JP2009101055A - Blood pressure measuring apparatus - Google Patents

Blood pressure measuring apparatus Download PDF

Info

Publication number
JP2009101055A
JP2009101055A JP2007277546A JP2007277546A JP2009101055A JP 2009101055 A JP2009101055 A JP 2009101055A JP 2007277546 A JP2007277546 A JP 2007277546A JP 2007277546 A JP2007277546 A JP 2007277546A JP 2009101055 A JP2009101055 A JP 2009101055A
Authority
JP
Japan
Prior art keywords
blood pressure
cuff
pulse wave
air bag
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007277546A
Other languages
Japanese (ja)
Other versions
JP5111053B2 (en
Inventor
Takahiro Soma
孝博 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2007277546A priority Critical patent/JP5111053B2/en
Priority to PCT/JP2008/069056 priority patent/WO2009054382A1/en
Priority to TW97140750A priority patent/TWI358280B/en
Publication of JP2009101055A publication Critical patent/JP2009101055A/en
Application granted granted Critical
Publication of JP5111053B2 publication Critical patent/JP5111053B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blood pressure measuring apparatus capable of reducing the influence of an individual difference on systolic blood pressure measurement accuracy and the influence of a measuring method including the way of winding a cuff or the like. <P>SOLUTION: The blood pressure measuring apparatus includes a cuff main body comprising an air bag for ischemia, a sub air bag for pressurizing the heart side of the blood vessel of a blood pressure measuring part and a pulse wave detection air bag for detecting pulse waves, a means for pressurizing/depressurizing the cuff main body, a cuff pressure detection means, a pulse wave detection means, and a means for displaying a blood pressure value. The blood pressure measuring apparatus has first piping connected between the pulse wave detection air bag and the pressurizing/depressurizing means, second piping connected between the air bag for ischemia and the pressurizing/depressurizing means and connected with the cuff pressure detection means through a fluid resistor, and third piping connected between the sub air bag and the pressurizing/depressurizing means through an on-off valve. When detecting the pulse waves required for blood pressure measurement in the pulse wave detection means, the on-off valve is turned to a closed state, and a series of pulse wave waveform changes that occur are obtained as pulse wave signals by the pulse wave detection means. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、血圧測定装置に係り、オシロメトリック方式で血圧測定を行う技術に関する。 The present invention relates to a blood pressure measurement device and relates to a technique for measuring blood pressure by an oscillometric method.

阻血用カフを用いた血圧測定法の収縮期血圧の求め方は、カフの圧力を動脈内の最高圧力である収縮期血圧以上に一旦上げることで、動脈の血流を止めた後に、下げることで血管圧とカフの圧力が一致したときに血流が流れ始める現象を検出して求めている。 The method of obtaining systolic blood pressure in the blood pressure measurement method using an ischemic cuff is to lower the arterial blood flow after stopping the arterial blood flow by raising the cuff pressure above the systolic blood pressure, which is the highest pressure in the artery. In this case, the phenomenon is detected by detecting the phenomenon in which blood flow begins to flow when the blood vessel pressure and the cuff pressure coincide.

オシロメトリック方式の血圧計の場合は、収縮期血圧以上の高い圧力までカフ圧力を一度上昇させ、徐々にカフ圧力を下降させときに動脈の容積変化に基づいて発生する動脈の振動を検出し、この振動の振幅変化により血圧を決定していた。   In the case of an oscillometric sphygmomanometer, the cuff pressure is once increased to a pressure higher than the systolic blood pressure, and when the cuff pressure is gradually decreased, the arterial vibration generated based on the volume change of the artery is detected, The blood pressure was determined by the change in amplitude of the vibration.

これに対して、広く普及しているコロトコフ方式(聴診法)は、オシロメトリック方式と同様に収縮期血圧以上にカフ圧力を上げて一度血流を止めた後に、徐々にカフ圧力を降下させたとき、一度止めた血流が再開するタイミングで発生するコロトコフ音をカフの下流側となる末梢側で検出し、そのときの阻血用カフの内圧を収縮期血圧値(最高血圧)として求め、コロトコフ音が消滅したときのカフの内圧を拡張期血圧値(最低血圧)として求めている。   In contrast, the widely used Korotkoff method (auscultation method), like the oscillometric method, increased the cuff pressure above the systolic blood pressure and once stopped the blood flow, then gradually decreased the cuff pressure. When the Korotkoff sound generated at the time when the blood flow once stopped is detected is detected at the peripheral side downstream of the cuff, the internal pressure of the cuff for that time is obtained as the systolic blood pressure value (maximum blood pressure), and Korotkoff The internal pressure of the cuff when the sound disappears is obtained as the diastolic blood pressure value (minimum blood pressure).

上記のオシロメトリック方式は、血流が再開する現象を、カフ下の動脈の容積変化により発生するカフ圧力に重畳している圧力変化から求める方法である。このため、コロトコフ方式において必要となるコロトコフ音の検出を行うためのマイクロフォンまたは聴診器が不要となるので、コロトコフ方式よりも部品が少なくまた製造コストも低くできる利点がある。   The oscillometric method described above is a method for obtaining a phenomenon in which blood flow is resumed from a pressure change superimposed on a cuff pressure generated by a volume change of an artery under the cuff. This eliminates the need for a microphone or stethoscope for detecting Korotkoff sound, which is necessary in the Korotkoff method, and therefore has the advantage of having fewer parts and lowering manufacturing costs than the Korotkoff method.

また、コロトコフ方式の血圧計は、前記の阻血カフを用いた血圧測定方法に近い方法であるが、血圧測定時に発生するノイズ(カフ布、カフチューブの擦過音)、および、空調機器および人の声など外部からの振動は、ノイズの周波数成分がコロトコフ音の周波数成分に近いことから、ノイズに弱い欠点を有する。   In addition, the Korotkoff sphygmomanometer is a method close to the blood pressure measurement method using the above-described ischemic cuff, but noise (cuff cloth, cuff tube noise) generated during blood pressure measurement, air conditioning equipment and human Vibration from the outside, such as voice, has a drawback that it is vulnerable to noise because the frequency component of noise is close to the frequency component of Korotkoff sound.

