%〜10%であるのが好ましい。型枠の大きさは、特に限定されないが、例えば、実際の製造設備で使用する標準的な型枠は長さが6000mm程度、幅が1500mm程度のものである。この型枠を長さ方向へ揺動する場合の距離は、0.3%で18mm程度、10%で600mm程度である。幅方向へ揺動する場合の距離は、0.3%で4.5mm程度、10%で150mm程度である。
[1] Oscillation distance of mold frame Here, the oscillation distance of the mold frame is not particularly limited, but is preferably 0.3% to 10% of the length of the mold frame in the oscillation direction. The size of the mold is not particularly limited. For example, a standard mold used in an actual manufacturing facility has a length of about 6000 mm and a width of about 1500 mm. The distance when the mold is swung in the length direction is about 18 mm at 0.3% and about 600 mm at 10%. The distance when swinging in the width direction is about 4.5 mm at 0.3% and about 150 mm at 10%.

型枠の揺動距離が揺動方向長さの0.3%〜10%であると、型枠内で原料スラリーの全体が大きく揺れ、スラリーの凝結が遅れ、気泡がスラリー中に均一に分布しやすくなる。揺動距離が0.3%未満になると、スラリーの移動距離が不足し、凝結が進行し、気泡の流動性が低下し、発泡巣が生成しやすくなる傾向がある。揺動距離が10%を超えると、凝結を遅らせる効果は変わらないが、揺動設備が大規模になる。小型の揺動設備で凝結を効果的に遅らせることができる点で、型枠の揺動距離は1%〜5%であるのがより好ましい。   When the rocking distance of the mold is 0.3% to 10% of the length in the rocking direction, the whole raw material slurry shakes greatly in the mold, the slurry condensing is delayed, and bubbles are uniformly distributed in the slurry. It becomes easy to do. When the rocking distance is less than 0.3%, the moving distance of the slurry is insufficient, the condensation progresses, the flowability of the bubbles is lowered, and the foamed nest tends to be generated. When the rocking distance exceeds 10%, the effect of delaying the setting does not change, but the rocking equipment becomes large-scale. The rocking distance of the mold is more preferably 1% to 5% in that the setting can be effectively delayed with a small rocking equipment.

[2]型枠の揺動方向
型枠の揺動方向は、特定の方向に限定されず、原料スラリーが型枠内で動けばよく、型枠の長さ方向、幅方向、斜め方向、上下方向のいずれでもよく、水平面内で回転してもよい。
[2] Swing direction of mold frame The swing direction of the mold frame is not limited to a specific direction, and it is sufficient that the raw slurry moves within the mold frame. The length direction, the width direction, the diagonal direction, and the vertical direction of the mold frame Any of the directions may be used, and the rotation may be performed in a horizontal plane.

[3]型枠の揺動加速度
型枠の揺動加速度は、特に限定されないが、0.001m/s2 〜0.2m/s2 であるのが好ましい。一般に、型枠内に打設された原料スラリーは珪石、セメント、生石灰等の粒子同士の摩擦力により混合に抵抗している状態にある。この状態で、型枠を揺動してスラリーを揺らすと、粒子間の接触が切れ、水がスラリー中に均一に分布するので、スラリーを液状化させ、スラリーの凝結速度を自然発泡時のそれよりも遅らせることができる。しかし、型枠の揺動加速度が0.001m/s2 未満であると、スラリーが型枠の揺動に追従し、粒子同士が接触を保ち、凝結が進行してスラリーの粘度が低下しにくくなる傾向となる。
[3] formwork rocking acceleration of the swinging acceleration formwork is not particularly limited, and is preferably 0.001m / s 2 ~0.2m / s 2 . In general, the raw material slurry placed in the mold is in a state in which mixing is resisted by the frictional force between particles such as silica, cement, and quicklime. In this state, swinging the formwork and shaking the slurry breaks the contact between the particles, and water is evenly distributed in the slurry. Therefore, the slurry is liquefied and the setting speed of the slurry is that of natural foaming. Than can be delayed. However, if the rocking acceleration of the mold is less than 0.001 m / s 2 , the slurry follows the rocking of the mold, the particles are kept in contact with each other, and the aggregation is difficult to reduce the viscosity of the slurry. Tend to be.

一方、原料スラリーはアルミニウム粉末とアルカリ物質との反応に伴ってALC特有の気泡を発生する。この気泡は衝撃や振動に対し非常に脆いため、気泡の成長過程ではスラリーに与える衝撃を極力低く抑えたい。型枠の揺動加速度が0.2m/s2 を超えると、衝撃によって正常な気泡が破壊されやすくなる。スラリー粘度を低下させかつ破泡を確実に防止できる点で、型枠の揺動加速度は0.01m/s2 〜0.1m/s2 であるのがより好ましい。 On the other hand, the raw material slurry generates ALC-specific bubbles with the reaction between the aluminum powder and the alkaline substance. Since these bubbles are very fragile to shocks and vibrations, we want to keep the impact on the slurry as low as possible during the bubble growth process. When the rocking acceleration of the mold exceeds 0.2 m / s 2 , normal bubbles are easily destroyed by impact. In that it can reliably prevent and foam breaking to lower the slurry viscosity, the rocking acceleration of the mold is more preferably 0.01m / s 2 ~0.1m / s 2 .

[4]型枠の揺動期間
型枠の揺動期間は、原料スラリーの上面が補強鉄筋の最上部鉄筋を越えた後における一部期間のみでもよいし、この一部期間に加えてその前、後又は前後の所定期間を含んでもよい。
この一部期間は、原料スラリーの上面が補強鉄筋のうちの最上部鉄筋を20mm越えてから発泡終了高さより10mm低い位置に達するまでの期間(本明細書では同期間で揺動による発泡巣抑制作用が最もよく奏されることから「最適期間」という。)から選ばれる30mm以上の範囲の期間であることが好ましい。この最適期間は、原料スラリーが自然発泡するときに発泡巣が成長する期間に対応するものであり、この期間に揺動させることが最も効果的であることから規定している。次に、始期と終期に分けて詳述する。
[4] Mold swinging period The mold swinging period may be only a partial period after the upper surface of the raw material slurry exceeds the uppermost reinforcing bar of the reinforcing reinforcing bars, or in addition to this partial period and before that. A predetermined period before or after may be included.
This partial period is a period from when the upper surface of the raw material slurry exceeds 20 mm from the uppermost reinforcing bar to the position where it is 10 mm lower than the foaming end height (in this specification, suppression of the foaming nest due to oscillation during the same period) It is preferably a period of 30 mm or more selected from the “optimal period” because the effect is best exhibited. This optimum period corresponds to the period during which the foamed nest grows when the raw material slurry spontaneously foams, and is defined because it is most effective to swing during this period. Next, it will be described in detail for the beginning and the end.

[4−1]最適期間の始期について
発泡巣の生成時期は原料スラリーの配合や発泡終了高さによって相違するが、通常、図1(a)に示すように、原料スラリー2の上面が最上部鉄筋3を超えた後に、その鉄筋3と衝突して潰れた気泡が鉄筋3の真上に発泡巣4を生成し始める。ただし、スラリー2の上面が最上部鉄筋3を20mm越える前の発泡過程では、スラリー2の粘度が低く、スラリー2と共に上昇してくる内部気泡は鉄筋3と接触しても破泡することがないため、発泡巣4が発生しにくい。よって、この段階では、型枠を揺動しても発泡巣抑制の意味が薄い。従って、最適期間の始期は、スラリー2の上面が最上部鉄筋3を20mm越える頃である。
[4-1] About the beginning of the optimum period The generation time of the foaming nest varies depending on the composition of the raw material slurry and the height of the foaming end. Usually, as shown in FIG. After exceeding the reinforcing bar 3, the air bubbles collided with the reinforcing bar 3 and start to form a foamed nest 4 immediately above the reinforcing bar 3. However, in the foaming process before the upper surface of the slurry 2 exceeds the uppermost reinforcing bar 3 by 20 mm, the viscosity of the slurry 2 is low, and the internal bubbles rising together with the slurry 2 do not break even when contacting with the reinforcing bar 3. Therefore, the foaming nest 4 is difficult to occur. Therefore, at this stage, even if the mold is swung, the meaning of foaming nest suppression is weak. Therefore, the start of the optimum period is when the upper surface of the slurry 2 exceeds the uppermost reinforcing bar 3 by 20 mm.

[4−2]最適期間の終期について
発泡巣は原料スラリーの凝結の進行、つまりスラリー粘度の上昇に伴って成長する。図1(b)に示すように、スラリー2の上面がさらに上昇すると、最上部鉄筋3周辺のスラリー粘度が上昇し、破泡が進行し、発泡巣4が成長を続ける。図1(c)に示すように、スラリー2の上面が発泡終了高さ(H)に近づく頃には、最上部鉄筋3周辺のスラリー粘度が相当高くなるため、破泡が昂進し、発泡巣4が最上部鉄筋3の上に大きな空隙4aとして形成される。これ以降、スラリー2は比較的長い時間をかけて僅かに上昇し、発泡を終了する。発泡終了間際に型枠を揺動しても、最上部鉄筋3周辺のスラリー粘度は低下しにくいため発泡巣抑制の意味が薄い。従って、最適期間の終期は、スラリー2の上面が発泡終了高さ(H)より10mm低い位置に達する頃である。
[4-2] End of Optimal Period Foaming nests grow as the raw material slurry congeals, that is, as the slurry viscosity increases. As shown in FIG. 1 (b), when the upper surface of the slurry 2 further rises, the slurry viscosity around the uppermost reinforcing bar 3 rises, bubble breakage progresses, and the foam nest 4 continues to grow. As shown in FIG. 1C, when the upper surface of the slurry 2 approaches the foaming end height (H), the viscosity of the slurry around the uppermost reinforcing bar 3 becomes considerably high, so that foam breaks up, 4 is formed as a large gap 4 a on the uppermost reinforcing bar 3. Thereafter, the slurry 2 slightly rises over a relatively long time and finishes foaming. Even if the mold is swung just before the end of foaming, the viscosity of the slurry around the uppermost reinforcing bar 3 is unlikely to decrease, so it is less meaningful to suppress the foaming nest. Therefore, the end of the optimum period is when the upper surface of the slurry 2 reaches a position 10 mm lower than the foaming end height (H).

[4−3]最適期間から選ばれる一部期間の範囲について
上記の最適期間のうちから適宜選ばれる一部期間において型枠を揺動すれば、発泡巣抑制効果が得られるが、その一部期間の範囲(スラリー上面の進行でみた範囲)は30mm以上であることが好ましく、50mm以上であることがより好ましい。30mm未満の期間でのみ型枠を揺動させると、発泡巣を抑制できる部分のみならず抑制できない部分が生じる傾向となる。一方、同範囲の上限は、スラリーの発泡終了高さが最上部鉄筋からどの程度上位になるかによって制限され、例えば140mm上位になる場合には同範囲を110mmまでで設定できるが、例えば70mm上位になる場合には同範囲は40mmまでとなる。
[4-3] Range of a partial period selected from the optimal period If the formwork is swung in a partial period appropriately selected from the above optimal periods, a foaming nest suppression effect can be obtained. The range of the period (range as viewed from the progress of the upper surface of the slurry) is preferably 30 mm or more, and more preferably 50 mm or more. When the mold is swung only during a period of less than 30 mm, not only the portion that can suppress the foaming nest but also the portion that cannot be suppressed tends to be generated. On the other hand, the upper limit of the same range is limited by how much the foam end height of the slurry is higher than the uppermost reinforcing bar. For example, when the upper limit is 140 mm, the same range can be set up to 110 mm. In this case, the same range is up to 40 mm.

