JP2002138453A - Collapse prediction method of slope by chemical weathering of sedimentary rock - Google Patents

Collapse prediction method of slope by chemical weathering of sedimentary rock

Info

Publication number
JP2002138453A
JP2002138453A JP2000373576A JP2000373576A JP2002138453A JP 2002138453 A JP2002138453 A JP 2002138453A JP 2000373576 A JP2000373576 A JP 2000373576A JP 2000373576 A JP2000373576 A JP 2000373576A JP 2002138453 A JP2002138453 A JP 2002138453A
Authority
JP
Japan
Prior art keywords
groundwater
ground
amount
weathering
weathered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000373576A
Other languages
Japanese (ja)
Inventor
Yoshinori Matsuki
義則 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000373576A priority Critical patent/JP2002138453A/en
Publication of JP2002138453A publication Critical patent/JP2002138453A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a collapse prediction method of slope such as a landslide, a landslip or the like. SOLUTION: A weathering state of a bedrock and an activity of landslide or the like are predicted on the basis of an elution test of a bedrock sample or an analytical result of a quality test of ground water from composition to be eluted and its variations.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、地すべりや崖崩れ等の
斜面の崩壊予測に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to prediction of slope failure such as landslide or landslide.

【0002】[0002]

【従来の技術】災害はわすれたころにやってくるとの諺
があるが、もしも、災害を予測できたならばと、思うの
は災害にたずさわる者だけでなく誰しも願うことであ
る。
2. Description of the Related Art There is a proverb that a disaster will come when it is forgotten. However, if a disaster can be predicted, everyone wishes, not just those who are involved in the disaster.

【0003】従来地すべり等の斜面崩壊の発生や継続を
予測する方法として、地形解析,調査ボーリング,現位
置試験,人工地震波の観測,岩石及び土質試験等の土質
工学的な方法と、そして、本発明が採用する水質並びに
岩石や土砂等の組成分析と粘土鉱物のX線回折の化学的
方法がある。
Conventional methods for predicting the occurrence and continuation of slope failures such as landslides include geotechnical methods such as topographic analysis, survey drilling, in-situ testing, observation of artificial seismic waves, rock and soil testing, and the present invention. There are chemical methods for analyzing water quality, composition of rocks, earth and sand, and X-ray diffraction of clay minerals, which are employed in the present invention.

【0004】[0004]

【発明が解決しようとする課題】地すべりや斜面の崩壊
の発生の要因は、地山岩盤等の風化進行よる地山強度の
低下である。すなわち、風化は地山空隙率の増加であ
り、土砂化,粘土化で、その結果が地山強度の低下であ
る。風化は物理的と生化学的とがあるが、それらは互い
に助長しあい進行する。しかし、地表から深い深度の風
化は、外気の影響は受けにくいので化学的風化が主とな
る。その生化学的な風化が主に地下水との反応である。
一般的には岩石を構成する成分は、生化学的反応結果と
して、Cl・SO・Na・Mg・Ca・K・SiO
・Fe・Alの順序で溶解すると言われて
いる。
The cause of the occurrence of landslides and slope failures is a decrease in the strength of the ground due to the progress of weathering of the rocks. That is, weathering is an increase in the porosity of the ground, which is caused by sedimentation and clayification, and the result is a decrease in the strength of the ground. Weathering can be physical or biochemical, but they promote each other. However, weathering at a deep depth from the surface is mainly affected by chemical weathering because it is not easily affected by the outside air. Its biochemical weathering is mainly a reaction with groundwater.
Component is generally constituting the rock, as a result biochemical reactions, Cl · SO 4 · Na · Mg · Ca · K · SiO 2
· Fe is said to dissolve in 2 O 3 of · Al 2 O 3 sequence.

