JP2003262580A - Method for diagnosing corrosion of object embedded underground, corrosion diagnosing program, recording medium recording corrosion diagnosing program, and corrosion diagnosing apparatus - Google Patents

Method for diagnosing corrosion of object embedded underground, corrosion diagnosing program, recording medium recording corrosion diagnosing program, and corrosion diagnosing apparatus

Info

Publication number
JP2003262580A
JP2003262580A JP2002064349A JP2002064349A JP2003262580A JP 2003262580 A JP2003262580 A JP 2003262580A JP 2002064349 A JP2002064349 A JP 2002064349A JP 2002064349 A JP2002064349 A JP 2002064349A JP 2003262580 A JP2003262580 A JP 2003262580A
Authority
JP
Japan
Prior art keywords
corrosion
underground buried
buried object
environment
diagnosing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002064349A
Other languages
Japanese (ja)
Inventor
Mitsumasa Hishiyama
光正 菱山
Naomi Eko
直美 江向
Noriaki Takamatsu
徳明 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Nippon Telegraph and Telephone East Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Nippon Telegraph and Telephone East Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Nippon Telegraph and Telephone East Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002064349A priority Critical patent/JP2003262580A/en
Publication of JP2003262580A publication Critical patent/JP2003262580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To estimate the remaining lives of objects made of steel and embedded underground by automatically diagnosing their corrosion and degradation conditions according to both use environments and the number of installed years of each object made of steel and embedded underground to be measured. <P>SOLUTION: The corrosion conditions of the objects embedded underground are classified and sampled to determine the number of usable years for every environment conditions. The numbers of years for replacing the objects embedded underground are determined from the dates of embedding of the objects embedded underground, their environment conditions, and their numbers of usable years. This method is implemented by the function of an information input means 25 for inputting the installation environments and numbers of installed years of the objects to be diagnosed made of steel and embedded underground as input information to a computer 21, the function of a corrosion and degradation degree determining means 26 for determining the degree of corrosion and degradation of the objects made of steel and embedded underground on the basis of the installation environments and the numbers of installed years inputted from the information input means 25 according to corrosion and degradation determination criteria 29, and the function of a remaining life estimating means 27 for estimating the remaining lives of the objects made of steel and embedded underground on the basis of the degree of corrosion and degradation determined by the corrosion and degradation degree determining means 26. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋼管製電信柱や支
線アンカなどの鋼製地中埋設物の腐食劣化診断を行うこ
とによって残存寿命を推定するのに利用される地中埋設
物の腐食診断方法、該方法を実現するためのプログラ
ム、該プログラムを記録したコンピュータ読み取り可能
な記録媒体および腐食診断装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to corrosion of underground buried objects used for estimating the remaining life by performing corrosion deterioration diagnosis of underground buried steel objects such as steel pipe utility poles and branch line anchors. The present invention relates to a diagnostic method, a program for implementing the method, a computer-readable recording medium recording the program, and a corrosion diagnostic apparatus.

【0002】[0002]

【従来の技術】図8および9は電信柱の支持構造の一従
来例を示すものである。この支持構造では、地中部1に
埋設することにより、地表面2より上方に鋼管製の電信
柱3を設け、この電信柱3の先端に支線4を接続し、こ
の支線4を支線ロッド5を介して地中の支線アンカ6に
連結することにより、前記電信柱3が支持されている。
2. Description of the Related Art FIGS. 8 and 9 show a conventional example of a support structure for a telephone pole. In this support structure, by being buried in the underground portion 1, a steel pipe-made telegraph pole 3 is provided above the ground surface 2, a branch line 4 is connected to the tip of this telegraph pole 3, and this branch line 4 is connected to a branch line rod 5. The telephone pole 3 is supported by being connected to the branch line anchor 6 in the ground through the above.

【0003】前記電信柱3および支線アンカ6は地中に
埋設されていることから、長期に亘る使用によって腐食
する場合があるが、地中に埋設された電信柱3や支線ア
ンカ6の腐食状況を把握するのは容易ではなく、従来、
これらの腐食状況を以下のような方法によって間接的に
測定することが行われている。すなわち、前記支線アン
カ6の土壌腐食による品質劣化を診断する方法として以
下の方法が提案されている。 (イ)打撃振動法 支線アンカ6に接続された支線ロッド5の地上に露出し
た部分を叩き、その部分に得られる振動特性から支線ロ
ッド5自体や支線アンカ6の腐食による細りを判断す
る。 (ロ)超音波探傷法 超音波発生器から発振された超音波を支線ロッド5から
入射し、そのロッド部5の端面に得られる反射波を解析
して、前述の腐食による細りを判断する。 (ハ)土壌比抵抗計法 支線アンカ6を埋設している土壌の土壌比抵抗を測定
し、その土壌(雰囲気)が腐食性の高いものであるか否
かを判断する。 (ニ)分極抵抗測定法 試験電極を分極させ、このときの分極抵抗を測定して、
これを腐食速度に換算する。
Since the telephone pole 3 and the branch line anchor 6 are buried in the ground, they may be corroded by long-term use. However, the state of corrosion of the telephone pole 3 and the branch line anchor 6 buried in the ground. It is not easy to grasp
These corrosion conditions are indirectly measured by the following methods. That is, the following method has been proposed as a method of diagnosing the quality deterioration of the branch line anchor 6 due to soil corrosion. (A) Striking vibration method The part of the branch line rod 5 connected to the branch line anchor 6 that is exposed to the ground is hit, and thinning due to corrosion of the branch line rod 5 itself or the branch line anchor 6 is judged from the vibration characteristics obtained at that part. (B) Ultrasonic flaw detection method Ultrasonic waves oscillated from an ultrasonic generator are made incident from the branch rod 5, and the reflected wave obtained at the end face of the rod portion 5 is analyzed to determine the thinning due to the above-mentioned corrosion. (C) Soil resistivity measurement method The soil resistivity of the soil in which the branch line anchor 6 is buried is measured to determine whether or not the soil (atmosphere) is highly corrosive. (D) Polarization resistance measurement method The test electrode is polarized, and the polarization resistance at this time is measured,
Convert this to the corrosion rate.

