JPH01285843A - System for measuring underground seepage water - Google Patents

System for measuring underground seepage water

Info

Publication number
JPH01285843A
JPH01285843A JP63114928A JP11492888A JPH01285843A JP H01285843 A JPH01285843 A JP H01285843A JP 63114928 A JP63114928 A JP 63114928A JP 11492888 A JP11492888 A JP 11492888A JP H01285843 A JPH01285843 A JP H01285843A
Authority
JP
Japan
Prior art keywords
propagation speed
electromagnetic wave
calculated
medium
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63114928A
Other languages
Japanese (ja)
Inventor
Hirokatsu Watanabe
渡辺 広勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GREEN TECHNOL KK
Original Assignee
GREEN TECHNOL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GREEN TECHNOL KK filed Critical GREEN TECHNOL KK
Priority to JP63114928A priority Critical patent/JPH01285843A/en
Publication of JPH01285843A publication Critical patent/JPH01285843A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To quantitatively measure the specific physical properties of the medium at a desired depth part, by respectively embedding a pair of electromagnetic wave transmitting and receiving units in the medium to be measured at a desired depth. CONSTITUTION:The time required when the electromagnetic pulse emitted from a transmission antenna AT propagates over a distance (P) to reach a receiving antenna AR is measured to calculate the effect of a attenuation due to seepage moisture exerting on the propagation speed (v) inherent to the soil quality of an objective region. In this case, as the external factor exerting effect on the propagation speed (v) of an electromagnetic wave, the delay of a time due to a rise in the content of seepage water by rainfall is calculated. That is, the change of a lowering in the propagation speed (v) is calculated and, on the basis of the comparison data with a preliminarily calculated inherent propagation speed, seepage quantity can be calculated quantitatively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、地中浸透水等の計測システム、特4て、電
磁波放射を利用する地中の浸透水量等を測定するの虹適
し・た計測システムに関するものである6、 〔従来の技術〕 電波を利用して、例えば地中に埋設したガスバイブを検
出したり、地下水の存在や地層構造を探査したりするレ
ーダ等が最近実用化されつつあり、例えば、F記の文献
1)にもその概要が紹介さね、また実際の製品例2)も
発表されている。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is a system for measuring underground water seepage, etc. 6. [Conventional technology] Radars that use radio waves to detect, for example, gas vibrators buried underground, or to explore the presence of underground water and strata structures, have recently been put into practical use. For example, an overview is introduced in Reference F 1), and an actual product example 2) is also published.

1)文献「計測と制御」誌Vo1.20.No、8.昭
和56年8J]0社団法人計測自動制御学会発行。
1) Literature “Measurement and Control” magazine Vol. 1.20. No, 8. Published by the Society of Instrument and Control Engineers.

P、762〜771 2)製品例[地中探査レータKSD−8形」。P, 762-771 2) Product example [Underground Exploration Rator KSD-8 type].

■光電製作新製 こわらは公知のように空間を伝播する電波を、地表から
例えば、地中、水中、生体中等の減衰性媒質に発射し、
その中に存在する物体(物標)から反射し、でくるエコ
ー電波により、その物標の形状1位置等を検知する原理
により、土とし・てガス7/水道管、電線等の地中埋設
物の探知、岩盤/地下水等の地質調査等に応用されてい
た。
■Kowara, a new product manufactured by Koden, emits radio waves that propagate through space from the earth's surface to attenuating media such as underground, underwater, and living organisms.
Based on the principle of detecting the shape, position, etc. of a target by the echo radio waves reflected from an object (target) existing therein, underground installation of gas 7/water pipes, electric wires, etc. It was applied to the detection of objects, geological surveys of bedrock/groundwater, etc.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

しかしながら、以上のようなこの種の従来装置は、特に
地中探査レーダの場合、電波を地表面から地中深さ方向
に向けて発射するよう構成されているため、例えば治山
、治水管理などの場合、最も基本的な要素となる降雨よ
る地中の浸透量や保持量及びその時間的変化等を有効に
測定することができなかった。
However, this type of conventional equipment as described above, especially in the case of ground-penetrating radar, is configured to emit radio waves from the ground surface to the depth of the ground, so it is useful for, for example, mountain conservation and flood control management. In this case, it was not possible to effectively measure the most basic elements, such as the amount of infiltration into the ground due to rainfall, the amount retained, and their changes over time.