これに対してオシロメトリック方式で用いる圧力変動の周波数成分は、コロトコフ音の周波数成分よりもかなり低く、血圧測定時に発生するノイズ周波数と大きく乖離している。このために、オシロメトリック方式はノイズの影響を受けにくい利点がある。また、コロトコフ音の検出感度を一定にするために、聴診器、または、カフに実装されているマイクロフォンと動脈の位置合わせが重要なコロトコフ方式に比べて、オシロメトリック方式はカフ全体が振動検出センサ−であるので多少のカフの位置ずれがあっても、十分に測定可能な方法であることから、ユーザビリティが高く、家庭で用いる自動血圧計として用いるには好適な方法である。   On the other hand, the frequency component of the pressure fluctuation used in the oscillometric method is considerably lower than the frequency component of the Korotkoff sound, and greatly deviates from the noise frequency generated during blood pressure measurement. For this reason, the oscillometric method has an advantage that it is hardly affected by noise. Compared to the Korotkoff method, where the alignment of the stethoscope or the microphone mounted on the cuff and the artery is important to make the detection sensitivity of Korotkoff sound constant, the oscillometric method is a vibration detection sensor for the entire cuff. Therefore, even if there is a slight displacement of the cuff, it is a method that can be measured sufficiently. Therefore, the usability is high, and this method is suitable for use as an automatic sphygmomanometer used at home.

しかしながら、オシロメトリック方式にはカフの血管圧迫特性に起因する収縮期血圧(最高血圧値)の検出に関する問題がある。カフである空気袋を測定部位、たとえば上腕に巻き付け、この空気袋を加圧したとき上腕を圧迫する力は、空気袋の幅方向(上腕の長手方向)の中央部ではカフ圧力を反映した圧迫力になるが、中央部より空気袋端部側(上腕長手方向)にズレると、カフ圧力を反映した圧迫力が得られず、中央部から空気袋の端部方向に向かい圧迫力が徐々に減少してしまい、端部ではゼロとなる圧迫特性(カフエッジ効果)を示す。   However, the oscillometric method has a problem regarding detection of systolic blood pressure (maximum blood pressure value) due to the cuff blood vessel compression characteristics. The cuff air bag is wrapped around the measurement site, for example, the upper arm, and when the air bag is pressurized, the force that compresses the upper arm is the pressure that reflects the cuff pressure at the center in the width direction of the air bag (longitudinal direction of the upper arm) However, if it is shifted from the center to the side of the air bag end (longitudinal direction of the upper arm), the compression force reflecting the cuff pressure cannot be obtained, and the compression force gradually increases from the center toward the end of the air bag. It shows a compression characteristic (cuff edge effect) that decreases and becomes zero at the end.

このような圧迫特性により、収縮期血圧以上にカフ圧力を上げて、阻血状態から徐々にカフ圧力を下げて、まさに収縮期血圧を測定しようとするタイミングであって、カフ圧力が収縮期血圧よりもやや高い状態の時に、血流はカフの中央部のみで止められることになる。この結果、血流は心臓の拍動に同期して、カフの上流部からカフの中央部まで侵入しては戻される現象が生じる。この現象によって、カフ圧力が収縮期血圧より高いときからすでに脈波が検出されていて、カフ圧力が収縮期血圧より低くなったことを検出する脈波を正確に検出できないという問題がある。   Due to such compression characteristics, the cuff pressure is increased more than the systolic blood pressure, the cuff pressure is gradually decreased from the ischemic state, and it is the timing to measure the systolic blood pressure. When it is slightly higher, blood flow is stopped only at the center of the cuff. As a result, a phenomenon occurs in which the blood flow enters and returns from the upstream portion of the cuff to the central portion of the cuff in synchronization with the pulsation of the heart. Due to this phenomenon, the pulse wave has already been detected since the cuff pressure is higher than the systolic blood pressure, and there is a problem that the pulse wave for detecting that the cuff pressure has become lower than the systolic blood pressure cannot be accurately detected.

この血流の再開現象の検出における上記の問題点を解決するために、従来より、以下の対策を図っている。カフの圧力を収縮期血圧から下降させていくと1拍動周期の内で、動脈圧がカフの圧力より高くなる時間が長くなることによるカフ下の下流側の容積変化の増加で脈波の振幅が大きくなる。また、鬱血の度合いにもよるが、カフより動脈末梢部位の血管内圧がカフ圧力よりも大きくなると、末梢からの圧反射現象が発生するので、この反射により脈波が急に大きくなる。   In order to solve the above-mentioned problems in detecting the blood flow resumption phenomenon, conventionally, the following measures have been taken. When the pressure of the cuff is lowered from the systolic blood pressure, the time during which the arterial pressure becomes higher than the pressure of the cuff becomes longer within one pulsation cycle, and the volume change on the downstream side under the cuff increases. Amplitude increases. Further, although depending on the degree of congestion, if the intravascular pressure at the peripheral portion of the artery is higher than the cuff pressure, the pressure reflection phenomenon from the periphery occurs, and the pulse wave suddenly increases due to this reflection.

さらにカフ圧力の減圧が進むと、カフの内圧よりも末梢部位の血管内圧が大きくなる時間が長くなり、さらに1拍動周期内で血管が閉じている時間が無くなる寸前では、収縮期にてはカフ下の血管がほぼ全開となり、脈波の振幅が最大となる現象が発生する。   As the cuff pressure is further reduced, the time during which the blood pressure in the peripheral region becomes larger than the internal pressure in the cuff becomes longer, and the time when the blood vessel is closed within one pulsation cycle is about to disappear. The blood vessel under the cuff is almost fully opened, and a phenomenon occurs in which the amplitude of the pulse wave is maximized.

オシロメトリック法においては、収縮期血圧の測定タイミングのカフ下の血管容積変化は、カフ下の中央部および下流側の血管は圧閉された状態で、カフ下の中央部より上流側の血管のみが全開と圧閉を繰り替えしている状態であるので、カフ下の全血管容積全体の約50%に相当する。この理由により、検出された最大脈波振幅の約50%の脈波振幅になるタイミングのカフ圧力値を収縮期血圧とする方法を採用している。   In the oscillometric method, the change in blood vessel volume under the cuff at the measurement timing of systolic blood pressure is limited to the blood vessel upstream of the central part under the cuff, with the central and downstream blood vessels capped. Is a state where the full opening and the pressure closing are repeated, corresponding to about 50% of the entire blood vessel volume under the cuff. For this reason, a method is adopted in which the cuff pressure value at the timing when the pulse wave amplitude is about 50% of the detected maximum pulse wave amplitude is used as the systolic blood pressure.