【0005】近年、堆積岩の構成成分の化学的変化と、
風化の関係についての研究が進められてきた。その研究
結果は以下のとおりである。風化の進行により全構成成
分の減少や特にCa,Na分の消失がある,風化すると
Ca分の増加がみられることがある,すべり面粘土化学
的に含まれる粘土鉱物のスメクタイトが増加と地すべり
滑動との関係がある,さらにNa型スメクタイトから型
スメクタイトへ変化し、地山強度が低下する,新鮮な岩
石を粉末にしてCa分を加え、単位体積,含水量を調整
してせん断試験を行ったところ強度が低下した。しか
し、それらは抽象的でその化学的裏付けも明確にされて
いない。
[0005] In recent years, chemical changes in the constituents of sedimentary rocks,
Research on the relationship between weathering has been pursued. The results of the study are as follows. Due to the progress of weathering, there is a decrease in all the constituents and especially the disappearance of Ca and Na contents. There is a case where the Ca content increases when weathering. In addition, the change from Na-type smectite to type-smectite, and the ground strength is reduced. Fresh rock was powdered, Ca content was added, and the unit volume and water content were adjusted to conduct a shear test. However, the strength decreased. However, they are abstract and their chemical proof is not clear.

【0006】[0006]

【課題を解決するための手段】本発明は前述した問題を
解決するために、長年実験等の研究を行い化学的な方向
から風化と地すべりや斜面崩壊との解明を行った。目的
を達成するために実施した試験や分析は、従来の方法に
加えて溶出試験をおこなった。地山の風化状態を把握す
るための試料は、新鮮な岩石,風化または土砂化した岩
石,すべり面粘土,ボーリング孔すべり面付近の地下水
と地表の湧水である。
In order to solve the above-mentioned problems, the present invention has conducted researches such as experiments for many years, and clarified weathering, landslides and slope failures from a chemical direction. The tests and analyzes performed to achieve the objectives were carried out by dissolution tests in addition to the conventional methods. The samples used to determine the weathering state of the ground are fresh rock, weathered or sedimented rock, slip surface clay, groundwater near the borehole borehole surface, and surface spring water.

【0007】分析結果の特徴は特に溶出試験で示され
た。新鮮部はNa分の溶出量が多くCa分の溶出量が少
ない。風化が進行するにしたがってNa分の溶出量は減
少し、逆にCa分が多くなる。さらに、風化が進行する
とNa,Ca分とも溶出量が減少消滅する。
[0007] The characteristics of the analytical results have been shown especially in dissolution tests. In the fresh part, the elution amount of Na is large and the elution amount of Ca is small. As the weathering progresses, the elution amount of the Na content decreases, and conversely, the Ca content increases. Further, as the weathering proceeds, the elution amount of both Na and Ca decreases and disappears.

【0008】その現象は他の成分もおなじで、地山中の
各成分は地下水と反応し溶出して、そのままそこへ残留
したり、地下水へ溶解し下流へ流れながら、特に亀裂や
風化してできた空隙部、そしてすべり粘土などへ付着し
て一度累積する。そのように全成分は徐徐に流出減少し
空隙を大きくする。
[0008] This phenomenon is the same with other components. Each component in the ground reacts with and elutes with the groundwater, and remains there or dissolves in the groundwater and flows downstream. It accumulates once in the voids and on the sliding clay. As such, all the components gradually flow out and reduce the voids.

【0009】また、Na分は速い時期に溶出し、後から
溶出するCa分と置換する。そして、Ca分は体積を増
加膨張する。すなわち、風化岩盤やすべり面粘土のせん
断強度の低下は、この化学的反応結果低下起こる。そし
てこれらは繰り返されながら地すべりは継続する。
Further, Na elutes at an early stage and replaces Ca eluted later. Then, the Ca content increases in volume and expands. That is, a decrease in the shear strength of weathered rock and slip surface clay results in a decrease in the result of this chemical reaction. And the landslide continues while these are repeated.

【0010】それらの成分の変化は当然地下水にも現れ
る。
[0010] Changes in these components naturally appear in groundwater.