特に、多降雨地域や地形条件の悪い地域が多いわが国に
おいては、上記要素は極めて重要であるにもかかわらず
、これに代る効果的な方法も皆無であり、もっばら経験
的な外部観察によりそれらを推定/判断していた。
Particularly in Japan, where there are many areas with heavy rainfall and poor topographical conditions, although the above factors are extremely important, there is no effective alternative method, and it is mainly based on empirical external observation. I was estimating/judging them.

この発明は、以上のような特に治山/治水管理上等の従
来の問題点にかんがみてなされたもので、例えば降雨等
による地下浸透や分布等を定量的に計測し得るこの種の
計測システムの提供を目的としている。
This invention was made in view of the above-mentioned conventional problems, particularly in the area of mountain and flood control management. intended to provide.

〔課題を解決するための手段〕[Means to solve the problem]

このため、この発明においては、それぞれ送信アンテナ
を有する電磁波発生/送信ユニットと、受信アンテナを
有する該電磁波受信ユニットとを、対として、該両アン
テナが適切な間隔で互いに対向するよう被測定対象媒質
中に埋設し、該両アンテナ間の該電磁波の伝播速度なら
びに波形のじよう乱等を測定することにより前記媒質の
特定物理的性質、例えば、地中の浸透水量等を定量的に
解析することができるようシステムを構成することによ
り、前記目的を達成しようとするものである。
Therefore, in the present invention, an electromagnetic wave generation/transmission unit each having a transmitting antenna and an electromagnetic wave receiving unit having a receiving antenna are paired, and the medium to be measured is arranged such that both antennas face each other at an appropriate interval. Quantitatively analyze specific physical properties of the medium, such as the amount of water seeping into the ground, by embedding the antenna in the medium and measuring the propagation speed of the electromagnetic wave and waveform disturbance between the two antennas. The aim is to achieve the above objective by configuring a system that allows the following.

〔作用〕[Effect]

以上のようなシステム構成により、上記各送/受信ユニ
ット対を測定対象媒質中の所望の深さにおけるにそれぞ
れ埋設して計測することにより、この部分の該媒質中の
特定の物理的性質、例えば、地中浸透水量の分布やそれ
等を定量的に知ることができる。
With the above-described system configuration, by embedding and measuring each pair of transmitting/receiving units at a desired depth in the medium to be measured, specific physical properties of this part in the medium can be determined, e.g. , it is possible to quantitatively know the distribution of the amount of underground water seepage and other information.

(実施例) 以下に、この発明を実施例に基づいて説明する。(Example) The present invention will be explained below based on examples.

(システム構成) 第1図に、この発明原理を、降雨による地中浸透量測定
に適用した事例のシステム構成概要図を示す。Eは、調
査対象媒質としての降雨による水分が浸透した地中で、
Gはその地面を示す。
(System Configuration) FIG. 1 shows a schematic diagram of the system configuration of an example in which the principles of this invention are applied to measuring the amount of underground infiltration caused by rainfall. E is the underground where moisture has permeated due to rainfall, which is the medium to be investigated.
G indicates the ground.

A T / A nは、それぞれ地中Eの深さd部分に
間隔pを隔てて互いに水平に対向するよう埋設された一
対の送信/受信アンテナで、各アンテナA T / A
 nには、それぞれ送信機/受信機T/Rに取付けられ
て各ユニットを構成し、各ユニットAア/T、A、/R
は、それぞれ防滴/防水的に密封されている。
A T / A n are a pair of transmitting/receiving antennas, each buried at a depth d in the ground E so as to face each other horizontally with an interval p between them.
n is attached to the transmitter/receiver T/R to form each unit, and each unit A/T, A,/R
are each drip-proof/water-proof sealed.

一方、1は、地上に配設された信号!IJ御/処理手段
で、それぞれの送信/受信機T/Rとリード線2によフ
て接続されている。
On the other hand, 1 is a signal installed on the ground! The IJ control/processing means is connected to each transmitter/receiver T/R by a lead wire 2.

