JP2009102841A - Method of estimating concentration of specific ion in underground water, method of preparing hexa-diagram, and method and device for monitoring site to be monitored for displacement of ground - Google Patents

Method of estimating concentration of specific ion in underground water, method of preparing hexa-diagram, and method and device for monitoring site to be monitored for displacement of ground Download PDF

Info

Publication number
JP2009102841A
JP2009102841A JP2007273978A JP2007273978A JP2009102841A JP 2009102841 A JP2009102841 A JP 2009102841A JP 2007273978 A JP2007273978 A JP 2007273978A JP 2007273978 A JP2007273978 A JP 2007273978A JP 2009102841 A JP2009102841 A JP 2009102841A
Authority
JP
Japan
Prior art keywords
groundwater
concentration
electrical conductivity
ground displacement
monitoring target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007273978A
Other languages
Japanese (ja)
Inventor
Masaichi Sugawara
政一 菅原
Takeshi Oshima
武志 大嶋
Hiroyasu Inoue
博泰 井上
Yoshinori Matsuki
義則 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU KENSETSU KYOKAI
YM KIKAKU KK
Original Assignee
TOHOKU KENSETSU KYOKAI
YM KIKAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU KENSETSU KYOKAI, YM KIKAKU KK filed Critical TOHOKU KENSETSU KYOKAI
Priority to JP2007273978A priority Critical patent/JP2009102841A/en
Publication of JP2009102841A publication Critical patent/JP2009102841A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of estimating the concentration of a specific ion contained in an underground water at a site to be monitored for displacement of ground which can immediately estimate the concentration of the specific ion without actually measuring the concentration of the specific ion when monitoring the site to be monitored for displacement of ground. <P>SOLUTION: In this method of estimating the concentration of the specific ion in the underground water, the electric conductivity of the underground water in the site to be monitored for displacement of ground and the concentration of the specific ion in the underground water are measured before monitoring the site to be monitored. A regression line A indicating the intensity of the correlation between the electric conductivity of the underground water at the site to be monitored and the concentration of the specific ion in the underground water is obtained according to the measurement data. When the site to be monitored is monitored, the electric conductivity of the underground water at the site to be monitored is measured, and the measurement data is collated with the regression line A to estimate the concentration of the specific ion in the underground water. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、地盤変位監視対象地の地下水中に含まれる特定イオンの濃度を実際に測定することなく特定イオンの濃度を即座に推定可能とした特定イオンの濃度の推定方法、この推定された特定イオンの濃度の推定値を用いたヘキサダイヤグラムの作成方法、及び、地盤変位監視対象地の地盤変位に対して事前対策を早期に図れるような地盤変位予測を可能とした地盤変位監視対象地の監視方法及び監視装置に関する。   The present invention relates to a method for estimating the concentration of a specific ion, which can immediately estimate the concentration of the specific ion without actually measuring the concentration of the specific ion contained in the groundwater of the ground displacement monitoring target site. Hexadiagram creation method using estimated values of ion concentration, and ground displacement monitoring target land monitoring that enables ground displacement prediction to enable early countermeasures against ground displacement of ground displacement monitoring target ground The present invention relates to a method and a monitoring device.

岩石の風化状態とその進行、および、地すべりや崖崩れ等の斜面崩壊予測を、土や岩石の溶出試験や地下水の水質分析などの化学的な方法で行うに際し、水溶性成分の溶出量とその変化を整理,図化して解析するとともに、地下水や地表の湧水を定期的に採水して電気伝導率を測定し、電気伝導率に大きな変化が生じた場合に、地下水中に存在する水溶性成分のうち特定イオンの濃度を化学的に分析してヘキサダイヤグラムを作成する等の詳細な水質分析を行い、その結果をも解析に加えることにより、斜面の崩壊予測を行うことが知られている(例えば、特許文献1の全文補正内容の段落0013及び0014などを参照)。
地すべりや表層崩壊等の斜面崩壊による地盤変位が発生するとされる地区(以下、地盤変位監視対象地という)の地下水中に存在する水溶性成分のうち、ナトリウムイオンや硫酸イオン等の特定イオンの濃度を定期的に測定し、該イオンの濃度が急激に上昇する変化が認められた場合、地盤変位監視対象地に地盤変位が発生する可能性があるとして予測する地盤変位の予測方法が知られている(例えば、特許文献2の特許請求の範囲などを参照)。
しかしながら、実際には、特許文献2のように地盤変位監視対象地の特定イオンの濃度について過去から現在に至るまでの経時的な変化を観測しても現在の地盤変位監視対象地の地盤状態を把握できるだけで、将来において当該地盤変位監視対象地に地盤変位が発生するか否かを予測(予知、予兆検知、前兆検知)することはできないことが知られている(例えば、特許文献3の段落0004などを参照)。
特開2002−138453号公報 特開2002−339373号公報 特開2005−345110号公報
When conducting rock weathering and its progress, and predicting slope failures such as landslides and landslides by chemical methods such as soil and rock dissolution tests and groundwater quality analysis, In addition to organizing, charting and analyzing changes, periodically collecting groundwater and surface springs to measure electrical conductivity, and when there is a significant change in electrical conductivity, It is known to predict slope failures by conducting detailed water quality analysis, such as creating a hexadiagram by chemically analyzing the concentration of specific ions among the sexual components, and adding the results to the analysis as well. (For example, refer to paragraphs 0013 and 0014 of the full-text correction content of Patent Document 1).
Concentration of specific ions such as sodium ions and sulfate ions among the water-soluble components present in the groundwater in the area where ground displacement due to slope failure such as landslide and surface layer failure (hereinafter referred to as ground displacement monitoring site) Is known to be a ground displacement monitoring method that predicts that ground displacement may occur in the ground displacement monitoring ground if changes in the concentration of ions are observed to increase rapidly. (For example, refer to the claims of Patent Document 2).
In practice, however, the ground state of the current ground displacement monitoring target ground can be determined by observing a change over time from the past to the present in the concentration of specific ions in the ground displacement monitoring target ground as in Patent Document 2. It is known that it is not possible to predict (prediction, sign detection, sign detection) whether or not ground displacement will occur in the ground subject to be monitored in the future (for example, paragraph of Patent Document 3) 0004).
JP 2002-138453 A JP 2002-339373 A JP-A-2005-345110