しかしこの割合は、カフの巻き方によるカフ下の血管押さえ力のバラツキで生じるカフ下の脈波形成に寄与する上流部、下流部の容積のアンバランス、および、カフを巻く強さによるカフ空気量の違いから発生するカフの圧力とコンプライアンスとの関係のバラツキ、また、最大脈波振幅の大きさに関係する末梢部位の血管内圧の上昇のバラツキの影響を受けることになる。また、末梢部位の血管内圧の上昇には、複数回血圧測定を繰り返す場合、血圧測定の繰り返し時間の短さによる鬱血の程度が影響する。これらは、また、生体の血圧値、血管の太さ、弾性特性、末梢循環の悪さに依存する部分が大きく、個体差の生じる原因になっている。   However, this ratio depends on the cuff air due to the unbalance of the upstream and downstream volumes that contribute to the formation of the pulse wave under the cuff caused by the variation in the blood vessel holding force under the cuff due to how the cuff is wound, and the strength of the cuff. It is affected by variations in the relationship between the cuff pressure and compliance generated due to the difference in quantity, and variations in the increase in intravascular pressure at the peripheral site related to the magnitude of the maximum pulse wave amplitude. In addition, when the blood pressure measurement is repeated a plurality of times, the degree of congestion due to the short repetition time of the blood pressure measurement affects the increase in the intravascular pressure at the peripheral site. These are also largely dependent on the blood pressure value of the living body, the thickness of the blood vessels, the elastic characteristics, and the poor peripheral circulation, which causes individual differences.

これらの問題解決を図るためにダブルカフ方式が提案されている。このダブルカフ方式では、血管の圧迫に用いる阻血用空気袋と、阻血用空気袋下の中央部において脈波のみを検出する脈波検出用空気袋を阻血用空気袋と分離して設けている。このダブルカフ方式によれば、オシロメトリック方式で問題となる上記の収縮期血圧測定時の阻血用空気袋下の上流側の容積変化に基づく脈波の影響を軽減できるので、収縮期血圧の決定の目安になる阻血用空気袋下の下流側の容積変化を、従来のオシロメトリック方法よりもS/N比良く検出できる改善がなされた(特許文献1:特開2000−287945号公報)。しかし、ダブルカフ方式においても、カフ圧が収縮期血圧よりも高い時には、カフの上流側から脈波検出用カフのあるカフ中央部まで血流が侵入している。ダブルカフ方式においては、阻血用空気袋の上流部に、脈波検出用空気袋と阻血用空気袋間にダンパーを配置して、阻血用空気袋及び脈波検出用空気袋への振動を減衰する対策を行っているが、カフ上流側の血脈による影響を排除することに限界があった。これらの問題を解決するため、ダブルカフ方式の阻血用空気袋の上流側の圧迫力を上げるため、阻血用空気袋の上流側に第3のサブ空気袋を配置したトリプルカフ方式が考案されている。
特開2000−287945号公報
In order to solve these problems, a double cuff method has been proposed. In this double cuff system, a blood-breaking air bag used for compressing a blood vessel and a pulse-wave detection air bag for detecting only a pulse wave at a central portion under the blood-breaking air bag are provided separately from the blood-breaking air bag. According to the double cuff method, the influence of the pulse wave based on the volume change on the upstream side under the air bag for ischemia at the time of measuring the systolic blood pressure, which is a problem in the oscillometric method, can be reduced. An improvement has been made that the downstream volume change under the air bag for ischemia can be detected with a better S / N ratio than the conventional oscillometric method (Patent Document 1: Japanese Patent Laid-Open No. 2000-287945). However, even in the double cuff system, when the cuff pressure is higher than the systolic blood pressure, blood flow enters from the upstream side of the cuff to the cuff central portion where the pulse wave detection cuff is located. In the double cuff system, a damper is disposed between the pulse wave detection air bag and the blood pressure prevention air bag upstream of the blood pressure prevention air bag to attenuate vibrations to the blood pressure prevention air bag and the pulse wave detection air bag. Although measures are being taken, there was a limit to eliminating the effects of blood vessels upstream of the cuff. In order to solve these problems, a triple cuff system has been devised in which a third sub-air bag is arranged upstream of the ischemic air bag in order to increase the pressure on the upstream side of the double cuff type ischemic air bag. .
JP 2000-287945 A

トリプルカフ方式の場合、カフエッジ効果(カフが測定部位を圧迫する力がカフの中心部分から両端に向かい低下する現象)を軽減するため、測定部位に装着したときの上流側(心臓側)に位置させる側に第3の空気袋(サブ空気袋)を配置している。このサブ空気袋への空気量が多すぎると圧迫の障害になり、また、少なすぎるとカフエッジ効果の軽減とならない問題点がある。 In the case of the triple cuff method, the cuff edge effect (a phenomenon in which the force that the cuff presses against the measurement site decreases from the central part of the cuff toward both ends) is located on the upstream side (heart side) when attached to the measurement site. A third air bag (sub-air bag) is arranged on the side to be made. If the amount of air into the sub air bag is too large, there will be an obstacle to compression, and if it is too small, the cuff edge effect will not be reduced.

