JP2011112368A - Method of monitoring moisture variation of ground - Google Patents
Method of monitoring moisture variation of ground Download PDFInfo
- Publication number
- JP2011112368A JP2011112368A JP2009266166A JP2009266166A JP2011112368A JP 2011112368 A JP2011112368 A JP 2011112368A JP 2009266166 A JP2009266166 A JP 2009266166A JP 2009266166 A JP2009266166 A JP 2009266166A JP 2011112368 A JP2011112368 A JP 2011112368A
- Authority
- JP
- Japan
- Prior art keywords
- ground
- change
- specific resistance
- apparent resistivity
- moisture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
本発明は、電気探査計測で取得した地盤の見掛比抵抗データを用いて、降雨前もしくは降雨直後を基準とする見掛比抵抗の変化率を算出し、その経時変化を観測することによって、地盤の不飽和層における水分変化をモニタリングする方法に関するものである。この技術は、例えば雨水の浸透過程の把握、地盤への水の出入り、滞水状況の調査などに有用である。 The present invention uses the apparent resistivity data of the ground obtained by electrical exploration measurement, calculates the change rate of the apparent resistivity with reference to the pre-rainfall or immediately after the rain, and observes the change over time, The present invention relates to a method for monitoring moisture change in an unsaturated layer of the ground. This technique is useful, for example, for grasping the infiltration process of rainwater, entering and exiting the ground, and investigating the state of stagnant water.
周知のように、電気探査法により地盤の比抵抗構造を調査する技術は、例えば資源探鉱や土木分野などで幅広く利用されている。典型的には、電気探査計測を実施して見掛比抵抗データを取得し、その見掛比抵抗データを逆解析することにより地盤の比抵抗モデル(2次元断面)を作成し、地下構造を探査する。このような見掛比抵抗データの逆解析は、まず初期モデルを設定し、最終的に実際に得られた比抵抗データに合致するまでモデルを変化させる手法であり、変化させたモデルに対する理論比抵抗値と観測比抵抗値の残差を計算し、その残差が最小となるようにモデルを修正するプロセス(逆解析)を繰り返し、最終的な比抵抗モデルを得る。 As is well known, a technique for investigating the specific resistance structure of the ground by an electric exploration method is widely used, for example, in resource exploration and civil engineering fields. Typically, electrical resistivity measurement is performed to obtain apparent resistivity data, and the apparent resistivity data is inversely analyzed to create a specific resistivity model (two-dimensional cross section) of the ground. Explore. This inverse analysis of apparent resistivity data is a method in which an initial model is first set and the model is changed until it finally matches the actually obtained resistivity data. The theoretical ratio to the changed model is The residual of the resistance value and the observed specific resistance value is calculated, and the process of correcting the model (inverse analysis) is repeated so that the residual is minimized to obtain the final specific resistance model.
このような電気探査法の応用として、トレーサを用いた比抵抗モニタリングによる地盤内部の透水係数の推定なども行われている(特許文献1参照)。従来技術における比抵抗モニタリングは、電気探査計測により得られた見掛比抵抗データを逆解析して地盤の比抵抗モデルを作成し、作成した比抵抗モデルに基づいて比抵抗の変化を対比観測すること(比抵抗の変化率をパラメータとした2次元解析を含む)で実施されてきた。 As an application of such an electric exploration method, estimation of the hydraulic conductivity inside the ground by specific resistance monitoring using a tracer is also performed (see Patent Document 1). In the specific resistance monitoring in the prior art, the specific resistivity model of the ground is created by inverse analysis of the apparent specific resistance data obtained by the electrical exploration measurement, and the change in the specific resistance is compared and observed based on the created resistivity model. (Including a two-dimensional analysis using the rate of change in specific resistance as a parameter).
