JP2008202972A - Waste disposal container corrosion monitoring device and monitoring method - Google Patents

Waste disposal container corrosion monitoring device and monitoring method Download PDF

Info

Publication number
JP2008202972A
JP2008202972A JP2007036715A JP2007036715A JP2008202972A JP 2008202972 A JP2008202972 A JP 2008202972A JP 2007036715 A JP2007036715 A JP 2007036715A JP 2007036715 A JP2007036715 A JP 2007036715A JP 2008202972 A JP2008202972 A JP 2008202972A
Authority
JP
Japan
Prior art keywords
waste disposal
disposal container
container
corrosion
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007036715A
Other languages
Japanese (ja)
Inventor
Yoshihisa Saito
宣久 斉藤
Yumiko Abe
由美子 阿部
Masaru Komatsubara
勝 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007036715A priority Critical patent/JP2008202972A/en
Publication of JP2008202972A publication Critical patent/JP2008202972A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste disposal container corrosion monitoring device and a monitoring method, capable of collecting corrosion data in an actual environment by utilizing a buried body. <P>SOLUTION: This device is such that a metal electrode 2 used as an electrochemical sensor is installed on the outer surface of a waste disposal container 1 in the insulated state 3 with a container body; an electrochemical signal between the metal electrode and the waste disposal container is detected; and a corrosion environment of the outside of the waste disposal container and corrosion speed of the container are monitored. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、原子力施設から発生する放射性廃棄物の埋設処分において使用する廃棄物処分容器腐食モニタリング装置及びモニタリング方法に関する。   The present invention relates to a waste disposal container corrosion monitoring apparatus and monitoring method used in the disposal of radioactive waste generated from nuclear facilities.

放射性廃棄物はその放射能レベルにより処分の方法が異なるが、低レベル廃棄物は炭素鋼等の容器に収納し地中に埋設処分することが決まっている。放射性核種は容器、コンクリート、ベントナイト、岩盤等のバリアにより生活圏から隔離されるが、長時間の後には減衰後の極微量放射能がこれらのバリアを通過して生活圏に達する可能性を想定して安全性の評価を行っている。種々のケースごとに安全性を評価しているが、いずれも容器の保護性はあまり期待せず、地下水が浸水すると同時に腐食孔が貫通するような想定となっている。
特開2003−344586号公報
Radioactive waste has different disposal methods depending on its radioactivity level, but low-level waste is decided to be stored in a container such as carbon steel and buried in the ground. Radionuclides are isolated from the living sphere by barriers such as containers, concrete, bentonite, and bedrock, but after a long period of time, it is assumed that a trace amount of radioactivity after attenuation may pass through these barriers and reach the living sphere. To evaluate safety. Safety is evaluated for each case, but all of them are not expected to protect the container so much, and it is assumed that the corrosion hole penetrates at the same time as the groundwater is submerged.
JP 2003-344586 A

炭素鋼といえども、pHの高いセメント飽和水や酸素を消費した還元雰囲気では腐食速度は極めて低く長期間の保護性が期待できる。処分容器に対し過度の保守性のもとに耐食性を低く見積もって評価を行うと他のバリアに対する期待を高める必要がある。処分容器については埋設環境での腐食速度を評価し適切な保護性能を想定し評価することにより、合理的な廃棄物埋設システムの設計を行うことができる。しかしながら、実環境における腐食データは存在せず、実験室試験のデータによる評価に基づいて設計を行うのが実情である。   Even in the case of carbon steel, the corrosion rate is extremely low and long-term protection can be expected in a reducing atmosphere in which high saturated pH cement saturated water or oxygen is consumed. It is necessary to raise the expectation for other barriers if the evaluation is made by estimating the corrosion resistance of the disposal container under excessive maintainability. For disposal containers, it is possible to design a rational waste burying system by evaluating the corrosion rate in the buried environment and assuming appropriate protection performance. However, there is no corrosion data in the actual environment, and the actual situation is to design based on the evaluation based on laboratory test data.