特許文献1では地盤変位監視対象地の地下水を定期的に採水してその地下水の電気伝導度を測定している。特許文献2では地下水中の特定イオンの濃度を定期的に測定している。即ち、特許文献1や文献2では、電気伝導度の測定や特定イオンの濃度の測定を定期的に行うので、監視者が、電気伝導率の大きな変化を確認した時点や特定イオンの濃度の急激上昇を確認した時点において、既に地盤変位監視対象地に地すべりなどの地盤変位が起きていることがあり、地盤変位監視対象地の地盤変位に対して事前に対策を取ることができない場合がある。
また、地盤変位監視対象地の地盤状態等をより詳細に知るためにヘキサダイヤグラムを作成するには、複数種類のイオンの濃度をそれぞれ測定しなければならない。この場合、電気的な測定機器で濃度を測定できるイオンの種類は限られているため、電気的な測定機器で濃度を測定できないイオンについては化学的分析を行うことで当該イオンの濃度を測定していた。従って、ヘキサダイヤグラムの作成に必要な特定イオンの濃度の測定に手間や時間がかかってしまって、特定イオンの濃度に関する情報を即座に得ることができない。よって、ヘキサダイヤグラムも即座に作成することができず、地盤変位監視対象地の地盤状態等を容易かつ即座に知ることができなかった。
本発明は、上記課題に鑑みてなされたもので、地盤変位監視対象地の地盤変位に対して事前に対策を取ることができるような地盤変位予測を可能とした地盤変位監視対象地の監視方法及び監視装置、地盤変位監視対象地の監視時において、地盤変位監視対象地の地下水中に含まれる特定イオンの濃度を実際に測定することなく地盤変位監視対象地の地下水中に含まれる特定イオンの濃度を即座に推定可能とした地盤変位監視対象地の地下水中に含まれる特定イオンの濃度の推定方法、及び、この推定された特定イオンの濃度に基づいてヘキサダイヤグラムを即座にかつ容易に作成可能としたヘキサダイヤグラムの作成方法を提供する。
In patent document 1, the groundwater of ground displacement monitoring object ground is sampled regularly, and the electrical conductivity of the groundwater is measured. In patent document 2, the density | concentration of the specific ion in groundwater is measured regularly. That is, in Patent Documents 1 and 2, the electrical conductivity measurement and the specific ion concentration measurement are periodically performed. Therefore, when the monitor confirms a large change in the electrical conductivity or when the specific ion concentration rapidly increases. At the time of confirming the rise, ground displacement such as a landslide has already occurred in the ground displacement monitoring target ground, and it may not be possible to take measures in advance for the ground displacement of the ground displacement monitoring target ground.
Further, in order to create a hexadiagram in order to know the ground condition of the ground displacement monitoring target ground in more detail, it is necessary to measure the concentrations of a plurality of types of ions. In this case, since the types of ions whose concentration can be measured with an electrical measuring device are limited, the concentration of the ions that cannot be measured with an electrical measuring device is measured by performing a chemical analysis. It was. Therefore, it takes time and effort to measure the concentration of specific ions necessary for preparing a hexadiagram, and information regarding the concentration of specific ions cannot be obtained immediately. Therefore, a hexadiagram could not be created immediately, and the ground condition of the ground displacement monitoring target ground could not be easily and immediately known.
The present invention has been made in view of the above problems, and a ground displacement monitoring target land monitoring method that enables ground displacement prediction so that measures can be taken in advance with respect to the ground displacement of the ground displacement monitoring target ground. And monitoring devices, when monitoring the ground displacement monitoring target site, without actually measuring the concentration of specific ions contained in the ground water of the ground displacement monitoring target site, the specific ions contained in the ground water of the ground displacement monitoring target site A method for estimating the concentration of specific ions contained in the groundwater of the ground displacement monitoring site, which can immediately estimate the concentration, and a hexadiagram can be created quickly and easily based on the estimated concentration of specific ions A method for creating a hexadiagram is provided.

本発明における地下水中の特定イオンの濃度推定方法は、地盤変位監視対象地を監視する前に、地盤変位監視対象地エリアの地下水の電気伝導度と地下水中の特定イオンの濃度とを測定し、これら測定データに基づいて、地盤変位監視対象地の地下水の電気伝導度と地下水中の特定イオンの濃度との相関の強さを示す回帰直線を求めておき、地盤変位監視対象地の監視の際に、地盤変位監視対象地の地下水の電気伝導度を測定し、この測定データを回帰直線に照合することによって地下水中の特定イオンの濃度を推定したことを特徴とする。
特定イオンが、複数の陽イオンの集合である陽イオン群、複数の陰イオンの集合である陰イオン群、単体イオンであることも特徴とする。
本発明におけるヘキサダイヤグラムの作成方法は、上記特定イオンの濃度推定方法により得られた複数の特定イオンの濃度推定値に基づいてヘキサダイヤグラムを作成したことを特徴とする。
地盤変位監視対象地エリアの地下水の電気伝導度と地下水中の単体イオンの濃度との相関の強さを示す回帰直線から地下水の電気伝導度の測定データに対応する単体イオンの濃度の推定値を上記推定方法で算出するとともに、地盤変位監視対象地エリアの地下水の電気伝導度と地下水中の上記単体イオンを含む陽イオン群又は陰イオン群の濃度との相関の強さを示す回帰直線から地下水の電気伝導度の測定データに対応する陽イオン群又は陰イオン群の濃度の推定値を上記推定方法で算出し、陽イオン群又は陰イオン群の濃度の推定値から単体イオンの濃度の推定値を引くことによって陽イオン群又は陰イオン群から単体イオンを除いたイオン又はイオン群の濃度の推定値を求めたことも特徴とする。
本発明における地盤変位監視対象地の監視方法は、地盤変位監視対象地の監視の際に、地盤変位監視対象地に電気伝導度計測器を設置して、地盤変位監視対象地の地下水の電気伝導度を電気伝導度計測器で常時測定し、測定された電気伝導度の測定データを監視センターに送信したことを特徴とする。
本発明における地盤変位監視対象地の監視方法に用いる監視装置は、地盤変位監視対象地から地下水を抜くための地下水水抜きパイプと、地下水水抜きパイプを通って地盤変位監視対象地から抜かれた地下水を一時留めた後に排水する地下水測定用貯排水部と、地下水測定用貯排水部を通過する地下水の電気伝導度を常時測定する電気伝導度計測器と、電気伝導度計測器で計測された電気伝導度のデータを監視センターに送信する通信機とを備えたことを特徴とする。
The method for estimating the concentration of specific ions in groundwater in the present invention measures the electrical conductivity of groundwater in the ground displacement monitoring target area and the concentration of specific ions in the groundwater before monitoring the ground displacement monitoring target site, Based on these measurement data, a regression line indicating the strength of the correlation between the groundwater electrical conductivity of the ground displacement monitoring site and the concentration of specific ions in the groundwater is obtained, and the ground displacement monitoring site is monitored. In addition, it is characterized in that the concentration of specific ions in the groundwater is estimated by measuring the electrical conductivity of groundwater in the ground displacement monitoring target area and comparing the measured data with a regression line.
It is also characterized in that the specific ion is a cation group that is a set of a plurality of cations, an anion group that is a set of a plurality of anions, or a single ion.
The hexadiagram generation method according to the present invention is characterized in that a hexadiagram is generated based on a plurality of specific ion concentration estimation values obtained by the specific ion concentration estimation method.
Estimate the concentration of single ions corresponding to the measured data of groundwater conductivity from the regression line indicating the strength of the correlation between the groundwater conductivity in the ground displacement monitoring area and the concentration of single ions in the groundwater. In addition to calculating with the above estimation method, groundwater from the regression line indicating the strength of the correlation between the electrical conductivity of groundwater in the ground displacement monitoring area and the concentration of cations or anions containing single ions in groundwater Calculate the estimated value of the concentration of the cation group or anion group corresponding to the measurement data of the electrical conductivity of the above by the above estimation method, and estimate the concentration of the single ion from the estimated value of the concentration of the cation group or anion group It is also characterized in that an estimated value of the concentration of ions or ion groups obtained by subtracting single ions from the cation group or anion group is obtained by subtracting.
According to the present invention, the ground displacement monitoring target ground monitoring method comprises the step of installing an electrical conductivity measuring device in the ground displacement monitoring target ground when monitoring the ground displacement monitoring target ground, and conducting groundwater electrical conduction in the ground displacement monitoring target ground. The degree of electrical conductivity is constantly measured by an electrical conductivity measuring instrument, and the measured electrical conductivity measurement data is transmitted to a monitoring center.
The monitoring device used in the ground displacement monitoring target site monitoring method according to the present invention includes a groundwater drainage pipe for draining groundwater from the ground displacement monitoring target site, and a groundwater drained from the ground displacement monitoring target site through the groundwater drainage pipe. The drainage unit for groundwater measurement that drains water after being temporarily stopped, the electrical conductivity meter that constantly measures the electrical conductivity of groundwater that passes through the groundwater measurement reservoir and drainage unit, and the electricity measured by the electrical conductivity meter And a communication device that transmits conductivity data to a monitoring center.