【0011】以上のことから、地すべりや斜面崩壊予測
を、溶出試験と地下水の水質試験結果から行うことがで
きる。一つは、地山が風化してCa分の溶出量がNa分
に代わり多くなる時点。一つは、Ca分が最大溶出量を
示した時点。一つは、各成分が消滅する時点である。
From the above, landslides and slope failures can be predicted from the results of the dissolution test and the groundwater quality test. One is when the ground is weathered and the amount of Ca eluted increases in place of Na. One is when the Ca content shows the maximum elution amount. One is when each component disappears.

【0012】[0012]

【発明の実施の形態】本発明が目的とした、地すべりや
斜面崩壊の発生予測を図を参考にして説明する。現状の
地山状況を把握比較するために、新鮮な岩石,風化また
は土砂化した岩石,すべり面粘土,ボーリング孔内すべ
り面付近の地下水と地表の湧水を採取し、先ず、土質工
学的な状態を知る。次に、地山試料の組成分析,溶出試
験の分析並びに水質分析結果から、地山構成成分の構成
率と溶出量並びに水質から化学的な風化状態を知る。地
すべりや斜面崩壊の発生予測は、溶出試験と水質の分析
結果を図1地山状況並びにNaとCaとの関係図へプロ
ットして行う。
BEST MODE FOR CARRYING OUT THE INVENTION The prediction of occurrence of landslides and slope failures aimed at by the present invention will be described with reference to the drawings. In order to grasp and compare the present ground conditions, fresh rock, weathered or sedimented rock, slip surface clay, groundwater near the slip surface in the borehole and spring water on the surface were collected. Know the state. Next, from the results of the composition analysis of the ground sample, the analysis of the dissolution test, and the water quality analysis, the chemical weathering state is known from the composition ratio and the elution amount of the ground component, and the water quality. The prediction of the occurrence of landslides and slope failures is performed by plotting the results of the dissolution test and the analysis of water quality on the ground conditions in FIG. 1 and the relationship between Na and Ca.

【0013】地山が風化されていない新鮮部(C)で
は、Na分の溶出量が多くCa分の溶出量が少ない
(1)の関係位置にある。風化が進行した風化部(B)
では、Na分とCa分の溶出量は逆転して、Na分の溶
出量は減少しCa分が多くなる(3)の関係位置にな
る。さらに、風化が進行した強風化部(A)では、N
a,Ca分とも溶出量が減少消滅する(5)の関係位置
になる。そしてこれらは繰り返されながら地すべりは継
続する。
In the fresh part (C) where the ground is not weathered, the elution amount of Na is large and the elution amount of Ca is small (1). Weathered part (B) where weathering has progressed
Then, the elution amounts of the Na component and the Ca component are reversed, and the elution amount of the Na component decreases and the Ca component increases, so that the position (3) is reached. Further, in the strongly weathered part (A) where weathering has progressed, N
Both the a and Ca components are at the position (5) where the elution amount decreases and disappears. And the landslide continues while these are repeated.

【0014】地すべりや斜面崩壊予測を、地山試料の溶
出試験と地下水の水質分析結果から行う。一つは、地山
が風化してCa分の溶出量がNa分に代わり多くなりは
じめる(2)の時点。一つは、Ca分が最大溶出量を示
す(3)の時点。一つは、各成分が消滅する(4)〜
(5)時点である。それらは地下水の上昇という条件が
加わると、さらに、滑動は確実にまた速くなる。つま
り、Ca分の溶出量が多くなる(2)以上の場合、地す
べりが滑動する環境条件下にある。Ca分が最大溶出量
を示す(3)の場合は、すでに地すべりは滑動期にあ
る。そして、Na,Ca分とも溶出量が減少消滅する
(5)にあっては、地下水の上昇等の自然が揃うと空隙
が多いことから、いつ地山が滑動してもよい条件下にあ
る。
The prediction of landslides and slope failures is performed based on the results of the dissolution test of ground samples and the analysis of groundwater quality. One is the point of time (2) where the ground has weathered and the amount of Ca eluted begins to increase in place of Na. One is the time point (3) where the Ca content shows the maximum elution amount. One is that each component disappears (4)-
(5) It is time. They also ensure that the slippage is even faster when the conditions of rising groundwater are added. In other words, when the amount of Ca elution increases (2) or more, the landslide is in an environmental condition in which it slides. In the case of (3) in which the Ca content indicates the maximum elution amount, the landslide is already in the sliding phase. In addition, in the case of (5) in which the amount of elution decreases and disappears for both Na and Ca, there are many voids when the nature such as the rise of groundwater is uniform, so there is a condition that the ground can slide at any time.