[5]連続的揺動と間欠的揺動
上記一部期間において、型枠を休まず連続的に揺動してもよく、休止時間を設定して間欠的に揺動してもよい。但し、間欠的揺動の場合、該揺動の合計時間は一部期間の50%以上とし、かつ該揺動の一回の休止時間は2分以下とすることが望ましい。この合計揺動時間が50%未満になると、連続的に揺動した場合と比較し、スラリーの凝結が進み、液状化が進行しにくい傾向となる。また、2分を超えて型枠の揺動を休止させると、スラリーの凝結が進み、粘度上昇を抑えにくい傾向となる。
[5] Continuous rocking and intermittent rocking During the partial period, the mold may be rocked continuously without resting, or may be rocked intermittently by setting a pause time. However, in the case of intermittent rocking, it is desirable that the total time of the rocking is 50% or more of a part of the period, and that the pause time of the rocking is 2 minutes or less. When the total rocking time is less than 50%, compared with the case of continuous rocking, the agglomeration of the slurry proceeds and the liquefaction tends to hardly proceed. Further, if the swinging of the formwork is stopped for more than 2 minutes, the condensation of the slurry proceeds, and it becomes difficult to suppress the increase in viscosity.

[6]補強鉄筋の上下方向位置の拘束を解除するタイミング
上述したように、原料スラリーの発泡終期には、最上部鉄筋の周辺でスラリー粘度が上昇する。この時期に補強鉄筋が型枠に上下方向位置を拘束されていると、原料スラリーが固定状態の最上部鉄筋を通過する過程で該鉄筋の上側に空隙を形成する。例えば、原料スラリーの上面が発泡終了高さより10mm低い位置で揺動を終了した場合、その後の体積膨張に伴い、図1(d)に示すように、最上部鉄筋3の上側に高さ10mm程度の空隙4aが残る。この空隙4aは最上部鉄筋3に沿って走り、完成後のALCパネル1の長さ方向に亀裂状の発泡巣4として内在する。そこで、本発明では、原料スラリーの発泡終期に、補強鉄筋の上下方向位置を拘束する手段(例えば、ロッドピン等の拘束部材)を解除位置に操作し、補強鉄筋の上下方向位置の拘束を解放し、図1(e)に示すように、最上部鉄筋3の上側における発泡巣4を極力小さくする。
[6] Timing of releasing the restraint of the vertical position of the reinforcing reinforcing bars As described above, at the end of foaming of the raw material slurry, the slurry viscosity increases around the uppermost reinforcing bars. If the reinforcing reinforcing bar is constrained in the vertical direction by the formwork at this time, a gap is formed above the reinforcing bar in the process in which the raw slurry passes through the fixed uppermost reinforcing bar. For example, when the swinging is finished at a position where the upper surface of the raw material slurry is 10 mm lower than the foaming end height, along with the subsequent volume expansion, as shown in FIG. Void 4a remains. This gap 4a runs along the uppermost reinforcing bar 3 and is inherently present as a cracked foam nest 4 in the length direction of the ALC panel 1 after completion. Therefore, in the present invention, at the end of foaming of the raw slurry, the means for restraining the vertical position of the reinforcing reinforcing bar (for example, a restraining member such as a rod pin) is operated to the release position to release the restraining of the reinforcing reinforcing bar in the vertical direction. As shown in FIG. 1E, the foaming nest 4 on the upper side of the uppermost reinforcing bar 3 is made as small as possible.

補強鉄筋の上下方向位置の拘束を解除するタイミングは、原料スラリーの発泡終期において、スラリー上面が発泡終了高さより30mm〜2mm低い位置に達したときであるのが好ましい。原料スラリーの粘度に着目すると、補強鉄筋の上下方向位置の拘束を解除するタイミングは、スラリー粘度が発泡終了時の粘度の55%〜84%に達したときであるのが好ましい。スラリー上面が発泡終了高さより30mm低い位置よりさらに低い段階、または、スラリー粘度が55%未満の段階では、スラリーによる補強鉄筋の保持力が弱いため、補強鉄筋の上下方向位置の拘束を解除すると、スラリーの揺れに伴い、型枠に対する補強鉄筋の位置がずれてしまう可能性が高くなる。スラリー上面が発泡終了高さより2mm低い位置より高くなった段階、または、スラリー粘度が84%超の段階では、スラリーが補強鉄筋を強固に保持しているため、補強鉄筋の上下方向位置の拘束を解除しても、最上部鉄筋がスラリーの体積膨張に追従できない。このため、補強鉄筋の上下方向位置の拘束を解除するタイミングは、スラリー上面が発泡終了高さより24mm〜4mm低い位置に達したとき、または、スラリー粘度が発泡終了時の粘度の61%〜79%に達したときであるのが、より好ましい。   The timing for releasing the restraint of the vertical position of the reinforcing reinforcing bar is preferably when the upper surface of the slurry reaches a position 30 mm to 2 mm lower than the foaming end height at the end of foaming of the raw material slurry. When paying attention to the viscosity of the raw slurry, it is preferable that the timing of releasing the restriction of the vertical position of the reinforcing reinforcing bar is when the slurry viscosity reaches 55% to 84% of the viscosity at the end of foaming. At a stage where the upper surface of the slurry is lower than the position 30 mm lower than the foaming end height, or at a stage where the slurry viscosity is less than 55%, since the holding force of the reinforcing reinforcing bars by the slurry is weak, when the restraint of the vertical position of the reinforcing reinforcing bars is released, As the slurry shakes, the possibility that the position of the reinforcing reinforcing bar with respect to the formwork will be increased. At the stage where the upper surface of the slurry is higher than the position 2 mm lower than the foaming end height, or the stage where the slurry viscosity is more than 84%, the slurry holds the reinforcing bar firmly, so the vertical position of the reinforcing bar is restrained. Even if it cancels | releases, the uppermost reinforcement cannot follow the volume expansion of a slurry. For this reason, the timing of releasing the restraint of the reinforcing bar in the vertical direction is when the upper surface of the slurry reaches a position 24 mm to 4 mm lower than the foaming end height, or the slurry viscosity is 61% to 79% of the viscosity at the end of foaming. It is more preferable that the time is reached.

本発明のALCパネルの製造方法によれば、型枠を揺動し、液状化した原料スラリー中に気泡を均一に分布させ、最上部鉄筋との接触による破泡を抑制する。加えて、発泡終期に補強鉄筋の上下方向位置の拘束を解除し、最上部鉄筋をスラリーの体積膨張に追従させて上昇させ、最上部鉄筋の上側における空隙を小さくする。従って、ALC特有の気泡を潰すことなく、発泡巣の生成をタイミングよく抑制し、外観と強度共に優れた商品価値の高いALCパネルを製造できるという効果がある。   According to the method for producing an ALC panel of the present invention, the mold is swung to uniformly distribute bubbles in the liquefied raw material slurry, and bubble breakage due to contact with the uppermost reinforcing bar is suppressed. In addition, the restraint of the reinforcing bar in the vertical direction is released at the end of foaming, the uppermost reinforcing bar is raised following the volume expansion of the slurry, and the gap above the uppermost reinforcing bar is reduced. Therefore, there is an effect that it is possible to manufacture an ALC panel having a high commercial value that is excellent in appearance and strength by suppressing the generation of foaming nest in a timely manner without crushing ALC-specific bubbles.

本発明の実施形態のALCパネルの製造方法は、図2に示すように、補強鉄筋11が上下方向位置及び水平方向位置を拘束された型枠10内で原料スラリー2を発泡させ、原料スラリー2の上面が補強鉄筋11の最上部鉄筋3を20mm越えてから発泡終了高さより10mm低い位置に達するまでの最適期間から選ばれる30mm以上の範囲の一部期間を少なくとも含む揺動期間に、型枠10を揺動し、該揺動により原料スラリー2の凝結を遅らせる。加えて、原料スラリー2の上面が発泡終了高さより2mm〜30mm低い位置に達したときに、補強鉄筋11の上下方向位置の拘束を解除し、最上部鉄筋3を原料スラリー2の体積膨張に追従させて上昇させる。もって、最上部鉄筋3の上側における発泡巣の生成を抑制する。   As shown in FIG. 2, the manufacturing method of the ALC panel according to the embodiment of the present invention foams the raw slurry 2 in the mold 10 in which the reinforcing reinforcing bars 11 are restrained in the vertical position and the horizontal position, and the raw slurry 2 In the swinging period including at least a partial period in the range of 30 mm or more selected from the optimal period from the upper surface of the reinforcing bar 11 exceeding the uppermost reinforcing bar 3 of the reinforcing bar 11 to 20 mm lower than the foaming end height. 10 is swung, and the setting of the raw material slurry 2 is delayed by the rocking. In addition, when the upper surface of the raw material slurry 2 reaches a position 2 mm to 30 mm lower than the foaming end height, the restraint of the reinforcing bar 11 in the vertical direction is released, and the uppermost reinforcing bar 3 follows the volume expansion of the raw material slurry 2. Let it rise. Therefore, the formation of the foaming nest on the upper side of the uppermost reinforcing bar 3 is suppressed.

次に、上記製造方法を実施例に基づいて詳細に説明する。この実施例では、図3、図4に示すような試験的な型枠10を使用して、三枚のALCパネル1を製造した。型枠10の大きさは、長さ1000mm、幅350mm、高さ700mmである。ALCパネル1の大きさは、長さ840mm、幅600mm、厚さ100mmである。なお、ALCパネル1は長さ方向を横にし、幅方向を縦にして製造される。   Next, the said manufacturing method is demonstrated in detail based on an Example. In this example, three ALC panels 1 were manufactured using an experimental mold 10 as shown in FIGS. The mold 10 has a length of 1000 mm, a width of 350 mm, and a height of 700 mm. The ALC panel 1 has a length of 840 mm, a width of 600 mm, and a thickness of 100 mm. The ALC panel 1 is manufactured with the length direction being horizontal and the width direction being vertical.