【0004】また電信柱の地中部分における土壌腐食に
よる品質劣化を診断する方法として、超音波厚さ計を用
いる方法がある。この方法では、図10に示すように、
測定器本体11にリード線12を介して接続した超音波
センサ部13を、下端部を地中16に埋設した中空状の
鋼管製電信柱14の足場取付孔15から管内に挿入し
て、鉄さびの出ていない部分の内面に密着させ、超音波
を発生させる。また、この超音波の反射波を超音波セン
サ部13で受信し、これを測定器本体11で測定するこ
とによって管壁の厚さを測定し、その値を初期厚さとし
てメモリ(図示しない)に記録し、ディスプレイ(図示
しない)に表示する。続いて、超音波センサ部13を鋼
管製電信柱14の最下部付近まで降ろし、前記同様にし
て管壁の厚さを測定し、前記同様にしてその値を記録お
よび表示する。さらに、超音波センサ部13を例えば2
0cmずつ引き上げて同様の測定および記録を複数回行
って、これらのうち、管壁の厚さの最小値を選択し、こ
れを初期厚さから差し引いて、腐食厚さを求め、これを
品質劣化の診断基準とする。
Further, as a method of diagnosing quality deterioration due to soil corrosion in the underground portion of a telephone pole, there is a method using an ultrasonic thickness gauge. In this method, as shown in FIG.
The ultrasonic sensor portion 13 connected to the measuring device main body 11 via the lead wire 12 is inserted into the pipe from the scaffold mounting hole 15 of the hollow steel pipe telephone pole 14 whose lower end portion is buried in the ground 16, and the iron rust is formed. Ultrasonic waves are generated by contacting the inner surface of the part where no noise is generated. Further, the ultrasonic wave reflected by the ultrasonic wave is received by the ultrasonic wave sensor unit 13, and the thickness of the pipe wall is measured by measuring this with the measuring device main body 11, and the value is stored as an initial thickness in a memory (not shown). And display it on a display (not shown). Then, the ultrasonic sensor unit 13 is lowered to the vicinity of the lowermost portion of the steel pipe telephone pole 14, the thickness of the pipe wall is measured in the same manner as above, and the value is recorded and displayed in the same manner as above. Furthermore, the ultrasonic sensor unit 13 is
The same measurement and recording are performed multiple times by pulling up by 0 cm, and the minimum value of the wall thickness of the pipe is selected from these, and this is subtracted from the initial thickness to obtain the corrosion thickness, and this is used for quality deterioration. The diagnostic criteria for

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記支
線アンカおよび電信柱の劣化測定方法には各々以下のよ
うな解決すべき課題がある。上記打撃振動法にあって
は、支線がロッド、連結部、案内板などに分かれて複数
の支点を持つため、振動モードが複雑化し、振動解析を
高精度に行えないという問題があった。上記超音波探傷
法方法にあっては、複数の支点でロッド、連結部、案内
板が独立しているため、超音波の減衰が大きく、その結
果反射波の測定感度および測定結果にばらつきを生じる
という問題があった。また地中に斜めに埋設された支線
ロッドから超音波を入射させるため、減衰が大きく、地
上で反射波を検出することが難しいという問題がある。
However, each of the branch line anchor and the utility pole deterioration measuring method has the following problems to be solved. In the above-mentioned percussion vibration method, since the branch line is divided into a rod, a connecting portion, a guide plate, and the like and has a plurality of fulcrums, the vibration mode is complicated and vibration analysis cannot be performed with high accuracy. In the ultrasonic flaw detection method described above, since the rod, the connecting portion, and the guide plate are independent at a plurality of fulcrums, the ultrasonic wave is greatly attenuated, and as a result, the measurement sensitivity of the reflected wave and the measurement result vary. There was a problem. Further, since ultrasonic waves are incident from a branch rod that is buried obliquely in the ground, there is a problem that attenuation is large and it is difficult to detect reflected waves on the ground.

【0006】前記土壌比抵抗法にあっては、土壌比抵抗
と支線アンカの腐食速度との間に明確な対応関係は得ら
れておらず、腐食環境か否かの判定が難しいという問題
がある。前記分極抵抗測定法では、直接支線アンカに対
する腐食測定を行えないため、支線アンカの形状を正確
に反映したものにはならないという問題があった。
[0006] In the soil resistivity method, there is no clear correspondence between the soil resistivity and the corrosion rate of the branch line anchor, and it is difficult to determine whether or not the environment is corrosive. . In the polarization resistance measuring method, there is a problem that the shape of the branch line anchor cannot be accurately reflected because the corrosion measurement cannot be directly performed on the branch line anchor.

【0007】一方、超音波利用による前記鋼管製電信柱
の品質劣化診断方法は、超音波センサ部を管内に挿入し
て測定を行うため、測定の作業性が悪く、診断に長時間
を要し、経費が高くつくという問題があった。このよう
に、上記寿命の判定方法によって確実に寿命を判定する
ことが難しいため、設備の安全性、信頼性を担保するに
は、寿命とは無関係に一定期間毎に更改交換せざるを得
ず、その結果経済効率が悪くなるという問題があった。
On the other hand, in the method of diagnosing the deterioration of the quality of the steel pipe telephone pole by utilizing ultrasonic waves, the ultrasonic sensor portion is inserted into the pipe for measurement, so that the workability of measurement is poor and the diagnosis requires a long time. There was a problem that the cost was high. As described above, it is difficult to reliably determine the life by the above-mentioned method of determining the life, and in order to ensure the safety and reliability of the equipment, it is unavoidable to replace it at regular intervals regardless of the life. As a result, there was a problem that economic efficiency deteriorated.

【0008】本発明は前記のような問題を解決するもの
であり、測定対象である鋼製地中埋設物ごとの使用環境
および設置年数に応じた腐食劣化状態を自動診断して、
その鋼製地中埋設物の残存寿命の推定および更改年数の
決定を可能とすることを目的とする。
The present invention solves the above-mentioned problems, and automatically diagnoses the corrosion deterioration state according to the use environment and the number of years of installation for each steel underground buried object to be measured,
The purpose is to enable estimation of the remaining life of steel underground buried objects and determination of the number of years for renewal.

【0009】[0009]

【課題を解決するための手段】前記目的達成のために、
本発明の方法は、例えば鋼製の地中埋設物の腐食状況を
埋設された環境条件毎に分類してサンプリングする工程
と、前記分類された環境条件毎に前記地中埋設物の使用
可能年数を決定する工程と、判定対象となる地中埋設物
の埋設のときと、前記環境条件と、前記決定された使用
可能年数とから、当該判定対象となる地中埋設物の更改
時期を決定する工程とからなることを特徴とする。また
前記腐食状況は、地中埋設物の腐食による外径寸法の単
位時間当たりの減少量により判断されることを特徴とす
る。また前記環境条件は、海水または酸性水に接触する
埋設地を含む高腐食環境、海水および酸性水を除く水分
に接触する埋設地を含む腐食環境、海水、酸性水を含む
水分と接触し難い水はけの良い埋設地を含む低腐食環
境、これら高腐食環境、腐食環境、低腐食環境以外の土
壌環境の4種に分類されたことを特徴とする。また前記
地中埋設物は、一部が地中に埋設され、該埋設部分に支
持されて、他の部分は地表より上に存在することを特徴
とする。また前記地中埋設物は、全体が地中に埋設され
ていることを特徴とする。この方法により、センサなど
を直接測定対象物である鋼製地中埋設物に触れさせるこ
となく、簡単、迅速に残存寿命の推定を行うことができ
る。
[Means for Solving the Problems] To achieve the above object,
The method of the present invention includes, for example, a step of classifying and corroding a corrosion state of a steel underground buried object for each buried environmental condition, and a usable life of the underground buried object for each classified environmental condition. Determining the time of burial of the underground buried object to be judged, the environmental conditions, and the determined number of usable years to determine the renewal time of the underground buried object to be judged. And a process. Further, the above-mentioned corrosion state is characterized in that it is judged by a reduction amount of an outer diameter dimension per unit time due to corrosion of a buried object. Further, the environmental conditions include a highly corrosive environment including a buried land that contacts seawater or acidic water, a corrosive environment including a buried land that contacts moisture except seawater and acidic water, and a drainage that is difficult to contact with water including seawater and acidic water. It is characterized by being categorized into four types: low-corrosion environment including well-filled land, high-corrosion environment, corrosion environment, and soil environment other than low-corrosion environment. Further, a part of the underground buried object is buried in the ground, is supported by the buried part, and the other part exists above the surface of the ground. Further, the underground buried object is characterized in that it is entirely buried in the ground. With this method, it is possible to easily and quickly estimate the remaining life without directly touching the steel underground buried object which is the measurement object with the sensor or the like.