本発明による地下水中の特定イオンの濃度推定方法によれば、地盤変位監視対象地の監視の際に、地盤変位監視対象地の地下水中に含まれる特定イオンの濃度を実際に測定することなく、地盤変位監視対象地の地下水中に含まれる特定イオンの濃度を即座に推定できるので、ヘキサダイヤグラムを作成するために必要な情報である特定イオンの濃度に関する情報としての濃度推定値を、素早く、かつ、容易に知得できる。
本発明によるヘキサダイヤグラムの作成方法によれば、特定イオンの濃度推定値に基づいてヘキサダイヤグラムを即座に作成することができ、地盤変位監視対象地の地盤状態等を容易かつ即座に知ることができる。
本発明における地盤変位監視対象地の監視方法によれば、地盤変位監視対象地の地盤変位の前兆の可能性を示す地下水の電気伝導度の変化をいち早く確認でき、地盤変位監視対象地の地盤変位に対して事前に対策を取ることができるような地盤変位予測が可能となる。
本発明による監視装置によれば、上記監視方法を実現できる。
According to the method for estimating the concentration of specific ions in groundwater according to the present invention, without actually measuring the concentration of specific ions contained in the groundwater of the ground displacement monitoring target ground, when monitoring the ground displacement monitoring target ground, Because the concentration of specific ions contained in the groundwater of the ground displacement monitoring target area can be estimated immediately, the concentration estimation value as information related to the concentration of specific ions, which is the information necessary to create a hexadiagram, can be quickly and Easy to learn.
According to the method for creating a hexadiagram according to the present invention, a hexadiagram can be created immediately based on the estimated value of the concentration of specific ions, and the ground state of the ground displacement monitoring target ground can be easily and immediately known. .
According to the ground displacement monitoring target land monitoring method of the present invention, it is possible to quickly confirm the change in the electrical conductivity of groundwater, which indicates the possibility of a sign of ground displacement in the ground displacement monitoring target ground. Therefore, it is possible to predict the ground displacement so that countermeasures can be taken in advance.
According to the monitoring apparatus of the present invention, the above monitoring method can be realized.

最良の形態1
図9は地盤変位監視対象地の監視装置及び監視方法を示す。地盤変位監視対象地の監視方法は、地盤変位監視対象地2の監視の際に、地盤変位監視対象地2に電気伝導度計測器7を設置して、地盤変位監視対象地2の地下水5の電気伝導度(ms/m)を電気伝導度計測器7で常時測定し、通信機8が、その電気伝導度の測定データを、例えば、数秒間隔、数十秒間隔、数分間隔、数十分間隔、数時間間隔、数十時間間隔などの所定時間間隔でサンプリングして所定時間間隔で図外の監視センターに送信する。所定時間間隔は、最大でも1日間隔程度とする。あるいは、通信機が、例えば、半日、一日、数日のような所定期間中に電気伝導度計測器で常時測定された電気伝導度の測定データ群(データ履歴)を、所定期間経過する毎に監視センターに送信する。所定期間は、最大でも数日程度とする。
Best form 1
FIG. 9 shows a monitoring device and a monitoring method for a ground displacement monitoring target site. The ground displacement monitoring target site is monitored by installing an electrical conductivity measuring instrument 7 in the ground displacement monitoring target site 2 and monitoring the ground water 5 of the ground displacement monitoring target site 2 when monitoring the ground displacement monitoring target site 2. The electrical conductivity (ms / m) is constantly measured by the electrical conductivity measuring instrument 7, and the communication device 8 measures the measured electrical conductivity data at intervals of several seconds, several tens of seconds, several minutes, several tens, for example. Sampling is performed at predetermined time intervals such as minute intervals, several hour intervals, and several tens of hour intervals, and transmitted to a monitoring center outside the figure at predetermined time intervals. The predetermined time interval is at most about one day. Alternatively, for example, every time a predetermined period elapses, the communication device measures the electrical conductivity measurement data group (data history) that is constantly measured by the electrical conductivity measuring instrument during a predetermined period such as half a day, one day, or several days. To the monitoring center. The predetermined period is about several days at the maximum.

地盤変位監視対象地の監視方法に使用する監視装置1を説明する。図9に示すように、監視装置1は、地盤変位監視対象地2に形成された横穴3に差し込まれた地下水水抜きパイプ4と、地下水水抜きパイプ4を通って地盤変位監視対象地2から抜かれた地下水5を一時留めた後に排水する樋などにより形成された地下水測定用貯排水部6と、地下水測定用貯排水部6を通過する地下水の電気伝導度を常時測定する電気伝導度計測器7と、電気伝導度計測器7で計測された電気伝導度のデータを所定時間間隔でサンプリングして所定時間間隔で図外の監視センターに送信したり、所定期間中に電気伝導度計測器7で常時測定された電気伝導度の測定データ群(データ履歴)を所定期間経過する毎に監視センターに有線9又は無線で送信する通信機8とを備える。電気伝導度計測器7は、計測プローブ7aと計測器本体7bとを備える。通信機8は、電気伝導度計測器7で計測された電気伝導度のデータを所定時間間隔でサンプリングして所定時間間隔で監視センターに送信する場合には、図外のデータ記憶手段及びサンプリング手段を備え、所定期間中に電気伝導度計測器7で常時測定された電気伝導度の測定データ群(データ履歴)を所定期間経過する毎に監視センターに送信する場合には、図外のデータ記憶手段及び所定期間設定用タイマを備える。   The monitoring apparatus 1 used for the ground displacement monitoring target land monitoring method will be described. As shown in FIG. 9, the monitoring device 1 passes from the ground displacement monitoring target site 2 through the groundwater drainage pipe 4 inserted into the horizontal hole 3 formed in the ground displacement monitoring target site 2 and the groundwater drainage pipe 4. Groundwater measurement storage / drainage part 6 formed by dredging drained groundwater 5 after being temporarily removed, and electrical conductivity measuring instrument that constantly measures the electrical conductivity of groundwater passing through the groundwater measurement storage / drainage part 6 7 and electrical conductivity data measured by the electrical conductivity measuring instrument 7 are sampled at a predetermined time interval and transmitted to a monitoring center outside the figure at a predetermined time interval, or the electrical conductivity measuring instrument 7 during a predetermined period. And a communicator 8 that transmits a measurement data group (data history) of electrical conductivity measured constantly at a monitoring center by wire 9 or wirelessly every time a predetermined period elapses. The electrical conductivity measuring instrument 7 includes a measuring probe 7a and a measuring instrument main body 7b. When the communicator 8 samples the electrical conductivity data measured by the electrical conductivity measuring instrument 7 at a predetermined time interval and transmits it to the monitoring center at a predetermined time interval, the data storage means and sampling means (not shown) In the case of transmitting a measurement data group (data history) of electrical conductivity constantly measured by the electrical conductivity measuring instrument 7 during a predetermined period to a monitoring center every time a predetermined period elapses, a data storage outside the figure is stored. Means and a predetermined period setting timer.