上記した課題を解決するために、本発明の血圧測定装置によれば、血圧測定部位に対して脱着自在に設けられるカフ部材と、カフ部材の血圧測定部位に接する側に敷設され血圧測定部位全体を圧迫する阻血用空気袋と阻血用空気袋の血圧測定部位に接する側に敷設されて血圧測定部位の血管の心臓側を圧迫するサブ空気袋と、阻血用空気袋の血圧測定部位に接する側の血圧測定部位の血管の中央部やや下流側に敷設され血圧測定部位の末梢側に流れる血流により発生する脈波を検出する脈波検出用空気袋から構成されるカフ本体と、カフ本体を加圧および減圧するための加減圧手段と、脈波検出用空気袋および阻血用空気袋のカフ圧信号を得るカフ圧力検出手段と、カフ圧力検出手段で検出したカフ圧力信号を記憶するカフ圧記憶手段と、カフ圧力信号から、重畳している脈波信号を得る脈波検出手段と、圧力信号と前記脈波信号を記憶する記憶手段と、圧力信号と脈波信号に基づき血圧値を決定する血圧決定手段と、血圧値を表示する血圧表示手段と、を備えた血圧測定装置であって、脈波検出用空気袋とカフ圧力検出手段の間に接続される第1配管と、阻血用空気袋と前記加減圧手段との間に接続され、かつ、カフ圧検出手段と流体抵抗器を介して接続される第2配管と、サブ空気袋と前記加減圧手段との間に開閉弁を介して接続される第3配管とを備え、血圧測定に必要な脈波を前記脈波検出手段で検出するときには、開閉弁を閉状態にし、発生する一連の脈波波形変化を脈波検出手段により脈波信号として得ることで、収縮期血圧及び/又は拡張期血圧とを測定可能にすることを特徴としている。 In order to solve the above-described problem, according to the blood pressure measurement device of the present invention, the cuff member that is detachably attached to the blood pressure measurement site, and the entire blood pressure measurement site that is laid on the side of the cuff member that contacts the blood pressure measurement site The side of the blood pressure measuring part of the blood pressure measuring part that is laid on the side of the blood pressure measuring part that presses against the blood pressure measuring part and the part of the blood pressure measuring part that contacts the blood pressure measuring part A cuff body composed of a pulse wave detection air bag for detecting a pulse wave that is laid in the central part of the blood vessel of the blood pressure measurement site of the blood pressure and that is caused by blood flow flowing to the peripheral side of the blood pressure measurement site; Pressurizing and depressurizing means for pressurizing and depressurizing, cuff pressure detecting means for obtaining cuff pressure signals of the pulse wave detecting air bag and the ischemic air bag, and a cuff pressure for storing the cuff pressure signal detected by the cuff pressure detecting means Storage means and A pulse wave detection means for obtaining a superimposed pulse wave signal from the pressure signal; a storage means for storing the pressure signal and the pulse wave signal; a blood pressure determination means for determining a blood pressure value based on the pressure signal and the pulse wave signal; A blood pressure display device for displaying a blood pressure value, wherein the first pipe connected between the pulse wave detection air bag and the cuff pressure detection device, the ischemic air bag, The second piping connected between the pressure reducing means and the cuff pressure detecting means and the fluid resistor, and connected between the sub air bag and the pressure increasing / decreasing means via the open / close valve. When a pulse wave required for blood pressure measurement is detected by the pulse wave detection means, the on-off valve is closed and a series of generated pulse wave waveform changes as a pulse wave signal by the pulse wave detection means To make it possible to measure systolic blood pressure and / or diastolic blood pressure It is characterized by a door.

上述のトリプルカフ法血圧計において、サブ空気袋への空気注入量は多すぎると阻血用空気袋の阻血カを弱めることとなり、また、少なすぎるとカフエッジ効果抑制効果が低減されるので、加圧圧力によりサブ空気袋の空気量を制限するため、加圧開始より圧力が規定値に達したら、または、ある規定時間に達したらサブ空気袋の配管を開閉弁により閉め、サブ空気袋の空気量を規定量にする工夫を行うことにより、サブ空気袋への空気の入れ過ぎによる阻血用空気袋の上流側血管圧迫障害の発生、また、サブ空気袋への空気量不足による阻血用空気袋の血管圧迫不足をなくし、カフエッジ効果の軽減がもっとも効果的に行えるようになった。   In the triple cuff sphygmomanometer described above, if the amount of air injected into the sub-air bag is too large, the blood pressure of the air bag for ischemia will be weakened, and if it is too small, the effect of suppressing the cuff edge effect will be reduced. In order to limit the amount of air in the sub air bag by pressure, when the pressure reaches the specified value from the start of pressurization, or when the specified time has been reached, the sub air bag piping is closed by the open / close valve, and the air amount in the sub air bag By taking measures to reduce the amount of air in the sub-air bag, it is possible to cause damage to the vascular pressure upstream of the air bag for ischemia due to excessive filling of the air bag. The lack of vascular compression has been eliminated, and the cuff edge effect has been reduced most effectively.

また、サブ空気袋と閉閉弁の間の配管に圧力により容積が大きくなる風船状のバルーンを接続することにより、カフ圧カが収縮期血圧より大きいときの、カフ上流部への血流の進入により発生する振動をサブ空気袋により吸収減衰可能となり、サブ空気袋により検出したカフ上流側の容積振動カが阻血用空気袋に伝達され、さらに、この阻血用空気袋の振動が脈波検出用空気袋に伝達し、最終的に脈波検出部に入カされる現象を緩和することができる。   In addition, by connecting a balloon-like balloon whose volume is increased by pressure to the pipe between the sub air bag and the closing / closing valve, the blood flow to the cuff upstream when the cuff pressure is greater than the systolic blood pressure. The vibration generated by the approach can be absorbed and attenuated by the sub air bag, and the volume vibration on the upstream side of the cuff detected by the sub air bag is transmitted to the air bag for ischemia, and the vibration of the air bag for ischemia is detected as a pulse wave. It is possible to alleviate the phenomenon of being transmitted to the air bag and finally entering the pulse wave detection unit.

また、カフが測定部位にゆるく巻かれた場合と、きつく巻かれた場合にて、カフ圧を同じ圧力値まで加圧した場合にサブ空気袋の空気量にバラツキが生じ、サブ空気袋によるカフエッジ効果軽減効果にばらつきが生じる。上記バラツキをなくすために、まず、開閉弁を閉じた状態で加圧を開始し、圧力が第1規定値、または、加圧開始してから第1規定時間経過するまで待つことにより、カフの巻き方による測定部位とカフと間に生ずるデッドスペ−スをほぼ一定にする。上記デッドスペ−スが一定の状態になってから、サブ空気袋への空気注入を開始するため開閉弁を開にし、前記第1規定値より高い第2規定値になるか、または、開にしてから第2規定時間経過したら、開閉弁を閉めて、適量の空気をサブ空気袋に注入する。その結果、カフの巻き方が一定でなくても、前記のように、サブ空気袋の空気量を規定量にする工夫を行うことにより、サブ空気袋への空気の入れ過ぎによる阻血用空気袋の上流側の血管圧迫障害の発生、また、サブ空気袋への空気量不足による阻血用空気袋の上流側の血管圧迫不足をなくし、カフエッジ効果の軽減がもっとも効果的に行えるようになった。 Also, when the cuff is loosely wound around the measurement site and when it is tightly wound, when the cuff pressure is increased to the same pressure value, the amount of air in the sub air bag varies, and the cuff edge due to the sub air bag Variation occurs in effect reduction effect. In order to eliminate the above variation, first, pressurization is started with the on-off valve closed, and the cuff is stopped by waiting until the pressure has reached the first specified value or the first specified time since the start of pressurization. The dead space generated between the measurement site and the cuff due to the winding method is made almost constant. After the dead space is in a certain state, the on-off valve is opened to start air injection into the sub air bag, and the second specified value higher than the first specified value is set or opened. When the second specified time has elapsed, the on-off valve is closed and an appropriate amount of air is injected into the sub air bag. As a result, even if the cuff winding method is not constant, as described above, by devising the air amount of the sub air bag to a specified amount, the air bag for ischemia caused by excessive air filling in the sub air bag The cuff edge effect can be most effectively reduced by eliminating the occurrence of vascular compression disorder on the upstream side and the lack of vascular pressure on the upstream side of the air bag for ischemia due to insufficient air volume in the sub-air bag.