【0010】また本発明のプログラムは、診断対象の地
中埋設物の設置環境および設置年数を入力する処理と、
該入力された設置環境および設置年数にもとづいて、腐
食劣化度判定基準データを参照して、前記地中埋設物の
腐食劣化度を判定する処理と、該判定した腐食劣化度に
もとづいて前記地中埋設物の残存寿命を推定する処理と
から構成されたことを特徴とする。これにより、コンピ
ュータによって記録媒体の情報にアクセスすることで、
いつ、どこででも地中埋設物の残存寿命の診断を迅速、
容易に行うことができる。
Further, the program of the present invention includes a process of inputting an installation environment and an installation year of an underground buried object to be diagnosed,
Based on the input installation environment and installation years, reference is made to the corrosion deterioration degree determination reference data, and a process of determining the corrosion deterioration degree of the underground buried object, and the process based on the determined corrosion deterioration degree And a process for estimating the remaining life of the medium buried object. This allows the computer to access the information on the recording medium,
Quickly diagnose the remaining life of underground buried objects anytime, anywhere
It can be done easily.

【0011】また本発明の記録媒体は、診断対象の地中
埋設物の設置環境および設置年数を入力する処理と、該
入力された設置環境および設置年数にもとづいて、腐食
劣化度判定基準データを参照して、前記地中埋設物の腐
食劣化度を判定する処理と、該判定した腐食劣化度にも
とづいて前記地中埋設物の残存寿命を推定する処理とか
ら構成されたことを特徴とする。同様に、コンピュータ
によって記録媒体の情報にアクセスすることで、いつ、
どこででも地中埋設物の残存寿命の診断を迅速、容易に
行うことができる。
Further, the recording medium of the present invention is provided with a process for inputting the installation environment and the installation years of the underground buried object to be diagnosed, and based on the input installation environment and the installation years, the corrosion deterioration degree judgment reference data. With reference to the above, it is characterized by comprising a process of determining a corrosion deterioration degree of the underground buried object and a process of estimating a remaining life of the underground buried object based on the determined corrosion deterioration degree. . Similarly, when the information on the recording medium is accessed by the computer,
The remaining life of underground buried objects can be quickly and easily diagnosed anywhere.

【0012】また本発明の診断装置は、地中埋設物の腐
食診断をする装置であって、診断対象の鋼製地中埋設物
の設置環境および設置年数を入力情報として入力する情
報入力手段と、該情報入力手段から入力された設置環境
および設置年数にもとづいて、腐食劣化度判定基準デー
タを参照して、前記地中埋設物の腐食劣化度を判定する
腐食劣化度判定手段と、該腐食劣化度判定手段で判定し
た腐食劣化度にもとづいて前記地中埋設物の残存寿命を
推定する残存寿命推定手段とを備えたことを特徴とす
る。これにより、簡単かつローコストに腐食劣化の進行
度を定量化できない地中埋設物の残存寿命を推定するこ
とができる。
The diagnostic device of the present invention is a device for diagnosing corrosion of an underground buried object, and an information input means for inputting the installation environment and the number of years of installation of the steel underground buried object to be diagnosed as input information. A corrosion deterioration degree judging means for judging the corrosion deterioration degree of the underground buried object by referring to the corrosion deterioration degree judgment reference data based on the installation environment and the installation years inputted from the information input means; And a remaining life estimating means for estimating the remaining life of the underground buried object based on the corrosion deterioration degree judged by the deterioration degree judging means. As a result, it is possible to estimate the remaining life of the underground buried object in which the progress of corrosion deterioration cannot be quantified easily and at low cost.

【0013】[0013]

【発明の実施の形態】以下に、本発明の実施の形態を図
について説明する。まず、図3によって地中における埋
設物の腐食の一般的な傾向について説明する。図3の横
軸は地中へ埋設した後の経過年数、縦軸は腐食により発
生する最大腐食深さ(各サンプルにおいて、発生した腐
食によって外径寸法が細った量の最大値)を示すもの
で、経過年数20〜30年にて0〜2mm(多くは1mm以
下)の減少が生じたサンプルが多くを占めている。また
上記データから最大腐食深さの度数分布を調べると、図
4に示すように大半のサンプルが1mm以下の腐食深さと
なっている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. First, the general tendency of corrosion of buried objects in the ground will be described with reference to FIG. The horizontal axis of Fig. 3 shows the number of years that have passed since it was buried in the ground, and the vertical axis shows the maximum corrosion depth caused by corrosion (the maximum value of the outer diameter dimension of each sample that was reduced by the corrosion). Most of the samples have a decrease of 0 to 2 mm (mostly 1 mm or less) over the past 20 to 30 years. Further, when the frequency distribution of the maximum corrosion depth is examined from the above data, as shown in FIG. 4, most of the samples have a corrosion depth of 1 mm or less.