すなわち、監視装置1によれば、電気伝導度計測器7が、地下水水抜きパイプ4を通って地下水測定用貯排水部6に流れ込んだ地盤変位監視対象地2からの地下水5の電気伝導度を常時計測し、通信機8が、電気伝導度計測器7で計測された電気伝導度のデータを所定時間間隔で監視センターに送信したり、所定期間中に電気伝導度計測器で常時測定された電気伝導度の測定データ群を所定期間経過する毎に監視センターに送信する。   That is, according to the monitoring device 1, the electrical conductivity measuring instrument 7 measures the electrical conductivity of the groundwater 5 from the ground displacement monitoring target site 2 that has flowed into the groundwater measurement storage / drainage part 6 through the groundwater drain pipe 4. The communication device 8 transmits the electrical conductivity data measured by the electrical conductivity measuring instrument 7 to the monitoring center at predetermined time intervals, or is constantly measured by the electrical conductivity measuring instrument during the predetermined period. A measurement data group of electrical conductivity is transmitted to the monitoring center every time a predetermined period elapses.

最良の形態1による地盤変位監視対象地の監視方法及び監視装置によれば、地盤変位監視対象地2の監視の際に、地盤変位監視対象地2の地下水5の電気伝導度を電気伝導度計測器7で常時測定し、通信機8によってその電気伝導度の測定データを監視センターに送信するので、監視センターの監視員が、地盤変位監視対象地2の地下水5の電気伝導度の変化を、変化が生じた時点から早い時期に確認することができるようになる。このため、監視センターの監視員が、地盤変位監視対象地2の地盤変位の前兆の可能性を示す地下水5の電気伝導度の変化をいち早く確認でき、地盤変位監視対象地2の地盤変位に対して事前に対策を取ることができるようになる。即ち、地盤変位監視対象地2の地盤変位に対して事前に対策を取ることができるような地盤変位予測が可能となる。   According to the monitoring method and the monitoring apparatus for the ground displacement monitoring target site according to the best mode 1, when the ground displacement monitoring target site 2 is monitored, the electrical conductivity of the ground water 5 of the ground displacement monitoring target site 2 is measured. Since the measurement data of the electrical conductivity is transmitted to the monitoring center by the communication device 8 at all times, the monitor of the monitoring center changes the electrical conductivity of the groundwater 5 in the ground displacement monitoring target area 2. It becomes possible to confirm at an early stage from the time when the change occurs. For this reason, the monitoring staff of the monitoring center can quickly confirm the change in the electrical conductivity of the groundwater 5 indicating the possibility of the ground displacement of the ground displacement monitoring target land 2, and the ground displacement of the ground displacement monitoring target ground 2 You can take measures in advance. That is, it is possible to predict the ground displacement so that a countermeasure can be taken in advance for the ground displacement of the ground displacement monitoring target ground 2.

最良の形態2
図1乃至図6を参照し、地盤変位監視対象地2の地下水5中に含まれる特定イオンの濃度推定方法を説明する。まず、地盤変位監視対象地2を監視する前に、事前に、地盤変位監視対象地2あるいは地盤変位監視対象地2の近傍などの地盤変位監視対象地エリアを掘削して複数の異なる深度地点や複数の異なる場所地点で地下水を採取する。次に、これら採取した複数の地下水毎に、地下水の電気伝導度と地下水中の特定イオンの濃度とを測定する。ここでは、複数の地下水の電気伝導度のデータと、この電気伝導度のデータと相関性が強い特定イオンの濃度のデータとを測定する。尚、特定イオンの濃度の測定は、電気的に測定できる特定イオンの場合は電気的な測定器で濃度を測定し、電気的に測定できない特定イオンの場合は化学的な分析により濃度を測定する。地下水の電気伝導度は、最良の形態1と同じ電気伝導度計測器7を用いて測定する。次に、図1乃至図6に示すように、地下水の電気伝導度と地下水中の特定イオンの濃度との相関の強さを示す回帰直線Aを求める。
Best form 2
With reference to FIG. 1 thru | or FIG. 6, the density | concentration estimation method of the specific ion contained in the groundwater 5 of the ground displacement monitoring object ground 2 is demonstrated. First, before monitoring the ground displacement monitoring target site 2, the ground displacement monitoring target site 2 such as the ground displacement monitoring target site 2 or the vicinity of the ground displacement monitoring target site 2 is excavated in advance to obtain a plurality of different depth points or Collect groundwater at several different locations. Next, the electrical conductivity of the groundwater and the concentration of specific ions in the groundwater are measured for each of the collected groundwaters. Here, a plurality of groundwater electrical conductivity data and specific ion concentration data having a strong correlation with the electrical conductivity data are measured. The concentration of specific ions is measured by an electrical measuring instrument for specific ions that can be measured electrically, and is measured by chemical analysis for specific ions that cannot be measured electrically. . The electrical conductivity of groundwater is measured using the same electrical conductivity measuring instrument 7 as in the best mode 1. Next, as shown in FIGS. 1 to 6, a regression line A indicating the strength of the correlation between the electrical conductivity of groundwater and the concentration of specific ions in the groundwater is obtained.

即ち、本発明者は、図1乃至図6に示すように、地下水の電気伝導度と地下水中の特定イオンの濃度とが強い相関性を示すことを見出した。地下水の電気伝導度とイオンの濃度とが強い相関性を示す特定イオンは、具体的には、図1に示したCa++、図2に示した陽イオン群(Ca+++Mg++)、図3に示した複数の陽イオン群(Ca+++Na+K+Mg++)、図4に示したSO −−、図5に示したHCO 、図6に示した複数の陰イオン群(SO −−+HCO +Cl)である。特に、図3;図6に示すように、複数の陽イオン群(Ca+++Na+K+Mg++)や複数の陰イオン群(SO −−+HCO +Cl)の濃度と電気伝導度との相関性が強いことがわかる。尚、図1乃至図8においては、分子数を大文字で示し、イオンの符号を省略している。 That is, the present inventors have found that the electrical conductivity of groundwater and the concentration of specific ions in the groundwater show a strong correlation as shown in FIGS. Specific ions showing a strong correlation between the electrical conductivity of the groundwater and the concentration of ions are specifically the Ca ++ shown in FIG. 1, the cation group (Ca ++ + Mg ++ ) shown in FIG. 2, and FIG. a plurality of cationic group shown in (Ca ++ + Na + + K + + Mg ++), SO 4 shown in FIG. 4 -, HCO 3 shown in FIG. 5 - a plurality of anion group shown in FIG. 6 (SO 4 −− + HCO 3 + Cl ). In particular, FIG. 3; 6, a plurality of cationic groups (Ca ++ + Na + + K + + Mg ++) and a plurality of anionic groups (SO 4 - + HCO 3 - + Cl -) concentration and the electrical conductivity It can be seen that there is a strong correlation with. In FIG. 1 to FIG. 8, the number of molecules is shown in capital letters, and the symbol of ions is omitted.

例えば、図1乃至図6に示すように、地下水毎の電気伝導度(ms/m)のデータをy座標、地下水中の複数の陽イオン(Ca+++Na+K+Mg++)の濃度(meq/l)のデータをx座標としてxy平面に点表示し、例えばガウスの最小二乗法を用いて点の相関の強さを示す回帰直線Aを求める。尚、図1乃至図6において、yで示した式は回帰直線A、Rで示した値は相関係数である。 For example, as shown in FIGS. 1 to 6, the concentration (meq electrical conductivity of each groundwater (ms / m) y-coordinate data of a plurality of cations in groundwater (Ca ++ + Na + + K + + Mg ++) / L) is displayed as points on the xy plane as x-coordinates, and a regression line A indicating the strength of point correlation is obtained using, for example, the Gaussian least squares method. Note that in FIGS. 1 to 6, wherein indicated by y is the value represented by the regression line A, R 2 is a correlation coefficient.