第2図は、このシステム装置構成の一例の詳細を示すブ
ロック図である。送信器Tはパルス発生回路と送信回路
とを含み、一方、受信器Rは、パルス受信回路とサンプ
リング回路とを含む。3は、地表面Gに比較的近接して
配設された制御回路で、パルス発生と送/受信の同期化
等を制御する。4は、信号処理のための周波数変換回路
、5は、アナログ表示回路、A/D変換回路等を含む。
FIG. 2 is a block diagram showing details of an example of the system configuration. The transmitter T includes a pulse generating circuit and a transmitting circuit, while the receiver R includes a pulse receiving circuit and a sampling circuit. Reference numeral 3 denotes a control circuit disposed relatively close to the ground surface G, which controls pulse generation, synchronization of transmission/reception, and the like. 4 includes a frequency conversion circuit for signal processing, and 5 includes an analog display circuit, an A/D conversion circuit, and the like.

6はデータ送信回路、7はデータ処理/解析ソフトウェ
アを示し、両者は、有線もしくは各アンテナ8を介して
無線により遠隔通信/制御が可能に構成しである。
Reference numeral 6 indicates a data transmission circuit, and reference numeral 7 indicates data processing/analysis software, both of which are configured to be capable of remote communication/control via wires or wirelessly via each antenna 8.

(埋設手順) 第3図(a)、(b)、(c)に、各送/受信ユニット
の地中埋設手順の一例の各工程図を示す。図は水平面を
例示しているが実際の山林等、傾斜地であってもよいこ
とは、もちろんである。
(Embedding Procedure) FIGS. 3(a), (b), and (c) show process charts of an example of the underground burying procedure of each transmitting/receiving unit. Although the figure illustrates a horizontal surface, it goes without saying that the surface may be on a slope such as an actual mountain forest.

まず(a)図において、測定すべき区域に所定距離p(
例えば1.0〜1.5m)を隔てて、各アンテナを設置
すべき所定地上深さ(d)より、若干(α)だけ深い一
対の縦穴10を開削する。
First, in figure (a), a predetermined distance p(
For example, a pair of vertical holes 10 are cut at a distance of 1.0 to 1.5 m) and are slightly deeper (α) than a predetermined ground depth (d) at which each antenna is to be installed.

11は、最初に除去すべき表土部分を表わし、開削上は
後の埋戻し用に放散せずに保存しておく。
Reference numeral 11 represents the topsoil portion to be removed first, and the excavated surface is preserved without being dispersed for later backfilling.

つぎに、(b)図に示すようにそれぞれ各ユニットの送
/受信アンテナT/Rを、各式の底面から離して、壁面
に密着して互いに水゛Vに対向させたのち、各アンテナ
の下部まで埋戻す(12で示す)。ついて(c)図に承
すように両穴の全体を埋戻しく13で示す)、各リード
線2を地上の制御2/処理手段1に接続する。
Next, as shown in Figure (b), the transmitting/receiving antennas T/R of each unit are separated from the bottom of each unit, and are placed in close contact with the wall surface so that they face each other in the water. Backfill to the bottom (indicated by 12). (c) As shown in the figure, both holes are completely backfilled (indicated by 13), and each lead wire 2 is connected to the control 2/processing means 1 on the ground.

(他の埋設方法) −1−2例は、ある期間、送/受信ユニットを埋設した
まま放置して時間的データを得るようにした事例を示し
たが、こねのみに限定されることなく、例えば第4図に
要部断面図を示すように、電磁波の通過を許す非磁性体
、例えば塩化ビニール製等の所定長さの観測筒20を予
め埋込んでおき、必要に応じて送/受信ユニットをセッ
トする1、法てあフてもよい。20は防水カバー、22
は、リート線テーブル取出「1の防水パツキン部を示す
。また23は、筒20の底部に充填した砕石で、24は
、その中に配設した非磁性体ネットである。
(Other burying methods) Example 1-2 shows a case in which the transmitting/receiving unit was left buried for a certain period of time to obtain temporal data, but this is not limited to just kneading. For example, as shown in the cross-sectional view of the main part in Fig. 4, an observation tube 20 of a predetermined length made of a non-magnetic material such as vinyl chloride that allows the passage of electromagnetic waves is embedded in advance, and transmission/reception can be performed as necessary. Set the unit 1. You can also set the unit. 20 is a waterproof cover, 22
2 shows the waterproof packing part of the Riet wire table extractor 1. Also, 23 is crushed stone filled in the bottom of the tube 20, and 24 is a non-magnetic net placed therein.