【0014】さらに、あるサンプルに発生した腐食深さ
(mm)を使用年数(yr)で除し、これを腐食速度(mm/
yr)なる指標として採用して、腐食環境(所定以下の比
抵抗の検出により、腐食し易いと判断される土壌)、海
水環境、側溝・水路等の水影響環境、元水田(以前水田
であったために湿潤した環境)、埋立地(埋め立てによ
るため湿潤した環境)、水田(あぜ道を除いた水田のよ
うな湿潤環境)の各環境にサンプルを分類して度数分布
をまとめると、図5に示す通りである。すなわち腐食の
原因となる水分の性質(腐食力の強い酸性成分や塩分が
あるか否か)による腐食速度の度数分布を求める。ま
た、前記腐食速度を指標として、腐食環境(所定以下の
比抵抗の検出により、腐植し易いと判断される土壌)、
常時湿潤、湿潤多い、日当たり良好の各環境にサンプル
を分類して度数分布をまとめると、図6に示す通りであ
る。すなわち、腐食の原因となる水分の量による腐食速
度の度数分布を求める。さらに、前記腐食速度を指標と
して、干拓地、潮汐地、三角州、湿田、造成地、電食
地、古土壌、普通土壌の各土壌にサンプルを分類して度
数分布をまとめると、図7に示す通りである。すなわ
ち、前記埋設地の分類は、その形成の原因によって、例
えば干拓地や潮汐地は塩分が多い、あるいは、水はけが
わるいため水分が多くなる環境に分類され、三角州や湿
田は水分が多い環境に分類され、さらに、造成地は水は
けの良い環境に分類されるから、これらの土壌環境を統
計的に分類することができる。
Further, the corrosion depth (mm) generated in a certain sample is divided by the years of use (yr) to obtain the corrosion rate (mm /
yr) as an index, corrosive environment (soil that is judged to be corroded easily by detecting specific resistance below a certain level), seawater environment, water-affected environment such as gutters and waterways, former paddy field (formerly paddy field) Fig. 5 shows the frequency distribution by classifying the samples into each environment, that is, wet environment due to damage, landfill (wet environment due to landfill), and paddy field (wet environment such as paddy field except for ridges). On the street. That is, the frequency distribution of the corrosion rate depending on the nature of water (whether there is an acidic component or salt having a strong corrosive force) that causes corrosion is obtained. Further, using the corrosion rate as an index, a corrosive environment (soil which is determined to be susceptible to humus by detecting a specific resistance not higher than a predetermined value),
FIG. 6 shows the frequency distribution obtained by classifying the samples into the environments of constant humidity, high humidity, and good daily conditions. That is, the frequency distribution of the corrosion rate depending on the amount of water that causes corrosion is obtained. Furthermore, when the corrosion rate is used as an index, samples are classified into reclaimed land, tidal land, delta, wetland, land reclamation area, electrolytic corrosion area, paleo soil, and ordinary soil to summarize the frequency distribution. On the street. That is, the classification of the above-mentioned buried land is classified according to the cause of its formation, for example, a reclaimed land or a tidal land having a high salt content, or an environment where the water content is high due to poor drainage. These soil environments can be statistically classified because they are classified and the land is classified as a well-drained environment.

【0015】サンプルの腐食速度の実測値に基づく上記
図5〜図7の各度数分布の解析から、地中埋設物の腐食
し易さの程度を、例えば下記の表1のように分類するこ
とができる。
From the analysis of the frequency distributions in FIGS. 5 to 7 based on the measured values of the corrosion rate of the sample, the degree of corrosion of the underground buried object should be classified as shown in Table 1 below. You can

【表1】 前記腐食環境区分は、上記サンプルのデータ解析によっ
て得られたものであって、 潮汐地や海岸低湿地で海水の影響がある場所や、酸性温
泉地でぬれた場所などの高腐食環境 あぜ道を除く水田の中や、側溝水路内や側溝水路付近で
の水の影響がある場所、畑や荒地になっている休耕田お
よび埋立地などで、水はけが悪く、常時湿っている場所
などの腐食環境 日当りが良好で、水はけの良い場所に相当する低腐食環
境 前記高腐食環境、腐食環境、低腐食環境以外の土壌環境
である一般環境 の四つに分類することができ、劣化A>劣化B>劣化C
>劣化Dの順に劣化が少なくなる。そして、実験的に求
められた腐食量に基づき、各環境毎の更改年数を定める
ことにより、ほぼ95%の確率で所期の機能を維持する
ことが期待される。なお、ある絶対量の腐食が発生した
場合に支線アンカの強度に与える影響は、支線アンカの
サイズが大きいほど小さくなる傾向があるから、支線ア
ンカのサイズが大きくなるほど更改年数を長くすること
も可能である。なお、支線アンカに関し、実験によれ
ば、更改年数が高腐食環境では25年、腐食環境では4
0年、低腐食環境では100年、一般環境では70年程
度と予想される。
[Table 1] The corrosive environment classification was obtained by analyzing the data of the above samples, and excludes high corrosive environment pavement roads such as places affected by seawater in tidal areas and coastal lowlands, and areas wet in acidic hot springs. In a paddy field, a place affected by water in or near a gutter canal, a fallow field or landfill that is a field or a wasteland, etc. Good, low-corrosion environment corresponding to well-drained place It can be classified into four general environments which are soil environments other than the above-mentioned high-corrosion environment, corrosive environment and low-corrosion environment. Deterioration A> Degradation B> Degradation C
> Deterioration decreases in the order of deterioration D. It is expected that the expected function can be maintained with a probability of approximately 95% by determining the number of years of renewal for each environment based on the amount of corrosion obtained experimentally. The effect on the strength of branch line anchors when a certain amount of corrosion occurs tends to decrease as the size of the branch line anchors increases.Therefore, it is also possible to lengthen the renewal period as the size of the branch line anchors increases. Is. In addition, regarding branch line anchors, according to experiments, the number of years of renewal is 25 years in a highly corrosive environment and 4 years in a corrosive environment.
0 years, 100 years in low corrosion environment, 70 years in general environment.

【0016】以上のようにして作成された表1をデータ
ベースとして利用することにより、埋設物の性状と、埋
設日時(埋設のとき)と、埋設された環境がいずれに分
類されるかにより、当該埋設物の寿命、ないしは、この
寿命に基づいて所定の安全率を見込んで定められた更改
年数を知ることができる。
By using Table 1 created as described above as a database, it is possible to determine whether the buried environment is classified according to the property of the buried object, the date and time of the buried object (when buried), and the environment in which it is buried. It is possible to know the life of the buried object, or the number of renewal years determined based on the life of the buried object in consideration of a predetermined safety factor.

【0017】図1は上記腐食診断方法の実施に利用され
る鋼製地中埋設物の腐食診断装置を示すブロック図であ
る。21は鋼製地中埋設物の腐食診断行うコンピュータ
で、このコンピュータ21には処理部22と記憶部23
とが設けられている。また、処理部22には、インタフ
ェース24を通して、診断対象である鋼製地中埋設物の
設置環境および設置年数などの入力情報を取り込む情報
入力手段25と、この情報入力手段25に取り込まれた
鋼製地中埋設物、設置環境および設置年数の各情報にも
とづいて、記憶部23に格納された腐食劣化度判定基準
29に従って、鋼製地中埋設物の腐食劣化度を判定する
腐食劣化度判定手段26と、この腐食劣化度判定手段2
6で判定した腐食劣化度情報にもとづいて、その鋼製地
中埋設物の残存寿命を推定する残存寿命推定手段27
と、その推定寿命から鋼製地中埋設物の更改年数を決定
する更改年数決定手段28とが設けられている。
FIG. 1 is a block diagram showing a corrosion diagnosing device for a steel underground buried object used for carrying out the above corrosion diagnosing method. Reference numeral 21 is a computer for diagnosing corrosion of underground steel products.
And are provided. Further, in the processing unit 22, through the interface 24, the information input means 25 for taking in input information such as the installation environment and the years of installation of the steel underground buried object to be diagnosed, and the steel taken in the information input means 25. Corrosion deterioration degree judgment for judging the corrosion deterioration degree of the steel underground buried object according to the corrosion deterioration degree judgment standard 29 stored in the storage unit 23 based on each information of the underground buried object, the installation environment and the installation years Means 26 and this corrosion deterioration degree judging means 2
Remaining life estimating means 27 for estimating the remaining life of the steel underground buried object based on the corrosion deterioration degree information determined in 6.
And a renewal year determination means 28 for determining the renewal year of the steel underground buried object from the estimated life.