本形態では、地下水の電気伝導度のデータと地下水中の特定イオンの濃度のデータとが強い相関性を示すことに着目し、事前に、地下水の電気伝導度と地下水中の特定イオンの濃度との相関の強さを示す回帰直線Aを求めておき、地盤変位監視対象地2の監視の際において、上述した監視装置1の通信機8を介して送信されてきた電気伝導度の測定データが回帰直線Aに照合されることにより地下水中の特定イオンの濃度が推定される。   In this form, paying attention to the fact that the electrical conductivity data of groundwater and the concentration data of specific ions in groundwater show a strong correlation, in advance, the electrical conductivity of groundwater and the concentration of specific ions in groundwater The regression line A indicating the strength of the correlation is obtained, and when the ground displacement monitoring target site 2 is monitored, the measurement data of the electrical conductivity transmitted via the communication device 8 of the monitoring device 1 described above is obtained. By collating with the regression line A, the concentration of specific ions in the groundwater is estimated.

最良の形態2によれば、地盤変位監視対象地2の監視の際において、地盤変位監視対象地2の地下水中に含まれる特定イオンの濃度を実際に測定することなく、地盤変位監視対象地2の監視の際に測定された地盤変位監視対象地2の地下水の電気伝導度の測定データを、事前に測定した地盤変位監視対象地の地下水の電気伝導度の測定データと地下水中の特定イオンの濃度の測定データとの相関の強さを示す回帰直線Aに照合することによって、地盤変位監視対象地2の地下水中に含まれる特定イオンの濃度を即座に推定できる。これにより、最良の形態3で述べるヘキサダイヤグラムを作成するために必要な情報である特定イオンの濃度に関する情報としての濃度推定値を素早く(リアルタイムに)、かつ、容易に得ることができる。   According to the best mode 2, when monitoring the ground displacement monitoring target site 2, the ground displacement monitoring target site 2 is not actually measured without actually measuring the concentration of specific ions contained in the groundwater of the ground displacement monitoring target site 2. The groundwater electrical conductivity measurement data of the ground displacement monitoring site 2 measured during the monitoring of the ground displacement, the groundwater electrical conductivity measurement data of the ground displacement monitoring site previously measured and the specific ions in the groundwater By collating with the regression line A indicating the strength of the correlation with the concentration measurement data, the concentration of the specific ions contained in the ground water of the ground displacement monitoring target site 2 can be estimated immediately. As a result, it is possible to quickly and easily obtain a concentration estimation value as information relating to the concentration of specific ions, which is information necessary for creating the hexadiagram described in the best mode 3.

尚、地盤変位監視対象地2の監視の際において、地盤変位監視対象地2に特定イオンの濃度を電気的に測定できる図外の電気的なイオン濃度測定器を設置して特定イオンの濃度を常時測定することも考えられるが、現在、このような電気的なイオン濃度測定器で測定可能な特定イオンは、ナトリウムイオンや塩化物イオン等のような限られた特定イオンだけであるので、地盤変位監視対象地2に電気的なイオン濃度測定器を設置することによってヘキサダイヤグラムを作成するために必要なすべての特定イオンの濃度を測定することは現状では不可能である。また、地盤変位監視対象地2の監視の際において、電気的なイオン濃度測定器で測定できない特定イオンの濃度を化学的な分析により測定する場合は、時間がかかってしまうので、ヘキサダイヤグラムを作成するために必要なすべての特定イオンの濃度データを即座に得ることができず、地盤変位監視対象地2の地盤状態を知るために必要なヘキサダイヤグラムをリアルタイムに作成できない。   When monitoring the ground displacement monitoring target site 2, an electrical ion concentration measuring device (not shown) that can electrically measure the concentration of specific ions is installed in the ground displacement monitoring target site 2 to determine the concentration of specific ions. It is conceivable to always measure, but at present, the specific ions that can be measured with such an electric ion concentration meter are only limited specific ions such as sodium ions and chloride ions. At present, it is impossible to measure the concentrations of all the specific ions necessary for preparing a hexadiagram by installing an electrical ion concentration measuring device at the displacement monitoring target site 2. Also, when monitoring the ground displacement monitoring target site 2, it takes time to measure the concentration of specific ions that cannot be measured with an electrical ion concentration measuring device by chemical analysis, so a hexa diagram is created. Therefore, it is not possible to immediately obtain concentration data of all the specific ions necessary for the purpose, and it is not possible to create a hexadiagram necessary for knowing the ground condition of the ground displacement monitoring target ground 2 in real time.

一方、最良の形態2によれば、地盤変位監視対象地2の監視の際において、地盤変位監視対象地2の地下水中に含まれる特定イオンの濃度を実際に測定することなく、ヘキサダイヤグラムを作成するために必要なすべての特定イオンの濃度の推定値を即座に得ることができるので、地盤変位監視対象地2の地盤の状態を知るために必要なヘキサダイヤグラムをリアルタイムに作成できるようになる。   On the other hand, according to the best mode 2, when monitoring the ground displacement monitoring target site 2, a hexadiagram is created without actually measuring the concentration of specific ions contained in the groundwater of the ground displacement monitoring target site 2 Since it is possible to immediately obtain the estimated values of the concentrations of all the specific ions necessary for the purpose, it is possible to create a hexadiagram necessary for knowing the ground state of the ground displacement monitoring target ground 2 in real time.

最良の形態3
図1乃至図8を参照し、ヘキサダイヤグラムの作成手法を説明する。最良の形態2において、監視装置1の通信機8を介して送信されてきた電気伝導度の測定データを図1乃至図6の回帰直線Aに照合してその電気伝導度の測定データに対応する特定イオンの濃度の値を推定する。そして、この特定イオンの濃度の推定値を用いて図8に示すようなヘキサダイヤグラムを作成する。
Best form 3
A method for creating a hexadiagram will be described with reference to FIGS. In the best mode 2, the electrical conductivity measurement data transmitted via the communication device 8 of the monitoring device 1 is collated with the regression line A in FIGS. 1 to 6 to correspond to the electrical conductivity measurement data. Estimate the concentration of specific ions. And the hexadiagram as shown in FIG. 8 is created using the estimated value of the density | concentration of this specific ion.