つまり、従来技術では、あくまでも逆解析により比抵抗モデルを作成することが基本である。しかし、比抵抗モデルを作成するための見掛比抵抗データの逆解析には、多大な時間を必要とする問題がある。具体的には、1枚の比抵抗モデルの作成に数十分〜数時間もかかる。そのため、短い時間間隔での変化を観測するために多数の比抵抗モデルを作成しようとすると、膨大な量のデータ処理が必要となり、通常のパソコンによるデータ処理能力では実施は極めて困難である。そこで、地層の比抵抗モデルの時間変化を把握しようとする場合には、せいぜい数枚の比抵抗モデルを作成し、短時間における比抵抗の変化は間隙率、水飽和度、間隙水の導電率変化などに依存すると仮定し補完することで実施せざるをえないのが現状である。従って、細かな状況変化は把握することができない。 That is, in the prior art, it is fundamental to create a specific resistance model by inverse analysis. However, the inverse analysis of the apparent resistivity data for creating the resistivity model has a problem that requires a lot of time. Specifically, it takes tens of minutes to several hours to create one specific resistance model. Therefore, if an attempt is made to create a large number of specific resistance models in order to observe changes at short time intervals, an enormous amount of data processing is required, and it is extremely difficult to implement with the data processing capability of a normal personal computer. Therefore, when trying to grasp the time variation of the resistivity model of the formation, several resistivity models are created at most, and the resistivity change in a short time is the porosity, water saturation, conductivity of the pore water. The current situation is that it must be carried out by complementing it on the assumption that it depends on changes. Therefore, it is not possible to grasp a detailed situation change.
また、見掛比抵抗データの逆解析は、初期モデルの設定など自動解析が難しく、解析手法(解析パラメータ)の違いによって解析誤差の影響を受け、実際の変化とは異なる変化を抽出することがあるなど客観性に欠ける問題もある。従って、経験豊富な熟練技術者でなければ適切な比抵抗モデルの作成は困難である。更に、見掛比抵抗データを逆解析する際に、フィルタ処理のために微細な変化が失われてしまう(大きな比抵抗変化のみが抽出されてしまう)問題もある。 Inverse analysis of apparent resistivity data is difficult to automatically analyze, such as setting an initial model, and is affected by analysis errors due to differences in analysis methods (analysis parameters), and changes that differ from actual changes may be extracted. There are also problems that lack objectivity. Therefore, it is difficult to create an appropriate specific resistance model unless it is an experienced skilled engineer. In addition, when the apparent resistivity data is inversely analyzed, there is a problem that fine changes are lost due to the filtering process (only large resistivity changes are extracted).
ところで、地盤内の水分を経時的に直接測定できる装置として土壌水分計があるが、これでは地盤内の1点での測定値しか得られず、広い範囲での水分分布は観測できない。また、地盤内に孔を開けて計器を挿入すると、それによる地層の乱れが生じるので、たとえ多数の土壌水分計を分散埋設しても、正確な水分分布の経時変化は把握できない。 By the way, there is a soil moisture meter as a device that can directly measure the moisture in the ground over time, but with this, only a measured value at one point in the ground can be obtained, and the moisture distribution in a wide range cannot be observed. In addition, if a meter is inserted after making a hole in the ground, the formation will be disturbed, so even if a large number of soil moisture meters are dispersedly embedded, it is impossible to grasp an accurate change in moisture distribution over time.
本発明が解決しようとする課題は、電気探査計測の手法により得られた見掛比抵抗データそのものを使用し、逆解析のような煩瑣な操作は行わずに高速のデータ処理を可能とする独自の手法により、微細な実際の比抵抗変化を抽出して、不飽和層内の水分変化を簡便に且つ迅速にモニタリングできるようにすることである。 The problem to be solved by the present invention is to use the apparent resistivity data itself obtained by the method of electrical exploration measurement, and to enable high-speed data processing without performing complicated operations such as reverse analysis. This is to extract a minute actual change in specific resistance so that the moisture change in the unsaturated layer can be monitored easily and quickly.
本発明は、地盤に多数の電極を配設し、電気探査計測により地盤の見掛比抵抗データを経時的に取得し、降雨前もしくは降雨直後の見掛比抵抗を基準として、その後に取得した見掛比抵抗について、基準の見掛比抵抗に対する変化率を算出して地盤内における見掛比抵抗の変化率分布を求め、その見掛比抵抗の変化率分布を経時的に観測することにより、地盤不飽和層の水分変化をモニタリングすることを特徴とする地盤の水分変化モニタリング方法である。なお、本発明において、『地盤』の概念には、天然地盤のみならず、人工地盤(例えば河川堤防など)も含まれることは言うまでもない。 In the present invention, a large number of electrodes are arranged on the ground, and the apparent resistivity data of the ground is obtained over time by electrical exploration measurement, and thereafter obtained based on the apparent resistivity before or after the rain. For apparent resistivity, calculate the rate of change of apparent resistivity in the ground by calculating the rate of change with respect to the standard apparent resistivity, and observe the rate of change of apparent resistivity over time. The soil moisture monitoring method is characterized by monitoring the moisture change of the ground unsaturated layer. In the present invention, it is needless to say that the concept of “ground” includes not only natural ground but also artificial ground (for example, a river bank).