(動作/作用) つぎに、以上のようなシステム構成における動作/作用
について説明する。
(Operation/effect) Next, the operation/effect in the system configuration as described above will be explained.

このシステムのi′!11定原理は極めてtp純であり
、送信アンテナA□から放射された電磁パルスが距II
p伝播して受信アンテナA7に到達するまでの時間(n
sオーダ)を語測することにより、対象区域の土質の個
有の伝播速度Vに及ぼす浸透水分による減衰の影響を知
ろうとするものである。
i′ of this system! 11 The constant principle is extremely tp pure, and the electromagnetic pulse radiated from the transmitting antenna A□ is
The time it takes to propagate p and reach the receiving antenna A7 (n
The purpose is to find out the effect of attenuation due to infiltrated moisture on the propagation velocity V, which is unique to the soil of the target area, by measuring the s order.

この場合、一般に、電磁波の伝播速度Vに影響を与λる
外部要因としては、降雨による浸透水もし7〈は長期の
乾燥による含水率の変化であるが、わが国のような国土
においては、後者の影響は特定地域を除き実用上無視し
得るため、航者による含水率の上昇による前記時間の遅
ね、すなわち伝播速度■の低下(減衰率)の変化を求め
、予め求めた個有の伝播速度■。どの比較データにより
、浸透量を定量的に求めることができ、これを直接アナ
ログまたはディジタル的に表示することも容易であり、
所望数だけのユニット対を埋設し、時間経過と共にデー
タをとれば含水量の定量的分布と時間的変化とを知るこ
とができる。
In this case, the external factors that affect the propagation velocity V of electromagnetic waves are generally infiltration water due to rainfall and changes in water content due to long-term dryness, but in a country like Japan, the latter Since the influence of is practically negligible except in specific areas, the delay in the above time due to the increase in water content caused by the navigator, that is, the change in the decrease in the propagation speed (attenuation rate), is calculated, and the unique propagation Speed ■. Which comparison data can be used to quantitatively determine the amount of penetration, and it is also easy to display this directly in analog or digital form.
By burying a desired number of unit pairs and collecting data over time, it is possible to know the quantitative distribution and temporal changes in water content.

(応用例) 以上のような各区域の含水量の時間的変化データを利用
することにより、例えば、降水量(この測定は従来法に
より極めて容易に求められる)と浸透水量の差を求める
ことにより、水源等の実質的な保持水量の推定が可能と
なる。
(Application example) By using the data on temporal changes in water content in each area as described above, for example, by determining the difference between precipitation (this measurement is extremely easy to obtain using conventional methods) and the amount of seepage water. , it becomes possible to estimate the actual amount of water held by water sources, etc.

また、浸透時間と浸透水量、水源等への流出水量の差を
求めることにより、対象地区の水中の含水飽和状態を推
定するとかでき、例えば、地上り地区等における危険度
の予測等に利用し得る。
In addition, by determining the difference between the infiltration time, the amount of infiltrated water, and the amount of water flowing out to the water source, it is possible to estimate the saturation state of water in the water in the target area, and this can be used, for example, to predict the degree of danger in areas above ground. obtain.

また、要すれば含水率により、その時点における土の密
度、固結度、粘着力等の諸物理的性質を知ることもでき
る。
Furthermore, if necessary, various physical properties such as the density, degree of consolidation, and cohesive force of the soil at that point in time can be known from the moisture content.

以−Vのような効果を利用することにより、−F2例の
ような広範な詰り用への利用が可能となる。
By utilizing the effects like -V, it becomes possible to use it for a wide range of clogging applications, such as -F2.

1)降雨浸透水の調査 ■地上り地保全 ■林地内含水率変化測定/林地保全管理■地下水との関
連調査 ■融雪水浸透調査 など 2)含水率変量の調査 ■乾燥地での散水効果調査 ■砂、防堤等の保全管理 など なお、この発明原理は、以上のような水分測定関連のみ
ならず例えば、穀物、飼料等のサイロや運輸船における
管理など、適当な媒質中の他の媒質の存在量測定等にも
拡張し得る。
1) Investigation of rainfall infiltration ■ Surface land conservation ■ Measurement of changes in moisture content in forest land / Forest land conservation management ■ Investigation related to groundwater ■ Investigation of snowmelt water infiltration, etc. 2) Investigation of moisture content variables ■ Effect of watering in dry areas Investigation - Maintenance management of sand, embankments, etc. The principle of this invention is applicable not only to moisture measurement as described above, but also to other methods such as management of grains, feed, etc. in silos and transport ships. It can also be extended to measurement of the amount of media present.