電気伝導度の測定データに所定値以上の大きな変化が現れた場合、例えば、電気伝導度の測定データが、ある値から大きく変化して60(ms/m)になった場合において、図7を参照しながらヘキサダイヤグラムを作成する方法を説明する。
まず、図1から、電気伝導度60に対するCa++の濃度の推定値は6.02であることがわかる。次に、図2から、電気伝導度60に対する(Ca+++Mg++)の濃度の推定値は7.35であることがわかる。従って、(Ca+++Mg++)の濃度の推定値は7.35からCa++の濃度の推定値は6.02を引くことで、電気伝導度60に対するMg++の濃度の推定値1.33を求めることができる。次に、図3から、電気伝導度60に対する(Ca+++Na+K+Mg++)の推定値は8.23であることがわかる。この(Ca+++Na+K+Mg++)の推定値8.23から(Ca+++Mg++)の濃度の推定値7.35を引くことで、電気伝導度60に対する(Na+K)の濃度の推定値0.88を求めることができる。図4から、電気伝導度60に対するSO −−の濃度の推定値は3.17であることがわかる。図5から、電気伝導度60に対するHCO の濃度の推定値は2.62であることがわかる。図6から、電気伝導度60に対する(SO −−+HCO +Cl)の濃度の推定値は5.79であることがわかる。そして、この(SO −−+HCO +Cl)の濃度の推定値5.79からSO −−の濃度の推定値3.17とHCO の濃度の推定値2.62とを引くことで、電気伝導度60に対するClの濃度の推定値0.00を求めることができる。
When a large change of a predetermined value or more appears in the measurement data of electric conductivity, for example, when the measurement data of electric conductivity greatly changes from a certain value to 60 (ms / m), FIG. A method for creating a hexadiagram will be described with reference to FIG.
First, it can be seen from FIG. 1 that the estimated value of the concentration of Ca ++ with respect to the electric conductivity 60 is 6.02. Next, it can be seen from FIG. 2 that the estimated value of the concentration of (Ca ++++ Mg ++ ) with respect to the electric conductivity 60 is 7.35. Accordingly, the estimated value of the concentration of (Ca ++ + Mg ++ ) is subtracted from 7.35 from the estimated value of the concentration of Ca ++ by 6.02, thereby obtaining an estimated value 1.33 of the concentration of Mg ++ with respect to the electrical conductivity of 60. Can be sought. Next, it can be seen from FIG. 3 that the estimated value of (Ca ++ + Na + + K + + Mg ++ ) for electrical conductivity 60 is 8.23. Concentration of (Ca ++ + Na + + K + + Mg ++) estimate from 8.23 (Ca ++ + Mg ++) estimates 7.35 of the concentration of by subtracting the, to the electric conductivity of 60 (Na + + K +) An estimated value of 0.88 can be obtained. FIG. 4 shows that the estimated value of the concentration of SO 4 −− with respect to the electric conductivity 60 is 3.17. FIG. 5 shows that the estimated value of the concentration of HCO 3 with respect to the electric conductivity 60 is 2.62. FIG. 6 shows that the estimated value of the concentration of (SO 4 −− + HCO 3 + Cl ) with respect to the electric conductivity 60 is 5.79. Then, the estimated value 3.17 of the concentration of SO 4 and the estimated value 2.62 of the concentration of HCO 3 are subtracted from the estimated value 5.79 of the concentration of (SO 4 + HCO 3 + Cl ). Thus, an estimated value 0.00 of the Cl concentration with respect to the electric conductivity 60 can be obtained.

以上により、電気伝導度60の時の、Ca++の濃度の推定値6.02、+Mg++の濃度の推定値1.33、(Na+K)の濃度の推定値0.88、SO −−の濃度の推定値3.17、HCO の濃度の推定値2.62、Clの濃度の推定値0.00が求まり、これに基づいて、図8(a)に示すような、電気伝導度60の際のヘキサダイヤグラムを作成できる。監視者は、このように作成されたヘキサダイヤグラムを見て地盤変位監視対象地2の地盤状態の詳細を把握できる。
尚、図8(b)のヘキサグラムは、図1乃至図6に基づいて作成した電気伝導度20の際のヘキサダイヤグラムである。
As described above, when the electric conductivity is 60, the estimated value of the concentration of Ca ++ is 6.02, the estimated value of the concentration of + Mg ++ is 1.33, the estimated value of the concentration of (Na + + K + ) is 0.88, and SO 4. - the concentration of the estimated value 3.17, HCO 3 - estimates 2.62 density, Cl - Motomari an estimate 0.00 at a concentration of, based on this, as shown in FIG. 8 (a) A hexadiagram with an electrical conductivity of 60 can be created. The monitor can grasp the details of the ground condition of the ground displacement monitoring target ground 2 by looking at the hexadiagram thus created.
In addition, the hexagram of FIG.8 (b) is a hexadiagram in the case of the electrical conductivity 20 produced based on FIG. 1 thru | or FIG.

即ち、最良の形態3では、地盤変位監視対象地エリアの地下水の電気伝導度と地下水中のCa++、SO −−、HCO のような単体イオンの濃度との相関の強さを示す回帰直線Aから地下水の電気伝導度の測定データに対応する特定の単体イオンの濃度の推定値を算出するとともに、地盤変位監視対象地エリアの地下水の電気伝導度と地下水中の上記単体イオンを含む(Ca+++Na+K+Mg++)、(Ca+++Mg++)のような陽イオン群又は(SO −−+HCO +Cl)のような陰イオン群の濃度との相関の強さを示す回帰直線Aから地下水の電気伝導度の測定データに対応する陽イオン群又は陰イオン群の濃度の推定値を算出し、陽イオン群又は陰イオン群の濃度の推定値から単体イオンの濃度の推定値を引くことによって陽イオン群又は陰イオン群から単体イオンを除いたイオン又はイオン群の濃度の推定値を求める。 Indicates the strength of the correlation between the concentration of a single ion, such as - that is, in the best mode 3, Ca ++ electrical conductivity and groundwater groundwater ground displacement monitoring target locations area, SO 4 -, HCO 3 Calculate the estimated value of the concentration of specific single ions corresponding to the measurement data of the electrical conductivity of the groundwater from the regression line A, and include the electrical conductivity of the groundwater in the ground displacement monitoring target area and the single ions in the groundwater the strength of the correlation between the concentration of anionic groups, such as (Ca ++ + Na + + K + + Mg ++), (Ca ++ + Mg ++) cations group or such as (sO 4 - + HCO 3 - - + Cl) From the regression line A shown, an estimated value of the concentration of the cation group or anion group corresponding to the measurement data of the electrical conductivity of the groundwater is calculated, and the single ion is calculated from the estimated value of the concentration of the cation group or the anion group. Obtaining an estimate of the concentration of ions or ion groups, except for the single ion from the cation group or anionic group by subtracting the estimate of the concentration.

最良の形態3によれば、電気伝導度の測定データを、地下水の電気伝導度と地下水中に溶けている特定イオンの濃度との相関の強さを示す、例えば、図1乃至図6に示すような複数の回帰直線Aに照合して複数の特定イオンの濃度を推定し、これら複数の特定イオンの濃度の推定値を用いてヘキサダイヤグラムの作成に必要な特定イオンの濃度の推定値を算出するので、ヘキサダイヤグラムを即座にかつ容易に作成できる。   According to the best mode 3, the measurement data of electric conductivity indicates the strength of the correlation between the electric conductivity of groundwater and the concentration of specific ions dissolved in the groundwater, for example, as shown in FIGS. The concentration of a plurality of specific ions is estimated by collating with a plurality of regression lines A, and the estimated value of the concentration of specific ions necessary for the creation of a hexadiagram is calculated using the estimated values of the plurality of specific ions. Therefore, a hexa diagram can be created immediately and easily.

地盤変位監視対象地2の異なる複数箇所に図9に示す監視装置1を設置すれば、異なる複数箇所でのヘキサダイヤグラムを得ることができ、複数のヘキサダイヤグラムを見て、地盤の動いている箇所を特定することも可能となる。
また、最良の形態2;3では、監視装置1の通信機8を介して所定期間間隔で送信されてきた電気伝導度の測定データを回帰直線Aに照合する場合を説明したが、地盤変位監視対象地2の地下水の電気伝導度を不定期的又は上記所定期間間隔より長い間隔で定期的に測定した測定データを回帰直線Aに照合して地盤変位監視対象地2の地下水中に含まれる特定イオンの濃度を推定したり、この推定値を用いてヘキサダイヤグラムを作成してもよい。
If the monitoring devices 1 shown in FIG. 9 are installed at different locations on the ground displacement monitoring target 2, hexagrams at different locations can be obtained. The locations where the ground is moving by looking at the multiple hexadiagrams Can also be specified.
In the best modes 2 and 3, the case where the measurement data of the electrical conductivity transmitted at predetermined time intervals via the communication device 8 of the monitoring device 1 is collated with the regression line A has been described. The measurement data obtained by measuring the electrical conductivity of the groundwater of the target site 2 irregularly or periodically at intervals longer than the above-mentioned predetermined time interval is collated with the regression line A and specified in the groundwater of the ground displacement monitoring target site 2 The concentration of ions may be estimated, or a hexadiagram may be created using this estimated value.