以下に、本発明の実施形態について添付の図面を参照して説明するが、実施形態に限られるものでないことはいうまでもない。図1は本発明の一実施形態の血圧測定装置を示すブロック図である。   Embodiments of the present invention will be described below with reference to the accompanying drawings, but it is needless to say that the present invention is not limited to the embodiments. FIG. 1 is a block diagram showing a blood pressure measurement device according to an embodiment of the present invention.

以下に、本発明の血圧測定装置の実施形態について添付の図面を参照して説明する。図1は血圧測定装置を示すブロック図である。本図において、カフ本体1は、上腕部を含む血圧測定部位に対して着脱自在に設けられる布製のカフ部材2を備えており、このカフ部材2の測定部位接触側の端部に破線で図示した雄(フック型)面ファスナー3を設け、また、測定部位接触側と反対の面の阻血用空気袋と同じ位置と面積の雌(ループ型)面ファスナー4を設けている。このカフ部材2を図示のように上腕に巻き付け、各面ファスナーを係止することで、カフ本体1の着脱ができるように構成されている。ここで、面ファスナーは一例に過ぎず、これ以外の部材でもよく、また筒状に形成しておき上腕を挿入する方式にカフ本体を設ける構成であっても良い。   Hereinafter, embodiments of a blood pressure measurement device of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a block diagram showing a blood pressure measurement device. In this figure, the cuff body 1 is provided with a cloth cuff member 2 that is detachably provided to a blood pressure measurement site including the upper arm, and is shown by a broken line at the end of the cuff member 2 on the measurement site contact side. The male (hook-type) hook-and-loop fastener 3 is provided, and the female (loop-type) hook-and-loop fastener 4 having the same position and area as the blood-blocking air bag on the surface opposite to the measurement site contact side is provided. The cuff member 2 is wound around the upper arm as shown in the figure, and the hook-and-loop fastener 1 is locked so that the cuff body 1 can be attached and detached. Here, the hook-and-loop fastener is merely an example, and other members may be used, or a configuration in which the cuff body is provided in a method of forming a tubular shape and inserting the upper arm may be employed.

このカフ部材2の内部には、血圧測定部位の全体を圧迫するための破線図示の阻血用空気袋8が敷設されている。また、この阻血用空気袋8の血圧測定部位に接する側には血圧測定部位の心臓H側を圧迫するために幅がより狭く形成された破線図示のサブ空気袋7が敷設されている。サブ空気袋7と阻血用空気袋8との間にはサブ空気袋7の振動を減衰する第1緩衝部材9が設けられている。   Inside the cuff member 2, a hemostasis air bag 8 shown by a broken line is laid to press the entire blood pressure measurement site. In addition, a sub air bag 7 shown in a broken line having a narrower width is laid on the side in contact with the blood pressure measurement site of the ischemic air bladder 8 so as to compress the heart H side of the blood pressure measurement site. Between the sub air bag 7 and the ischemic air bag 8, a first buffer member 9 that attenuates vibration of the sub air bag 7 is provided.

また、この阻血用空気袋8の血圧測定部位の接する側に敷設されて、血圧測定部位の血管下流側を圧迫し、かつ下流側の脈波を検出する破線図示の脈波検出用空気袋6と、阻血用空気袋8の振動が脈波検出用空気袋6に伝達するのを防止する目的ためと脈波検出用空気袋6の生体への密着を良くする目的のためにバッキング(緩衝部材)5が敷設されてカフ本体1を構成している。   Further, a pulse wave detecting air bag 6 shown in a broken line is laid on the side of the blood pressure measuring part 8 in contact with the blood pressure measuring part, compresses the blood vessel downstream side of the blood pressure measuring part, and detects the downstream pulse wave. For the purpose of preventing the vibration of the air bag 8 for ischemia from being transmitted to the air bag 6 for detecting the pulse wave and for the purpose of improving the close contact of the air bag 6 for detecting the pulse wave to the living body, ) 5 is laid to constitute the cuff body 1.

このカフ本体1を加圧及び減圧するために、カフ本体1の阻血用空気袋8とは第2配管12と配管15により、また、カフ本体1の脈波検出用空気袋6とは第1配管11と流体抵抗器14を介して、また、カフ本体1のサブ空気袋7とは第3配管13と開閉弁16を介して、加減圧手段であるポンプ23と急速排気弁兼定速排気弁22が接続されている。また脈波検出用空気袋6の圧力変化からカフ圧信号を得るカフ圧力検出手段である圧力センサ31は脈波検出用空気袋6との間で第1配管11を介して接続されている。また、サブ空気袋7には第3配管13が接続されている。   In order to pressurize and depressurize the cuff body 1, the blood bag 8 for the blood cuff of the cuff body 1 is connected to the second pipe 12 and the pipe 15, and the air bag 6 for detecting the pulse wave of the cuff body 1 is the first. Via the pipe 11 and the fluid resistor 14, and with the sub air bag 7 of the cuff body 1 through the third pipe 13 and the on-off valve 16, the pump 23 which is the pressure-increasing / decreasing means and the quick exhaust valve / constant speed exhaust. A valve 22 is connected. A pressure sensor 31, which is a cuff pressure detection means for obtaining a cuff pressure signal from a pressure change of the pulse wave detection air bladder 6, is connected to the pulse wave detection air bladder 6 through the first pipe 11. A third pipe 13 is connected to the sub air bag 7.