このパネル1の製造にあたり、まず、型枠10の内側に三組の補強鉄筋11をセットした。各補強鉄筋11は、型枠10の長さ方向へ水平に延びる主筋12と、型枠10の高さ方向(パネル1の幅方向)へ垂直に延びる副筋13とで格子状に組まれた2枚の鉄筋マットが上段と下段の連結筋14で連結され、全体がかご形に構成されている。主筋12、副筋13、連結筋14には、直径5mmの鉄筋が用いられている。   In manufacturing this panel 1, first, three sets of reinforcing bars 11 were set inside the mold 10. Each reinforcing bar 11 was assembled in a lattice pattern with a main bar 12 extending horizontally in the length direction of the mold 10 and a secondary bar 13 extending vertically in the height direction of the mold 10 (the width direction of the panel 1). Two reinforcing bar mats are connected by upper and lower connecting bars 14, and the whole is formed into a cage shape. Reinforcing bars having a diameter of 5 mm are used for the main bars 12, the auxiliary bars 13, and the connecting bars 14.

図5に示すように、上下段の連結筋14はそれぞれ、2枚の鉄筋マット間に掛け渡される2本の長筋14aと、これにの長筋14aの中間部に掛け渡される2本の短筋14bとにより井桁状に組まれている。上段の連結筋14の2本の短筋14bの間隔はロッドピン15の直径より大きいので、該2本間(井桁中央部内側)にロッドピン15が挿通(遊挿)されている。下段の連結筋14の短筋14bの間隔は、ロッドピン15の直径より小さく、且つ、ロッドピン15の下端から突設された掛止ピン19(ロッドピン15より細い)の直径より大きいので、該2本の上面にロッドピン15の下端部が当接し、該2本間に掛止ピン19が上方から挿通(遊挿)されている。これら上下段の挿通により、補強鉄筋11は水平方向位置が拘束される。掛止ピン19は、2本間を挿通し終えたところで側方へ折曲した掛止部19aとなっている。   As shown in FIG. 5, the upper and lower connecting bars 14 each have two long bars 14a spanned between the two reinforcing bar mats, and two long bars 14a spanned between the long bars 14a. It is assembled in a cross-beam shape by the short bars 14b. Since the distance between the two short bars 14b of the upper connecting bar 14 is larger than the diameter of the rod pin 15, the rod pin 15 is inserted (freely inserted) between the two bars (inside the central portion of the cross beam). The distance between the short bars 14b of the lower connecting bars 14 is smaller than the diameter of the rod pin 15 and larger than the diameter of the latch pin 19 projecting from the lower end of the rod pin 15 (thinner than the rod pin 15). The lower end portion of the rod pin 15 is in contact with the upper surface of the pin, and the latch pin 19 is inserted (freely inserted) from above between the two. By inserting these upper and lower stages, the horizontal position of the reinforcing reinforcing bars 11 is constrained. The latch pin 19 is a latch portion 19a that is bent sideways after the insertion between the two pins.

ロッドピン15の上端はプレート16の挿通孔16aを通って型枠10の上方に突出し、この突出部15cにロッドピン15を回動操作するためのハンドル17が固着されている。プレート16の両端は型枠10の上面に支持され(図3参照)、ロッドピン15がハンドル17によってプレート16の下側に吊り下げられている。ハンドル17の先端には、該ハンドル17を拘束位置に回動したときにプレート16の下面に係止される係止片17aが形成されている。   The upper end of the rod pin 15 protrudes above the mold 10 through the insertion hole 16a of the plate 16, and a handle 17 for rotating the rod pin 15 is fixed to the protruding portion 15c. Both ends of the plate 16 are supported on the upper surface of the mold 10 (see FIG. 3), and the rod pin 15 is suspended below the plate 16 by a handle 17. At the tip of the handle 17, a locking piece 17 a that is locked to the lower surface of the plate 16 when the handle 17 is rotated to the restraining position is formed.

ハンドル17を操作して、ロッドピン15を図5(a)に示す拘束位置に回動したときには、ハンドル17の係止片17aがプレート16の下面に係止されてロッドピン15自体の上昇が止められ、該ロッドピン15の下端部が下段の連結筋14の短筋14bに上方から当接するとともに、掛止ピン19の掛止部19aが該短筋14bの下側に掛止するため、補強鉄筋11が型枠10に対し上下動不能な状態になり、すなわち補強鉄筋11の上下方向位置が拘束される。   When the handle 17 is operated and the rod pin 15 is rotated to the restraining position shown in FIG. 5A, the locking piece 17a of the handle 17 is locked to the lower surface of the plate 16 and the rod pin 15 itself is prevented from rising. Since the lower end portion of the rod pin 15 abuts on the short bar 14b of the lower connecting bar 14 from above and the hook part 19a of the hook pin 19 hooks below the short bar 14b, the reinforcing reinforcing bar 11 However, the vertical movement of the reinforcing reinforcing bars 11 is restricted.

ハンドル17を操作して、ロッドピン15を図5(b)に示す解除位置に回動したときには(以下、この操作を「ピン返し」と呼ぶ)、ハンドル17の係止片17aがプレート16の下面から外れてロッドピン15自体の上昇が可能になり、掛止ピン19の掛止部19aが短筋14bから外れ、連結筋14がロッドピン15を上下動できるため、補強鉄筋11が型枠10に対し上下動可能な状態になり、すなわち補強鉄筋11の上下方向位置の拘束が解放される。但し、このピン返しを行う発泡終期にはスラリーの粘度が高くなっているので、掛止部19aが短筋14bから外れても、補強鉄筋11が沈むことはなく、もっぱら、補強鉄筋11全体(ひいては最上部鉄筋3)を原料スラリー2の体積膨張に追従させて上昇させることが可能となる。掛止部19aが短筋14bから外すのは、その後にロッドピン15を抜き上げるためである。   When the handle 17 is operated and the rod pin 15 is rotated to the release position shown in FIG. 5B (hereinafter, this operation is referred to as “pin return”), the locking piece 17 a of the handle 17 is attached to the lower surface of the plate 16. Since the rod pin 15 itself can be lifted off the hook pin 19, the latching portion 19 a of the latch pin 19 is disengaged from the short bar 14 b, and the connecting bar 14 can move the rod pin 15 up and down. It will be in the state which can be moved up and down, ie, the restriction | limiting of the vertical position of the reinforcing steel bar 11 is released. However, since the viscosity of the slurry is high at the end of foaming to perform this pinning, even if the latching portion 19a is detached from the short bar 14b, the reinforcing bar 11 does not sink, and the reinforcing bar 11 is entirely ( As a result, the uppermost reinforcing bar 3) can be raised following the volume expansion of the raw slurry 2. The reason why the latching portion 19a is removed from the short bar 14b is to pull out the rod pin 15 thereafter.

そして、図4に示すように、複数本のロッドピン15を用いて、三組の補強鉄筋11を等間隔で型枠10の内側に吊り下げた。このとき、原料スラリー2の発泡終了高さを660mm(目標値)に設定し、この高さが主筋12のうちの最上部の鉄筋3より140mm上位となるように、すなわち最上部の鉄筋3が型枠10の底面から520mm高くなるように各補強鉄筋11をセットした。   Then, as shown in FIG. 4, using a plurality of rod pins 15, three sets of reinforcing bars 11 were suspended inside the mold 10 at equal intervals. At this time, the foaming end height of the raw slurry 2 is set to 660 mm (target value), and this height is 140 mm higher than the uppermost reinforcing bar 3 of the main reinforcing bars 12, that is, the uppermost reinforcing bar 3 is Each reinforcing bar 11 was set so as to be 520 mm higher than the bottom surface of the mold 10.

次に、型枠10の内側に原料スラリー2を打設した。以下の比較例、参考例および実施例では、原料スラリー2として、珪石粉末40質量部、セメント15質量部、生石灰粉末10質量部、石膏5質量部、クラスト20質量部、ALCの破砕粉末10質量部からなる固形分に対し、外割で70質量部の水と0.06質量部のアルミニウム粉末(発泡剤)とを添加し、ミキサーで十分に混練したモルタルスラリーを使用した。   Next, the raw material slurry 2 was placed inside the mold 10. In the following comparative examples, reference examples and examples, as raw material slurry 2, 40 parts by mass of silica powder, 15 parts by mass of cement, 10 parts by mass of quicklime powder, 5 parts by mass of gypsum, 20 parts by mass of crust, 10 parts by mass of ALC crushed powder A mortar slurry in which 70 parts by mass of water and 0.06 parts by mass of aluminum powder (foaming agent) were added to the solid content consisting of parts and sufficiently kneaded with a mixer was used.

続いて、補強鉄筋11を上下方向位置及び水平方向位置を拘束した型枠10内で原料スラリー2を発泡させた。この発泡工程では、型枠10を揺動しない比較例1〜5の方法と、型枠10を揺動し発泡終了時にピン返しを行う参考例1〜5の方法と、型枠10を揺動し発泡終期にピン返しを行う実施例1〜4の方法とを適用した。そして、スラリー2の発泡および体積膨張が終了した状態で、型枠10からALC半硬化体2を取り出してピアノ線で切断し、通常のオートクレーブ養生により本硬化させて、三枚のALCパネル1を完成した。   Subsequently, the raw material slurry 2 was foamed in the mold 10 in which the reinforcing reinforcing bars 11 were constrained in the vertical position and the horizontal position. In this foaming process, the methods of Comparative Examples 1 to 5 in which the mold 10 is not swung, the methods of Reference Examples 1 to 5 in which the mold 10 is swung and the pin is turned back at the end of foaming, and the mold 10 is swung. Then, the methods of Examples 1 to 4 in which pinning is performed at the end of foaming were applied. Then, after the foaming and volume expansion of the slurry 2 are completed, the ALC semi-cured product 2 is taken out from the mold 10 and cut with a piano wire, and is finally cured by normal autoclave curing, and the three ALC panels 1 are assembled. completed.

<比較例1>
比較例1では、補強鉄筋11をロッドピン15で型枠10内に上下方向位置及び水平方向位置を拘束し(図5a参照)、全発泡期間にわたり型枠10および補強鉄筋11を静止させ、原料スラリー2を自然発泡させた。そして、図6に示すように、発泡期間中に原料スラリー2の発泡高さと強張り(粘度)とを測定した。強張りの測定にあたっては、図7に示すような直径4mm、長さ400mmのアルミ製スケール21を使用し、これを原料スラリー2中に静かに沈下させ、自然に停止したときに、スラリー2の上面より突出する長さを測って貫入値(mm)とした。
<Comparative Example 1>
In Comparative Example 1, the reinforcing bar 11 is restrained in the vertical direction and the horizontal position in the mold 10 with the rod pin 15 (see FIG. 5a), and the mold 10 and the reinforcing bar 11 are kept stationary over the entire foaming period, and the raw material slurry 2 was naturally foamed. And as shown in FIG. 6, the foaming height and toughness (viscosity) of the raw material slurry 2 were measured during the foaming period. When measuring the strength, an aluminum scale 21 having a diameter of 4 mm and a length of 400 mm as shown in FIG. 7 is used. When this is gently submerged in the raw slurry 2 and stopped naturally, The length protruding from the upper surface was measured to obtain the penetration value (mm).