【0015】その現象は他の成分もおなじで、地山中の
各成分は地下水と反応し溶出して、そのままそこへ残留
したり、地下水へ溶解して他の箇所の特に風化した空隙
部や、すべり粘土などへ付着して一度累積する。そのよ
うに成分は徐徐に流出減少し空隙を大きくする。
This phenomenon is the same as for other components. Each component in the ground reacts with and elutes with the groundwater and remains there, or dissolves in the groundwater and is particularly weathered in other places. It accumulates on sliding clay and accumulates once. As such, the components flow out and decrease gradually, increasing the voids.

【0016】まだ、滑動していない(2)状況の場合
は、地下水の定期採水と水質分析を行い監視を続けて行
く。そして、Ca分の溶出量が多くなった時点で、詳細
な調査並びに監視を行う。
In the case of the condition (2), which has not yet been slid, the groundwater is regularly sampled and the water quality is analyzed and monitoring is continued. When the amount of Ca eluted increases, detailed investigation and monitoring are performed.

【0017】[0017]

【発明の効果】本発明による、地すべりや斜面崩壊予測
方法は、地山を構成する成分の溶出、つまり、風化を化
学的な方法で検知するもので、特にNa,Ca分との関
係から地すべり等の滑動も予知できる。さらに、湧水の
水質調査を定期的に行うことで、容易に監視もできるな
どの便利差も有している。
The method for predicting landslides and slope failures according to the present invention detects the elution of the constituents of the ground, that is, weathering, by a chemical method, and in particular, landslides from the relationship with Na and Ca contents. Can be predicted. In addition, there is also a difference in convenience, such as monitoring the spring water quality on a regular basis so that it can be easily monitored.

【0018】[0018]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成を示すモルタル注入中の模式断面
FIG. 1 is a schematic sectional view showing a configuration of the present invention during mortar injection.

【符号の説明】[Explanation of symbols]