【0018】また、前記記憶部23には前記腐食劣化度
判定基準のほか、残存寿命の判定基準となる残存寿命判
定基準30、主に土質についての設置環境情報31など
が格納されている。これらのうち、腐食劣化度判定基準
29は、例えば支線アンカの場合には、埋設された支線
アンカに付いている土砂や錆を除去して、ロッド部では
最小直径箇所の直径を、案内板部では最小断面箇所の厚
みを、それぞれノギスを用いて複数回(例えば、3回)
測定し、これらの測定平均した平均最小直径および平均
最小板厚を求め、これらの腐食劣化度と前記設置環境お
よび設置年数とを統計的に整理し、例えば表1のような
テーブル化して記憶部22に格納されたものである。ま
た、残存寿命判定基準30は、腐食劣化の度合に対する
残存寿命を、例えば鋼製地中埋設物に電気的または機械
的負荷を加えて電気抵抗試験や耐力試験を実際に行った
結果などを用いて設定される。
In addition to the corrosion deterioration level determination standard, the storage unit 23 also stores a remaining service life determination standard 30, which is a standard for determining the remaining service life, and installation environment information 31 mainly about soil. Among these, the corrosion deterioration degree determination standard 29 is, for example, in the case of a branch line anchor, the earth and sand attached to the buried branch line anchor are removed, and the diameter of the minimum diameter portion in the rod portion is determined by the guide plate portion. Then, set the thickness of the minimum cross-section multiple times using calipers (for example, 3 times).
The average minimum diameter and the average minimum plate thickness obtained by measuring and averaging these are obtained, and the corrosion deterioration degree and the installation environment and the number of installation years are statistically arranged, and a table such as Table 1 is formed into a storage unit. It is stored in 22. In addition, the remaining life judgment standard 30 uses the remaining life against the degree of corrosion deterioration, for example, the result of actually performing an electric resistance test or a proof stress test by applying an electrical or mechanical load to a steel underground buried object. Is set.

【0019】ここで、前記診断対象としての鋼製地中埋
設物とは鋼管製電信柱14、鋼管製電信柱14用の支線
アンカ、信号用あるいは表示用などの金属ポール、建築
や土木の基礎鋼材などの鋼材を広く含む。また、環境区
分としての設置環境とは、例えば鋼製地中埋設物が設置
される潮汐地、海岸低湿地、酸性温泉地、水田、側溝水
路付近、畑、埋立地、日当り良好で水はけの良い場所な
どをいう。
Here, the steel underground buried object to be diagnosed is a steel pipe telephone pole 14, a branch line anchor for the steel pipe telephone pole 14, a metal pole for signal or display, a foundation for construction or civil engineering. Widely includes steel materials such as steel materials. In addition, the installation environment as an environmental classification means, for example, tidal areas where steel underground buried objects are installed, coastal lowland areas, acidic hot spring areas, paddy fields, near ditch canals, fields, landfill sites, good sunlight, and good drainage. A place etc.

【0020】次にこのような鋼製地中埋設物の腐食診断
装置を用いて腐食診断と残存寿命の推定を行う手順につ
いて説明する。まず、診断対象の鋼製地中埋設物が鋼管
製電信柱なのか支線アンカなのかなどを特定し(ステッ
プST)、さらにこの鋼製地中埋設物がどのような土壌
腐食環境(設置環境)で、何年使用されたかをキーボー
ドなどによりインタフェース24を通じて情報入力手段
25に、順次入力する(ステップS2、3)。この情報
入力手段ではこれらの入力情報を整理して情報化し腐食
劣化度判定手段26へ入力する。この腐食劣化度判定手
段26では、記憶部23に格納されている腐食劣化度判
定基準29に従って前記特定した鋼製地中埋設物がどの
程度腐食劣化しているかを判定する(ステップS4)。
鋼製地中埋設物が例えば前記支線アンカの場合には、ロ
ッドの直径や、案内板の最低残存面積が当初の寸法に対
して所定割合(例えば80%)以下に減少したことなど
を判定基準とする。
Next, a procedure for performing corrosion diagnosis and estimation of the remaining life by using such a corrosion diagnosis device for a steel underground buried object will be described. First, identify whether the steel underground buried object to be diagnosed is a steel pipe telephone pole or a branch line anchor (step ST), and further determine what soil corrosion environment (installation environment) this steel underground buried object is. Then, the number of years of use is sequentially input to the information input means 25 through the interface 24 using a keyboard or the like (steps S2 and S3). This information input means organizes these input information into information and inputs it to the corrosion deterioration degree determination means 26. The corrosion deterioration degree judging means 26 judges to what extent the specified steel underground buried object is corroded and deteriorated according to the corrosion deterioration degree judgment standard 29 stored in the storage unit 23 (step S4).
In the case where the steel underground buried object is the branch line anchor, for example, the criteria for determining whether the diameter of the rod or the minimum remaining area of the guide plate has decreased to a predetermined ratio (for example, 80%) or less with respect to the original dimension. And

【0021】また、腐食劣化度判定手段26でなされた
腐食レベルとしての不良判定結果は残存寿命推定手段2
7に入力される。この残存寿命推定手段27では、前記
不良判定結果にもとづいて前記鋼製地中埋設物の腐食レ
ベルが記憶部23の腐食劣化基準レベルに対してどの程
度に大きいか小さいかを調べて、この鋼製地中埋設物の
残存寿命を推定演算する(ステップS5)。また、この
ような残存寿命の推定結果を受けて、更改年数決定手段
28は鋼製地中埋設物の設置環境情報である腐食環境
(設置環境)区分に従って、この鋼製地中埋設物を新た
なものに交換(更改)すべき年数を決定する(ステップ
S6)。なお、この更改年数の決定は、更改年数決定手
段28によらずに実際の使用条件に応じて、人為的に決
定することができる。なお、ステップS1〜ステップS
6の情報処理はプログラム格納部32に格納されたプロ
グラムに従った手順で実行される。
Further, the result of the defect determination as the corrosion level made by the corrosion deterioration degree determining means 26 is the remaining life estimating means 2
Input to 7. The remaining life estimating means 27 checks how much the corrosion level of the steel underground buried object is higher or lower than the corrosion deterioration reference level of the memory section 23 based on the result of the defect determination, and the steel is evaluated. The remaining life of the buried object is estimated and calculated (step S5). In addition, in response to the estimation result of such remaining life, the renewal year determination means 28 newly updates the steel underground buried object according to the corrosive environment (installation environment) classification which is the installation environmental information of the steel underground buried object. The number of years to be exchanged (renewed) with another one is determined (step S6). It should be noted that the determination of the number of years of renewal can be made artificially according to the actual use condition without using the means for determining the number of years of renewal 28. Note that steps S1 to S
The information processing of No. 6 is executed in the procedure according to the program stored in the program storage unit 32.