地下水の電気伝導度と地下水中の特定イオン(Ca++)の濃度との相関の強さを示す回帰直線Aを示すグラフ(最良の形態2;3)。The graph which shows the regression line A which shows the strength of the correlation with the electrical conductivity of groundwater, and the density | concentration of the specific ion (Ca ++ ) in groundwater (the best form 2; 3). 地下水の電気伝導度と地下水中の特定イオン(Ca+++Mg++)の濃度との相関の強さを示す回帰直線Aを示すグラフ(最良の形態2;3)。The graph which shows the regression line A which shows the strength of the correlation with the electrical conductivity of groundwater, and the density | concentration of the specific ion (Ca ++++ Mg ++ ) in groundwater (the best form 2; 3). 地下水の電気伝導度と地下水中の特定イオン(Ca+++Na+K+Mg++)の濃度との相関の強さを示す回帰直線Aを示すグラフ(最良の形態2;3)。Graph showing the regression line A indicating the strength of the correlation between the concentration of a specific ion (Ca ++ + Na + + K + + Mg ++) of the electrical conductivity and groundwater groundwater (Best Mode 2; 3). 地下水の電気伝導度と地下水中の特定イオン(SO −−)の濃度との相関の強さを示す回帰直線Aを示すグラフ(最良の形態2;3)。Specific ion electrical conductivity and groundwater groundwater (SO 4 -) graph showing the regression line A indicating the strength of the correlation between the concentration of (Best Mode 2; 3). 地下水の電気伝導度と地下水中の特定イオン(HCO )の濃度との相関の強さを示す回帰直線Aを示すグラフ(最良の形態2;3)。Specific ion electrical conductivity and groundwater groundwater (HCO 3 -) graph showing the regression line A indicating the strength of the correlation between the concentration of (Best Mode 2; 3). 地下水の電気伝導度と地下水中の特定イオン(SO −−+HCO +Cl)の濃度との相関の強さを示す回帰直線Aを示すグラフ(最良の形態2;3)。Specific ion electrical conductivity and groundwater groundwater (SO 4 - + HCO 3 - + Cl -) graph showing the regression line A indicating the strength of the correlation between the concentration of (Best Mode 2; 3). ヘキサダイヤグラムの作成方法を示すフローチャート(最良の形態3)。The flowchart which shows the preparation method of a hexa diagram (best form 3). 特定イオンの濃度推定値により作成したヘキサダイヤグラムを示す図(最良の形態3)Figure showing the hexadiagram created from the estimated concentration of specific ions (Best Mode 3) 地盤変位監視対象地の監視装置を示す断面図(最良の形態1)。Sectional drawing which shows the monitoring apparatus of ground displacement monitoring object ground (best form 1).

符号の説明Explanation of symbols

1 監視装置、2 地盤変位監視対象地、7 電気伝導度計測器、
8 通信機、A 回帰直線。
1 monitoring device, 2 ground displacement monitoring site, 7 electrical conductivity measuring instrument,
8 Communication device, A regression line.

Claims (6)

地盤変位監視対象地を監視する前に、地盤変位監視対象地エリアの地下水の電気伝導度と地下水中の特定イオンの濃度とを測定し、これら測定データに基づいて、地盤変位監視対象地の地下水の電気伝導度と地下水中の特定イオンの濃度との相関の強さを示す回帰直線を求めておき、地盤変位監視対象地の監視の際に、地盤変位監視対象地の地下水の電気伝導度を測定し、この測定データを回帰直線に照合することによって地下水中の特定イオンの濃度を推定したことを特徴とする地下水中の特定イオンの濃度推定方法。   Before monitoring the ground displacement monitoring target area, the groundwater electrical conductivity in the ground displacement monitoring target area and the concentration of specific ions in the groundwater are measured, and based on these measurement data, the groundwater in the ground displacement monitoring target area is measured. A regression line indicating the strength of the correlation between the electrical conductivity of the groundwater and the concentration of specific ions in the groundwater is obtained, and the groundwater electrical conductivity of the ground displacement monitoring target area is calculated when monitoring the ground displacement monitoring target area. A method for estimating the concentration of specific ions in groundwater by measuring and comparing the measured data with a regression line to estimate the concentration of specific ions in groundwater. 特定イオンが、複数の陽イオンの集合である陽イオン群、複数の陰イオンの集合である陰イオン群、単体イオンであることを特徴とする請求項1に記載の地下水中の特定イオンの濃度推定方法。   2. The concentration of specific ions in groundwater according to claim 1, wherein the specific ions are a cation group that is a set of a plurality of cations, an anion group that is a set of a plurality of anions, or a single ion. Estimation method. 請求項1又は請求項2に記載の特定イオンの濃度推定方法により得られた複数の特定イオンの濃度推定値に基づいてヘキサダイヤグラムを作成したことを特徴とするヘキサダイヤグラムの作成方法。   A hexadiagram creation method, wherein a hexadiagram is created based on a plurality of specific ion concentration estimation values obtained by the specific ion concentration estimation method according to claim 1. 地盤変位監視対象地エリアの地下水の電気伝導度と地下水中の単体イオンの濃度との相関の強さを示す回帰直線から地下水の電気伝導度の測定データに対応する単体イオンの濃度の推定値を請求項2に記載の推定方法で算出するとともに、地盤変位監視対象地エリアの地下水の電気伝導度と地下水中の上記単体イオンを含む陽イオン群又は陰イオン群の濃度との相関の強さを示す回帰直線から地下水の電気伝導度の測定データに対応する陽イオン群又は陰イオン群の濃度の推定値を請求項2に記載の推定方法で算出し、陽イオン群又は陰イオン群の濃度の推定値から単体イオンの濃度の推定値を引くことによって陽イオン群又は陰イオン群から単体イオンを除いたイオン又はイオン群の濃度の推定値を求めたことを特徴とする請求項3に記載のヘキサダイヤグラムの作成方法。   Estimate the concentration of single ions corresponding to the measured data of groundwater conductivity from the regression line indicating the strength of the correlation between the groundwater conductivity in the ground displacement monitoring area and the concentration of single ions in the groundwater. While calculating with the estimation method of Claim 2, the strength of the correlation between the electrical conductivity of the groundwater in the ground displacement monitoring target area and the concentration of the cation group or the anion group containing the single ions in the groundwater is calculated. The estimated value of the concentration of the cation group or anion group corresponding to the measurement data of the electrical conductivity of the groundwater is calculated by the estimation method according to claim 2, and the concentration of the cation group or the anion group is calculated. The estimated value of the density | concentration of the ion or ion group which remove | excluded the single ion from the cation group or the anion group was subtracted from the estimated value by subtracting the estimated value of the single ion concentration. How to create a hexa diagram. 地盤変位監視対象地の監視の際に、地盤変位監視対象地に電気伝導度計測器を設置して、地盤変位監視対象地の地下水の電気伝導度を電気伝導度計測器で常時測定し、測定された電気伝導度の測定データを監視センターに送信したことを特徴とする地盤変位監視対象地の監視方法。   When monitoring the ground displacement monitoring target site, an electrical conductivity measuring device is installed at the ground displacement monitoring target site, and the groundwater monitoring electrical conductivity of the ground displacement monitoring target site is constantly measured and measured. A method for monitoring a ground displacement monitoring target site, wherein the measured electrical conductivity measurement data is transmitted to a monitoring center. 請求項5に記載された地盤変位監視対象地の監視方法に用いる監視装置であって、地盤変位監視対象地から地下水を抜くための地下水水抜きパイプと、地下水水抜きパイプを通って地盤変位監視対象地から抜かれた地下水を一時留めた後に排水する地下水測定用貯排水部と、地下水測定用貯排水部を通過する地下水の電気伝導度を常時測定する電気伝導度計測器と、電気伝導度計測器で計測された電気伝導度のデータを監視センターに送信する通信機とを備えたことを特徴とする地盤変位監視対象地の監視装置。   A monitoring device used in the ground displacement monitoring target site monitoring method according to claim 5, wherein groundwater drainage pipes for draining groundwater from the ground displacement monitoring target sites and groundwater drainage monitoring through groundwater drainage pipes. A groundwater measurement storage / drainage unit that drains the groundwater drained from the target site temporarily, an electrical conductivity meter that constantly measures the electrical conductivity of the groundwater that passes through the groundwater measurement storage / drainage unit, and electrical conductivity measurement A ground displacement monitoring target monitoring device, comprising: a communication device that transmits electrical conductivity data measured by a vessel to a monitoring center.
JP2007273978A 2007-10-22 2007-10-22 Method of estimating concentration of specific ion in underground water, method of preparing hexa-diagram, and method and device for monitoring site to be monitored for displacement of ground Pending JP2009102841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007273978A JP2009102841A (en) 2007-10-22 2007-10-22 Method of estimating concentration of specific ion in underground water, method of preparing hexa-diagram, and method and device for monitoring site to be monitored for displacement of ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007273978A JP2009102841A (en) 2007-10-22 2007-10-22 Method of estimating concentration of specific ion in underground water, method of preparing hexa-diagram, and method and device for monitoring site to be monitored for displacement of ground