また、図8(a)に示すように、完成したALCパネル51を幅方向の任意位置で縦方向に切断するとともに、図8(b)に示すように、パネル51の上端部を横方向に切断し、縦断面51aおよび横断面51bにおける発泡巣4の生成状態を観察した。その結果、図8(a)に示すように、縦断面51aには、発泡巣4が最上部鉄筋3から約70mmの高さまで立ち上がっていた。   Further, as shown in FIG. 8A, the completed ALC panel 51 is cut in the vertical direction at an arbitrary position in the width direction, and the upper end of the panel 51 is turned in the horizontal direction as shown in FIG. 8B. The foamed nest 4 was observed in the longitudinal section 51a and the transverse section 51b. As a result, as shown in FIG. 8A, the foamed nest 4 stood up to a height of about 70 mm from the uppermost reinforcing bar 3 in the longitudinal section 51a.

横断面51bについては、図8(b)に示すように、三枚のALCパネル51を最上部鉄筋3からのかぶり高さTが10mm、20mm、30mm、70mmとなるように切断した。そして、切断面に現れた発泡巣4のうち最上部鉄筋3の延伸方向に最も長い発泡巣4の長さXに関し、次の基準に基づいて点数評価した。評価結果を表1に示す。   As for the cross section 51b, as shown in FIG. 8B, the three ALC panels 51 were cut so that the cover height T from the uppermost reinforcing bar 3 was 10 mm, 20 mm, 30 mm, and 70 mm. And the score X was evaluated based on the following reference | standard regarding the length X of the foaming nest 4 longest in the extending | stretching direction of the uppermost reinforcing bar 3 among the foaming nests 4 which appeared on the cut surface. The evaluation results are shown in Table 1.

評価基準
X>20mm 4点
20mm≧X>10mm 3点
10mm≧X>5mm 2点
5mm≧X>2mm 1点
発泡巣無し 0点
Evaluation criteria X> 20 mm 4 points 20 mm ≧ X> 10 mm 3 points 10 mm ≧ X> 5 mm 2 points 5 mm ≧ X> 2 mm 1 point No foaming nest 0 points

Figure 2009107274
Figure 2009107274

<参考例1>
参考例1では、図4に示すように、補強鉄筋11をロッドピン15で型枠10に上下方向位置及び水平方向位置を拘束し、型枠10を台車18の上に載せ、原料スラリー2の上面が最上部鉄筋3を越えた後に、台車18と共に型枠10を試験員によって床面上で揺動した。そして、発泡終了時にピン返しを行い、型枠10を外して、三枚のALCパネルを完成した。揺動条件は次の通りである。なお、実際の製造設備では、前述した大型の型枠をローラコンベア等の移動体上に載置し、モータや流体圧シリンダを用いた揺動装置によって駆動することができる。
<Reference Example 1>
In Reference Example 1, as shown in FIG. 4, the reinforcing bar 11 is constrained in the vertical position and the horizontal position on the mold 10 with the rod pins 15, the mold 10 is placed on the carriage 18, and the upper surface of the raw material slurry 2. After passing over the uppermost reinforcing bar 3, the mold 10 together with the carriage 18 was swung on the floor surface by the examiner. Then, when foaming was completed, the pin was turned back, the mold 10 was removed, and three ALC panels were completed. The rocking conditions are as follows. In an actual manufacturing facility, the above-mentioned large formwork can be placed on a moving body such as a roller conveyor and can be driven by a swing device using a motor or a fluid pressure cylinder.

揺動条件
揺動期間:原料スラリー2の上面が最上部鉄筋3を20mm越えてから発泡終了高さより20mm低い位置に達するまでの期間
揺動時間:揺動期間の100%(約20分間休まず連続的に揺動)
揺動方向:最上部鉄筋3の延伸方向と直角を成す水平方向(型枠10の幅方向)
揺動距離:型枠10の幅寸法の約5%(17.5mm程度)
揺動加速度:0.07m/s2
揺動周期:120サイクル毎分
Oscillating condition Oscillating period: Period from when the upper surface of the raw material slurry 2 exceeds the uppermost reinforcing bar 3 to 20 mm lower than the foaming end height Oscillating time: 100% of the oscillating period (not resting for about 20 minutes) Continuously rocking)
Oscillating direction: horizontal direction perpendicular to the extending direction of the uppermost reinforcing bar 3 (width direction of the mold 10)
Oscillating distance: About 5% (about 17.5 mm) of the width of the mold 10
Swing acceleration: 0.07m / s 2
Swing cycle: 120 cycles per minute

比較例1と同様、原料スラリー2の発泡期間中にスラリー2の発泡高さと強張りとを測定した。測定結果を図9に示す。また、図10に示すように、完成したALCパネル1を縦、横両方向に切断し、縦断面1aと横断面1bにおける発泡巣4の生成状態を観察し、比較例1と同様に評価した。評価結果を表2に示す。   Similarly to Comparative Example 1, the foaming height and toughness of the slurry 2 were measured during the foaming period of the raw slurry 2. The measurement results are shown in FIG. Further, as shown in FIG. 10, the completed ALC panel 1 was cut in both the vertical and horizontal directions, the formation state of the foamed nest 4 in the vertical cross section 1a and the horizontal cross section 1b was observed, and evaluated in the same manner as in Comparative Example 1. The evaluation results are shown in Table 2.

Figure 2009107274
Figure 2009107274

参考例1のALCパネル1では、縦断面1aの発泡巣4が三枚のパネル1,2,3共に最上部鉄筋3から25mm以下の長さに収まっていた(図10a参照)。表2に示すように、横断面1bでは、パネル1のかぶり高さ10mmに長さ5〜7mmの発泡巣4が現れ、パネル2,3のかぶり高さ10mmに長さ2,3mmの発泡巣4が散在していた。かぶり高さ20mmでは、パネル1に長さ2,3mmの発泡巣4が現れていたが、パネル2,3には発泡巣4が現れていなかった。かぶり高さ30mmと70mmでは、三枚共に発泡巣4が現れていなかった。表1と表2とを対比すると、型枠10の揺動によって発泡巣4の生成が効果的に抑制されていることが分かる。   In the ALC panel 1 of Reference Example 1, the foamed nest 4 of the longitudinal section 1a was within a length of 25 mm or less from the uppermost reinforcing bar 3 in all three panels 1, 2, 3 (see FIG. 10a). As shown in Table 2, in the cross section 1b, a foam nest 4 having a length of 5 to 7 mm appears at a cover height of 10 mm of the panel 1, and a foam nest having a length of 2, 3 mm at a cover height of 10 mm of the panels 2 and 3. 4 was scattered. At the cover height of 20 mm, the foamed nest 4 having a length of 2-3 mm appeared on the panel 1, but the foamed nest 4 did not appear on the panels 2 and 3. At the cover heights of 30 mm and 70 mm, the foaming nest 4 did not appear in all three sheets. When Table 1 is compared with Table 2, it can be seen that the formation of the foamed nest 4 is effectively suppressed by the swing of the mold 10.

次に、型枠10の揺動が原料スラリー2に与えた質的な変化を図11、図12に基づいて確認する。図11は、比較例1および参考例1において、原料スラリー2の発泡高さの経時変化を示し、図12は強張りの経時変化を示す。なお、図11、図12では、図6に示す比較例1の測定データと図9に示す参考例1の測定データとを引用した。   Next, the qualitative change given to the raw material slurry 2 by the swing of the mold 10 is confirmed based on FIGS. FIG. 11 shows the change over time in the foaming height of the raw slurry 2 in Comparative Example 1 and Reference Example 1, and FIG. 12 shows the change over time in the strength. 11 and 12, the measurement data of Comparative Example 1 shown in FIG. 6 and the measurement data of Reference Example 1 shown in FIG. 9 are cited.

図11に示すように、原料スラリー2の発泡高さは、比較例1と参考例1とでほぼ同様に変化しており、有意差が見られない。また、原料スラリーの温度変化も比較例1と参考例1とでほぼ同様であった。このことから、型枠10の揺動が原料スラリー2の水和反応に影響を及ぼしていないことが分かる。これに対し、図12に示すように、原料スラリー2の強張りは、貫入値において比較例1と参考例1とで格段の有意差が見られる。   As shown in FIG. 11, the foaming height of the raw material slurry 2 changes in substantially the same way between Comparative Example 1 and Reference Example 1, and no significant difference is observed. Moreover, the temperature change of the raw material slurry was almost the same in Comparative Example 1 and Reference Example 1. From this, it can be seen that the swing of the mold 10 does not affect the hydration reaction of the raw slurry 2. On the other hand, as shown in FIG. 12, the strength of the raw material slurry 2 shows a significant difference between Comparative Example 1 and Reference Example 1 in terms of penetration value.

参考例1の貫入値は、型枠揺動期間の初期から比較例1よりも緩やかに上昇し、型枠揺動期間の終期で比較例1の貫入値との間に大きな格差を生じる。また、参考例1の貫入値は、型枠10の揺動が終了した直後に上昇を加速し、原料スラリー2の発泡が終了した時点で比較例1と同程度の値を示す。これらのことから、型枠10の揺動が、原料スラリー2の発泡期間およびALC半硬化体の硬度に影響を与えることなく、スラリー2の凝結を一時的に遅らせ、発泡巣4の生成を効果的に抑制できていることが分かる。   The penetration value of the reference example 1 rises more slowly than the comparative example 1 from the beginning of the mold swing period, and a large difference is generated between the penetration value of the comparative example 1 at the end of the mold swing period. Further, the penetration value of Reference Example 1 accelerates the increase immediately after the swing of the mold 10 is finished, and shows the same value as that of Comparative Example 1 when the foaming of the raw material slurry 2 is finished. From these facts, the rocking of the mold 10 does not affect the foaming period of the raw slurry 2 and the hardness of the ALC semi-cured product, and temporarily delays the setting of the slurry 2, thereby effectively producing the foamed nest 4. It can be seen that it can be suppressed.

<参考例2>
参考例2では、参考例1と同じ型枠10と台車18を使用し、ロッドピン15で補強鉄筋11を型枠10に上下方向位置及び水平方向位置を拘束し、原料スラリー2の上面が最上部鉄筋3を越えた後に、図13に示すように、型枠10を参考例1と異なる方向、距離、加速度および周期で揺動し、発泡終了時にピン返しを行い、型枠10を外して、三枚のALCパネルを完成した。そして、完成したALCパネルを参考例1と同様に縦、横両方向に切断し、縦断面と横断面における発泡巣の生成状態を観察評価した。揺動条件を次に示し、評価結果を表3に示す。
<Reference Example 2>
In Reference Example 2, the same mold 10 and carriage 18 as in Reference Example 1 are used, the reinforcing pin 11 is restrained by the rod pin 15 in the vertical and horizontal positions on the mold 10, and the upper surface of the raw material slurry 2 is the uppermost part. After passing the rebar 3, as shown in FIG. 13, the mold frame 10 is swung in a direction, distance, acceleration and cycle different from those of the reference example 1, and the pin is turned back at the end of foaming. Three ALC panels were completed. And the completed ALC panel was cut | disconnected to the vertical and horizontal direction similarly to the reference example 1, and the production | generation state of the foaming nest in a vertical cross section and a cross section was observed and evaluated. The rocking conditions are shown below, and the evaluation results are shown in Table 3.