【0022】また、前記腐食診断プログラムは、このプ
ログラムを記憶装置等に格納したコンピュータシステム
から、伝送媒体を介して、あるいは、伝送媒体中の伝送
波により他のコンピュータシステムに伝送されてもよ
い。ここで、プログラムを伝送する「伝送媒体」は、イ
ンターネット等のネットワーク(通信網)や電話回線等
の通信回線(通信線)のように情報を伝送する機能を有
する媒体のことをいう。前記腐食診断プログラムは、前
述した機能の一部を実現するためのものであっても良
い。さらに、前述した機能をコンピュータシステムにす
でに記録されているプログラムとの組み合わせで実現で
きるもの、いわゆる差分ファイル(差分プログラム)で
あっても良い。
The corrosion diagnosis program may be transmitted from a computer system having the program stored in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium. Here, the "transmission medium" for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line. The corrosion diagnosis program may be for realizing some of the functions described above. Further, it may be a so-called difference file (difference program) that can realize the above-mentioned functions in combination with a program already recorded in the computer system.

【0023】なお、このようにして得られた更改年数や
前記残存寿命の情報は、インタフェース24を介してデ
ィスプレイ(図示しない)に表示したり、プリンタ(図
示しない)で印刷出力することができる。また、前記腐
食の各環境要因は、鋼製地中埋設物が亜鉛メッキから鋼
までに腐食が進み、このときの最大断面積の減少を経過
年数で除して求めた腐食速度の累積度数から調べること
ができる。
The information on the number of renewal years and the remaining life obtained in this way can be displayed on a display (not shown) via the interface 24 or can be printed out by a printer (not shown). Further, each environmental factor of the corrosion, from the cumulative frequency of corrosion rate obtained by dividing the decrease of the maximum cross-sectional area at this time corrosion of the underground steel buried object from galvanization to steel, at this time You can look it up.

【0024】なお、ステップS1〜ステップS6の鋼製
地中埋設物の残存寿命の測定および更改年数決定までの
処理は、コンピュータ21の制御下でハードディスクな
どのプログラム記憶部32に格納されたプログラムの実
行手順に従ってなされ、このため、その残存寿命の判定
と更改年数の決定を速やかに行うことができる。また前
記プログラムを記録媒体、例えば前記のハードディスク
のほか、図示しないフレキシブルディスク、光磁気ディ
スク、ROM、CD−ROMなどの可搬媒体に記録して
おくことで、これを用いてどこ(埋設現場など)ででも
コンピュータを利用して前記鋼製地中埋設物の寿命判定
などを迅速、容易に行うことができる。
The processes of measuring the remaining life of the steel underground buried object and determining the number of years of renewal in steps S1 to S6 are performed by a program stored in a program storage unit 32 such as a hard disk under the control of the computer 21. It is done according to the execution procedure, and therefore, the remaining life and the number of renewal years can be promptly determined. Further, by recording the program in a recording medium, for example, the hard disk described above, or a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM (not shown), the program can be used to record a location (such as a burial site). In (), it is possible to quickly and easily determine the life of the steel underground buried object by using a computer.

【0025】[0025]

【発明の効果】以上のように、本発明によれば、例えば
鋼製の地中埋設物の残存寿命を速やかに演算および推定
することができる。また、従来の振動モードが複雑な打
撃振動方法、反射波の測定感度が悪い超音波深傷方法、
所定レベル以上の比抵抗では腐食環境区分しにくい土壌
比抵抗器法などを用いることなく、簡単かつローコスト
な構成によって、腐食劣化の進行度を定量化できない鋼
製地中埋設物の残存寿命を略正確に推定することができ
る。また、測定作業のために人の手や、測定器具、セン
サなどを測定対象物である鋼製地中埋設物に触れさせる
ことなく、実験的に採集した情報のコンピュータ処理に
よって、自動的に残存寿命の推定ができ、必要に応じそ
の結果を出力表示またはプリントアウトさせることがで
きる。
As described above, according to the present invention, it is possible to quickly calculate and estimate the remaining life of an underground buried object made of steel, for example. In addition, the conventional vibration mode is a complicated vibration method, the ultrasonic deep scratch method has poor measurement sensitivity of reflected waves,
With a specific resistance higher than a predetermined level, it is difficult to classify the corrosive environment, and without using the soil resistivity method, the simple and low-cost configuration makes it possible to quantify the progress of corrosion deterioration. Can be accurately estimated. In addition, without touching human hands, measuring instruments, sensors, etc. with the steel underground buried object to be measured for measurement work, the information collected experimentally remains automatically by computer processing. The life can be estimated, and the result can be output and displayed or printed out as needed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施形態による鋼製地中埋設物の
腐食診断装置を示す構成図である。
FIG. 1 is a configuration diagram showing a corrosion diagnosis device for a steel underground buried object according to an embodiment of the present invention.

【図2】 本発明の鋼製地中埋設物の腐食診断プログラ
ムによる腐食診断の実行手順を示すフローチャートであ
る。
FIG. 2 is a flowchart showing a procedure of executing a corrosion diagnosis by a corrosion diagnosis program for a steel underground buried object of the present invention.

【図3】 埋設物の最大断面減と経過年数との関係を示
す図。
FIG. 3 is a diagram showing the relationship between the maximum cross-sectional reduction of buried objects and the number of years elapsed.

【図4】 埋蔵物の最大断面減の度数分布を示す図。FIG. 4 is a diagram showing a frequency distribution of maximum cross-section reduction of buried objects.

【図5】 埋蔵物の腐食速度の累積度数を環境毎に示す
図。
FIG. 5 is a diagram showing the cumulative frequency of corrosion rates of buried objects for each environment.

【図6】 埋蔵物の腐食速度の累積度数を環境毎に示す
図。
FIG. 6 is a diagram showing the cumulative frequency of corrosion rates of buried objects for each environment.

【図7】 埋蔵物の不足速度の累積度数を環境毎に示す
図。
FIG. 7 is a diagram showing the cumulative frequency of the deficiency rate of buried objects for each environment.

【図8】 支線アンカーの一従来例の説明図。FIG. 8 is an explanatory view of a conventional example of a branch line anchor.

【図9】 図8の地中部分の詳細図。9 is a detailed view of the underground portion of FIG.

【図10】 従来の鋼管製電信柱の腐食劣化診断方法を
示す説明図である。
FIG. 10 is an explanatory diagram showing a conventional method for diagnosing corrosion deterioration of a steel pipe telephone pole.