Publications (1)

Publication Number Publication Date
JP2009102841A true JP2009102841A (en) 2009-05-14

Family

ID=40704798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007273978A Pending JP2009102841A (en) 2007-10-22 2007-10-22 Method of estimating concentration of specific ion in underground water, method of preparing hexa-diagram, and method and device for monitoring site to be monitored for displacement of ground

Country Status (1)

Country Link
JP (1) JP2009102841A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190782A (en) * 2013-03-27 2014-10-06 Railway Technical Research Institute Ground displacement prediction method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09271770A (en) * 1996-04-09 1997-10-21 Japan Organo Co Ltd Cartridge demineralizer
JPH10232286A (en) * 1997-02-19 1998-09-02 Nec Corp Method and system for predicting disaster in mountainous region
JP2001349884A (en) * 2000-06-12 2001-12-21 Kansai Tlo Kk Soil water sampling method and apparatus
JP2002138453A (en) * 2000-10-31 2002-05-14 Yoshinori Matsuki Collapse prediction method of slope by chemical weathering of sedimentary rock
JP2004205479A (en) * 2002-03-26 2004-07-22 Railway Technical Res Inst Simple measuring method and simple measuring instrument for ion concentration in water containing seawater
JP2004306017A (en) * 2003-03-26 2004-11-04 Ohbayashi Corp Cleaning system for polluted soil
JP2005164436A (en) * 2003-12-03 2005-06-23 Railway Technical Res Inst Measuring device and measuring method of electric conductivity
JP2005345110A (en) * 2004-05-31 2005-12-15 Railway Technical Res Inst Method of and apparatus for predicting ground displacement
JP2006242648A (en) * 2005-03-01 2006-09-14 Central Res Inst Of Electric Power Ind Device for monitoring environment in subsurface layer and system for monitoring environment in subsurface layer using it

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09271770A (en) * 1996-04-09 1997-10-21 Japan Organo Co Ltd Cartridge demineralizer
JPH10232286A (en) * 1997-02-19 1998-09-02 Nec Corp Method and system for predicting disaster in mountainous region
JP2001349884A (en) * 2000-06-12 2001-12-21 Kansai Tlo Kk Soil water sampling method and apparatus
JP2002138453A (en) * 2000-10-31 2002-05-14 Yoshinori Matsuki Collapse prediction method of slope by chemical weathering of sedimentary rock
JP2004205479A (en) * 2002-03-26 2004-07-22 Railway Technical Res Inst Simple measuring method and simple measuring instrument for ion concentration in water containing seawater
JP2004306017A (en) * 2003-03-26 2004-11-04 Ohbayashi Corp Cleaning system for polluted soil
JP2005164436A (en) * 2003-12-03 2005-06-23 Railway Technical Res Inst Measuring device and measuring method of electric conductivity
JP2005345110A (en) * 2004-05-31 2005-12-15 Railway Technical Res Inst Method of and apparatus for predicting ground displacement
JP2006242648A (en) * 2005-03-01 2006-09-14 Central Res Inst Of Electric Power Ind Device for monitoring environment in subsurface layer and system for monitoring environment in subsurface layer using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190782A (en) * 2013-03-27 2014-10-06 Railway Technical Research Institute Ground displacement prediction method

Similar Documents

Publication Publication Date Title
US9354157B2 (en) Apparatus and method for assessing subgrade corrosion
McCleskey et al. A new method of calculating electrical conductivity with applications to natural waters
EP2757306A1 (en) Method and equipment for identifying and measuring alternating current interference in buried ducts
US20140012556A1 (en) Apparatus and method for real time water quality prediction using hydrodynamic model
JP2015180856A (en) Corrosion monitoring sensor, corrosion depth calculation system, and metal corrosion speed calculation system
KR101207612B1 (en) Testing cell for sensing of electric corrosion used galvanic sensor for sensingof electric corrosion of steel-concrete structure
Deceuster et al. Automated identification of changes in electrode contact properties for long-term permanent ERT monitoring experiments
CN101339119A (en) Coastal area concrete reinforcement erosion situation electrochemical test method
JP2010266342A (en) Metal corrosion diagnostic method
CN111158066B (en) Method for comprehensively monitoring invasion of seawater into sandstone aquifer
CN115577814A (en) Erosion detection and repair method and system
JP2009102841A (en) Method of estimating concentration of specific ion in underground water, method of preparing hexa-diagram, and method and device for monitoring site to be monitored for displacement of ground
CN109989067B (en) Management method and device for cathode protection system
JP3041426B1 (en) Fill dam management system by resistivity tomography and its management method
JP2008202972A (en) Waste disposal container corrosion monitoring device and monitoring method
JP6370701B2 (en) Soil corrosion evaluation method
JP2009035795A (en) Cathodic protection management system for pipeline, and cathodic protection management method
JP2003262580A (en) Method for diagnosing corrosion of object embedded underground, corrosion diagnosing program, recording medium recording corrosion diagnosing program, and corrosion diagnosing apparatus
CN116165718A (en) Method and device for measuring seepage safety of earth and rockfill dam, electronic equipment and medium
JP2011112368A (en) Method of monitoring moisture variation of ground
JP2009222668A (en) Method for estimating oil contamination distribution of soil and applying result thereof to bioremediation
US20170315251A1 (en) Electro-hydro-dynamic identification of a subsurface fluid flow
Deo Geophysical methods for assessments of soil corrosivity
Steimle The state of the practice: Characterizing and remediating contaminated groundwater at fractured rock sites
JP2010281118A (en) Estimating method and estimating device for ground displacement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Effective date: 20111011

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120221

Free format text: JAPANESE INTERMEDIATE CODE: A02