揺動条件
揺動期間:原料スラリー2の上面が最上部鉄筋3を20mm越えてから発泡終了高さより20mm低い位置に達するまでの期間
揺動時間:揺動期間の100%(約20分間休まず連続的に揺動)
揺動方向:最上部鉄筋3の延伸方向と一致する方向(型枠10の長さ方向)
揺動距離:型枠10の長さ寸法の約3%(30mm程度)
揺動加速度:0.03m/s2
揺動周期:60サイクル毎分
Oscillating condition Oscillating period: Period from when the upper surface of the raw material slurry 2 exceeds the uppermost reinforcing bar 3 to 20 mm lower than the foaming end height Oscillating time: 100% of the oscillating period (not resting for about 20 minutes) Continuously rocking)
Oscillating direction: direction that coincides with the extending direction of the uppermost reinforcing bar 3 (length direction of the mold 10)
Swing distance: about 3% of the length of the mold 10 (about 30 mm)
Swing acceleration: 0.03m / s 2
Swing cycle: 60 cycles per minute

Figure 2009107274
Figure 2009107274

参考例2のALCパネル1も、参考例1とほぼ同様、パネル縦断面の発泡巣が三枚共に最上部鉄筋から25mm以下の長さに収まっていた。表3に示すように、パネル横断面では、パネル1,3のかぶり高さ10mmに長さ5〜7mmの発泡巣4が現れ、パネル2のかぶり高さ10mmに長さ2,3mmの発泡巣4が散在していた。かぶり高さ20mmでは、パネル1,3に長さ2,3mmの発泡巣4が現れていたが、パネル2には発泡巣4が現れていなかった。かぶり高さ30mmと70mmでは、三枚共に発泡巣が現れていなかった。なお、表2と表3の対比から、型枠10の揺動方向の違いは発泡巣の抑制効果にさほど影響していないことが分かる。   In the ALC panel 1 of Reference Example 2, almost the same as in Reference Example 1, the three foamed nests in the longitudinal section of the panel were within a length of 25 mm or less from the uppermost reinforcing bar. As shown in Table 3, in the cross section of the panel, a foam nest 4 having a length of 5 to 7 mm appears at a cover height of 10 mm of the panels 1 and 3, and a foam nest having a length of 2 to 3 mm at a cover height of 10 mm of the panel 2 4 was scattered. At the cover height of 20 mm, the foamed nest 4 having a length of 2-3 mm appeared on the panels 1 and 3, but the foam nest 4 did not appear on the panel 2. At the cover heights of 30 mm and 70 mm, no foaming nest appeared in all three sheets. From the comparison between Table 2 and Table 3, it can be seen that the difference in the swinging direction of the mold 10 does not significantly affect the foaming nest suppression effect.

<参考例3>
参考例3では、参考例1の揺動条件のうち、揺動時間のみが相違する二通りの方法で型枠10を揺動した。
第一の方法では、合計揺動時間が揺動期間の50%(約10分)となるように、一回で2分未満の揺動休止時間を設定して型枠10を間欠的に揺動した。
第二の方法では、50%以上の合計揺動時間を確保したうえで、一回で2分以上の揺動休止時間を設定して型枠10を間欠的に揺動した。図14は揺動時間の変化が原料スラリー2の強張りに与えた影響を示す。
<Reference Example 3>
In Reference Example 3, the mold 10 was swung by two methods that differed only in the rocking time among the rocking conditions of Reference Example 1.
In the first method, the mold 10 is intermittently rocked by setting a rocking pause time of less than 2 minutes at a time so that the total rocking time is 50% (about 10 minutes) of the rocking period. It moved.
In the second method, after ensuring a total rocking time of 50% or more, the mold 10 was rocked intermittently by setting a rocking pause time of 2 minutes or more at a time. FIG. 14 shows the effect of the change in the swing time on the strength of the raw slurry 2.

図14から明らかなように、参考例3の第一又は第二の方法のいずれによっても、比較例1と比較すると、貫入値の上昇速度つまり凝結の進度が遅くなる効果がある。但し、参考例3の第一の方法の場合は、連続的に揺動した参考例1と比較すると、貫入値の上昇速度が若干速くなる。参考例3の第二の方法の場合は、特に型枠揺動期間において、貫入値の上昇速度がさらに加速する。従って、発泡巣をより効果的に抑制するためには、型枠10の合計揺動時間が揺動期間の50%以上であり、かつ全揺動期間を通して型枠10の揺動を2分以上継続的に休止させないことが望ましいことが分かる。   As is clear from FIG. 14, both the first method and the second method of Reference Example 3 have the effect of slowing the penetration rate increase rate, that is, the progress of condensation, as compared with Comparative Example 1. However, in the case of the first method of Reference Example 3, the penetration speed of the penetration value is slightly faster than that of Reference Example 1 that continuously swings. In the case of the second method of Reference Example 3, the penetration speed of the penetration value is further accelerated, particularly during the mold swing period. Therefore, in order to more effectively suppress the foaming nest, the total swing time of the mold 10 is 50% or more of the swing period, and the swing of the mold 10 is 2 minutes or more throughout the swing period. It can be seen that it is desirable not to pause continuously.

<参考例4>
参考例4では、参考例1と同じく原料スラリーの発泡終了高さ(目標値)を最上部鉄筋3よりも140mm上位に設定したが、参考例1の揺動条件のうち、揺動期間のみが相違する三通りの方法で型枠10を揺動した。
<Reference Example 4>
In Reference Example 4, the foaming end height (target value) of the raw slurry was set 140 mm higher than the uppermost reinforcing bar 3 as in Reference Example 1. Of the swing conditions of Reference Example 1, only the swing period was set. The mold 10 was rocked by three different methods.

第一の方法では、スラリー上面が最上部鉄筋3よりも0mm〜30mm上方に位置する期間(最上部鉄筋3を超えた直後から発泡終了高さより110mm低い位置に達するまでの期間)に型枠10を揺動した。この場合、図15(a)に示すように、完成品のパネル縦断面1aには、ALC特有の気泡が各部均一に分布していたが、長さ55mmの発泡巣4が生成していた。   In the first method, the mold 10 is in a period in which the upper surface of the slurry is located 0 mm to 30 mm above the uppermost reinforcing bar 3 (a period from immediately after exceeding the uppermost reinforcing bar 3 until reaching a position 110 mm lower than the foaming end height). Rocked. In this case, as shown in FIG. 15 (a), the ALC-specific bubbles were uniformly distributed in the vertical section 1a of the finished product, but a foaming nest 4 having a length of 55 mm was generated.

第二の方法では、原料スラリー2の上面が最上部鉄筋3よりも60mm〜90mm上方に位置する期間(最上部鉄筋3を60mm越えてから発泡終了高さより50mm低い位置に達するまでの期間)に型枠10を揺動した。この場合は、図15(b)に示すように、気泡の状態が良好であり、発泡巣4が40mmの長さに短縮していた。   In the second method, in a period in which the upper surface of the raw material slurry 2 is positioned 60 mm to 90 mm above the uppermost reinforcing bar 3 (a period from reaching the position 50 mm lower than the foaming end height after exceeding the uppermost reinforcing bar 3 by 60 mm). The mold 10 was swung. In this case, as shown in FIG. 15B, the state of the bubbles was good, and the foam nest 4 was shortened to a length of 40 mm.

第三の方法では、原料スラリー2の上面が最上部鉄筋3よりも60mm〜120mm上方に位置する期間(最上部鉄筋3を60mm越えてから発泡終了高さより20mm低い位置に達するまでの期間)に型枠10を揺動した。その結果、図15(c)に示すように、気泡の状態も良好であり、発泡巣4も25mmの長さまで短縮していた。   In the third method, in a period in which the upper surface of the raw material slurry 2 is positioned 60 mm to 120 mm above the uppermost reinforcing bar 3 (period from reaching the position 20 mm below the foaming end height after exceeding the uppermost reinforcing bar 3 by 60 mm). The mold 10 was swung. As a result, as shown in FIG. 15C, the state of the bubbles was good, and the foaming nest 4 was shortened to a length of 25 mm.

このように、発泡終了高さが最上部鉄筋3よりも140mm上位である参考例4においては、スラリーが最上部鉄筋3を20mm超えてから発泡終了高さより10mm低い位置に達するまでの最適期間のうちから選ばれる、30mm以上の範囲の一部期間に型枠10を揺動することで(第二又は第三の方法)、外観と強度共に優れたALCパネル1が得られること、また同範囲は広い方がより好ましいことが確認された。   Thus, in Reference Example 4 in which the foam end height is 140 mm higher than the top rebar 3, the optimum period of time from when the slurry exceeds 20 mm from the top rebar 3 to the position 10 mm lower than the foam end height is The ALC panel 1 excellent in both appearance and strength can be obtained by swinging the mold 10 during a partial period in the range of 30 mm or more selected from the above (second or third method). It was confirmed that the wider is more preferable.

以下の比較例2〜5では、発泡巣を抑制するための従来方法がALC特有の気泡の成長に与える影響について検証し、もって型枠10を揺らす方法の優位性を確認する。   In Comparative Examples 2 to 5 below, the influence of the conventional method for suppressing the foaming nest on the growth of bubbles unique to ALC is verified, and the superiority of the method of shaking the mold 10 is confirmed.

<比較例2>
比較例2では、図16(a)に示すように、原料スラリー2の上面が最上部鉄筋3より90mm〜115mm上方に位置する期間に、熊手23を使用してスラリー2の上部を掻き混ぜた。その結果、図16(b)に示すように、発泡巣4は10mm程度の長さに短縮していたが、発泡巣とも云えるほどの多数の粗大気泡6が最上部鉄筋3の上側の広い範囲に拡散していた。これは、掻き混ぜによってALC特有の気泡が潰れた結果であり、商品価値を著しく低下させている。
<Comparative example 2>
In Comparative Example 2, as shown in FIG. 16A, the upper part of the slurry 2 was stirred using a rake 23 during a period in which the upper surface of the raw material slurry 2 was positioned 90 mm to 115 mm above the uppermost reinforcing bar 3. . As a result, as shown in FIG. 16 (b), the foaming nest 4 was shortened to a length of about 10 mm, but a large number of large bubbles 6 that can be called foaming nests are wide on the upper side of the uppermost reinforcing bar 3. Had spread to the range. This is a result of crushing the air bubbles peculiar to ALC, which significantly reduces the commercial value.

<比較例3>
比較例3では、図17(a)に示すように、原料スラリー2の上面が最上部鉄筋3より30mm程度上方に達した時点で、ジョウロ24で水を散布した。その結果、図17(b)に示すように、パネル縦断面1aに現れる気泡の状態は良好であったが、発泡巣4が比較例1と同じ約70mmの長さに成長していて、抑制効果を確認できなかった。
<Comparative Example 3>
In Comparative Example 3, as shown in FIG. 17A, when the upper surface of the raw material slurry 2 reached about 30 mm above the uppermost reinforcing bar 3, water was sprayed with a watering device 24. As a result, as shown in FIG. 17B, the state of the bubbles appearing in the panel longitudinal section 1a was good, but the foaming nest 4 had grown to a length of about 70 mm, which was the same as in Comparative Example 1, and was suppressed. The effect could not be confirmed.