〔発明の効果〕〔Effect of the invention〕

以」−1説明したように、この発明システムによりば、
電磁波の各送信/受信ユニット対を測定対象媒質中の所
望深さにそれぞれ埋設して電磁波の伝播速度等を計測す
るよう構成したため、この部分の該媒質の特定の物理的
性質、例えば地中における浸透水量等を定量的に測定す
ることが可能となった。
-1 As explained, according to this inventive system,
Since each pair of electromagnetic wave transmitting/receiving units is buried at a desired depth in the medium to be measured and is configured to measure the propagation velocity of the electromagnetic wave, it is possible to measure the specific physical properties of the medium in this part, for example, underground. It has become possible to quantitatively measure the amount of permeated water, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明による地中浸透水計測システムの一
実施例の構成概要図、第2図は、その装置構成の一例の
詳細ブロック図、第3図(a)。 (b)、(c)は、各送/受信ユニットの地中埋設手段
の一例の各工程図、第4図は、他の埋設法の一例を示す
要部断面図である。 T/R・・・・・・送信器/受信器 A T / A *・・・・・・送信/受信アンテナE
 −−−−−−地中(媒質) d / p−・・・・・所定深さ/間隔■・・・・・・
伝播速度 出願人 株式会社グリーンテクノロジー第 1 図 第3図 (b) ■ 筆 4 図
FIG. 1 is a schematic configuration diagram of an embodiment of the underground percolation water measuring system according to the present invention, FIG. 2 is a detailed block diagram of an example of the device configuration, and FIG. 3(a). (b) and (c) are process diagrams of an example of underground burying means for each transmitting/receiving unit, and FIG. 4 is a sectional view of a main part showing an example of another burying method. T/R...Transmitter/Receiver A T/A *...Transmitting/receiving antenna E
−−−−−−Underground (medium) d/p−・・・・Predetermined depth/interval ■・・・・・・
Propagation velocity Applicant Green Technology Co., Ltd. Figure 1 Figure 3 (b) ■ Brush Figure 4

Claims (1)

【特許請求の範囲】[Claims] 送信アンテナを有する電磁波発生/送信手段と、受信ア
ンテナを有する該電磁波受信手段とを対として、該両ア
ンテナが適切な間隔で互いに対向するよう、所定深さの
被測定対象媒質中に埋設し、該両アンテナ間の該電磁波
の伝播速度ならびに波形のじょう乱等を測定することに
より前記媒体の特定物理的性質、例えば地中の浸透水量
等を定量的に解析することを可能に構成したことを特徴
とする地中浸透水等の計測システム。
An electromagnetic wave generating/transmitting means having a transmitting antenna and the electromagnetic wave receiving means having a receiving antenna are buried as a pair in a target medium to be measured at a predetermined depth so that both antennas face each other at an appropriate interval, By measuring the propagation speed of the electromagnetic wave between the two antennas, waveform disturbance, etc., it is possible to quantitatively analyze specific physical properties of the medium, such as the amount of water seeping into the ground, etc. Features: A measurement system for underground water seepage, etc.
JP63114928A 1988-05-13 1988-05-13 System for measuring underground seepage water Pending JPH01285843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63114928A JPH01285843A (en) 1988-05-13 1988-05-13 System for measuring underground seepage water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63114928A JPH01285843A (en) 1988-05-13 1988-05-13 System for measuring underground seepage water

Publications (1)

Publication Number Publication Date
JPH01285843A true JPH01285843A (en) 1989-11-16

Family

ID=14650133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63114928A Pending JPH01285843A (en) 1988-05-13 1988-05-13 System for measuring underground seepage water

Country Status (1)

Country Link
JP (1) JPH01285843A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019207A1 (en) 2001-08-24 2003-03-06 Rhino Analytics, L.L.C. Ultra-wide band pulse dispersion spectrometry method and apparatus providing multi-component composition analysis
JP2011112368A (en) * 2009-11-24 2011-06-09 Oyo Corp Method of monitoring moisture variation of ground
WO2022102555A1 (en) * 2020-11-12 2022-05-19 ソニーグループ株式会社 Sensor device
WO2022102572A1 (en) * 2020-11-12 2022-05-19 ソニーグループ株式会社 Sensor device
CN115629089A (en) * 2022-11-11 2023-01-20 水利部交通运输部国家能源局南京水利科学研究院 Method and equipment for accurately positioning seepage of dam abutment of earth-rock dam and performing targeted repair

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203119A (en) * 1983-04-28 1984-11-17 Kyokado Eng Co Ltd Method and grout injection pipe for measuring injection condition of grout and grout injection control system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203119A (en) * 1983-04-28 1984-11-17 Kyokado Eng Co Ltd Method and grout injection pipe for measuring injection condition of grout and grout injection control system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019207A1 (en) 2001-08-24 2003-03-06 Rhino Analytics, L.L.C. Ultra-wide band pulse dispersion spectrometry method and apparatus providing multi-component composition analysis
EP1428033A4 (en) * 2001-08-24 2006-08-02 Rhino Analytics Llc Ultra-wide band pulse dispersion spectrometry method and apparatus providing multi-component composition analysis
US7221169B2 (en) 2001-08-24 2007-05-22 Rhino Analytics, L.P. Ultra-wide band pulse dispersion spectrometry method and apparatus providing multi-component composition analysis
JP2011112368A (en) * 2009-11-24 2011-06-09 Oyo Corp Method of monitoring moisture variation of ground
WO2022102555A1 (en) * 2020-11-12 2022-05-19 ソニーグループ株式会社 Sensor device
WO2022102572A1 (en) * 2020-11-12 2022-05-19 ソニーグループ株式会社 Sensor device
CN115629089A (en) * 2022-11-11 2023-01-20 水利部交通运输部国家能源局南京水利科学研究院 Method and equipment for accurately positioning seepage of dam abutment of earth-rock dam and performing targeted repair
CN115629089B (en) * 2022-11-11 2023-05-30 水利部交通运输部国家能源局南京水利科学研究院 Method and equipment for accurately positioning and targeted repairing leakage of dam abutment of earth-rock dam

Similar Documents

Publication Publication Date Title
Imai et al. Use of ground-probing radar and resistivity surveys for archaeological investigations
Annan et al. Impulse radar sounding in permafrost
Holden et al. Application of ground‐penetrating radar to the identification of subsurface piping in blanket peat
Annan et al. Radar sounding in potash mines, Saskatchewan, Canada
Conyers et al. Velocity analysis in archaeological ground‐penetrating radar studies
Parkin et al. Measurement of soil water content below a wastewater trench using ground‐penetrating radar
Moorman et al. Bathymetric mapping and sub-bottom profiling through lake ice with ground-penetrating radar
De Benedetto et al. Spatial relationship between clay content and geophysical data
Vickers et al. Archeological investigations at Chaco Canyon using a subsurface radar
Raper et al. Sensing hard pan depth with ground-penetrating radar
Conyers Ground-penetrating radar
Venkateswarlu et al. Geotechnical applications of ground penetrating radar (GPR)
Conyers The use of ground‐penetrating radar to map the buried structures and landscape of the ceren site, el salvador
Liu et al. A borehole multifrequency acoustic wave system for karst detection near piles
Carpenter et al. Geophysical Character of Buried Sinkholes on the Oak Ridge Reservation, Tennessee (Presented at SAGEEP95 in Orlando, FL)
JPH01285843A (en) System for measuring underground seepage water
Solla et al. Ground penetrating radar: Fundamentals, methodologies and applications in structures and infrastructure
Ulugergerli et al. Detection of cavities in gypsum
Redman et al. Borehole GPR measurement of soil water content during an infiltration experiment
US4213194A (en) Acoustic archeological mapping method
Gołębiowski et al. Application of GPR method for detection of loose zones in flood levee
Belesky et al. Seismic and microseismic methods for cavity detection and stability monitoring of near-surface voids
Bevan et al. The discovery of the Taylor house at the Petersburg National Battlefield
Parwatiningtyas Application of the GPR (Ground Penetration Radar) method for soil investigation and building structure analysis test
Davis et al. Geologic sounding using low-frequency radar