【符号の説明】[Explanation of symbols]

21 コンピュータ 25 情報入力手段 26 腐食劣化度判定手段 27 残存寿命推定手段 29 腐食劣化度判定基準 21 computer 25 Information input means 26 Corrosion Degradation Determining Means 27 Remaining life estimation means 29 Corrosion Degradation Criteria

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高松 徳明 東京都新宿区西新宿三丁目19番2号 東日 本電信電話株式会社内 Fターム(参考) 2G050 AA01 AA06 BA02 BA20 EB10   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Noriaki Takamatsu             3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo Tohnichi             Inside Telegraph and Telephone Corporation F-term (reference) 2G050 AA01 AA06 BA02 BA20 EB10

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 地中埋設物の腐食状況を埋設された環境
条件毎に分類してサンプリングする工程と、 前記分類された環境条件毎に前記地中埋設物の使用可能
年数を決定する工程と、 判定対象となる地中埋設物の埋設のときと、前記環境条
件と、前記決定された使用可能年数とから、当該判定対
象となる地中埋設物の更改年数を決定する工程と、から
なることを特徴とする地中埋設物の腐食診断方法。
1. A step of classifying and corroding the corrosion state of an underground buried object for each buried environmental condition, and a step of determining the usable years of the underground buried object for each of the classified environmental conditions. Determining the number of renewal years of the underground buried object to be judged, from the time of burying the underground buried object to be judged, the environmental condition, and the determined usable years. A method for diagnosing corrosion of underground buried objects, which is characterized by the following.
【請求項2】 前記腐食状況は、地中埋設物の腐食によ
る外径寸法の単位時間当たりの減少量により判断される
ことを特徴とする請求項1に記載の地中埋設物の腐食診
断方法。
2. The method for diagnosing corrosion of an underground buried object according to claim 1, wherein the corrosion status is determined by a reduction amount of an outer diameter dimension per unit time due to corrosion of the underground buried object. .
【請求項3】 前記環境条件は、海水または酸性水に接
触する埋設地を含む高腐食環境、海水および酸性水を除
く水分に接触する埋設地を含む腐食環境、海水、酸性水
を含む水分と接触し難い水はけの良い埋設地を含む低腐
食環境、これら高腐食環境、腐食環境、低腐食環境以外
の土壌環境の4種に分類されたことを特徴とする請求項
1または2に記載の地中埋設物の腐食診断方法。
3. The environmental conditions include a highly corrosive environment including a buried land in contact with seawater or acid water, a corrosive environment including a buried land in contact with water except seawater and acidic water, and water containing seawater and acidic water. 3. The land according to claim 1 or 2, characterized by being classified into four types of low-corrosion environment including a well-drained land that is hard to contact, high-corrosion environment, corrosive environment, and soil environment other than low-corrosion environment. Corrosion diagnosis method for medium buried objects.
【請求項4】 前記地中埋設物は、一部が地中に埋設さ
れ、該埋設部分に支持されて、他の部分は地表より上に
存在することを特徴とする請求項1ないし3のいずれか
に記載の地中埋設物の腐食診断方法。
4. The underground buried object is partially buried in the ground, supported by the buried portion, and the other portion is above the surface of the ground. The method for diagnosing corrosion of an underground buried object according to any one of the above.
【請求項5】 前記地中埋設物は、全体が地中に埋設さ
れていることを特徴とする請求項1ないし3のいずれか
に記載の地中埋設物の腐食診断方法。
5. The corrosion diagnosis method for an underground buried object according to claim 1, wherein the entire underground buried object is buried in the ground.
【請求項6】 診断対象の地中埋設物の設置環境および
設置年数を入力する処理と、該入力された設置環境およ
び設置年数にもとづいて、腐食劣化度判定基準データを
参照して、前記地中埋設物の腐食劣化度を判定する処理
と、該判定した腐食劣化度にもとづいて前記地中埋設物
の残存寿命を推定する処理とから構成された地中埋設物
の腐食診断プログラム。
6. A process for inputting an installation environment and an installation year of an underground buried object to be diagnosed, and referring to corrosion deterioration degree determination standard data based on the input installation environment and installation year, the above-mentioned site A corrosion diagnosis program for an underground buried object, comprising: a process for determining the corrosion deterioration degree of the intermediate buried object; and a process for estimating the remaining life of the underground buried object based on the determined corrosion deterioration degree.
【請求項7】 診断対象の地中埋設物の設置環境および
設置年数を入力する処理と、該入力された設置環境およ
び設置年数にもとづいて、腐食劣化度判定基準データを
参照して、前記地中埋設物の腐食劣化度を判定する処理
と、該判定した腐食劣化度にもとづいて前記地中埋設物
の残存寿命を推定する処理とから構成された地中埋設物
の腐食診断プログラムが記録された記録媒体。
7. A process of inputting an installation environment and an installation year of an underground buried object to be diagnosed, and referring to the corrosion deterioration degree determination standard data based on the input installation environment and installation year, the above-mentioned site A corrosion diagnosis program for underground buried objects, which is composed of processing for determining the degree of corrosion deterioration of medium buried objects and processing for estimating the remaining life of the underground buried objects based on the determined degree of corrosion deterioration, is recorded. Recording medium.
【請求項8】 地中埋設物の腐食診断をする装置であっ
て、診断対象の地中埋設物の設置環境および設置年数を
入力情報として入力する情報入力手段と、該情報入力手
段から入力された設置環境および設置年数にもとづい
て、腐食劣化度判定基準データを参照して、前記地中埋
設物の腐食劣化度を判定する腐食劣化度判定手段と、該
腐食劣化度判定手段で判定した腐食劣化度にもとづいて
前記鋼製地中埋設物の残存寿命を推定する残存寿命推定
手段とを備えた地中埋設物の腐食診断装置。
8. An apparatus for diagnosing corrosion of an underground buried object, comprising: an information input means for inputting an installation environment and an installation year of the underground buried object to be diagnosed as input information; and an information input means for inputting the information. Based on the installed environment and the number of years of installation, the corrosion deterioration degree judgment means for judging the corrosion deterioration degree of the underground buried object by referring to the corrosion deterioration degree judgment reference data, and the corrosion judged by the corrosion deterioration degree judgment means A corrosion diagnosing device for an underground buried object, comprising: a remaining life estimating means for estimating a remaining life of the steel underground buried object based on a degree of deterioration.
JP2002064349A 2002-03-08 2002-03-08 Method for diagnosing corrosion of object embedded underground, corrosion diagnosing program, recording medium recording corrosion diagnosing program, and corrosion diagnosing apparatus Pending JP2003262580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002064349A JP2003262580A (en) 2002-03-08 2002-03-08 Method for diagnosing corrosion of object embedded underground, corrosion diagnosing program, recording medium recording corrosion diagnosing program, and corrosion diagnosing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002064349A JP2003262580A (en) 2002-03-08 2002-03-08 Method for diagnosing corrosion of object embedded underground, corrosion diagnosing program, recording medium recording corrosion diagnosing program, and corrosion diagnosing apparatus