1 Na分の溶出量多くCaの溶出量が少ない位置 2 Ca分の溶出量が増加をみせる位置 3 Ca分が最大溶出量を示す位置 4 Ca分が減少をみせる位置 5 Na分Ca分ともその溶出が消滅するかそれに近い
位置 A 新鮮部 B 風化部 C 強風化部
1 The position where the amount of Na eluted is large and the amount of Ca eluted is small 2 The position where the amount of Ca eluted increases 3 The position where the Ca elutes the maximum eluted 4 The position where Ca is reduced 5 The Na and Ca both Location where elution disappears or is close to it A Fresh part B Weathered part C Strong weathered part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】地すべりや斜面崩壊予測を、地山試料の溶
出試験と地下水の水質分析結果から行う。一つは、地山
が風化してCa分の溶出量がNa分に代わり多くなりは
じめる(2)の時点。一つは、Ca分が最大溶出量を示
す(3)の時点。一つは、各成分が消滅する(4)〜
(5)時点である。それらは地下水の上昇という条件が
加わると、さらに、滑動は確実にまた速くなる。
1. Prediction of landslides and slope failures is carried out from the results of the dissolution test of ground samples and the results of groundwater analysis. One is the point of time (2) where the ground has weathered and the amount of Ca eluted begins to increase in place of Na. One is the time point (3) where the Ca content shows the maximum elution amount. One is that each component disappears (4)-
(5) It is time. They also ensure that the slippage is faster and faster when the conditions of rising groundwater are added.
【請求項2】その現象は他の成分もおなじで、地山中の
各成分は地下水と反応し溶出して、そのままそこへ残留
したり、地下水へ溶解して他の箇所の特に風化した空隙
部や、すべり粘土などへ付着して一度累積する。そのよ
うに成分は徐徐に流出減少し空隙を大きくする。
2. The phenomenon is the same with other components. Each component in the ground reacts with and elutes with the groundwater, and remains there, or dissolves in the groundwater, and especially in the weathered voids of other places. And accumulates once on the sliding clay. As such, the components flow out and decrease gradually, increasing the voids.
【請求項3】まだ、滑動していない(2)状況の場合
は、地下水の定期採水と水質分析を行い監視を続けて行
く。そして、Ca分の溶出量が多くなった時点で、詳細
な調査並びに監視を行う。
(3) In the case of the condition (2), which has not yet been slid, the groundwater is regularly collected and the water quality is analyzed and monitoring is continued. When the amount of Ca eluted increases, detailed investigation and monitoring are performed.
JP2000373576A 2000-10-31 2000-10-31 Collapse prediction method of slope by chemical weathering of sedimentary rock Pending JP2002138453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000373576A JP2002138453A (en) 2000-10-31 2000-10-31 Collapse prediction method of slope by chemical weathering of sedimentary rock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000373576A JP2002138453A (en) 2000-10-31 2000-10-31 Collapse prediction method of slope by chemical weathering of sedimentary rock

Publications (1)

Publication Number Publication Date
JP2002138453A true JP2002138453A (en) 2002-05-14

Family

ID=18842939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000373576A Pending JP2002138453A (en) 2000-10-31 2000-10-31 Collapse prediction method of slope by chemical weathering of sedimentary rock

Country Status (1)

Country Link
JP (1) JP2002138453A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345110A (en) * 2004-05-31 2005-12-15 Railway Technical Res Inst Method of and apparatus for predicting ground displacement
JP2007333454A (en) * 2006-06-13 2007-12-27 Railway Technical Res Inst Method and apparatus for predicting ground displacement
CN100405421C (en) * 2004-05-18 2008-07-23 中国科学院力学研究所 Water induced land slide simulated test method
JP2009102841A (en) * 2007-10-22 2009-05-14 Tohoku Kensetsu Kyokai Method of estimating concentration of specific ion in underground water, method of preparing hexa-diagram, and method and device for monitoring site to be monitored for displacement of ground
CN101846668A (en) * 2010-04-09 2010-09-29 重庆大学 Device for implementing rock salt dissolution test under condition of triaxial stress
JP2014162660A (en) * 2013-02-21 2014-09-08 Tokuyama Corp Method for preparing raw material particle for producing cement clinker
CN107655771A (en) * 2017-09-07 2018-02-02 河海大学 A kind of experimental rig and its test method for simulating the disintegration of side slope Test in Situ
CN109490514A (en) * 2019-01-15 2019-03-19 中国地质大学(武汉) A kind of imitative experimental appliance for studying ground disintegration