<比較例4>
比較例4では、図18(a)に示すように、原料スラリー2の上面が最上部鉄筋3より30mm〜70mm上方に位置する期間に、ジョウロ24と熊手23とを併用し、スラリー2に散水しつつ掻き混ぜた。その結果、図18(b)に示すように、発泡巣4の長さは約50mmに短くなったが、発泡巣4の上側に高さ30mm程度の無気泡部分7が発生し、さらにその上側に粗大気泡6が散在していた。これは、散水と掻き混ぜの相乗作用によって気泡が広範囲にわたって潰れた結果であり、気泡の見栄えを悪化させている。
<Comparative example 4>
In Comparative Example 4, as shown in FIG. 18 (a), a watering agent 24 and a rake 23 are used together in a period in which the upper surface of the raw material slurry 2 is located 30 mm to 70 mm above the uppermost reinforcing bar 3, and the slurry 2 is sprinkled. Stir while stirring. As a result, as shown in FIG. 18 (b), the length of the foaming nest 4 was shortened to about 50 mm, but a bubble-free portion 7 having a height of about 30 mm was generated on the upper side of the foaming nest 4 and further to the upper side. Coarse bubbles 6 were scattered. This is a result of the bubbles being crushed over a wide range by the synergistic action of watering and stirring, which worsens the appearance of the bubbles.

<比較例5>
比較例5では、図19(a)に示すように、原料スラリー2の上面が最上部鉄筋3より90mm〜120mm上方に位置する期間に、プレート16上に取り付けたバイブレーター25により加振板26とロッドピン15とを介して補強鉄筋11に約200Hzの振動を与えた。その結果、図19(b)に示すように、気泡の状態はほぼ良好であったが、発泡巣4が65mmと長く、抑制効果を確認できなかった。この発泡巣4の上端部分は、スラリー粘度の上昇に伴って生成した粗大気泡ではなく、バイブレーター25による加振期間中に、最上部鉄筋3を通過したスラリー中の気泡が振動により潰れて形成した粗大気泡である。
<Comparative Example 5>
In Comparative Example 5, as shown in FIG. 19 (a), during the period in which the upper surface of the raw slurry 2 is located 90 mm to 120 mm above the uppermost reinforcing bar 3, the vibrator 25 attached on the plate 16 and the vibration plate 26 A vibration of about 200 Hz was applied to the reinforcing steel bar 11 through the rod pin 15. As a result, as shown in FIG. 19B, the state of the bubbles was almost good, but the foaming nest 4 was as long as 65 mm, and the suppression effect could not be confirmed. The upper end portion of the foamed nest 4 is not a coarse bubble generated as the slurry viscosity increases, but the bubble in the slurry that has passed through the uppermost reinforcing bar 3 is crushed by vibration during the vibration period by the vibrator 25. It is a coarse bubble.

上記参考例1〜4の揺動による方法は、比較例2〜5とは異なり、発泡過程の原料スラリー2に直接的に接触する手段を使用しない。また、揺動による方法は、生成してしまった発泡巣4を物理的に破壊する方法ではなく、原料スラリー2を揺らすことで発泡巣3の生成を未然に抑制する方法である。従って、ALC特有の気泡を潰すことなく液状化したスラリー中に均一に分布させて、外観の見栄えが優れたALCパネル1を製造することができる。   Unlike the comparative examples 2-5, the method by the rocking | fluctuation of the said reference examples 1-4 does not use the means to contact the raw material slurry 2 of a foaming process directly. In addition, the swing method is not a method of physically destroying the foamed nest 4 that has been generated, but a method of suppressing the generation of the foam nest 3 by shaking the raw slurry 2. Therefore, the ALC panel 1 having an excellent appearance can be manufactured by uniformly distributing the liquefied slurry without crushing the bubbles unique to the ALC.

次に、本発明の実施例1〜4を参考例5および比較例6と合わせて説明する。各例では、それぞれ、同じ条件で型枠10を揺動し、異なるタイミングでピン返しを行った。ピン返しのタイミングを図20に示す。また、型枠10の揺動を終了した時点、ピン返しを行った時点、発泡が終了した時点の三点で、原料スラリー2の発泡高さと強張りを測定した。測定結果を表4に示す。そして、完成した三枚のALCパネル1を切断し、縦断面と横断面の発泡巣4を観察し、上記した基準で評価した。評価結果を表5〜表9に示す。   Next, Examples 1 to 4 of the present invention will be described together with Reference Example 5 and Comparative Example 6. In each example, the mold 10 was swung under the same conditions, and the pins were returned at different timings. FIG. 20 shows the pin return timing. Further, the foaming height and the tensile strength of the raw material slurry 2 were measured at three points: when the swing of the mold 10 was finished, when the pin was turned back, and when foaming was finished. Table 4 shows the measurement results. And the completed three ALC panels 1 were cut | disconnected, the foaming nest 4 of the longitudinal cross section and the cross section was observed, and it evaluated by the above-mentioned reference | standard. The evaluation results are shown in Tables 5 to 9.

図20において、「発泡高さ」は原料スラリー2の発泡終了高さ(0mm)からスラリー上面までの距離を示す。表4において、「発泡高さ」は型枠10の底面からスラリー上面までの高さを示す。図20、表4において「貫入値」は、長さ400mmのスケール21(図7参照)を用いて測定したスラリー粘度を示す。なお、実施例1〜4、参考例5、比較例6では、原料スラリー2の発泡終了高さを670mm(目標値)に設定した。   In FIG. 20, “foaming height” indicates the distance from the foaming end height (0 mm) of the raw slurry 2 to the upper surface of the slurry. In Table 4, “foaming height” indicates the height from the bottom surface of the mold 10 to the top surface of the slurry. In FIG. 20 and Table 4, “penetration value” indicates the slurry viscosity measured using a scale 21 (see FIG. 7) having a length of 400 mm. In Examples 1 to 4, Reference Example 5, and Comparative Example 6, the foaming end height of the raw slurry 2 was set to 670 mm (target value).

揺動条件
揺動期間:原料スラリー2の上面が最上部鉄筋3を20mm越えてから発泡終了高さより10mm低い位置に達するまでの期間(図2に示す揺動の最適期間)
揺動時間:揺動期間の100%(約24分間休まず連続的に揺動)
揺動方向:最上部鉄筋3の延伸方向と一致する方向(型枠10の長さ方向)
揺動距離:型枠10の長さ寸法の約1%(10mm程度)
揺動加速度:0.05m/s2
揺動周期:40サイクル毎分
Oscillation condition oscillation period: A period from when the upper surface of the raw material slurry 2 exceeds the uppermost reinforcing bar 3 by 20 mm to reach a position 10 mm lower than the foaming end height (optimal period of oscillation shown in FIG. 2)
Oscillation time: 100% of the oscillation period (continuous oscillation without resting for about 24 minutes)
Oscillating direction: direction that coincides with the extending direction of the uppermost reinforcing bar 3 (length direction of the mold 10)
Swing distance: about 1% of the length of the mold 10 (about 10 mm)
Swing acceleration: 0.05m / s 2
Swing cycle: 40 cycles per minute

Figure 2009107274
Figure 2009107274

<比較例6>
表4、図20に示すように、比較例6では、スラリー上面が発泡終了高さよりも34mm低い位置に達したときにピン返しを行い、型枠10の揺動期間中に補強鉄筋11の上下方向位置の拘束を解除した。このとき、貫入値は184mmであり、発泡終了時の貫入値の51%と低かった。この結果、液状化状態のスラリーと一緒に補強鉄筋11が揺れ、型枠10に対する補強鉄筋11の位置が大きくずれていた。完成したALCパネル1は、発泡巣を評価するまでもなく、商品価値を認めることができなかった。
<Comparative Example 6>
As shown in Table 4 and FIG. 20, in Comparative Example 6, when the upper surface of the slurry reaches a position 34 mm lower than the foaming end height, the pin is turned back and the upper and lower sides of the reinforcing reinforcing bars 11 are moved during the swinging period of the mold 10. The restriction of the direction position was released. At this time, the penetration value was 184 mm, which was as low as 51% of the penetration value at the end of foaming. As a result, the reinforcing reinforcing bars 11 shook together with the liquefied slurry, and the position of the reinforcing reinforcing bars 11 with respect to the mold 10 was greatly displaced. The completed ALC panel 1 could not be recognized for commercial value without evaluating the foaming nest.

<実施例1>
実施例1では、スラリー上面が発泡終了高さよりも24mm低い位置に達したときにピン返しを行い、型枠10の揺動期間中に補強鉄筋11の上下方向位置の拘束を解除した。このとき、貫入値は220mmであり、発泡終了時の貫入値の61%であった。完成したALCパネル1の縦断面1aには、図1(e)に示すように、発泡巣4が5mm以下の長さに収まっていた。横断面については、表5に示すように、三枚のパネル共に、どのかぶり高さにも発泡巣が現れていなかった。
<Example 1>
In Example 1, pinning was performed when the upper surface of the slurry reached a position 24 mm lower than the foaming end height, and the restraint of the reinforcing bar 11 in the vertical direction was released during the swinging period of the mold 10. At this time, the penetration value was 220 mm, which was 61% of the penetration value at the end of foaming. In the longitudinal section 1a of the completed ALC panel 1, as shown in FIG. 1 (e), the foamed nest 4 was within a length of 5 mm or less. As for the cross section, as shown in Table 5, the foaming nest did not appear at any cover height in all three panels.

Figure 2009107274
Figure 2009107274

実施例1では、比較例6よりも遅いタイミングでピン返しを行ったので、最上部鉄筋3の付近でスラリーが液状化していても、それより下位で凝結を進行させ、スラリー全体としての鉄筋保持力を強化することができた。この結果、型枠10の揺動期間中であっても、補強鉄筋11を定位置に保持した状態で型枠10から解放し、最上部鉄筋3をスラリーの体積膨張に追従させて上昇させ、発泡巣4の生成を抑制できた。実施例1と比較例6とを対比すると、ピン返しのタイミングは、スラリー上面が発泡終了高さより30mm低い位置に達した以後、または、スラリー粘度が発泡終了時の粘度の55%(貫入値200mm)に達した以後、であるのが望ましいと云える。   In Example 1, since the pin return was performed at a timing later than that of Comparative Example 6, even if the slurry was liquefied in the vicinity of the uppermost rebar 3, the coagulation progressed lower than that to maintain the rebar as the whole slurry. I was able to strengthen my power. As a result, even during the swinging period of the mold 10, the reinforcing bar 11 is released from the mold 10 while being held in place, and the uppermost reinforcing bar 3 is raised following the volume expansion of the slurry, The formation of the foam nest 4 could be suppressed. When Example 1 and Comparative Example 6 are compared, the timing of pin return is after the upper surface of the slurry reaches a position 30 mm lower than the foaming end height, or the slurry viscosity is 55% of the viscosity at the end of foaming (penetration value 200 mm). It is desirable to be after reaching ().