Publications (1)

Publication Number Publication Date
JP2003262580A true JP2003262580A (en) 2003-09-19

Family

ID=29197188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002064349A Pending JP2003262580A (en) 2002-03-08 2002-03-08 Method for diagnosing corrosion of object embedded underground, corrosion diagnosing program, recording medium recording corrosion diagnosing program, and corrosion diagnosing apparatus

Country Status (1)

Country Link
JP (1) JP2003262580A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345111A (en) * 2004-05-31 2005-12-15 Railway Technical Res Inst Method and device for predicting deterioration of steel
JP2005345112A (en) * 2004-05-31 2005-12-15 Railway Technical Res Inst Method of setting replacement period of steel, and controller for replacement period
JP2009222395A (en) * 2008-03-13 2009-10-01 Asahi Kasei Engineering Kk Maximum corrosion speed estimating method of tank bottom plate
JP2012107911A (en) * 2010-11-15 2012-06-07 Venture Academia:Kk Determination method of updating order of embedded metal water supply pipes
JP2017003558A (en) * 2015-06-10 2017-01-05 日本電信電話株式会社 Estimation method
JP2017090238A (en) * 2015-11-10 2017-05-25 日本電信電話株式会社 Prediction method
JP2017219349A (en) * 2016-06-03 2017-12-14 日本電信電話株式会社 Method for reducing wall thickness of a metal structure simulating a specimen of deteriorated metal structure
JP2019074334A (en) * 2017-10-12 2019-05-16 横浜市 Method of estimating and predicting corrosion state of embedded metal structure and measuring prove used therefor
JP2019095253A (en) * 2017-11-21 2019-06-20 日本電信電話株式会社 Device for estimating risk of underground metal structure and method therefor
JP2020143999A (en) * 2019-03-06 2020-09-10 西日本電信電話株式会社 Steel pipe column deterioration prediction system
JP2020204867A (en) * 2019-06-17 2020-12-24 日本電信電話株式会社 Analysis device
JPWO2021100196A1 (en) * 2019-11-22 2021-05-27
WO2022091245A1 (en) * 2020-10-28 2022-05-05 日本電信電話株式会社 Deterioration risk estimation method and system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345111A (en) * 2004-05-31 2005-12-15 Railway Technical Res Inst Method and device for predicting deterioration of steel
JP2005345112A (en) * 2004-05-31 2005-12-15 Railway Technical Res Inst Method of setting replacement period of steel, and controller for replacement period
JP4495523B2 (en) * 2004-05-31 2010-07-07 財団法人鉄道総合技術研究所 Deterioration prediction system for steel in submarine tunnel
JP2009222395A (en) * 2008-03-13 2009-10-01 Asahi Kasei Engineering Kk Maximum corrosion speed estimating method of tank bottom plate
JP2012107911A (en) * 2010-11-15 2012-06-07 Venture Academia:Kk Determination method of updating order of embedded metal water supply pipes
JP2017003558A (en) * 2015-06-10 2017-01-05 日本電信電話株式会社 Estimation method
JP2017090238A (en) * 2015-11-10 2017-05-25 日本電信電話株式会社 Prediction method
JP2017219349A (en) * 2016-06-03 2017-12-14 日本電信電話株式会社 Method for reducing wall thickness of a metal structure simulating a specimen of deteriorated metal structure
JP2019074334A (en) * 2017-10-12 2019-05-16 横浜市 Method of estimating and predicting corrosion state of embedded metal structure and measuring prove used therefor
JP2019095253A (en) * 2017-11-21 2019-06-20 日本電信電話株式会社 Device for estimating risk of underground metal structure and method therefor
JP2020143999A (en) * 2019-03-06 2020-09-10 西日本電信電話株式会社 Steel pipe column deterioration prediction system
JP2020204867A (en) * 2019-06-17 2020-12-24 日本電信電話株式会社 Analysis device
WO2020255709A1 (en) * 2019-06-17 2020-12-24 日本電信電話株式会社 Analysis device
JP7148806B2 (en) 2019-06-17 2022-10-06 日本電信電話株式会社 analysis equipment
JPWO2021100196A1 (en) * 2019-11-22 2021-05-27
WO2021100196A1 (en) * 2019-11-22 2021-05-27 日本電信電話株式会社 Prediction device and method therefor
JP7280533B2 (en) 2019-11-22 2023-05-24 日本電信電話株式会社 Prediction device and method
WO2022091245A1 (en) * 2020-10-28 2022-05-05 日本電信電話株式会社 Deterioration risk estimation method and system

Similar Documents

Publication Publication Date Title
Doyle et al. The role of soil in the external corrosion of cast iron water mains in Toronto, Canada
ElBatanouny et al. Early corrosion detection in prestressed concrete girders using acoustic emission
Vélez et al. Acoustic emission monitoring of early corrosion in prestressed concrete piles
US8640544B2 (en) Method for analyzing structure safety
JP2003262580A (en) Method for diagnosing corrosion of object embedded underground, corrosion diagnosing program, recording medium recording corrosion diagnosing program, and corrosion diagnosing apparatus
RU2004114224A (en) REAL-TIME PETROPHYSICAL ASSESSMENT SYSTEM
CN112529255B (en) Reinforced concrete member service life prediction method based on chloride ion concentration monitoring
CN1837515A (en) Technologic method for detecting construction quality of pile foundation by electricity detection method
CN108956767A (en) Based on frequency-comentropy Corroded Reinforced Concrete fatigue damage evaluation method
Raupach et al. Condition survey with embedded sensors regarding reinforcement corrosion
CN101339119A (en) Coastal area concrete reinforcement erosion situation electrochemical test method
Schoefs et al. Quantitative evaluation of contactless impact echo for non-destructive assessment of void detection within tendon ducts
JPH09329568A (en) Method and apparatus for diagnosis of corrosion probability or corrosion degree of reinforcing bar in concrete structure
JP2006010595A (en) Method for determining degree of structure damage due to traffic load through the use of acoustic emission sound of secondary causes
Kazemian et al. A review of bridge scour monitoring techniques and developments in vibration based scour monitoring for bridge foundations
CN116147867A (en) Bridge safety detection method and system
Gulikers Statistical interpretation of results of potential mapping on reinforced concrete structures
JP4698318B2 (en) Anticorrosion state monitoring method and system
CN102128351A (en) Sonar detection method for functional state of pipeline
So et al. On-site measurements on corrosion rate of steel in reinforced concrete
RU2262634C1 (en) Method of detecting pipeline sections disposed to corrosion cracking under stressing
Zhu et al. Damage detection of pile foundations in marine engineering based on a multidimensional dynamic signature
Chastain-Howley Transmission main leakage: how to reduce the risk of a catastrophic failure
JP4900615B2 (en) Ground failure / collapse prediction method
Palmer Field Soil Corrosivity Testing—Engineering Considerations

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040114

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Effective date: 20040220

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060919