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100405421C (en) * 2004-05-18 2008-07-23 中国科学院力学研究所 Water induced land slide simulated test method
JP2005345110A (en) * 2004-05-31 2005-12-15 Railway Technical Res Inst Method of and apparatus for predicting ground displacement
JP2007333454A (en) * 2006-06-13 2007-12-27 Railway Technical Res Inst Method and apparatus for predicting ground displacement
JP2009102841A (en) * 2007-10-22 2009-05-14 Tohoku Kensetsu Kyokai Method of estimating concentration of specific ion in underground water, method of preparing hexa-diagram, and method and device for monitoring site to be monitored for displacement of ground
CN101846668A (en) * 2010-04-09 2010-09-29 重庆大学 Device for implementing rock salt dissolution test under condition of triaxial stress
CN101846668B (en) * 2010-04-09 2012-12-26 重庆大学 Device for implementing rock salt dissolution test under condition of triaxial stress
JP2014162660A (en) * 2013-02-21 2014-09-08 Tokuyama Corp Method for preparing raw material particle for producing cement clinker
CN107655771A (en) * 2017-09-07 2018-02-02 河海大学 A kind of experimental rig and its test method for simulating the disintegration of side slope Test in Situ
CN107655771B (en) * 2017-09-07 2020-12-11 河海大学 Testing device and testing method for simulating rock mass disintegration on side slope site
CN109490514A (en) * 2019-01-15 2019-03-19 中国地质大学(武汉) A kind of imitative experimental appliance for studying ground disintegration

Similar Documents

Publication Publication Date Title
Haines et al. Clay quantification and Ar–Ar dating of synthetic and natural gouge: application to the Miocene Sierra Mazatán detachment fault, Sonora, Mexico
Davies et al. Cretaceous crust in SW Borneo: petrological, geochemical and geochronological constraints from the Schwaner Mountains
Eslami et al. Evaluating CPT and CPTu based pile bearing capacity estimation methods using Urmiyeh Lake Causeway piling records
Anagnostopoulos et al. Empirical correlations of soil parameters based on cone penetration tests (CPT) for Greek soils
Wilkinson The concretions of the Bearreraig Sandstone Formation: geometry and geochemistry
Ngan-Tillard et al. Application of the needle penetration test to a calcarenite, Maastricht, the Netherlands
JP2002138453A (en) Collapse prediction method of slope by chemical weathering of sedimentary rock
Derkowski et al. Long‐distance fluid migration defines the diagenetic history of unique Ediacaran sediments in the East European Craton
Markham et al. Liquefaction resistance and steady-state characterization of shallow soils within the Christchurch Central Business District
Kavvadas General report: Modelling the soil behaviour-Selection of soil parameters
Valle et al. Stratigraphic evolution of a Brazilian carbonate platform during the Cretaceous: the late Albian–early Turonian of the Sergipe–Alagoas Basin
Dipova Geotechnical characterization and facies change detection of the Bogacay coastal plain (Antalya, Turkey) soils
Cangir et al. Estimation of undrained shear strength of Konyaalti silty clays
Chandler et al. Geotechnical characterisation of soils and rocks: a geological perspective
Rask Indirect methods as quality control of cemented hydraulic fill: Renström mine, Boliden mineral AB
Casas et al. Physical properties and their relationship to sedimentary processes and texture in sediments from mud volcanoes in the Anaximander Mountains (Eastern Mediterranean)
Frydman Calcareous sands of the Israeli coastal plain
Nandi et al. Effect of physico-chemical factors on the disintegration behavior of calcareous shale
Nandi et al. Unconfined Compressive Strength of Shale as a Function of Petrophysical Properties: A Case Study from Eastern Tennessee.
Mungia et al. Investigating water storage in a shale bedrock vadose zone in a montane conifer forest, Slate River, Colorado
Ziaye et al. Geological studies and evaluation of the potential of Choghakhor region for the construction of a tourist village
Eslami et al. Soil profiling by CPTu in soft, sensitive soils of Urmiyeh Lake of Iran
El‑Bagoury Regional variations in Archie parameters and reservoir quality of Bahariya Formation at North Western Desert, Egypt
Zakariah et al. INTEGRATION OF ELECTRICAL RESISTIVITY IMAGING WITH BOREHOLE AND HAND AUGER DATA FOR PEAT CHARACTERISATION: A CASE STUDY AT KUALA LANGAT, SELANGOR, MALAYSIA
CN116660972A (en) Shale oil and gas reservoir mineral content determination method and device and electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060318

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20061031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070130