実施例1における最上部鉄筋3の上昇について詳述すると、図5(a)の拘束位置からピン返しを行って図5(b)の解除位置にしたところ、補強鉄筋11全体がスラリーの体積膨張に追従させて上昇し、下段の連結筋14の個所で測って3〜4mm上昇した。この上昇に加え、最上部鉄筋3のうち副筋13のスパン間にある部分が、図5(b)に2点鎖線から実線への変化で示すように上方へたわみ変形し、そのたわみ量は3〜4mmであった。従って、最上部鉄筋3は、副筋13との接続部分では3〜4mm上昇し、副筋13のスパン間にある部分ではトータルで6〜8mm上昇した。   The rise of the uppermost reinforcing bar 3 in Example 1 will be described in detail. When the pin is turned back from the restraining position in FIG. 5A to the release position in FIG. 5B, the entire reinforcing reinforcing bar 11 expands the volume of the slurry. , And increased by 3 to 4 mm when measured at the location of the lower connecting bar 14. In addition to this rise, the portion of the uppermost reinforcing bar 3 between the spans of the secondary bars 13 bends upward as shown by the change from the two-dot chain line to the solid line in FIG. 5B, and the amount of deflection is It was 3-4 mm. Therefore, the uppermost reinforcing bar 3 was raised by 3 to 4 mm at the connection portion with the auxiliary muscle 13 and was raised by 6 to 8 mm in total at the portion between the spans of the auxiliary muscle 13.

<実施例2>
実施例2では、ピン返しのタイミングをさらに遅らせ、スラリー上面が発泡終了高さよりも10mm低い位置、つまり型枠10の揺動を終了する位置に達したときに、型枠10に対する補強鉄筋11の上下方向位置の拘束を解除した。このとき、貫入値は248mmであり、発泡終了時の貫入値の69%であった。完成したパネルの縦断面には、実施例1と同様、発泡巣が5mm以下の長さに収まっていた。横断面については、表6に示すように、三枚共にどのかぶり高さにも発泡巣が現れていなかった。
<Example 2>
In Example 2, the timing of the pin return is further delayed, and when the upper surface of the slurry reaches a position 10 mm lower than the foaming end height, that is, a position where the swing of the mold 10 is finished, the reinforcing reinforcing bar 11 with respect to the mold 10 is The restriction on the vertical position was released. At this time, the penetration value was 248 mm, which was 69% of the penetration value at the end of foaming. In the longitudinal section of the completed panel, the foamed nest was within a length of 5 mm or less, as in Example 1. As for the cross section, as shown in Table 6, the foaming nest did not appear at any cover height in all three sheets.

Figure 2009107274
Figure 2009107274

実施例2では、ピン返しのタイミングを揺動終了のタイミングと一致させたので、発泡巣を抑制するための操作を同時に行うことができた。このため、型枠10の揺動およびロッドピン15の回動を自動操作する場合に、ALCパネルの製造工程を容易に管理できる。その他の効果は、実施例1と同じである。   In Example 2, since the pin return timing was made coincident with the swing end timing, an operation for suppressing the foaming nest could be performed at the same time. For this reason, when the swing of the mold 10 and the rotation of the rod pin 15 are automatically operated, the manufacturing process of the ALC panel can be easily managed. Other effects are the same as those of the first embodiment.

<実施例3>
実施例3では、型枠10の揺動を終了した後において、スラリー上面が発泡終了高さよりも4mm低い位置に達したときに、ピン返しを行った。このとき、貫入値は285mmであり、発泡終了時の貫入値の79%であった。完成したパネルの縦断面には、発泡巣が5mm以下の長さに収まっていた。横断面については、表7に示すように、三枚共にどのかぶり高さにも発泡巣が現れていなかった。
<Example 3>
In Example 3, after the swing of the mold 10 was finished, when the upper surface of the slurry reached a position 4 mm lower than the foaming end height, the pin was turned back. At this time, the penetration value was 285 mm, which was 79% of the penetration value at the end of foaming. In the longitudinal section of the completed panel, the foamed nest was contained within a length of 5 mm or less. As for the cross section, as shown in Table 7, the foaming nest did not appear at any cover height in all three sheets.

Figure 2009107274
Figure 2009107274

実施例3により、ピン返しが揺動終了後のタイミングでも有効であることを確認できた。特に、揺動終了後は、型枠10が静止しているため、補強鉄筋11の全体に位置ずれが生じなかった。また、高粘度状態のスラリーにより補強鉄筋11の全体を強固に保持し、最上部鉄筋のみをスラリーの最終発泡に追従させ、発泡巣をタイミングよく抑制できた。   In Example 3, it was confirmed that the pin return was effective even at the timing after the end of the swinging. In particular, after the end of the swinging, the mold frame 10 was stationary, so that the position of the entire reinforcing steel bar 11 did not shift. Further, the entire reinforcing reinforcing bar 11 was firmly held by the high-viscosity slurry, and only the uppermost reinforcing bar was allowed to follow the final foaming of the slurry, thereby suppressing the foaming nest in a timely manner.

<実施例4>
実施例4では、揺動終了後において、スラリー上面が発泡終了高さよりも2mm低い位置に達したときに、ピン返しを行った。このとき、貫入値は303mmであり、発泡終了時の貫入値の84%であった。完成したパネルの縦断面1aには、図1(d)に示すように、最上部鉄筋3の上側に10mm程度の空隙4aが現れていた。横断面については、表8に示すように、三枚のパネル1,2,3のかぶり高さ10mmに、長さ2,3mmの発泡巣が散在していた。
<Example 4>
In Example 4, after the end of rocking, when the upper surface of the slurry reached a position 2 mm lower than the foaming end height, the pin was turned back. At this time, the penetration value was 303 mm, which was 84% of the penetration value at the end of foaming. In the vertical section 1a of the completed panel, a gap 4a of about 10 mm appeared on the upper side of the uppermost reinforcing bar 3, as shown in FIG. Regarding the cross section, as shown in Table 8, foamed nests having a length of 2, 3 mm were scattered at a cover height of 10 mm of the three panels 1, 2, 3.

Figure 2009107274
Figure 2009107274

実施例4により、ピン返しによる発泡巣の抑制効果が発泡終了間際で低下することを確認した。発泡終了間際のスラリーは補強鉄筋11の全体を強固に保持しているため、補強鉄筋11の上下方向位置の拘束を解除しても、最上部鉄筋3がスラリーの体積膨張に追従できない。このことから、ピン返しのタイミングは、スラリー上面が発泡終了高さより2mm低い位置に達する以前、または、スラリー粘度が発泡終了時の粘度の84%(貫入値303mm)に達する以前、であるのが望ましいと云える。   According to Example 4, it was confirmed that the effect of suppressing the foaming nest due to the pinning was reduced just before the end of foaming. Since the slurry immediately before the end of foaming firmly holds the entire reinforcing bar 11, even when the vertical position of the reinforcing bar 11 is released, the uppermost reinforcing bar 3 cannot follow the volume expansion of the slurry. From this, the timing of the pin return is before the upper surface of the slurry reaches a position 2 mm lower than the foaming end height, or before the slurry viscosity reaches 84% of the viscosity at the end of foaming (penetration value 303 mm). This is desirable.

<参考例5>
参考例5では、原料スラリーの発泡が終了した時点(図9において、発泡開始から約40分経過した時点)に、ピン返しを行った。このときの貫入値は360mm(100%)であった。完成したパネルの縦断面1aには、参考例2と同様、図10(a)に示すように、最上部鉄筋3の上側に10mm〜25mm程度の発泡巣4が現れていた。横断面についても、参考例2と同様、表9に示すように、かぶり高さ10mmに5〜7mmの発泡巣が現れ、かぶり高さ20mmに2,3mmの発泡巣が散在していた。
<Reference Example 5>
In Reference Example 5, pinning was performed at the time when foaming of the raw material slurry was completed (in FIG. 9, when about 40 minutes had elapsed from the start of foaming). The penetration value at this time was 360 mm (100%). In the longitudinal section 1a of the completed panel, as shown in FIG. 10A, the foamed nest 4 of about 10 mm to 25 mm appeared on the upper side of the uppermost reinforcing bar 3 as in Reference Example 2. Regarding the cross section, as shown in Table 9, 5 to 7 mm foamed nests appeared at a cover height of 10 mm, and 2,3 mm foamed nests were scattered at a cover height of 20 mm as in Reference Example 2.

Figure 2009107274
Figure 2009107274

参考例5との比較において、実施例1〜4のピン返しによる発泡巣抑制効果を再確認できた。なお、次の表10は、実施例1〜4、参考例5、比較例6のピン返しのタイミングを総合的に評価した結果を示す。   In comparison with Reference Example 5, it was possible to reconfirm the foaming nest suppression effect due to pinning in Examples 1 to 4. In addition, the following Table 10 shows the result of comprehensively evaluating the pin return timing of Examples 1 to 4, Reference Example 5 and Comparative Example 6.

Figure 2009107274
Figure 2009107274

本発明は、上記実施例に限定されるもではなく、以下に例示するように、発明の趣旨を逸脱しない範囲で適宜に変更して具体化することも可能である。
(1)補強鉄筋11を型枠10に上下方向位置及び水平方向位置を拘束する手段は、図5に示すロッドピン15に限定されず、型枠10の底面または側面に設けた上下方向位置及び水平方向位置を拘束部材を使用することもできる。
(2)スラリー粘度の測定には、図7に示すスケール21にかえ、毛管粘度計等を使用できる。複数の粘度計を用いて、原料スラリーの複数個所の粘度を測定してもよい。
(3)型枠10を揺動する期間は、参考例および実施例の期間に限定されず、原料スラリー2の配合に対応して、スラリー上面が最上部鉄筋3を越えた後から発泡終了高さに達するまでの任意の期間に設定することができる。
(4)型枠10の揺動装置には、往復回動する回転テーブルなども使用可能である。
The present invention is not limited to the above-described embodiments, and can be embodied with appropriate modifications without departing from the spirit of the invention, as exemplified below.
(1) The means for constraining the reinforcing reinforcing bar 11 to the mold 10 in the vertical position and the horizontal position is not limited to the rod pin 15 shown in FIG. 5, and the vertical position and horizontal position provided on the bottom surface or side surface of the mold 10. It is also possible to use a restraining member for the directional position.
(2) For measuring the viscosity of the slurry, a capillary viscometer or the like can be used instead of the scale 21 shown in FIG. You may measure the viscosity of the several places of a raw material slurry using a some viscometer.
(3) The period during which the mold 10 is swung is not limited to the period of the reference example and the example, and the foaming end height is increased after the upper surface of the slurry exceeds the uppermost reinforcing bar 3 corresponding to the blending of the raw slurry 2. It can be set to an arbitrary period until reaching this.
(4) A rotary table that reciprocally rotates can be used as the swinging device of the mold 10.