本発明は、上記課題を鑑み初期の埋設体を利用し、実環境において腐食データを採取することのできる廃棄物処分容器腐食モニタリング装置及びモニタリング方法を得ることにある。 In view of the above problems, an object of the present invention is to provide a waste disposal container corrosion monitoring apparatus and monitoring method capable of collecting corrosion data in an actual environment using an initial buried body.

本発明に係る廃棄物処分容器腐食モニタリング装置は、廃棄物処分容器の外表面に容器本体と絶縁して配置し電気化学センサーとなる金属電極と、この金属電極と廃棄物処分容器間の電気化学信号を検出し廃棄物処分容器外部の腐食環境及び廃棄物処分容器の腐食速度をモニターするモニター装置とを有することを特徴とする。   The waste disposal container corrosion monitoring apparatus according to the present invention is a metal electrode that is disposed on the outer surface of a waste disposal container, insulated from the container body, and serves as an electrochemical sensor, and the electrochemical between the metal electrode and the waste disposal container. And a monitoring device for detecting a signal and monitoring a corrosive environment outside the waste disposal container and a corrosion rate of the waste disposal container.

また、本発明に係る廃棄物処分容器腐食モニタリング方法は、廃棄物処分容器の外表面に容器本体と絶縁して設置された電気化学センサーとなる金属電極と前記廃棄物処分容器間の電気化学信号を検出し、廃棄物処分容器外部の腐食環境及び容器の腐食速度をモニターすることを特徴とする。   Further, the waste disposal container corrosion monitoring method according to the present invention includes an electrochemical signal between a metal electrode serving as an electrochemical sensor installed on the outer surface of the waste disposal container and insulated from the container body, and the waste disposal container. And the corrosive environment outside the waste disposal container and the corrosion rate of the container are monitored.

本発明においては、電位変動の形から腐食の形態を知ることができる。また、電位と電流を同時に測定することにより腐食抵抗、即ち腐食速度を推定することができる。   In the present invention, the form of corrosion can be known from the form of potential fluctuation. Further, the corrosion resistance, that is, the corrosion rate can be estimated by simultaneously measuring the potential and the current.

(第1の実施形態)
発明の第1の実施形態を図1を参照して説明する。図1は廃棄物処分容器1の外表面例えば容器全体が浸水した時点で測定を開始するとした場合はその容器上部1aに容器1と同一材料の炭素鋼電極2を絶縁部材3を介して取り付けたものである。この炭素鋼電極2と廃棄物処分容器1との間の電気抵抗をリード線4,5を介して測定することにより導電率が測定される。
(First embodiment)
A first embodiment of the invention will be described with reference to FIG. In FIG. 1, when the measurement is started when the outer surface of the waste disposal container 1, for example, the entire container is submerged, a carbon steel electrode 2 made of the same material as the container 1 is attached to the upper part 1 a of the container 1 via an insulating member 3. Is. The electrical conductivity is measured by measuring the electrical resistance between the carbon steel electrode 2 and the waste disposal container 1 through the lead wires 4 and 5.

処分容器1周辺の導電率を測定することにより、処分容器1埋設後どの時点で地下水が浸水したかを知ることができる。導電率は2電極間の電気抵抗を測定することにより求められる。浸水前は、大気中なので絶縁された2電極間の抵抗はほぼ無限大と考えてよい。 浸水後2電極は電解質溶液に浸された状態すなわち電気抵抗は所定値以下となる。電解質溶液の中にはイオン(プラスの電気を持った陽イオンとマイナスの電気を持った陰イオン)が存在する。1対の金属板を電解質溶液中に入れ電池をつなぐと、陽イオンは電池のマイナス側へ、陰イオンは電池のプラス側へ動き溶液中に電流が生じ、導電率は以下の1式で求められる。 By measuring the electrical conductivity around the disposal container 1, it is possible to know when the groundwater has been submerged after the disposal container 1 is buried. The conductivity is obtained by measuring the electrical resistance between the two electrodes. Before inundation, since it is in the atmosphere, the resistance between the two insulated electrodes can be considered almost infinite. After the immersion, the two electrodes are immersed in the electrolyte solution, that is, the electric resistance becomes a predetermined value or less. There are ions (a cation with positive electricity and an anion with negative electricity) in the electrolyte solution. When a pair of metal plates is placed in the electrolyte solution and the battery is connected, the positive ions move to the negative side of the battery, the negative ions move to the positive side of the battery, and an electric current is generated in the solution. It is done.

導電率=(電流/電圧)×(電極間距離/面積)・・・・・・・(1)
処分容器1を一方の電極5とし、本発明で設置した電極4を対電極として両者の間の抵抗を連続的に測定することにより、浸水の時期を知ることが可能となる。
Conductivity = (Current / Voltage) x (Distance between electrodes / Area) ... (1)
By using the disposal container 1 as one electrode 5 and the electrode 4 installed in the present invention as a counter electrode, and continuously measuring the resistance between them, it becomes possible to know the timing of flooding.

この場合、電極と対極容器の間の面積効果は1式のように単純な形では表せないが、正確な導電率を測定する必要はなく、抵抗の急激な低下から浸水したことを検知することが重要なので、電極同士を対抗させたような形にせず、平面状に並べたような形で十分である。   In this case, the area effect between the electrode and the counter electrode container cannot be expressed in a simple form as shown in Formula 1, but it is not necessary to measure the exact conductivity, and it is detected that water has been submerged from a sudden drop in resistance. Therefore, it is sufficient not to make the electrodes face each other but to arrange them in a plane.

図2に廃棄物処分施設10の全体図を示す。処分容器1は、充填材15、コンクリートピット16、ベントナイト16等のバリアにより囲まれており、このベントナイト16の外部には処分空洞構築17を介して岩盤14により囲まれており、埋設後短時間で浸水することは考えられない。   FIG. 2 shows an overall view of the waste disposal facility 10. The disposal container 1 is surrounded by barriers such as a filler 15, concrete pit 16, bentonite 16, and the like. It is unthinkable to flood in

処分容器1と図1に示した電極2間の電気化学的な信号は、リード線4、5から信号ケーブル19を介して処分体管理ビル18等に設置された測定器11およびデータ収集用コンピュータ12に取り込まれ、必要に応じて遠隔の図示しない管理センター等に送られる。   Electrochemical signals between the disposal container 1 and the electrode 2 shown in FIG. 1 are sent from the lead wires 4 and 5 through the signal cable 19 to the measuring instrument 11 and the data collection computer installed in the disposal body management building 18 and the like. 12 and sent to a remote management center (not shown) or the like as necessary.

処分容器1周辺の導電率を測定することにより、処分容器埋設後どの時点で地下水が浸水したかを知ることができる。浸水した後には炭素鋼電極2と処分容器1の相対的な電位および炭素鋼電極2と処分容器1間の電流を測定することにより、容器の腐食傾向を知ることができる。   By measuring the electrical conductivity around the disposal container 1, it is possible to know at what point the groundwater has been submerged after the disposal container is buried. After the immersion, the corrosion potential of the container can be known by measuring the relative potential between the carbon steel electrode 2 and the disposal container 1 and the current between the carbon steel electrode 2 and the disposal container 1.

ここで炭素鋼電極2と処分容器1の相対的な電位の測定について説明する。   Here, the measurement of the relative potential between the carbon steel electrode 2 and the disposal container 1 will be described.

腐食している金属の表面を微視的に捉えると、局部的に溶解反応に寄与するアノード部と、酸化剤が還元され電子を捕らえる反応に寄与するカソード部に分けることができる。このアノード、カソード対は常に揺らいでいることから、腐食している材料の電位はミクロ的に変動しており、この変動を電気化学的ノイズとして解析することにより、腐食の状態を推定することができる。図3に、温度80℃、3.5%NaCl溶液に浸漬したSUS304鋼の時間を横軸で示した腐食電位(mVSCE)の変化の例を示す。図3に示すように鋭角的な卑方向の電位振動は微小な損傷発生を捉えており、急激な電位低下は損傷が定常的に進行していることを示している。このように電位振動を観察することにより、腐食の形態や進行の様子、処分容器の溶出速度を推定することができる。 When the surface of the corroding metal is microscopically captured, it can be divided into an anode part that locally contributes to the dissolution reaction and a cathode part that contributes to the reaction in which the oxidizing agent is reduced to capture electrons. Since the anode / cathode pair always fluctuates, the potential of the corroding material fluctuates microscopically, and the state of corrosion can be estimated by analyzing this fluctuation as electrochemical noise. it can. FIG. 3 shows an example of the change in corrosion potential (mVSCE) in which the time of the SUS304 steel immersed in a 3.5% NaCl solution at a temperature of 80 ° C. is shown on the horizontal axis. As shown in FIG. 3, the acute-angled potential oscillation in the base direction captures the occurrence of minute damage, and the rapid potential drop indicates that the damage is steadily progressing. By observing the potential oscillation in this way, it is possible to estimate the form and progress of corrosion and the elution rate of the disposal container.

電位変動の形からは、図3に示すように腐食の形態を知ることができる。また、電位と電流を同時に測定することにより腐食抵抗、即ち腐食速度を推定することができる。   From the shape of the potential fluctuation, the form of corrosion can be known as shown in FIG. Further, the corrosion resistance, that is, the corrosion rate can be estimated by simultaneously measuring the potential and the current.

次に、炭素鋼電極2と処分容器1間の電流の測定について説明する。   Next, the measurement of the current between the carbon steel electrode 2 and the disposal container 1 will be described.

上記電位の測定においても説明したように、局部的なアノード、カソード対は常に揺らいでいることから、炭素鋼電極2と処分容器1間に流れる腐食電流を測定すると、電流ノイズが得られる。この変動を電気化学的ノイズとして解析することにより、腐食の状態を推定することができる。また、電位変動と電流変動を同時に測定することにより、2式で腐食抵抗Rpを求めることができる。   As described in the measurement of the electric potential, since the local anode / cathode pair always fluctuates, current noise is obtained when the corrosion current flowing between the carbon steel electrode 2 and the disposal container 1 is measured. By analyzing this variation as electrochemical noise, the state of corrosion can be estimated. Further, by simultaneously measuring the potential fluctuation and the current fluctuation, the corrosion resistance Rp can be obtained by two formulas.

Rp=DE/Di ・・・・・・・・・・・・・・・・・・・・・・・(2)
ここで、DE:電位変動の偏差値、Di:電流変動の偏差値である。
Rp = DE / Di (2)
Here, DE: deviation value of potential fluctuation, Di: deviation value of current fluctuation.

以上に示したように、浸水の時期と実環境における容器の腐食速度または、処分容器の溶出速度を知ることにより、放射性核種の溶出や拡散を過度の保守性を排して見積もることができ、合理的な廃棄物埋設システムの設計を行うことができる。 As shown above, by knowing the timing of inundation and the corrosion rate of the container in the actual environment or the dissolution rate of the disposal container, the elution and diffusion of the radionuclide can be estimated without excessive maintainability, A reasonable waste burial system can be designed.

また、上記前記電位または電流の測定間隔を10秒以下とする。これは測定間隔を10秒以下にすることによって処分容器の腐食の形態として示される電気化学的ノイズである電位振動または電流振動を正確に測定することができるからである。   The measurement interval of the potential or current is 10 seconds or less. This is because by setting the measurement interval to 10 seconds or less, it is possible to accurately measure the potential vibration or current vibration, which is an electrochemical noise shown as a form of corrosion of the disposal container.

さらに、検出した電気化学信号を処分場内の計算機であるデータ収集用コンピュータ12に取り込み、データ収集用コンピュータ12から有線または無線にて遠隔監視施設に送信することによって、常に容易に遠隔監視施設で廃棄物処分容器の腐食をモニタリングすることができる。   Further, the detected electrochemical signal is taken into the data collection computer 12 which is a computer in the disposal site, and transmitted from the data collection computer 12 to the remote monitoring facility by wire or wirelessly, so that it is always easily discarded at the remote monitoring facility. Corrosion of material disposal containers can be monitored.

(第2の実施形態)
本発明の第2の実施形態を図4に示す。なお、図4において図1と同一部分には同一符号を付しその構成の説明を省略する。
(Second Embodiment)
A second embodiment of the present invention is shown in FIG. In FIG. 4, the same parts as those in FIG.

この図4に示す本発明の第2の実施形態は廃棄物処分容器1の上部1aに不活金属電極、たとえば白金電極6を絶縁して取り付けたものであり、その他の構成は第1の実施形態と同様である。   In the second embodiment of the present invention shown in FIG. 4, an inactive metal electrode, for example, a platinum electrode 6 is insulated and attached to the upper portion 1a of the waste disposal container 1, and the other configuration is the first embodiment. It is the same as the form.

不活金属である例えば白金を電極として用いることにより、高温環境、水没した環境においても腐食がなく長時間での安定した情報を取得することができる。   By using, for example, platinum, which is an inert metal, as an electrode, stable information can be acquired over a long period of time without corrosion even in a high temperature environment or a submerged environment.

この実施例では不活金属として白金の例を示したが金で構成してよいのはもちろんである。 In this embodiment, platinum is shown as an inactive metal, but it is needless to say that it may be made of gold.

よって上記本発明の第2の実施形態においては例え水没したとしても腐食の恐れも無く浸水の時期と実環境における容器の腐食速度を知ることができ、放射性核種の溶出や拡散を過度の保守性を排して見積もることにより、合理的な廃棄物埋設システムの設計を行うことができる。   Therefore, in the second embodiment of the present invention, even if submerged, there is no risk of corrosion, and it is possible to know the timing of inundation and the corrosion rate of the container in the actual environment, and the elution and diffusion of radionuclides are excessively maintainable. This makes it possible to design a rational waste burying system.

本発明の第1の実施の形態に使用する廃棄物処分容器を示す斜視図。The perspective view which shows the waste disposal container used for the 1st Embodiment of this invention. 本発明の実施の形態に係る廃棄物処分容器腐食モニタリング装置及びモニタリング方法を示す概略図。Schematic which shows the waste disposal container corrosion monitoring apparatus and monitoring method which concern on embodiment of this invention. 3.5%NaCl溶液中ステンレス鋼の腐食電位の変動を示す特性図。The characteristic figure which shows the fluctuation | variation of the corrosion potential of stainless steel in a 3.5% NaCl solution. 本発明の第2の実施の形態に使用する廃棄物処分容器を示す斜視図。The perspective view which shows the waste disposal container used for the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1・・・廃棄物処分容器
2・・・炭素鋼電極
3・・・絶縁部材
4、5・・・リード線
6・・・白金電極
10・・・廃棄物処分施設
11・・・計測器
12・・・データ収集用コンピュータ
13・・・コンクリートピット
14・・・岩盤
15・・・充填材
16・・・ベントナイト
17・・・処分空洞構築
18・・・管理ビル
19・・・信号ケーブル
DESCRIPTION OF SYMBOLS 1 ... Waste disposal container 2 ... Carbon steel electrode 3 ... Insulating member 4, 5 ... Lead wire 6 ... Platinum electrode 10 ... Waste disposal facility 11 ... Measuring instrument 12 ... Data collection computer 13 ... Concrete pit 14 ... Rock 15 ... Filler 16 ... Bentonite 17 ... Disposal cavity construction 18 ... Management building 19 ... Signal cable

Claims (11)

廃棄物処分容器の外表面に容器本体と絶縁して配置し電気化学センサーとなる金属電極と、この金属電極と廃棄物処分容器間の電気化学信号を検出し廃棄物処分容器外部の腐食環境及び廃棄物処分容器の腐食速度をモニターするモニター装置とを有することを特徴とする廃棄物処分容器腐食モニタリング装置。   A metal electrode that is insulated from the container body on the outer surface of the waste disposal container and serves as an electrochemical sensor, and detects an electrochemical signal between the metal electrode and the waste disposal container to detect the corrosive environment outside the waste disposal container and A waste disposal container corrosion monitoring device comprising: a monitoring device for monitoring a corrosion rate of the waste disposal container. 前記廃棄物処分容器に設置する電極材料が不活金属であることを特徴とする請求項1記載の廃棄物処分容器腐食モニタリング装置。   2. The waste disposal container corrosion monitoring apparatus according to claim 1, wherein the electrode material installed in the waste disposal container is an inert metal. 前記廃棄物処分容器に設置する電極材料がこの廃棄物処分容器と同一材料であることを特徴とする請求項1記載の廃棄物処分容器腐食モニタリング装置。   2. The waste disposal container corrosion monitoring apparatus according to claim 1, wherein the electrode material installed in the waste disposal container is the same material as the waste disposal container. 前記検出した電気化学信号を処分場内の計算機に取り込み、有線または無線にて遠隔監視することを特徴とする請求項1から3のいずれか1項記載の廃棄物処分容器腐食モニタリング装置。   4. The waste disposal container corrosion monitoring apparatus according to claim 1, wherein the detected electrochemical signal is taken into a computer in a disposal site and remotely monitored by wire or wirelessly. 5. 廃棄物処分容器の外表面に容器本体と絶縁して設置された電気化学センサーとなる金属電極と前記廃棄物処分容器間の電気化学信号を検出し、廃棄物処分容器外部の腐食環境及び容器の腐食速度をモニターすることを特徴とする廃棄物処分容器腐食モニタリング方法。   The electrochemical signal between the metal electrode, which is an electrochemical sensor installed on the outer surface of the waste disposal container and insulated from the container body, and the waste disposal container is detected, and the corrosive environment outside the waste disposal container and the container A waste disposal container corrosion monitoring method characterized by monitoring the corrosion rate. 前記検出する電気化学信号が廃棄物処分容器と金属電極の間の電気抵抗であり、この検出する電気抵抗の値が所定値以下となった場合、容器周辺が浸水したことを検知することを特徴とする請求項5記載の廃棄物処分容器腐食モニタリング方法。   The electrochemical signal to be detected is an electrical resistance between the waste disposal container and the metal electrode, and when the value of the electrical resistance to be detected is a predetermined value or less, it is detected that the periphery of the container has been submerged. The waste disposal container corrosion monitoring method according to claim 5. 前記検出する電気化学信号が廃棄物処分容器と金属電極の間の電位差または前記検出する電気化学信号が廃棄物処分容器と金属電極の間に流れる電流またはその両方であることを特徴とする請求項5記載の廃棄物処分容器腐食モニタリング方法。   The detected electrochemical signal is a potential difference between a waste disposal container and a metal electrode and / or the detected electrochemical signal is a current flowing between the waste disposal container and the metal electrode or both. 5. The waste disposal container corrosion monitoring method according to 5. 前記検出する電気化学信号がその電位または電流の振動を電位または電流ノイズとして検出し、腐食速度を推定することを特徴とする請求項7記載の廃棄物処分容器腐食モニタリング方法。   The waste disposal container corrosion monitoring method according to claim 7, wherein the electrochemical signal to be detected detects the vibration of the potential or current as potential or current noise, and estimates the corrosion rate. 前記電位振動と電流振動の値から腐食抵抗を算出し、腐食速度を推定することを特徴とする請求項8記載の廃棄物処分容器腐食モニタリング方法。   9. The waste disposal container corrosion monitoring method according to claim 8, wherein corrosion resistance is calculated from values of the potential vibration and current vibration, and a corrosion rate is estimated. 前記電位または電流の測定間隔を10秒以下とすることを特徴とする請求項5から9のいずれか1項記載の廃棄物処分容器腐食モニタリング方法。   The waste disposal container corrosion monitoring method according to any one of claims 5 to 9, wherein a measurement interval of the potential or current is set to 10 seconds or less. 前記検出した電気化学信号を処分場内の計算機に取り込み、有線または無線にて遠隔監視することを特徴とする請求項5から10のいずれか1項記載の廃棄物処分容器腐食モニタリング方法。   11. The waste disposal container corrosion monitoring method according to claim 5, wherein the detected electrochemical signal is taken into a computer in a disposal site and remotely monitored by wire or wirelessly. 11.
JP2007036715A 2007-02-16 2007-02-16 Waste disposal container corrosion monitoring device and monitoring method Pending JP2008202972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007036715A JP2008202972A (en) 2007-02-16 2007-02-16 Waste disposal container corrosion monitoring device and monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007036715A JP2008202972A (en) 2007-02-16 2007-02-16 Waste disposal container corrosion monitoring device and monitoring method

Publications (1)

Publication Number Publication Date
JP2008202972A true JP2008202972A (en) 2008-09-04

Family

ID=39780662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007036715A Pending JP2008202972A (en) 2007-02-16 2007-02-16 Waste disposal container corrosion monitoring device and monitoring method

Country Status (1)

Country Link
JP (1) JP2008202972A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203083A (en) * 2010-03-25 2011-10-13 Kobe Steel Ltd Method for estimating corrosion rate of metal material
JP2012093175A (en) * 2010-10-26 2012-05-17 Ihi Corp Corrosion testing apparatus and corrosion testing method
JP2012150070A (en) * 2011-01-21 2012-08-09 Kobe Steel Ltd Method for calculating pitting corrosion depth, pitting corrosion depth calculating device, and pitting corrosion depth calculating system
JP2013104872A (en) * 2011-11-15 2013-05-30 Harrogate Holdings Co Ltd Consumer food testing device providing remote monitoring
JP2017015560A (en) * 2015-07-01 2017-01-19 三井造船株式会社 Corrosion sensor
JP2017015565A (en) * 2015-07-01 2017-01-19 三井造船株式会社 Corrosion sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203083A (en) * 2010-03-25 2011-10-13 Kobe Steel Ltd Method for estimating corrosion rate of metal material
JP2012093175A (en) * 2010-10-26 2012-05-17 Ihi Corp Corrosion testing apparatus and corrosion testing method
JP2012150070A (en) * 2011-01-21 2012-08-09 Kobe Steel Ltd Method for calculating pitting corrosion depth, pitting corrosion depth calculating device, and pitting corrosion depth calculating system
JP2013104872A (en) * 2011-11-15 2013-05-30 Harrogate Holdings Co Ltd Consumer food testing device providing remote monitoring
JP2017015560A (en) * 2015-07-01 2017-01-19 三井造船株式会社 Corrosion sensor
JP2017015565A (en) * 2015-07-01 2017-01-19 三井造船株式会社 Corrosion sensor

Similar Documents

Publication Publication Date Title
JP5898595B2 (en) Corrosion potential sensor
JP2008202972A (en) Waste disposal container corrosion monitoring device and monitoring method
CN101334353B (en) Multifunctional sensor for monitoring reinforced concrete structure erosion
US20190353630A1 (en) System for remote groundwater monitoring
KR101049691B1 (en) System for monitoring corrosion of metal infrastructure
JP2007024872A (en) Compound sensor module, sheath pipe, and sheath pipe joint member
CN108680490B (en) Device and method for detecting corrosion degree of reinforced concrete foundation steel bars of iron tower
KR20090053809A (en) Method and sensor for determining the passivating properties of a mixture containing at least two components, which are cement and water
JP2015180856A (en) Corrosion monitoring sensor, corrosion depth calculation system, and metal corrosion speed calculation system
CA3043600A1 (en) A system for remote groundwater monitoring
CN105026922A (en) Solid state gas detection sensor diagnostic
CN104651854A (en) Method and system for measuring switch-off potential of cathode protection system
JP2010266342A (en) Metal corrosion diagnostic method
CN101865817B (en) Sensor and detection method for detecting corrosion of buried metal
KR20000033818A (en) Remote corrosion monitoring and corrosion-proof control system
EP3114477B1 (en) System and method for detecting and monitoring chlorine ion concentration and ph in concrete structures
RU2471171C1 (en) Evaluation device of protection against corrosion as to value of deflection from natural potential
JP2019105513A (en) Electrolytic protection status grasping system and status grasping method
JP5956368B2 (en) Corrosion potential sensor
KR100406026B1 (en) Corrosion Prediction System of Underground Metallic Tank
RU98588U1 (en) DISCRETE INDICATOR OF LOCAL CORROSION OF METAL STRUCTURES
JP5450468B2 (en) Pitting depth calculation method, pitting depth calculation device, and pitting depth calculation system
KR101764624B1 (en) System for predicting corrosion of steel frame in building by sacrificial anode
JP4405853B2 (en) Method and apparatus for predicting ground displacement
JP7439950B2 (en) Deterioration detection device and method