電気探査法においては、地盤の見掛比抵抗データを取得した後、その比抵抗データを用いて逆解析を行い地盤の比抵抗モデルを作成し、作成した比抵抗モデルに基づき地下構造を解釈あるいは判断するという手法が、必ず採られている。本発明は、そのような逆解析を必須とするという固定概念に囚われることなく、単純な演算のみの全く新しい手法により、膨大な比抵抗データを処理し、地盤の水分変化をモニタリングしようとするものである。 In the electrical exploration method, after obtaining the apparent resistivity data of the ground, the resistivity data is used to perform reverse analysis to create a soil resistivity model, and the underground structure is interpreted or created based on the created resistivity model. The method of judging is always adopted. The present invention intends to monitor a huge amount of resistivity data and monitor the moisture change of the ground by a completely new method with only a simple calculation without being bound by the fixed concept of requiring such inverse analysis. It is.
本発明では、地盤表面に多数の電極を打設して1次元的もしくは2次元的に配列し、測線方向の垂直断面あるいは任意の深度での水平断面での見掛比抵抗の変化率分布を経時的に観測するのが好ましい。また、数分〜数十分の時間間隔で地盤の見掛比抵抗データを取得し、見掛比抵抗の変化率分布を求め、それを時間間隔を数百分の1〜数十分の1に短縮することで、地盤の水分変化をディスプレイ画面上に動画表示させることも可能である。 In the present invention, a large number of electrodes are placed on the ground surface and arranged one-dimensionally or two-dimensionally, and the change rate distribution of the apparent resistivity in the vertical cross section in the survey direction or the horizontal cross section at an arbitrary depth is obtained. It is preferable to observe over time. Also, the apparent resistivity data of the ground is acquired at a time interval of several minutes to several tens of minutes, the change rate distribution of the apparent resistivity is obtained, and the time interval is 1 to several tens of minutes to 1 It is also possible to display a moving image of the moisture change of the ground on the display screen.
本発明に係る地盤の水分変化モニタリング方法は、電気探査の手法を利用しているために、地盤を乱すことなく、水分分布のモニタリングが行える。しかも、本発明方法は、見掛比抵抗データの逆解析といった時間のかかる煩瑣な作業を行うことなく、単に降雨前もしくは降雨直後の見掛比抵抗を基準として、その後に取得した見掛比抵抗について基準の見掛比抵抗に対する変化率を算出して地盤内における見掛比抵抗の変化率分布を経時的に求めればよいため、簡単な演算で済み高速でのデータ処理が可能であり、微細な水分変化を抽出し強調することができる。 Since the ground moisture change monitoring method according to the present invention uses an electric exploration technique, the moisture distribution can be monitored without disturbing the ground. Moreover, the method according to the present invention is based on the apparent resistivity immediately before or just after the rain, without performing time-consuming and cumbersome work such as reverse analysis of the apparent resistivity data. Since it is only necessary to calculate the rate of change of apparent resistivity in the ground over time by calculating the rate of change with respect to the reference apparent resistivity, it is possible to perform high-speed data processing with simple calculations. To extract and emphasize the moisture change.
本発明方法により、地盤の水分変化をリアルタイムで観測することが可能となり、地盤の不飽和層内への雨水の浸透過程、雨水の浸透による空隙の変化、不飽和層内の水分の滞留・蒸発状況を経時変化として把握することが可能となる。 By the method of the present invention, it becomes possible to observe the moisture change of the ground in real time, the infiltration process of rainwater into the unsaturated layer of the ground, the change of void due to the penetration of rainwater, the retention and evaporation of moisture in the unsaturated layer It becomes possible to grasp the situation as a change with time.
電気探査計測により地盤の見掛比抵抗を測定する手順は、基本的に公知方法と同様であってよい。2極法配置での測定系の一例を図1に示す。測線両端の外側遠方にそれぞれ遠電極を設置し、一方を電流電極(C∞)、他方を電位電極(P∞)とする。地表面に測線を設定し、その測線内に等間隔で多数の電極10を設置し、スキャナ12で電極を切り換えて、測定器14により電極への通電と選択した電極における電位の測定を行う。
The procedure for measuring the apparent resistivity of the ground by electrical exploration measurement may be basically the same as a known method. An example of a measurement system in a two-pole method arrangement is shown in FIG. Far electrodes are installed on the outer sides of both ends of the survey line, and one is a current electrode (C∞) and the other is a potential electrode (P∞). A survey line is set on the ground surface, a large number of
測定手順の一例を図2に示す。遠電極(C∞)と電極Cとの間に電流を流し、その時の電極Pと遠電極(P∞)の電位を測定し、この測定を電極Cと電極Pとの間隔を探査深度まで変化させながら繰り返す。ここでは、電位測定の電極を4個(P1,P2,P3,P4で表す)用いており、地中における測定位置を×印で示している。開始の状態から、電流電極C及び電位電極P1,…,P4を測線に沿って矢印方向に1個ずつずらすように切り換えて測定する。なお、地中における●印は測定済みの位置を示している。このような電気探査計測を測線に沿って実施し、終了の状態まで続けることで、その時点における当該測線での実測データが得られる。 An example of the measurement procedure is shown in FIG. A current is passed between the far electrode (C∞) and the electrode C, the potential of the electrode P and the far electrode (P∞) at that time is measured, and the distance between the electrode C and the electrode P is changed to the exploration depth. Repeat while letting. Here, four potential measurement electrodes (P1, P2, P3, P4) are used, and the measurement position in the ground is indicated by a cross. From the start state, the current electrode C and the potential electrodes P1,..., P4 are switched so as to be shifted one by one in the arrow direction along the measurement line. Note that the ● mark in the ground indicates the measured position. By carrying out such electric exploration measurement along the survey line and continuing to the end state, actual measurement data on the survey line at that time can be obtained.
見掛比抵抗ρは、次式で表される。
ρ=KV/I (但し、Kは電極配置係数)
実際の不均一な地盤では、この値は真の比抵抗を意味するものではないが、地下の比抵抗分布を反映したものであり、電極周辺のかなり広い範囲の比抵抗の一種の平均値と見なせるため、見掛比抵抗と称している。前記のように電気探査計測を実施することで、測線方向の垂直断面での見掛比抵抗データ(見掛比抵抗の分布)が求まる。
The apparent specific resistance ρ is expressed by the following equation.
ρ = KV / I (where K is the electrode placement factor)
In actual non-uniform ground, this value does not mean the true resistivity, but it reflects the resistivity distribution in the basement, and is an average value of a kind of resistivity in a fairly wide range around the electrode. Since it can be considered, it is called apparent resistivity. By carrying out electrical exploration measurement as described above, apparent resistivity data (apparent resistivity distribution) in a vertical section in the direction of the measurement line can be obtained.
本発明方法によるデータ処理フローを図3に示す。上記のように電気探査計測の実施により地盤の見掛比抵抗データを取得する。実測した見掛比抵抗値は、深度方向の測定値はルーズであるため、必要に応じて感度補正を行う。単に、地盤における水分変化の状態のみモニタリングすれば済む場合には、必ずしも感度補正を要しない。次に、降雨前もしくは降雨直後の見掛比抵抗を基準データとして、その後に取得した見掛比抵抗について、基準の見掛比抵抗に対する変化率を算出して地盤内における見掛比抵抗の変化率分布を求める。任意の時刻での比抵抗変化率Δρtは、次式に基づいて算出する。
Δρt={(ρt−ρs)/ρs}×100(%)
ここで、ρtは任意の時刻での見掛比抵抗、ρsは基準となる時刻(降雨前もしくは降雨直後)の見掛比抵抗である。このようにして得られる見掛比抵抗の変化率の分布図を作成する。
A data processing flow according to the method of the present invention is shown in FIG. As described above, the apparent resistivity data of the ground is acquired by conducting the electric survey measurement. The actually measured apparent resistivity value is loosely measured in the depth direction, so sensitivity correction is performed as necessary. If it is only necessary to monitor only the state of moisture change on the ground, sensitivity correction is not necessarily required. Next, change the apparent resistivity in the ground by calculating the rate of change of the apparent resistivity before and after the rain as reference data, and the rate of change of the apparent resistivity obtained after that to the reference apparent resistivity. Find the rate distribution. The specific resistance change rate Δρt at an arbitrary time is calculated based on the following equation.
Δρt = {(ρt−ρs) / ρs} × 100 (%)
Here, ρt is an apparent specific resistance at an arbitrary time, and ρs is an apparent specific resistance at a reference time (before or immediately after rainfall). A distribution map of the change rate of the apparent resistivity obtained in this way is created.
以上のステップを、任意の時間間隔(例えば、5〜10分程度の間隔)で繰り返し実施し、多数の時刻での比抵抗変化率データを算出し蓄積する。この繰り返しのプロセスは、異なる経過時間で得られた見掛比抵抗データについて行うものであり、逆解析における繰り返し演算とは全く異なるものである。比抵抗の変化率の計算は、1測定点・1時点について1回の減算と1回の除算のみなので、瞬時に求まる。蓄積したデータを経時的に観測することにより、地盤不飽和層の水分変化をモニタリングする。例えば、経過時間を数百の1に縮めることで、降雨直後数日間程度の間に生じた地盤内の水分変化の状況変化を数分間の動画として観測することができる。勿論、任意の時点での地盤内の水分変化の分布図をハードコピーとして出力することも可能であり、それに基づき水分変化の状況変化をモニタリングすることもできる。また、リアルタイムで水分変化の状況をモニタリングすることもできる。 The above steps are repeatedly performed at arbitrary time intervals (for example, intervals of about 5 to 10 minutes), and resistivity change rate data at a number of times are calculated and accumulated. This iterative process is performed on apparent resistivity data obtained at different elapsed times, and is completely different from the iterative calculation in the inverse analysis. The calculation of the rate of change of the specific resistance is obtained instantaneously because only one subtraction and one division are performed for one measurement point and one time point. By monitoring the accumulated data over time, the moisture change in the ground unsaturated layer is monitored. For example, by shortening the elapsed time to one of several hundreds, it is possible to observe a change in the state of moisture change in the ground that has occurred within a few days immediately after rainfall as a moving image of several minutes. Of course, it is also possible to output a distribution map of moisture change in the ground at an arbitrary time point as a hard copy, and based on this, it is possible to monitor the change in the situation of moisture change. It is also possible to monitor the state of moisture change in real time.
本発明方法では、地盤構造は変わらず、変化しているもののみが強調されるので、数%変化する水分の変化も分かり、地盤内における水の動きが見えてくる。また、基準の時点をどこに設定するかによって、見えるものも変わってくる。基準の時点を降雨前に設定すれば、地盤の表層から不飽和層内への雨水の浸透過程が分かるし、基準の時点を降雨直後に設定すれば、不飽和層内での雨水の移動、それによる空隙の変化、不飽和層内の水分の滞留・蒸発状況などを把握できる。具体的には、水がどこから入ってどこから抜けたかというような短時間の変化、あるいは浸み込み易い場所、滞水し易い場所、排水し易い場所などが明瞭となる。 In the method according to the present invention, the ground structure is not changed, and only what is changing is emphasized. Therefore, it is possible to understand the change in water that changes by several percent, and the movement of water in the ground can be seen. Also, what you see depends on where you set the reference point in time. If the reference time is set before the rain, the infiltration process of the rainwater from the surface layer into the unsaturated layer can be understood, and if the reference time is set immediately after the rain, the movement of rainwater in the unsaturated layer, As a result, it is possible to grasp the change of voids and the retention and evaporation of moisture in the unsaturated layer. Specifically, a short-time change, such as where water enters and exits, or a place where it is easy to soak, a place where water easily stagnates, or a place where water drains easily becomes clear.
ところで電気探査計測では多数の電極を配置する必要がある。電極の配置方法は任意であるが、本発明方法では経時的な測定を行うため、電極を一定の位置に設置することが望ましく、ノイズが少なく且つ測定位置の変動が生じないようにするため各電極を地盤に打ち込むのがよい。勿論、簡易的には電極を表層に載置するだけの配置方法、あるいは電極を表層で引っ張りながら測定する方法も可能である。 By the way, it is necessary to arrange a large number of electrodes in the electric exploration measurement. Although the electrode placement method is arbitrary, in the method of the present invention, it is desirable to place the electrode at a certain position in order to perform measurement over time. It is better to drive the electrode into the ground. Of course, a method of simply placing the electrode on the surface layer or a method of measuring while pulling the electrode on the surface layer is also possible.
上記の例では、多数の電極を1測線上で1次元的に配置しているが、複数の測線上に配置してもよい。それによって2次元的に配置すれば、複数の測線での比抵抗変化率の垂直断面が得られる他、深度の異なる地盤内での比抵抗変化率の水平断面も得られることになる。 In the above example, a large number of electrodes are arranged one-dimensionally on one survey line, but may be arranged on a plurality of survey lines. Thus, when arranged two-dimensionally, a vertical section of the resistivity change rate at a plurality of survey lines can be obtained, and a horizontal section of the resistivity change rate in the ground at different depths can be obtained.
以下、実測結果の一例について説明する。測定対象となる地盤に、図1で示す電気探査計測のための測定系を適用し、図2に示すような測定手順で見掛比抵抗を測定した。図4は、参考のために求めた比抵抗モデルを示している。これは、降雨前に取得した見掛比抵抗データを逆解析することにより求めたものであり、通常の電気探査の結果である。この図4では、表層の盛土(ローム層)とその下部にある細砂および凝灰質粘土層が測定されていることが分かる。 Hereinafter, an example of the actual measurement result will be described. The measurement system for electrical exploration measurement shown in FIG. 1 was applied to the ground to be measured, and the apparent specific resistance was measured by a measurement procedure as shown in FIG. FIG. 4 shows a specific resistance model obtained for reference. This is obtained by inverse analysis of apparent resistivity data acquired before the rain, and is a result of normal electric exploration. In FIG. 4, it can be seen that the surface embankment (the loam layer) and the fine sand and tuff clay layer below it are measured.
図5及び図6は、本発明により得られた結果の一例である。図5は、降雨前を基準としたものであり、それに対する降雨中(a)、降雨6時間後(b)、降雨1日後(c)、降雨2日後(d)の比抵抗変化率(%)の分布図である。また図6は、降雨直後を基準としたものであり、それに対して降雨6時間後(a)、降雨1日後(b)、降雨2日後(c)の比抵抗変化率(%)の分布図である。見掛比抵抗データの処理は、図3に示す処理フローに沿って行っている。 5 and 6 are examples of results obtained by the present invention. FIG. 5 is based on the pre-rainfall, and the specific resistance change rate (%) during the rain (a), 6 hours after the rain (b), 1 day after the rain (c), 2 days after the rain (d) ) Distribution map. FIG. 6 is based on the time immediately after the rain, and on the other hand, the distribution of specific resistance change rate (%) after 6 hours of rain (a), 1 day after the rain (b), and 2 days after the rain (c). It is. The apparent resistivity data is processed according to the processing flow shown in FIG.
ここでは、図面の制限上、静止画像しか表示できないことから、図5では4枚、図6では3枚の、経過時間の異なる時点での分布図のみを掲載しているが、実際には、高速連続自動電気探査計測により数分(例えば5〜10分)程度の時間間隔で見掛比抵抗データを取得し、比抵抗変化率の計算を行っている。この計算は、1点について1回の減算と1回の除算のみで求まるので、高速データ処理が可能であり、一般的な処理能力のパソコンでも瞬時に求まる。従って、リアルタイムでの地盤の水分分布をモニタリングすることができる。 Here, due to the limitations of the drawing, only still images can be displayed, so only four distribution maps at different points in time are shown in FIG. 5 and three in FIG. Apparent specific resistance data is acquired at a time interval of about several minutes (for example, 5 to 10 minutes) by high-speed continuous automatic electric exploration measurement, and the specific resistance change rate is calculated. Since this calculation can be obtained by only one subtraction and one division for one point, high-speed data processing is possible, and it can be obtained instantaneously even with a personal computer having a general processing capability. Therefore, it is possible to monitor the moisture distribution of the ground in real time.
図5あるいは図6では分かり難いが、実際には時間を短縮した動画をパソコン画面上に表示できるため、地盤内における水の動き(水の出入りや滞留など)が明瞭に把握できることになる。 Although it is difficult to understand in FIG. 5 or FIG. 6, a moving image with reduced time can actually be displayed on the personal computer screen, so that the movement of water in the ground (such as entering and exiting water) can be clearly understood.
更に長期間の観測を行えば、1日の平均値、1月毎の平均値を算出することもでき、その変化率をモニタリングすることで、不飽和層内の水分の経時変化を把握できることも確認できた。 Furthermore, if long-term observation is performed, it is possible to calculate the average value for the day and the average value for the month, and by monitoring the rate of change, it is possible to grasp the change with time of the moisture in the unsaturated layer. It could be confirmed.
本発明により見掛比抵抗の変化率と土壌水分計データとの相関を求めておくと、土壌水分変化をモニタリングすることができる。また、見掛比抵抗の変化率と地下水位の相関を求めておくと、地下水位の変化をモニタリングすることもできる。 When the correlation between the apparent resistivity change rate and the soil moisture meter data is obtained according to the present invention, the soil moisture change can be monitored. In addition, if the correlation between the apparent resistivity change rate and the groundwater level is obtained, the change in the groundwater level can be monitored.
本発明方法は、地盤の水分分布の変化(土壌水分の時間的あるいは場所的変化、即ち移動)を直接モニタリングできるので、地滑りの予測にも応用可能である。例えば、本発明方法によって予め雨の降り方と雨水の浸透状況を把握しておけば、あとは雨の降り方を監視するだけで必要に応じて地滑り警報を発することができるし、必要な対策工法を開発することもできる。本発明は、その他、河川堤防の健全性診断などにも応用可能である。 The method of the present invention can be directly applied to the prediction of landslide because it can directly monitor changes in the moisture distribution of the ground (temporal or local changes in soil moisture, ie, movement). For example, if the method of the present invention is used in advance to know how rain falls and the infiltration of rainwater, landslide warnings can be issued as needed by simply monitoring how rain falls and necessary countermeasures are taken. Construction methods can also be developed. The present invention can also be applied to river bank integrity diagnosis and the like.
地盤の水分分布の変化をモニタリングできる本発明方法は、地下水位のモニタリングも可能である。地下水の流向も面的に把握できるため、土壌汚染の拡散具合なども的確に調査可能となる。なお、本発明方法は、地盤内に孔を形成したり、水分計などの計器を埋め込む必要がないため、地盤を乱すことがないからである。因みに、孔を掘って計器を埋め込めば、地層が乱れ、その影響は避けられず、流向などが変化してしまうからである。 The method of the present invention which can monitor the change in the moisture distribution of the ground can also monitor the groundwater level. Since the flow direction of groundwater can be grasped in a plane, it is possible to accurately investigate the extent of soil contamination. This is because the method of the present invention does not need to form a hole in the ground or embed a meter such as a moisture meter, and therefore does not disturb the ground. By the way, if you dig a hole and embed an instrument, the formation will be disturbed, the effect is inevitable, and the flow direction will change.
10 電極
12 スキャナ
14 測定器
10
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009266166A JP2011112368A (en) | 2009-11-24 | 2009-11-24 | Method of monitoring moisture variation of ground |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009266166A JP2011112368A (en) | 2009-11-24 | 2009-11-24 | Method of monitoring moisture variation of ground |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011112368A true JP2011112368A (en) | 2011-06-09 |
Family
ID=44234833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009266166A Pending JP2011112368A (en) | 2009-11-24 | 2009-11-24 | Method of monitoring moisture variation of ground |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011112368A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016133439A (en) * | 2015-01-21 | 2016-07-25 | 株式会社奥村組 | Subsoil resistivity distribution analyzing method by resistivity tomography |
CN112782770A (en) * | 2020-12-24 | 2021-05-11 | 浙江大学 | Data acquisition method for master-slave random distributed high-density electrical prospecting |
JP7250873B1 (en) | 2021-09-16 | 2023-04-03 | 中央開発株式会社 | Ground resistivity monitoring device and slope failure warning system |
JP7546916B2 (en) | 2021-03-04 | 2024-09-09 | 国立大学法人 長崎大学 | Ground deformation detection device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01285843A (en) * | 1988-05-13 | 1989-11-16 | Green Technol:Kk | System for measuring underground seepage water |
JP2001021662A (en) * | 1999-07-07 | 2001-01-26 | Agency Of Ind Science & Technol | Electrode switching device for electrical prospecting |
JP2003294853A (en) * | 2002-04-04 | 2003-10-15 | Oyo Corp | Air underground structure-probing method |
-
2009
- 2009-11-24 JP JP2009266166A patent/JP2011112368A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01285843A (en) * | 1988-05-13 | 1989-11-16 | Green Technol:Kk | System for measuring underground seepage water |
JP2001021662A (en) * | 1999-07-07 | 2001-01-26 | Agency Of Ind Science & Technol | Electrode switching device for electrical prospecting |
JP2003294853A (en) * | 2002-04-04 | 2003-10-15 | Oyo Corp | Air underground structure-probing method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016133439A (en) * | 2015-01-21 | 2016-07-25 | 株式会社奥村組 | Subsoil resistivity distribution analyzing method by resistivity tomography |
CN112782770A (en) * | 2020-12-24 | 2021-05-11 | 浙江大学 | Data acquisition method for master-slave random distributed high-density electrical prospecting |
CN112782770B (en) * | 2020-12-24 | 2022-05-03 | 浙江大学 | Data acquisition method for master-slave random distributed high-density electrical prospecting |
JP7546916B2 (en) | 2021-03-04 | 2024-09-09 | 国立大学法人 長崎大学 | Ground deformation detection device |
JP7250873B1 (en) | 2021-09-16 | 2023-04-03 | 中央開発株式会社 | Ground resistivity monitoring device and slope failure warning system |
JP2023050207A (en) * | 2021-09-16 | 2023-04-11 | 中央開発株式会社 | Ground specific electrical resistance monitoring device, and slope collapse warning system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rinaldi et al. | Modeling interactions between riverbank hydrology and mass failures | |
Garré et al. | Comparison of heterogeneous transport processes observed with electrical resistivity tomography in two soils | |
Jones et al. | Mapping desiccation fissures using 3-D electrical resistivity tomography | |
Rahardjo et al. | Sensing and monitoring for assessment of rainfall-induced slope failures in residual soil | |
JP2011112368A (en) | Method of monitoring moisture variation of ground | |
Toran et al. | Using hydrogeophysics to monitor change in hyporheic flow around stream restoration structures | |
Krzeminska et al. | Field investigation of preferential fissure flow paths with hydrochemical analysis of small-scale sprinkling experiments | |
Gottardi et al. | Assessing river embankment stability under transient seepage conditions | |
Clémence et al. | Monitoring an artificial tracer test within streambed sediments with time lapse underwater 3D ERT | |
Amabile et al. | An assessment of ERT as a method to monitor water content regime in flood embankments: The case study of the Adige River embankment | |
Lu et al. | Imaging and characterization of the preferential flow process in agricultural land by using electrical resistivity tomography and dual-porosity model | |
De Carlo et al. | Geophysical and hydrological data assimilation to monitor water content dynamics in the rocky unsaturated zone | |
Zhang et al. | Application of resistivity measurement to stability evaluation for loess slopes | |
Dimech et al. | 3D time-lapse geoelectrical monitoring of moisture content in an experimental waste rock pile: Validation using hydrogeological data | |
JP3041426B1 (en) | Fill dam management system by resistivity tomography and its management method | |
Gragnano et al. | Field monitoring and laboratory testing for an integrated modeling of river embankments under transient conditions | |
Ahmad Afip et al. | Measurement of Peat Soil Shear Strength Using Wenner Four‐Point Probes and Vane Shear Strength Methods | |
Kazemian et al. | A review of bridge scour monitoring techniques and developments in vibration based scour monitoring for bridge foundations | |
Dornstädter | Leakage detection in dams–state of the art | |
Houzé et al. | Combining experimental and modelling approaches to monitor the transport of an artificial tracer through the hyporheic zone | |
Liu et al. | Spatial variability of saprolitic soil properties and relationship with joint set orientation of parent rock: Insights from cases in Hong Kong | |
Ahmed et al. | Monitoring of Moisture Variation in Highway Slope through Resistivity Imaging | |
Hakam et al. | Liquefaction Mapping Procedure Development: Density and Mean Grain Size Formulations | |
JP4900615B2 (en) | Ground failure / collapse prediction method | |
Tran et al. | Soil surface roughness and turbidity measurements in erosion testing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120229 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20121003 |