ALCパネルにおける発泡巣の生成メカニズムを説明する模式図である。It is a schematic diagram explaining the production | generation mechanism of the foaming nest in an ALC panel. 本発明によるパネル製造方法の概要を示す型枠の断面図である。It is sectional drawing of the formwork which shows the outline | summary of the panel manufacturing method by this invention. 本発明の実施例に使用する型枠とALCパネルを示す斜視図である。It is a perspective view which shows the formwork and ALC panel which are used for the Example of this invention. 内部に補強鉄筋がセットされた型枠の縦断面図である。It is a longitudinal cross-sectional view of the formwork in which the reinforcing bar was set inside. 補強鉄筋を型枠に上下方向位置及び水平方向位置を拘束するロッドピンを示す斜視図である。It is a perspective view which shows the rod pin which restrains an up-down direction position and a horizontal direction position to a reinforcement frame with a reinforcement frame. 比較例1において原料スラリーの発泡高さと強張りを示すグラフである。6 is a graph showing foaming height and strength of a raw material slurry in Comparative Example 1. スラリーの強張りを測定する方法を示す型枠の縦断面図である。It is a longitudinal cross-sectional view of a formwork which shows the method of measuring the tension of a slurry. 比較例1の方法を評価するALCパネルの斜視図である。It is a perspective view of the ALC panel which evaluates the method of the comparative example 1. 参考例1において原料スラリーの発泡高さと強張りを示すグラフである。4 is a graph showing foaming height and strength of a raw material slurry in Reference Example 1. 参考例1の方法を評価するALCパネルの斜視図である。It is a perspective view of the ALC panel which evaluates the method of the reference example 1. FIG. 参考例1の方法を評価するスラリーの発泡高さ変化を示すグラフである。It is a graph which shows the foaming height change of the slurry which evaluates the method of the reference example 1. FIG. 参考例1の方法を評価するスラリーの強張り変化を示すグラフである。It is a graph which shows the toughness change of the slurry which evaluates the method of the reference example 1. FIG. 参考例2の方法を示す型枠の正面図である。It is a front view of the formwork which shows the method of the reference example 2. 参考例3の方法を評価するグラフである。10 is a graph for evaluating the method of Reference Example 3. 参考例4の方法を示すパネルの縦断面図である。It is a longitudinal cross-sectional view of the panel which shows the method of the reference example 4. 比較例2の方法を示す型枠とパネルの縦断面図である。It is a longitudinal cross-sectional view of the formwork and panel which show the method of the comparative example 2. 比較例3の方法を示す型枠とパネルの縦断面図である。It is a longitudinal cross-sectional view of the formwork and panel which show the method of the comparative example 3. 比較例4の方法を示す型枠とパネルの縦断面図である。It is a longitudinal cross-sectional view of the formwork and panel which show the method of the comparative example 4. 比較例5の方法を示す型枠とパネルの縦断面図である。It is a longitudinal cross-sectional view of the formwork and panel which show the method of the comparative example 5. 実施例1〜4の方法においてピン返しのタイミングを示す立面図である。It is an elevation which shows the timing of a pin return in the method of Examples 1-4.

符号の説明Explanation of symbols

1 ALCパネル
2 原料スラリー
3 最上部鉄筋
4 発泡巣
10 型枠
11 補強鉄筋
15 ロッドピン
DESCRIPTION OF SYMBOLS 1 ALC panel 2 Raw material slurry 3 Top rebar 4 Foaming nest 10 Form 11 Reinforcement rebar 15 Rod pin

Claims (4)

補強鉄筋が上下方向位置及び水平方向位置を拘束された型枠内で原料スラリーを発泡させ、原料スラリーの上面が補強鉄筋の最上部鉄筋を越えた後における一部期間を少なくとも含む揺動期間に、型枠を揺動し、該揺動により原料スラリーの凝結を遅らせることに加え、原料スラリーの発泡終期に補強鉄筋の上下方向位置の拘束を解除し、最上部鉄筋を原料スラリーの体積膨張に追従させて上昇させることにより、最上部鉄筋の上側における発泡巣の生成を抑制することを特徴とする軽量気泡コンクリートパネルの製造方法。   In a swing period including at least a partial period after the upper surface of the raw material slurry exceeds the uppermost reinforcing bar of the reinforcing steel bar, the raw material slurry is foamed in the mold in which the reinforcing steel bar is constrained in the vertical position and the horizontal position. In addition to swinging the formwork and delaying the setting of the raw material slurry by the swinging, the restraint of the vertical position of the reinforcing reinforcing bar is released at the end of foaming of the raw material slurry, and the uppermost reinforcing bar is used for the volume expansion of the raw material slurry. A method for manufacturing a lightweight cellular concrete panel, characterized by suppressing the formation of a foaming nest on the upper side of the uppermost reinforcing bar by following and raising. 前記一部期間が、原料スラリーの上面が最上部鉄筋を20mm越えてから発泡終了高さより10mm低い位置に達するまでの最適期間から選ばれる30mm以上の範囲の期間である請求項1記載の軽量気泡コンクリートパネルの製造方法。   2. The lightweight bubble according to claim 1, wherein the partial period is a period in a range of 30 mm or more selected from an optimal period from when the upper surface of the raw material slurry exceeds 20 mm from the uppermost reinforcing bar to reach a position 10 mm lower than a foaming end height. A method for producing a concrete panel. 前記補強鉄筋の上下方向位置の拘束を解除するタイミングが、原料スラリーの上面が発泡終了高さより2mm〜30mm低い位置に達したときである請求項1又は2記載の軽量気泡コンクリートパネルの製造方法。   3. The method for producing a lightweight cellular concrete panel according to claim 1, wherein the timing of releasing the restraint of the vertical position of the reinforcing reinforcing bar is when the upper surface of the raw material slurry reaches a position 2 mm to 30 mm lower than the foaming end height. 前記補強鉄筋の上下方向位置の拘束を解除するタイミングが、原料スラリーの粘度が発泡終了時の粘度の55%〜84%に達したときである請求項1又は2記載の軽量気泡コンクリートパネルの製造方法。   The lightweight cellular concrete panel production according to claim 1 or 2, wherein the timing of releasing the restraint of the vertical position of the reinforcing reinforcing bar is when the viscosity of the raw slurry reaches 55% to 84% of the viscosity at the end of foaming. Method.
JP2007283730A 2007-10-31 2007-10-31 Method for producing lightweight cellular concrete panel Expired - Fee Related JP5080203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007283730A JP5080203B2 (en) 2007-10-31 2007-10-31 Method for producing lightweight cellular concrete panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007283730A JP5080203B2 (en) 2007-10-31 2007-10-31 Method for producing lightweight cellular concrete panel

Publications (3)

Publication Number Publication Date
JP2009107274A true JP2009107274A (en) 2009-05-21
JP2009107274A5 JP2009107274A5 (en) 2010-09-09
JP5080203B2 JP5080203B2 (en) 2012-11-21

Family

ID=40776317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007283730A Expired - Fee Related JP5080203B2 (en) 2007-10-31 2007-10-31 Method for producing lightweight cellular concrete panel

Country Status (1)

Country Link
JP (1) JP5080203B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131411A (en) * 1983-01-18 1984-07-28 株式会社明電舎 Manufacture of aerated concrete member
JPH02194908A (en) * 1989-01-24 1990-08-01 Matsushita Electric Works Ltd Manufacture of lightweight aerated concrete board
JPH07227828A (en) * 1994-02-18 1995-08-29 Onoda Autoclaved Light Weight Concrete Co Ltd Production of lightweight aerated concrete cured article
JPH09110548A (en) * 1995-10-24 1997-04-28 Sumitomo Metal Mining Co Ltd Production of lightweight aerated concrete, apparatus therefor and lightweight aerated concrete produced by the same production
JP2003311731A (en) * 2002-04-25 2003-11-05 Clion Co Ltd Set rod for suspending reinforcing rod basket
JP2004284302A (en) * 2003-03-25 2004-10-14 Clion Co Ltd Method for producing alc panel
JP2005103923A (en) * 2003-09-30 2005-04-21 Ooike Co Ltd Oscillation apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131411A (en) * 1983-01-18 1984-07-28 株式会社明電舎 Manufacture of aerated concrete member
JPH02194908A (en) * 1989-01-24 1990-08-01 Matsushita Electric Works Ltd Manufacture of lightweight aerated concrete board
JPH07227828A (en) * 1994-02-18 1995-08-29 Onoda Autoclaved Light Weight Concrete Co Ltd Production of lightweight aerated concrete cured article
JPH09110548A (en) * 1995-10-24 1997-04-28 Sumitomo Metal Mining Co Ltd Production of lightweight aerated concrete, apparatus therefor and lightweight aerated concrete produced by the same production
JP2003311731A (en) * 2002-04-25 2003-11-05 Clion Co Ltd Set rod for suspending reinforcing rod basket
JP2004284302A (en) * 2003-03-25 2004-10-14 Clion Co Ltd Method for producing alc panel
JP2005103923A (en) * 2003-09-30 2005-04-21 Ooike Co Ltd Oscillation apparatus

Also Published As

Publication number Publication date
JP5080203B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
US4124669A (en) Aerated concrete process
AU2006210160B2 (en) Process for manufacturing sound absorbing cement tile
JP5080203B2 (en) Method for producing lightweight cellular concrete panel
JP4981475B2 (en) Method for producing lightweight cellular concrete panel
JP2018145089A (en) Method for finely dividing air bubble in ready-mixed concrete
JP5302666B2 (en) Method for producing lightweight cellular concrete panel
JP3585293B2 (en) Manufacturing method of lightweight cellular concrete
JP4194398B2 (en) Manufacturing method of ALC panel
CN201695697U (en) Beating and vibrating construction structure of special-shaped reinforced concrete member
JP3562872B2 (en) Manufacturing method of lightweight cellular concrete
JP7187383B2 (en) lightweight aerated concrete panel
JP2017087697A (en) Method for producing concrete
JP3909721B2 (en) Manufacturing method of thin plate lightweight lightweight concrete building material
JP3234298B2 (en) A method for removing air bubbles above the main bars of lightweight cellular concrete
JP4115570B2 (en) Method for producing lightweight cellular concrete panel
JP4083248B2 (en) Method for producing lightweight cellular concrete
JPH0816036B2 (en) Method for manufacturing lightweight foam concrete
JP6883477B2 (en) Hardened concrete
JP2812172B2 (en) Method and apparatus for injecting raw material slurry for ALC production
JPH09110548A (en) Production of lightweight aerated concrete, apparatus therefor and lightweight aerated concrete produced by the same production
JPH1177630A (en) Manufacture of lightweight cellular concrete
JPS6410322B2 (en)
JPH07276347A (en) Light-weight foamed concrete panel
JPH0822544B2 (en) Method for manufacturing lightweight foam concrete
JPH06191961A (en) Production of lightweight cellular concrete molding

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5080203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees