JP4900615B2 - Ground failure / collapse prediction method - Google Patents

Ground failure / collapse prediction method Download PDF

Info

Publication number
JP4900615B2
JP4900615B2 JP2008331788A JP2008331788A JP4900615B2 JP 4900615 B2 JP4900615 B2 JP 4900615B2 JP 2008331788 A JP2008331788 A JP 2008331788A JP 2008331788 A JP2008331788 A JP 2008331788A JP 4900615 B2 JP4900615 B2 JP 4900615B2
Authority
JP
Japan
Prior art keywords
ground
potential
collapse
electrodes
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008331788A
Other languages
Japanese (ja)
Other versions
JP2010151701A (en
Inventor
佳彦 伊東
祐基 日下部
政仁 宍戸
秀幸 村山
廣海 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
National Research and Development Agency Public Works Research Institute
Original Assignee
Fujita Corp
Public Works Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp, Public Works Research Institute filed Critical Fujita Corp
Priority to JP2008331788A priority Critical patent/JP4900615B2/en
Publication of JP2010151701A publication Critical patent/JP2010151701A/en
Application granted granted Critical
Publication of JP4900615B2 publication Critical patent/JP4900615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

本発明は、地盤の破壊や崩壊現象の発生を予測するための技術に関するものである。   The present invention relates to a technique for predicting the occurrence of ground destruction and collapse phenomena.

盛土や切土等による斜面や、風化等により成層が不安定になっていると予想される地域での地盤の破壊や崩壊(地すべり、岩盤崩落、斜面崩壊、落石など)による危険を回避するためには、地盤破壊や崩壊につながる前兆現象が発生しているか否かを、実際に地盤の破壊や崩壊の発生する前に的確にとらえることが重要である。従来、このような地盤破壊・崩壊予測には、地盤の微小な電気的変化を観測することによって地盤破壊・崩壊の前兆現象を把握しようとする試みがなされて来た。   To avoid dangers due to slopes due to embankments, cuts, etc., or ground destruction or collapse (landslides, rock collapses, slope failures, rock falls, etc.) in areas where stratification is expected to be unstable due to weathering, etc. Therefore, it is important to accurately grasp whether or not a precursory phenomenon leading to ground destruction or collapse has occurred before actual ground destruction or collapse occurs. Conventionally, in such ground failure / collapse prediction, attempts have been made to grasp the precursors of ground failure / collapse by observing minute electrical changes in the ground.

このうち、例えば不安定な斜面などにおいて地盤の変位や歪を計測し、崩壊を予測しようとする手法は、変動が緩慢な地すべり等の予測には適しているが、岩盤崩落等は非常に小さな変位や歪で瞬時に崩落が発生することから、地盤の変位や歪の計測によって崩壊を予測することはきわめて困難である。   Of these, for example, the method of measuring the displacement and strain of the ground on unstable slopes and trying to predict collapse is suitable for predicting landslides with slow fluctuations, but rock collapse is very small. Since collapse occurs instantaneously due to displacement and strain, it is extremely difficult to predict the collapse by measuring the displacement and strain of the ground.

また、地盤が破壊される時に発生する音響信号であるAE(Acoustic Emission)による破壊・崩壊予測は、元来、AEが金属材料の疲労破壊等の予測に用いられてきたことから、均一材料の破壊予測には有効であるが、地盤のような自然かつ複合材料に対する適用性は低い。また、AEは地盤振動のうちかなりの高周波成分を計測するために、地盤内での振動の伝播減衰が非常に大きく、広範囲の領域における計測は不可能である。したがって、AEは破壊・崩壊位置が高精度に推定されたジャストポイントの計測には有効であるが、現状では地盤内の破壊・崩壊位置を推定することは困難である。しかも破壊・崩壊位置が推定できれば有効な対策を施すことが可能となるのであるから、災害発生のリスクを勘案すれば、破壊・崩壊を予測するより、事前に対策を講じた方が賢明である。このため、地盤の破壊・崩壊予測技術としては、その位置と規模を推定できる手法の開発が望まれていると言える。   In addition, AE (Acoustic Emission), which is an acoustic signal generated when the ground is destroyed, is originally used for prediction of fatigue failure of metallic materials because AE has been used for prediction of uniform materials. Although it is effective for fracture prediction, its applicability to natural and composite materials such as the ground is low. In addition, since AE measures a considerable high-frequency component in ground vibration, propagation attenuation of vibration in the ground is very large, and measurement in a wide range is impossible. Therefore, AE is effective for measuring the just point where the fracture / collapse position is estimated with high accuracy, but it is difficult to estimate the fracture / collapse position in the ground at present. Moreover, if the destruction / collapse position can be estimated, effective countermeasures can be taken. Therefore, taking into account the risk of disaster occurrence, it is wise to take countermeasures in advance rather than predicting destruction / collapse. . For this reason, it can be said that the development of a technique that can estimate the position and scale of the ground is expected.

また、地盤の電位変化を計測して地震予知に活用するギリシャで開発されたVAN法では、地盤内での減衰が小さい電磁波が広範囲の計測に有利であるといった特性を活かして、発生する地震の位置と規模を同定する試みがなされている。よって、地盤の微小な電位変化を観測することによって地盤崩壊の位置と規模を同定することが可能となることが示唆される。   In addition, the VAN method developed in Greece, which measures the potential change of the ground and uses it for earthquake prediction, takes advantage of the characteristics that electromagnetic waves with low attenuation in the ground are advantageous for measurement over a wide area, Attempts have been made to identify location and scale. Therefore, it is suggested that it is possible to identify the position and scale of ground collapse by observing small potential changes in the ground.

一方、地盤の電位観測では絶対電位を測定することは困難であるため、ある地点に配置した共通陰極(基準電極)との差(電位差)を観測することになる。地下深部の金属鉱床や地熱地帯における熱源探査に活用されている調査法である自然電位法(SP法、電気探査の一種)でも、同様に基準電極に基づく地盤の電位分布を広範囲に計測し、その分布形状から地下の状態を把握している。   On the other hand, since it is difficult to measure the absolute potential by observing the ground potential, the difference (potential difference) from the common cathode (reference electrode) placed at a certain point is observed. The self-potential method (SP method, a kind of electrical exploration), which is an investigation method used for heat source exploration in deep underground metal deposits and geothermal areas, similarly measures a wide range of ground potential distribution based on the reference electrode, The underground state is grasped from the distribution shape.

地盤の電位観測において観測値から降雨等の外的要因によるノイズを除去する手法としては、対象地点から遠方あるいは異なる条件の箇所に電極を配置して、この測線をノイズ測線として活用しノイズを除去する試みがなされてきたが(例えば下記の特許文献1参照)、地盤の電位観測では、上述のように共通陰極を配置する必要があり、例えば観測目的区域から数km離れた遠方に電極を設置することは実務的に難しいのが現状である。一方、複数の異なる観測地点のデータから個々の観測地点の固有のノイズを除去しようとする手法も考えられるが、個々の地点で受ける個別の外的要因が同一であることが保証されていないことから、この手法も現実性に乏しい。
特許第3803470号公報
As a method of removing noise due to external factors such as rainfall from observation values in ground potential observation, electrodes are placed far from the target point or at different conditions, and this line is used as a noise line to remove noise. Attempts have been made (see, for example, Patent Document 1 below), however, in the potential observation of the ground, it is necessary to place a common cathode as described above. For example, an electrode is installed at a distance of several km from the observation target area. It is currently difficult to do in practice. On the other hand, there may be a method to remove the noise specific to each observation point from the data of multiple different observation points, but it is not guaranteed that the individual external factors received at each point are the same. Therefore, this method is also not realistic.
Japanese Patent No. 3803470

本発明は、上述のような問題に鑑みてなされたもので、その技術的課題は、地盤破壊・崩壊予測の信頼性を高めるため、地盤の電位差データから外的要因による電位変化を除去して、内的要因による電位変化を的確に把握するための方法を提供することにある。   The present invention has been made in view of the above-described problems, and its technical problem is to remove potential changes due to external factors from ground potential difference data in order to improve the reliability of ground fracture / collapse prediction. An object of the present invention is to provide a method for accurately grasping a potential change due to an internal factor.

上述の技術的課題を有効に解決するための手段として、本発明に係る地盤の破壊・崩壊予測方法は、地盤に設置した電極間を接続した複数の測線で電位差を計測し、各測線個別の電位差データを、各測線からの電位差データの和で除算することによって電位分担率を求め、この電位分担率の変化を地盤破壊・崩壊に係る内的要因による前兆変化として評価することを特徴とするものである。   As a means for effectively solving the above technical problem, the ground fracture / collapse prediction method according to the present invention measures a potential difference with a plurality of measurement lines connecting electrodes installed on the ground, The potential share is obtained by dividing the potential difference data by the sum of the potential difference data from each survey line, and the change in the potential share is evaluated as a precursor change due to internal factors related to ground destruction and collapse. Is.

上記構成において好ましくは、各測線が、安定領域の地盤に設置した電極を共通陰極として、不安定又は不安定になると予想される地盤に設置した複数の電極との間をそれぞれ接続したものである。   In the above configuration, preferably, each survey line is connected to a plurality of electrodes installed on the ground, which are expected to be unstable or unstable, with an electrode installed on the ground in the stable region as a common cathode. .

本発明は、地盤の微小な電気的な変化によって破壊現象(岩盤崩落、地すべり、落石、斜面崩壊など)の前兆を捉えようとするものであり、この種の手法では、降雨、降雪、温度、湿度などの気象変化や、地中の水分の凍結、融解などの外的要因による電位変化を除去しなければ、地盤の破壊・崩壊(内的要因)による電位変化を的確に評価することができない。これは、地盤の破壊に伴い発生する電位変化は非常に小さく数mV〜数百mV程度にすぎないのに対し、降雨時の電位変化は大きなものであるため、仮に降雨時に地盤の破壊が発生した場合、それによる電位変化が、降雨に起因する電位変化に埋もれてしまい、しかも内的要因による電位変化のパターンも、長期間に亘ってほぼ一定の勾配で変化するパターンや、周期的に変化するパターンや、急激に変化するパターンなどさまざまであるため、計測された電位差データだけでは地盤の微小破壊などの前兆現象を把握することができないからである。   The present invention seeks to detect the precursors of destruction phenomena (rock collapse, landslide, rock fall, slope failure, etc.) by minute electrical changes in the ground, and in this type of technique, rainfall, snowfall, temperature, Unless changes in potential due to meteorological changes such as humidity and external factors such as freezing and thawing of water in the ground are not removed, potential changes due to ground destruction / collapse (internal factors) cannot be accurately evaluated. . This is because the potential change caused by the destruction of the ground is very small, only a few mV to several hundred mV, while the potential change during the rain is large, so the ground breaks down during the rain. In this case, the potential change caused by it is buried in the potential change caused by rainfall, and the pattern of potential change due to internal factors is also a pattern that changes with a substantially constant gradient over a long period of time or changes periodically. This is because there are various patterns such as a pattern that changes and a pattern that changes abruptly, so it is impossible to grasp a precursor phenomenon such as a microfracture of the ground only by the measured potential difference data.

また、地盤試料を用いた室内実験でも、付近を通過する電車や、工場や家庭内の電気機器など、電気を動力源とする機器から発生する多くの電磁波による影響を受けて、本来、地盤試料の破壊とは無関係の外的要因による電位変化も一緒に観測されてしまう。   Also, even in laboratory experiments using ground samples, the ground samples are inherently affected by many electromagnetic waves generated from devices that use electricity as a power source, such as electric trains that pass nearby, electrical equipment in factories and homes, etc. A change in potential due to external factors unrelated to the destruction of the film is also observed.

しかしながら、上述のような外的要因は、観測対象領域内の個別の地点(測線)に等しくその影響が作用するために、各測線で計測された電位差データに乗算としてその影響が含まれている。したがって、本発明はこの点に着目し、個別の電位差データを、各測線からの電位差データの総和で除算することによって外的要因をキャンセルした電位分担率を算出し、内的要因の変化指標として捉えるものである。   However, since the external factors as described above are equally affected by individual points (measurements) in the observation target region, the influence is included as a multiplication in the potential difference data measured at each survey line. . Therefore, the present invention pays attention to this point, calculates the potential sharing rate by canceling the external factor by dividing the individual potential difference data by the sum of the potential difference data from each survey line, and uses it as a change index of the internal factor. It captures.

本発明に係る地盤の破壊・崩壊予測方法によれば、計測された複数の電位差データから外的要因に伴う電位変動を除去し、地盤の破壊・崩壊の前兆現象による電位分担率のみを取り出すことができるので、地盤破壊・崩壊の予測精度を向上することができる。   According to the ground fracture / collapse prediction method according to the present invention, potential fluctuations due to external factors are removed from a plurality of measured potential difference data, and only the potential sharing rate due to the precursory phenomenon of ground fracture / collapse is extracted. Therefore, the prediction accuracy of ground destruction / collapse can be improved.

以下、本発明に係る地盤の破壊・崩壊予測方法について、図面を参照しながら説明する。まず図1は、本発明に係る地盤の破壊・崩壊予測方法における好ましい実施の形態を、電極の平面配置例と共に概略的に示す説明図、図2は、電極の鉛直配置例と共に概略的に示す説明図である。   Hereinafter, a ground fracture / collapse prediction method according to the present invention will be described with reference to the drawings. First, FIG. 1 is an explanatory diagram schematically showing a preferred embodiment of the ground fracture / collapse prediction method according to the present invention together with an example of a planar arrangement of electrodes, and FIG. 2 schematically shows an example of a vertical arrangement of electrodes. It is explanatory drawing.

図1において、上側が地盤斜面の上部、下側が地盤斜面の下部であり、参照符号G1は安定領域、G2は太矢印で示される地すべりなどが発生しやすい不安定又は不安定になると予想される領域(以下、不安定領域という)である。この形態では、安定領域G1の任意の一箇所に電極ERを埋設し、不安定領域G2における複数の地点に電極ER〜ERを埋設しており、電極ERは、多チャンネルの電圧計測器(例えばデータロガー)1の各陰極入力端子11〜11に並列に接続し、電極ER〜ERは、それぞれ前記電圧計測器1の各陽極入力端子12〜12に接続している。 In FIG. 1, the upper side is the upper part of the ground slope, and the lower side is the lower part of the ground slope. Reference numeral G1 is a stable region, G2 is expected to be unstable or unstable where landslides indicated by thick arrows are likely to occur. A region (hereinafter referred to as an unstable region). In this embodiment, the electrode ER 0 is embedded at an arbitrary position in the stable region G1, and the electrodes ER 1 to ER n are embedded at a plurality of points in the unstable region G2, and the electrode ER 0 is a multi-channel voltage. Connected in parallel to the cathode input terminals 11 1 to 11 n of the measuring instrument (for example, data logger) 1, and the electrodes ER 1 to ER n are connected to the anode input terminals 12 1 to 12 n of the voltage measuring instrument 1, respectively. is doing.

不安定領域G2に埋設された電極ER〜ERは、安定領域G1に埋設された一つの電極ERを共通陰極とする複数の測線を形成するものであり、電圧計測器1は、陽極側の各電極ER〜ERと陰極側の電極ERとの間の電位差を、一定のサンプリング周期(例えば10秒)で計測して記録するものである。 The electrodes ER 1 to ER n embedded in the unstable region G2 form a plurality of measurement lines using one electrode ER 0 embedded in the stable region G1 as a common cathode. The potential difference between each of the electrodes ER 1 to ER n on the side and the electrode ER 0 on the cathode side is measured and recorded at a constant sampling period (for example, 10 seconds).

図2において、参照符号GWLは地下水位、参照符号SFは地すべりの発生しやすい面(以下、すべり面という)であって、安定領域G1と不安定領域G2との境界面に相当する。そしてこの図2の参照符号Bhは、電極P1U,P1L,P2U,P2Lを埋設するためのボーリング孔である。このうち上側の電極P1U,P2Uは、すべり面SFより上側の不安定領域G2に位置し、下側の電極P1L,P2Lは、すべり面SFより下層の安定領域G1に位置している。また、電極P1U,P2U,P1L,P2Lは、雨の影響を排除するために地下水位GWL以下に設置した。 In FIG. 2, reference symbol GWL is a groundwater level, and reference symbol SF is a surface on which a landslide is likely to occur (hereinafter referred to as a slip surface), and corresponds to a boundary surface between the stable region G1 and the unstable region G2. 2 is a boring hole for embedding the electrodes P 1U , P 1L , P 2U , and P 2L . Of these, the upper electrodes P 1U and P 2U are located in the unstable region G2 above the slip surface SF, and the lower electrodes P 1L and P 2L are located in the stable region G1 below the slip surface SF. Yes. The electrodes P 1U , P 2U , P 1L , and P 2L were installed below the groundwater level GWL in order to eliminate the influence of rain.

そして、安定領域G1に埋設した電極ERを共通陰極として、多チャンネルの電圧計測器(例えばデータロガー)2の各陰極入力端子21〜21に並列に接続し、電極P1U,P1L,P2U,P2Lを、それぞれ前記電圧計測器2の各陽極入力端子22〜22に接続している。 Then, the electrode ER 0 embedded in the stable region G1 is used as a common cathode, and connected in parallel to the cathode input terminals 21 1 to 21 4 of the multi-channel voltage measuring device (for example, data logger) 2, and the electrodes P 1U and P 1L are connected. , P 2U , P 2L are connected to the anode input terminals 22 1 to 22 4 of the voltage measuring instrument 2, respectively.

ここで、ある測線で計測される電位差をPsiとし、このうち地盤の破壊などの内的要因による電位変化をPti、電極の状態などに起因する不明確な未知のノイズをPni、気象変化などの外的要因による電位変化をPcとすると、発明者らの研究の結果、おおよそ次のような式が成り立つことがわかった。
Psi≒(Pti+Pni)×Pc
Here, the potential difference measured on a certain line is Ps i , of which Pt i is the potential change due to internal factors such as the destruction of the ground, Pn i is the unknown unknown noise due to the electrode state, etc. Assuming that the change in potential due to external factors such as change is Pc, the inventors' research has revealed that the following equation is established.
Ps i ≒ (Pt i + Pn i ) × Pc

また、各測線(電極ERとERの間、電極ERとERの間、電極ERとERの間、・・・)で計測された電位差の和(又は総和)をΣPs、各測線で計測された電位差のうち、内的要因による電位変化をPt、個々の電極の状態などに起因する不明確な未知のノイズをPnとすると、
ΣPs≒Σ(Pt+Pn)×Pc
であるから、個別の電位差PsiをΣPsで除算することによって、次式のように、外的要因による電位変化Pcをキャンセルした電位分担率Riを個別に得ることができる。
Ri=Psi/ΣPs=(Pti+Pni)×Pc/Σ(Pt+Pn)×Pc
=(Pti+Pni)/Σ(Pt+Pn)
Further, the sum (or sum) of potential differences measured on each survey line (between electrodes ER 0 and ER 1 , between electrodes ER 0 and ER 2 , between electrodes ER 0 and ER 3 , and so on) is ΣPs, Of the potential difference measured on each line, let Pt be the potential change due to internal factors, and Pn be the unknown unknown noise caused by the state of the individual electrodes.
ΣPs ≒ Σ (Pt + Pn) × Pc
Therefore, by dividing the individual potential difference Psi by ΣPs, the potential sharing ratio Ri in which the potential change Pc due to an external factor is canceled can be obtained individually as in the following equation.
R i = Ps i / ΣPs = (Pt i + Pn i ) × Pc / Σ (Pt + Pn) × Pc
= (Pt i + Pn i ) / Σ (Pt + Pn)

すなわち、電位分担率Riは、気象変化などの外的要因による電位変化Pcが除去されているものであり、地盤崩壊・破壊を起こす箇所の電位は変位に先行して変化するため、地盤の破壊現象に起因する内的要因の変化を把握するための指標とすることができる。また、電位差の和ΣPsは、観測対象領域に及ぼす外的要因の影響が強調されたデータとなっているため、外的要因の程度の差を表す指標として活用することができる。また、発明者らが野外で観測した種々の電位差データを分析した結果、電位差の変化は降水の有無には敏感だが、降水量には比例しないことが分かった。   That is, the potential sharing ratio Ri is the one in which the potential change Pc due to external factors such as weather changes has been removed, and the potential at the place where the ground collapse / destruction changes changes prior to the displacement, so the destruction of the ground It can be used as an index for grasping changes in internal factors caused by phenomena. Further, since the sum ΣPs of potential differences is data in which the influence of external factors on the observation target region is emphasized, it can be used as an index representing the difference in the degree of external factors. In addition, as a result of analyzing various potential difference data observed by the inventors in the field, it was found that the change in potential difference is sensitive to the presence or absence of precipitation, but is not proportional to precipitation.

なお、ΣPsは2箇所以上の計測値の和であり、必ずしも観測対象領域内における各測線での計測値の総和である必要はなく、同じ外的要因を受ける箇所に設置された最低2箇所(1組)の観測データがあれば算出することが可能であり、移動土塊内、不動土塊内あるいは不動土塊と移動土塊を跨いだ領域での内的変化に伴う電位差の比を算出し、破壊前兆現象を把握することができる。   Note that ΣPs is the sum of the measured values at two or more locations, and does not necessarily have to be the sum of the measured values at each survey line in the observation target area. At least two locations installed at locations subject to the same external factors ( It is possible to calculate if there is a set of observation data, and calculate the ratio of potential difference with internal change in the moving clot, in the immovable clot, or in the area across the immovable clot and the moving clot. The phenomenon can be grasped.

仮に2箇所の電極において、電極の設置状況や形状・材質などが同一で、等しい外的要因をうける理想的な状況と考えられる場合、各々の電極における電位分担率は、共に等しく電位を分担するので0.5となる。同様に、4箇所の場合0.25となる。よって、地盤破壊等による内的要因による電位変化がある電極位置で観測された場合、その地点の電位分担率が正側あるいは負側に変化することになる。よって、地盤の破壊に伴う前兆現象を把握するためにはこの電位分担率の変化に注目することが有効である。   If two electrodes have the same electrode installation status, shape, material, etc., and are considered to be ideal situations subject to the same external factors, the potential sharing rate at each electrode will share the potential equally. So it becomes 0.5. Similarly, in the case of 4 places, it is 0.25. Therefore, when an electric potential change due to an internal factor due to ground destruction or the like is observed at the electrode position, the electric potential sharing rate at that point changes to the positive side or the negative side. Therefore, it is effective to pay attention to the change of the potential sharing rate in order to grasp the precursory phenomenon accompanying the destruction of the ground.

なお、現況では破壊に伴い発生する電位差を一概に確定することが困難なため、その変化量は多様であり,変化の極性は正側,負側の双方があり得る。   In addition, since it is difficult to determine the potential difference generated due to the breakdown in the present situation, the amount of change is various, and the polarity of the change can be both positive and negative.

次に図3は、本発明に係る地盤の破壊・崩壊予測方法を検証するために実施した室内試験を示す説明図である。この試験では、一軸圧縮試験機100における上下に互いに対向した一対の押圧子101,101間に円柱状の岩石からなる供試体TPを設置し、この供試体TPの上下両端に電極ER11,ER12を設け、押圧子101,101と電極ER11,ER12の間はそれぞれ絶縁体102によって電気的に絶縁した。また、一方の電極ER11は、サンプリング周期が0.1秒のデータロガー3における陽極入力端子32,32に接続し、他方の電極ER12は、データロガー3における陰極入力端子31と陽極入力端子32に接続し、陰極入力端子31,31はアースし、供試体TPを押圧子101,101間で圧縮荷重を加えていくことにより破壊させるまでの過程で、上部電極ER11と下部電極ER12間に生じてch1に入力される電位差P−P、上部電極ER11とアースGND間に生じてch2に入力される電位差P−G、及び下部電極ER12とアースGND間に生じてch3に入力される電位差P−Gの変化を計測した。 Next, FIG. 3 is explanatory drawing which shows the laboratory test implemented in order to verify the destruction and collapse prediction method of the ground which concerns on this invention. In this test, a specimen TP made of cylindrical rock is installed between a pair of pressers 101, 101 facing each other in the vertical direction in the uniaxial compression tester 100, and electrodes ER 11 , ER are placed at both upper and lower ends of the specimen TP. 12 , and the pressers 101 and 101 and the electrodes ER 11 and ER 12 were electrically insulated from each other by an insulator 102. Further, one electrode ER 11, the sampling period is connected to the anode input terminal 32 1, 32 2 in the data logger 3 0.1 second, the other electrode ER 12 includes a cathode input terminal 31 1 in the data logger 3 connected to the anode input terminal 32 3, in the course of up to cathode input terminals 31 2, 31 3 is grounded, is destroyed by gradually adding a compressive load specimens TP between pressure members 101 and 101, the upper electrode ER 11 and the potential difference P U −P L generated between the lower electrode ER 12 and input to the ch 1, the potential difference P U −G generated between the upper electrode ER 11 and the ground GND and input to the ch 2, and the lower electrode ER 12 A change in the potential difference P L -G generated between the ground GND and input to ch3 was measured.

図4は、試験結果を示す線図である。この図4において、R,Rは電位差データP−G及びP−Gをその和で除算した電位分担率であって、すなわち次のようにして求められたものである。
=P−G/Σ(P−G+P−G)
=P−G/Σ(P−G+P−G)
FIG. 4 is a diagram showing the test results. In FIG. 4, R U and R L are potential sharing ratios obtained by dividing the potential difference data P U -G and P L -G by their sums, that is, obtained as follows.
R U = P U −G / Σ (P U −G + P L −G)
R L = P L −G / Σ (P U −G + P L −G)

供試体TPへの圧縮荷重を増大させていくと、やがて図4に破線で示される時刻で供試体TPの破壊に到るが、それより以前の時点(時間0:35〜0:42付近)では、電位分担率が0.5を基準として正の値であったRと負の値であったRの関係が逆転し、それまでの均衡が崩れていることがわかる。この変化は、供試体TPの内部組織の微小破壊が始まったことに伴う電位変化によるものであると考えられる。 When the compressive load on the specimen TP is increased, the specimen TP will eventually be destroyed at the time indicated by the broken line in FIG. 4, but before that (time 0:35 to 0:42) So it can be seen that the potential distribution ratio is 0.5 reversed relationship of R L which was a R U and negative values were positive value as a reference, has collapsed balance before. This change is considered to be due to a potential change accompanying the start of microfracture of the internal tissue of the specimen TP.

次に図5は、本発明に係る地盤の破壊・崩壊予測方法をトンネル掘削現場での観測に用いた実施例を示す電極の平面配置図、図6は、図5におけるVI−VI断面図である。これら図5及び図6において、参照符号TNは掘削されるトンネル、参照符号G3はひん岩などによる基盤からなる領域、G4は、トンネルTNの掘削によって不安定になりやすい領域で、粘土や砂、崖錐などの未固結堆積物からなる。この実施例では、トンネル掘削によるゆるみの影響範囲外に位置する電極ER20を埋設してこれを不図示のデータロガーの陰極側の入力端子に接続し、トンネルTNの掘進方向の真上及びこれと直交する方向へ並ぶようにそれぞれ電極ER21〜ER28を埋設してこれらを前記データロガーの陽極側の入力端子にそれぞれ接続した。 Next, FIG. 5 is a plan view of an electrode showing an embodiment in which the ground fracture / collapse prediction method according to the present invention is used for observation at a tunnel excavation site, and FIG. 6 is a sectional view taken along line VI-VI in FIG. is there. 5 and 6, reference numeral TN is a tunnel to be excavated, reference numeral G3 is a region made of a foundation made of peridotite, etc., G4 is a region that is likely to become unstable due to excavation of tunnel TN, clay, sand, It consists of unconsolidated sediments such as cliffs. In this embodiment, an electrode ER 20 located outside the range of influence of loosening due to tunnel excavation is buried and connected to the input terminal on the cathode side of a data logger (not shown), and directly above the tunnel TN in the excavation direction. Electrodes ER 21 to ER 28 were respectively embedded so as to be arranged in a direction perpendicular to each other and connected to the input terminal on the anode side of the data logger.

図7は、図5及び図6に示されるトンネル掘削現場での電極ER20を共通陰極とする電極ER21〜ER23の電位計測データ及びこの計測データに基づいて算出された電位分担率の経時変化と降雨との関係を示す線図である。この事例では、電極ER21〜ER23の電位計測データには、降雨時にその影響が負側への変化として表れているが、下段の電位分担率では降雨のよる変化はほとんどキャンセルされており、図中に楕円で囲んで示されるように、内的要因であるトンネル掘削の影響による電位変化が強調されていることがわかる。 7 shows potential measurement data of the electrodes ER 21 to ER 23 having the electrode ER 20 at the tunnel excavation site shown in FIGS. 5 and 6 as a common cathode, and the potential sharing rate calculated based on the measurement data over time. It is a diagram which shows the relationship between a change and rainfall. In this case, in the potential measurement data of the electrodes ER 21 to ER 23 , the influence appears as a change to the negative side at the time of rain, but the change due to the rain is almost canceled at the lower potential sharing rate. As indicated by the oval in the figure, it can be seen that the potential change due to the influence of tunnel excavation, which is an internal factor, is emphasized.

また図8は、図5及び図6に示されるトンネル掘削現場での電極ER20を共通陰極とする電極ER21〜ER28の電位計測データの総和と、各電位計測データに基づいて算出された各電極の電位分担率の経時変化を示す線図である。この事例では、電位差の総和(ΣER21〜ER28)は降雨の影響が誇張されているが、各電極における電位分担率には降雨の影響がほとんどキャンセルされていることがわかる。 8 is calculated based on the sum of the potential measurement data of the electrodes ER 21 to ER 28 having the electrode ER 20 as the common cathode at the tunnel excavation site shown in FIGS. 5 and 6 and each potential measurement data. It is a diagram which shows a time-dependent change of the electric potential sharing rate of each electrode. In this case, the sum of the potential differences (ΣER 21 to ER 28 ) is exaggerated by the influence of rainfall, but it can be seen that the influence of the rain is almost cancelled on the potential sharing rate at each electrode.

次に図9は、本発明に係る地盤の破壊・崩壊予測方法を地すべり地の観測に用いた実施例を示す電極の平面配置図である。この図9において、参照符号G5は地山の安定領域、G6(太線で囲んだ範囲)は、不安定領域である地すべり地、Aは河川、Bは道路である。この実施例では、安定領域G5に電極ER30を埋設してこれを不図示のデータロガーの陰極側の入力端子に接続し、安定領域G5に複数の電極ER31,ER32,ER36、地すべり地G6に複数の電極ER33〜ER35を埋設してこれらを前記データロガーの陽極側の入力端子にそれぞれ接続した。また、P31,P32は金属線の電気抵抗の変化から地すべりを深さ方向で検出するパイプ歪計である。 Next, FIG. 9 is a plan view of electrodes showing an embodiment in which the ground fracture / collapse prediction method according to the present invention is used for landslide observation. In FIG. 9, reference numeral G5 is a stable area of a natural ground, G6 (range surrounded by a thick line) is a landslide area which is an unstable area, A is a river, and B is a road. In this embodiment, an electrode ER 30 is embedded in the stable region G5, and this is connected to the input terminal on the cathode side of a data logger (not shown). A plurality of electrodes ER 31 , ER 32 , ER 36 A plurality of electrodes ER 33 to ER 35 were embedded in the ground G6 and connected to the input terminal on the anode side of the data logger. P 31 and P 32 are pipe strain gauges that detect a landslide in the depth direction from a change in the electrical resistance of the metal wire.

図10は、図9に示される電極ER30を共通陰極とする電極ER31〜ER36の電位計測データに基づいて個別に算出された電位分担率及びパイプ歪計P31,P32の歪計測データの経時変化と降雨量、積雪量との関係を示す線図である。この図10によれば、積雪及び降雨の後の歪データの変化(地すべり変状の発生)に先行して、電位分担率に変化が表れていることがわかる。 FIG. 10 shows the potential sharing rate calculated based on the potential measurement data of the electrodes ER 31 to ER 36 having the electrode ER 30 shown in FIG. 9 as a common cathode, and the strain measurement of the pipe strain gauges P 31 and P 32 . It is a diagram which shows the relationship between the time-dependent change of data, and the amount of rainfall and snow cover. According to FIG. 10, it can be seen that a change appears in the potential sharing ratio prior to the change in strain data (occurrence of landslide deformation) after snow and rain.

図11は、図9に示される電極ER30を共通陰極として、安定領域G5に設置した電極ER31及び地すべり地G6に設置した電極ER33の電位計測データに基づいて算出された電位分担率と、前記電極ER31,ER33に隣接して設置したボーリング孔内パイプ歪計P31,P32の歪計測データの経時変化を示す線図である。この図11によれば、地すべり地G6と安定領域G5の電位分担率は、歪データの変化(地すべり変状の発生)に先行して逆転していることがわかる。 FIG. 11 shows the potential sharing ratio calculated based on the potential measurement data of the electrode ER 31 installed in the stable region G5 and the electrode ER 33 installed in the landslide G6, with the electrode ER 30 shown in FIG. 9 as a common cathode. FIG. 6 is a diagram showing a change with time of strain measurement data of borehole pipe strain gauges P 31 and P 32 installed adjacent to the electrodes ER 31 and ER 33 . According to FIG. 11, it can be seen that the potential sharing ratio between the landslide area G6 and the stable area G5 is reversed prior to the change of the distortion data (occurrence of landslide deformation).

図12は、図9に示される電極ER30を共通陰極として、安定領域G5に設置した電極ER31,ER32の電位計測データに基づいて算出された電位分担率と、前記電極ER31に隣接して設置したボーリング孔内パイプ歪計P32の歪計測データの経時変化を示す線図である。この図12によれば、安定領域G5に設置した電極ER31,ER32間では、電位分担率の変動がほとんどみられないことがわかる。 Figure 12 is a common cathode electrode ER 30 shown in FIG. 9, the stable region electrode ER 31 installed in G5, ER 32 potential measurement data potential share rate calculated on the basis of the, adjacent to the electrode ER 31 is a diagram showing changes with time of the strain measurement data bowling downhole pipe strain gauge P 32 which is installed in. According to FIG. 12, it can be seen that there is almost no variation in the potential sharing ratio between the electrodes ER 31 and ER 32 installed in the stable region G5.

本発明に係る地盤の破壊・崩壊予測方法の好ましい実施の形態を、電極の平面配置例と共に概略的に示す説明図である。It is explanatory drawing which shows schematically preferable embodiment of the fracture | rupture / collapse | decay prediction method of the ground which concerns on this invention with the example of plane arrangement | positioning of an electrode. 本発明に係る地盤の破壊・崩壊予測方法の好ましい実施の形態を、電極の鉛直配置例と共に概略的に示す説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram schematically showing a preferred embodiment of a ground fracture / collapse prediction method according to the present invention together with an example of vertical arrangement of electrodes. 本発明に係る地盤の破壊・崩壊予測方法を検証するために実施した室内試験を示す説明図である。It is explanatory drawing which shows the laboratory test implemented in order to verify the destruction and collapse prediction method of the ground which concerns on this invention. 室内試験の結果を示す線図である。It is a diagram which shows the result of a laboratory test. 本発明に係る地盤の破壊・崩壊予測方法をトンネル掘削現場での観測に用いた実施例を示す電極の平面配置図である。It is a plane arrangement view of electrodes showing an example in which the ground fracture / collapse prediction method according to the present invention is used for observation at a tunnel excavation site. 図5におけるVI−VI断面図である。It is VI-VI sectional drawing in FIG. 図5及び図6のトンネル掘削現場での電位計測データ及びこの計測データに基づいて算出された電位分担率の経時変化と降雨との関係を示す線図である。FIG. 7 is a diagram showing potential measurement data at the tunnel excavation site in FIGS. 5 and 6 and a relationship between a temporal change in potential sharing ratio calculated based on the measurement data and rainfall. 図5及び図6のトンネル掘削現場での電位計測データの総和と、各電位計測データに基づいて算出された各電極の電位分担率の経時変化を示す線図である。FIG. 7 is a diagram showing a change over time in the potential sharing rate of each electrode calculated based on the total sum of potential measurement data at the tunnel excavation site in FIGS. 5 and 6 and each potential measurement data. 本発明に係る地盤の破壊・崩壊予測方法を地すべり地の観測に用いた実施例を示す電極の平面配置図である。It is a plane arrangement view of electrodes showing an example in which the ground destruction / collapse prediction method according to the present invention is used for observation of a landslide. 図9の地すべり地の観測において個別に算出された電位分担率及び歪計測データの経時変化と降雨量、積雪量との関係を示す線図である。FIG. 10 is a diagram showing a relationship between a temporal change in potential share rate and strain measurement data individually calculated in the observation of the landslide area in FIG. 9, a rainfall amount, and a snowfall amount. 図9における安定領域と地すべり地の2箇所の電極による電位計測値に基づいて算出された電位分担率及び前記電極と隣接する位置の歪計測データの経時変化を示す線図である。FIG. 10 is a diagram showing a temporal change in potential sharing ratio calculated based on potential measurement values at two electrodes in a stable region and a landslide region in FIG. 9 and strain measurement data at a position adjacent to the electrodes. 図9における安定領域の2箇所の電極による電位計測値に基づいて算出された電位分担率及び前記電極と隣接する位置の歪計測データの経時変化を示す線図である。FIG. 10 is a diagram showing the change over time of the potential share calculated based on the measured potential values of the two electrodes in the stable region in FIG. 9 and the strain measurement data at a position adjacent to the electrodes.

Claims (2)

地盤に設置した電極間を接続した複数の測線で電位差を計測し、各測線個別の電位差データを、各測線からの電位差データの和で除算することによって電位分担率を求め、この電位分担率の変化を地盤破壊・崩壊に係る内的要因による前兆変化として評価することを特徴とする、地盤の破壊・崩壊予測方法。   Measure the potential difference with multiple survey lines connected between the electrodes installed on the ground, and divide the potential difference data for each survey line by the sum of the potential difference data from each survey line to obtain the potential share rate. A method for predicting ground failure / collapse, characterized in that changes are evaluated as precursory changes due to internal factors related to ground fracture / collapse. 各測線が、安定領域の地盤に設置した電極を共通陰極として、不安定又は不安定になると予想される地盤に設置した複数の電極との間をそれぞれ接続したものであることを特徴とする、請求項1に記載の地盤の破壊・崩壊予測方法。   Each survey line is characterized in that the electrodes installed on the ground in the stable region are connected as a common cathode and a plurality of electrodes installed on the ground that are expected to be unstable or unstable, respectively. The ground failure / collapse prediction method according to claim 1.
JP2008331788A 2008-12-26 2008-12-26 Ground failure / collapse prediction method Active JP4900615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008331788A JP4900615B2 (en) 2008-12-26 2008-12-26 Ground failure / collapse prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008331788A JP4900615B2 (en) 2008-12-26 2008-12-26 Ground failure / collapse prediction method

Publications (2)

Publication Number Publication Date
JP2010151701A JP2010151701A (en) 2010-07-08
JP4900615B2 true JP4900615B2 (en) 2012-03-21

Family

ID=42570952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008331788A Active JP4900615B2 (en) 2008-12-26 2008-12-26 Ground failure / collapse prediction method

Country Status (1)

Country Link
JP (1) JP4900615B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107884548B (en) * 2017-10-27 2023-12-15 西南石油大学 Underground engineering geological disaster teaching demonstration device and method
CN111856588B (en) * 2020-06-17 2022-09-27 南方科技大学 Ground fault early warning method, system, terminal device and storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3803470B2 (en) * 1997-09-02 2006-08-02 株式会社フジタ Ground fracture prediction method
JP4388242B2 (en) * 2001-05-31 2009-12-24 学校法人東海大学 Ground collapse / destruction prediction method
JP2003262571A (en) * 2002-03-08 2003-09-19 Fujita Corp Method of measuring liquefaction of ground by potential observation
JP4442808B2 (en) * 2004-03-23 2010-03-31 応用地質株式会社 Degradation diagnosis method for building roof waterproof layer

Also Published As

Publication number Publication date
JP2010151701A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
Prendergast et al. A review of bridge scour monitoring techniques
Maurer et al. Fines-content effects on liquefaction hazard evaluation for infrastructure in Christchurch, New Zealand
US9010176B2 (en) Scour sensor and method of using same
KR101493231B1 (en) Integration system for interworking seismic instrumentation and electrical resistivity monit0ring and hydraulic structure monitoring method using the same
Damiano et al. A laboratory study on the use of optical fibers for early detection of pre-failure slope movements in shallow granular soil deposits
KR101651536B1 (en) System for evaluating compaction degree of railway roadbed using tdr (time domain reflectometry),and method for the same
Chung et al. A comprehensive framework of TDR landslide monitoring and early warning substantiated by field examples
JP4388242B2 (en) Ground collapse / destruction prediction method
KR100812389B1 (en) Measurement method for observation of landslide
JP3041426B1 (en) Fill dam management system by resistivity tomography and its management method
JP6770042B2 (en) Damage position estimation device and method for structures
JP4900615B2 (en) Ground failure / collapse prediction method
Tao et al. Real-time TDR field bridge scour monitoring system
Kazemian et al. A review of bridge scour monitoring techniques and developments in vibration based scour monitoring for bridge foundations
Abu-Farsakh et al. Reliability of piezocone penetration test methods for estimating the coefficient of consolidation of cohesive soils
Chun et al. Slime thickness evaluation of bored piles by electrical resistivity probe
Kim et al. Evaluation of dynamic resistance for application of portable in-situ device to extra target depth
Putra et al. Development of slope deformation monitoring system based on tilt sensors with low-power wide area network technology and its application
Chebeň et al. Innovative groundwater table monitoring using TDR technology
Funderburk et al. Active scour monitoring using ultrasonic time domain reflectometry of buried slender sensors
Drusa et al. Functionality of TDR piezometers and inclinometers for monitoring of slope deformations
JP3803470B2 (en) Ground fracture prediction method
WANG et al. Conditioning inspection on unknown bridge foundations
Spriggs Quantification of acoustic emission from soils for predicting landslide failure
Dixon et al. Development of a low cost acoustic emission early warning system for slope instability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20111025

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20111202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Ref document number: 4900615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250