各第1配管11、第2配管12、第3配管13は軟質チューブからなり、コネクタ10を介して本体30から着脱自在に設けられている。また、第3配管13には、好ましくは、さらに、圧力に比例して容積が大きくなるとともに圧力の平滑化を行うダンパー装置18(破線図示)が接続される場合がある。   Each of the first pipe 11, the second pipe 12, and the third pipe 13 is made of a soft tube, and is detachably provided from the main body 30 via the connector 10. Further, the third pipe 13 is preferably connected to a damper device 18 (shown by a broken line) that further increases the volume in proportion to the pressure and smoothes the pressure.

十字分岐部20にはポンプ23と急速排気弁兼定速排気弁22が接続されている。急速排気弁兼定速排気弁22は制御部48に、開閉弁16は制御部46に夫々接続されており、中央制御部35の指令で、急速排気弁兼定速排気弁22は電磁弁の開口面積が制御され、また、開閉弁16は電磁開閉弁が開閉動作される。   A pump 23 and a quick exhaust valve / constant speed exhaust valve 22 are connected to the cross branch portion 20. The rapid exhaust valve / constant speed exhaust valve 22 is connected to the control unit 48, and the on-off valve 16 is connected to the control unit 46, and the quick exhaust valve / constant speed exhaust valve 22 is an electromagnetic valve in response to a command from the central control unit 35. The opening area is controlled, and the on-off valve 16 is opened / closed by an electromagnetic on-off valve.

また、ポンプ23はモータMに接続されるポンプ駆動部49からの電力供給にともない駆動され、外気を開口部23aからポンプ内に導入して加圧を行い十字分岐部20を介して加圧空気を配管15と、第3配管部13aに送ることで各空気袋の加圧ができるように構成されている。   The pump 23 is driven in accordance with power supply from a pump drive unit 49 connected to the motor M, introduces outside air into the pump through the opening 23a, pressurizes the compressed air through the cross-branching unit 20, and pressurizes the compressed air. Is sent to the piping 15 and the third piping portion 13a so that each air bag can be pressurized.

急速排気弁兼定速排気弁22は、毎秒2〜4mmHgの減圧速度を実現するために電磁力の強さで開口面積を可変する構造であり、制御部48からのPWM駆動信号を得ることで任意の減圧速度を設定できるように構成されている。   The rapid exhaust valve / constant speed exhaust valve 22 has a structure in which the opening area is varied by the strength of electromagnetic force in order to realize a pressure reduction speed of 2 to 4 mmHg per second, and by obtaining a PWM drive signal from the control unit 48. Arbitrary decompression speed can be set.

次に、図2はカフ本体1を上腕に装着した後の様子を図示した断面図である。本図において、既に説明済みの構成または部品については同様の符号を附して説明を割愛すると、カフ本体1の上腕部への装着後に、阻血用空気袋8は血圧測定部位の血管全体を圧迫し、サブ空気袋7が心臓H側に位置する。また、脈波検出用空気袋6はカフ末梢側において動脈上に位置している。   Next, FIG. 2 is a cross-sectional view illustrating a state after the cuff body 1 is attached to the upper arm. In this figure, components and components that have already been described are denoted by the same reference numerals and description thereof is omitted. After the cuff body 1 is attached to the upper arm, the air bag 8 for ischemia compresses the entire blood vessel at the blood pressure measurement site. The sub air bag 7 is positioned on the heart H side. The pulse wave detection air bladder 6 is located on the artery on the cuff distal side.

さらに、阻血用空気袋8とサブ空気袋7との間には、発泡ウレタン樹脂などの振動伝達防止機能を有する第1緩衝部材9が設けられている。さらに阻血用空気袋8と脈波検出用空気袋6との間には同様の第2緩衝部材5が設けられている。尚、各緩衝部材は阻血用空気袋8と各空気袋との間で空気層を形成するようにして阻血用空気袋の心拍による振動が各空気袋に伝達することを防止できる構成であればなお良い。   Further, a first buffer member 9 having a vibration transmission preventing function such as a foamed urethane resin is provided between the air bag 8 for ischemia and the sub air bag 7. Further, a similar second buffer member 5 is provided between the ischemic air bag 8 and the pulse wave detecting air bag 6. Each buffer member is configured to form an air layer between the ischemic air bag 8 and each air bag so that vibration due to the heartbeat of the ischemic air bag can be prevented from being transmitted to each air bag. Still good.

特に各空気袋を膨らませたときに前記空気層が潰れない状態を維持できれば心拍振動数に近い振動を吸収するダンピング特性を得ることができるのでさらに良い。すなわち、阻血用空気袋8の内圧が収縮期血圧よりもわずかに低くなったときに、上流側の血管容積変化による振動の、サブ空気袋7から阻血用空気袋8へ、また、阻血用空気袋8から脈波検出用空気袋6への伝達が軽減されると、カフの血管下流側に発生する脈波の検出のS/N比を高くすることが可能となる。尚、各緩衝部材を設けない構成でも良い。   In particular, if each air bag is inflated and the air layer is not collapsed, a damping characteristic that absorbs vibrations close to the heartbeat frequency can be obtained. That is, when the internal pressure of the ischemic air bag 8 is slightly lower than the systolic blood pressure, vibration due to a change in the blood vessel volume on the upstream side from the sub air bag 7 to the ischemic air bag 8, and the ischemic air When transmission from the bag 8 to the pulse wave detection air bag 6 is reduced, the S / N ratio of detection of the pulse wave generated on the downstream side of the cuff blood vessel can be increased. In addition, the structure which does not provide each buffer member may be sufficient.

再度、図1を参照すると、流体抵抗器14を介して、脈波成分を減衰した阻血用空気袋8からの阻血圧力信号と脈波検出用空気袋6の圧力変化はカフ圧力検出手段である圧力センサ31に入力される。この圧力センサ31にはアナログ電気信号に変換する圧力計測部32が接続されており、さらに圧力計測部32にはA/Dコンバータ33が接続されており、デジタル信号を中央制御部35にカフ圧信号として出力するように構成されている。   Referring to FIG. 1 again, the ischemic pressure signal from the ischemic air bag 8 whose pulse wave component is attenuated and the pressure change of the pulse wave detecting air bag 6 via the fluid resistor 14 is a cuff pressure detecting means. Input to the pressure sensor 31. The pressure sensor 31 is connected to a pressure measuring unit 32 that converts it into an analog electric signal. The pressure measuring unit 32 is further connected to an A / D converter 33, and the digital signal is sent to the central control unit 35. It is configured to output as a signal.

このコンピュータを含む中央制御部35は、測定データ及び解析結果の読み書き等を行なうRAM38、また、カフ圧力信号から重畳している脈波信号を検出する脈波処理部39、カフ(阻血用空気袋,脈波検出用空気袋,サブ空気袋)の圧力を加圧,減圧するカフ圧制御部40、検出した脈波変化と阻血カフ圧力信号から血圧を決定する血圧測定部41、測定した血圧値,脈拍値,脈波形状等を表示する表示手段37に表示させるための表示制御部を中央制御部35により読取り可能な各種制御プログラムとし記憶したROM36を含んでいる。なお、RAM38は、中央制御部35において処理されるプログラムのワークエリアとしても機能する。   A central control unit 35 including this computer includes a RAM 38 for reading and writing measurement data and analysis results, a pulse wave processing unit 39 for detecting a superimposed pulse wave signal from the cuff pressure signal, and a cuff (blood bag for ischemia). , Pulse wave detection air bag, sub air bag) cuff pressure control unit 40 for increasing and decreasing pressure, blood pressure measurement unit 41 for determining blood pressure from detected pulse wave change and ischemic cuff pressure signal, measured blood pressure value The display control unit for displaying the pulse value, the pulse wave shape and the like on the display means 37 includes a ROM 36 that stores various control programs that can be read by the central control unit 35. The RAM 38 also functions as a work area for programs processed in the central control unit 35.

また、中央制御部35には、血圧値を表示する表示手段である液晶表示部37と、上記の各駆動制御を行う各駆動部が接続されている。また、乾電池を含む電源部43からの電力供給は、スイッチ42の操作により、中央制御部35にて各部に電力供給して血圧測定に必要な各動作を行えるように構成される。   The central control unit 35 is connected to a liquid crystal display unit 37 that is a display unit that displays a blood pressure value, and each drive unit that performs each of the drive controls described above. Further, the power supply from the power supply unit 43 including the dry battery is configured such that each operation necessary for blood pressure measurement can be performed by supplying power to each unit by the central control unit 35 by operating the switch 42.

以上のように構成される血圧測定装置ではROM36に予め記憶された各種測定用制御プログラムを中央制御部35で読み出し、以下の血圧測定ルーチンのフローチャートのように動作させることができる。   In the blood pressure measurement device configured as described above, various control programs stored in advance in the ROM 36 can be read out by the central control unit 35 and operated as shown in the flowchart of the following blood pressure measurement routine.

図3(a)は加圧開始時に開閉弁16を開の状態から行う場合の加圧ル−チンの動作説明フローチャートである。先ず、カフ本体1が図2で図示したように上腕部に対して装着される。 FIG. 3A is a flowchart for explaining the operation of the pressurizing routine when the on-off valve 16 is opened from the open state at the start of pressurization. First, the cuff body 1 is attached to the upper arm as shown in FIG.

そして、不図示の測定開始スイッチ42が押圧されると、急速排気弁兼定速排気弁22の開口面積を全開にし、また、開閉弁16を開き、各空気袋の排気をおこなう、ステップS1において各空気袋内の残留空気の排気が終了すると、圧力センサ31のゼロセット(初期化)が行われる。   When the measurement start switch 42 (not shown) is pressed, the opening area of the quick exhaust valve / constant speed exhaust valve 22 is fully opened, and the on-off valve 16 is opened to exhaust each air bag. When exhaust of the residual air in each air bag is completed, the pressure sensor 31 is zero-set (initialized).

次にステップS2において、開閉弁16は開いた状態に維持される。一方、急速排気弁兼定速排気弁22は全閉される。以上でカフ(阻血用空気袋,脈波検出用空気袋,サブ空気袋)への加圧の準備が整い、ステップS3でポンプ23への通電が行われる。   Next, in step S2, the on-off valve 16 is kept open. On the other hand, the rapid exhaust valve / constant speed exhaust valve 22 is fully closed. With the above, preparation for pressurization of the cuff (the air bag for ischemia, the air bag for detecting the pulse wave, the sub air bag) is completed, and the pump 23 is energized in step S3.

続いて、ステップS4で規定圧力(阻血の障害にならず、カフエッジ効果を低減できるようにサブ空気袋7を膨らませるような圧力)になったか否かをチェックし、規定圧力になったらステップS5で開閉弁16を閉じる。   Subsequently, in step S4, it is checked whether or not the specified pressure (pressure that inflates the sub-air bag 7 so as to reduce the cuff edge effect without causing obstruction of the ischemia) is reached. To close the on-off valve 16.

ステップS3では、阻血用空気袋8の圧力が予想される収縮期血圧より20〜30mmHg高い加圧設定値になるようにポンプ23の連続駆動が行われる。   In step S3, the pump 23 is continuously driven so that the pressure of the air bag 8 for ischemia becomes a set pressure value that is 20 to 30 mmHg higher than the expected systolic blood pressure.

ステップS6ではカフ圧力が加圧設定値になったか否かが判断され、加圧設定値になると、ステップS7に進み、ポンプ駆動を停止した後にカフ減圧ルーチンに進む。   In step S6, it is determined whether or not the cuff pressure has reached the pressurization set value. When the cuff pressure reaches the pressurization set value, the process proceeds to step S7, and after stopping the pump drive, the process proceeds to the cuff decompression routine.

図3(b)は加圧開始時に開閉弁16を閉じた状態から行う場合の加圧ル−チンの動作説明フローチャートである。先ず、カフ本体1が図2で図示したように上腕部に装着される。 FIG. 3B is a flowchart for explaining the operation of the pressurizing routine when the on-off valve 16 is closed from the time when the pressurization is started. First, the cuff body 1 is attached to the upper arm as shown in FIG.

ステップS101において急速排気弁兼定速排気弁22,開閉弁16を開にし、圧力ゼロセットを行う。次にステップS102において、急速排気弁兼定速排気弁22を全閉する。ステップS103にて、開閉弁16を閉じ、ステップS104でポンプ23に通電を開始し、ポンプ23を駆動し、加圧する。ステップS105にて規定圧1(測定部位と阻血用カフとのデッドスペースを一定にする圧力)になったか否かがチェックされる。規定圧1に至ったら、ステップS106にて開閉弁16を開にする。 In step S101, the quick exhaust valve / constant speed exhaust valve 22 and the on-off valve 16 are opened, and zero pressure setting is performed. Next, in step S102, the quick exhaust valve / constant speed exhaust valve 22 is fully closed. In step S103, the on-off valve 16 is closed, and in step S104, energization of the pump 23 is started, and the pump 23 is driven and pressurized. In step S105, it is checked whether or not the specified pressure is 1 (pressure that makes the dead space between the measurement site and the ischemic cuff constant). When the specified pressure 1 is reached, the on-off valve 16 is opened in step S106.

ステップS107で規定圧2(サブ空気袋7をカフエッジ効果が軽減できる適量に膨らませる圧力)なったかがチェックされ、規定圧2になったら、ステップS108で開閉弁16を閉じる。 In step S107, it is checked whether or not the specified pressure 2 (pressure that inflates the sub air bag 7 to an appropriate amount that can reduce the cuff edge effect) is reached. If the specified pressure 2 is reached, the on-off valve 16 is closed in step S108.

ステップS109で、阻血用空気袋8の圧力が予想される収縮期血圧値より20から30mmHg高い加圧設定値に至ったか否かがチェックされる。 In step S109, it is checked whether or not the pressure of the ischemic bladder 8 has reached a pressure setting value that is 20 to 30 mmHg higher than the expected systolic blood pressure value.

加圧設定値に至ったらステップS10にてポンプ23への通電をやめ駆動を停止し(ステップS110)、カフ加圧を停止し、カフ減圧ルーチンに進む(ステップS111)。 When the pressurization set value is reached, in step S10, the power supply to the pump 23 is stopped and the drive is stopped (step S110), the cuff pressurization is stopped, and the process proceeds to the cuff decompression routine (step S111).

図4のカフ減圧ルーチンにおいて、ステップS20に進むと急速排気弁兼定速排気弁22により定速排気が開始される。カフ圧制御部40によりカフ圧力検出部からの信号を用いて、減圧速度が2〜3mmHg/秒になるように急速排気弁兼定速排気弁22の開口面積を可変して定速減圧が開始される。   In the cuff decompression routine of FIG. 4, when the process proceeds to step S20, constant speed exhaust is started by the rapid exhaust valve / constant speed exhaust valve 22. The cuff pressure controller 40 uses the signal from the cuff pressure detector to vary the opening area of the rapid exhaust valve / constant speed exhaust valve 22 so that the decompression speed becomes 2 to 3 mmHg / sec. Is done.

これに続いてステップS21でカフ検出手段31からカフ圧力を検出する。また、次のステップS22で脈波(脈波波形形状)の検出を開始する。次に、ステップS23に進み、脈波処理部39で検出した脈波信号の脈波波形変化における脈波のボトム点(B)およびピ−ク点間の最大変化点(A)を演算し、ボトム点から最大変化点までの時間Tを求め、カフ圧力値(ボトム点の圧力値)と時間Tを一組にしてRAM38に記憶を行う。なお、脈波信号における脈波のボトム点(B)およびピ−ク点間の最大変化点(A)を図6(a),(b)に示す。 Following this, the cuff pressure is detected from the cuff detection means 31 in step S21. In the next step S22, detection of a pulse wave (pulse wave waveform shape) is started. Next, proceeding to step S23, the pulse wave bottom point (B) and the maximum change point (A) between the peak points in the pulse wave waveform change of the pulse wave signal detected by the pulse wave processing unit 39 are calculated, A time T from the bottom point to the maximum change point is obtained, and the cuff pressure value (bottom point pressure value) and the time T are set as one set and stored in the RAM 38. 6A and 6B show the maximum change point (A) between the bottom point (B) of the pulse wave and the peak point in the pulse wave signal.

また、ステップS24で、記憶したRAM38の時間Tを調べ、時間Tが規定値以上に急増した点のカフ圧値を収縮期血圧値(最高血圧値)として決定しRAM38に記憶する。 In step S24, the stored time T of the RAM 38 is checked, and the cuff pressure value at the point where the time T has rapidly increased to a specified value or more is determined as the systolic blood pressure value (maximum blood pressure value) and stored in the RAM 38.

これに続いて、再度ステップS25でカフ圧検出手段31からカフ圧力を得る、また、次のステップS26で再度脈波(脈波波形形状)の検出を開始する。次に、ステップS27に進み脈波処理部39で検出した脈波信号の脈波波形変化における脈波のボトム点(B)およびピーク点間の最大変化点(A)を演算し、ボトム点から最大変化点までの時間Tを求め、カフ圧力値(ボトム点の圧力値)と時間Tを一組にしてRAM38に記憶を行う。ステップS28で、記憶したRAM38の時間Tを調べ、時間Tの減少変化が規定値以下になった点のカフ圧値を拡張期血圧(最低血圧値)としてRAM38に記憶する。ステップS29で開閉弁16を開にし、かつ、排気弁兼定速排気弁22を全開にして急速排気しカフ圧を大気圧にする。ステップS30でRAM38に記録した血圧値を表示して一連の血圧測定動作を終了する。なお、収縮期血圧値、拡張期血圧値の表示に加え、脈波波形変化について、記憶手段であるRAM38に記憶されている圧力信号を第1軸に、脈波信号(脈波波形信号)を第2軸とする2次元表示し、この2次元表示に併せて、測定した収縮期血圧値、拡張期血圧値であることの指標を文字や記号で表示することで、使用者が測定した収縮期血圧値、拡張期血圧値の妥当性を容易に視認できるようになる。なお、上述の実施例では、拡張期血圧値をカフ加圧後減圧する状態で演算・算出したが、カフ加圧時に脈波(脈波形状)をRAM38に記憶しておき、カフの減圧後、収縮期血圧値を演算・算出した後、すぐにすべてのカフ(空気袋)を一気に大気圧に開放し、収縮期血圧値、拡張期血圧値を表示部に表示するようにしてもよい。 Subsequently, the cuff pressure is obtained from the cuff pressure detecting means 31 again in step S25, and the detection of the pulse wave (pulse wave waveform shape) is started again in the next step S26. Next, in step S27, the pulse wave bottom point (B) and the maximum change point (A) between the peak points in the pulse wave change of the pulse wave signal detected by the pulse wave processing unit 39 are calculated, and from the bottom point. The time T to the maximum change point is obtained, and the cuff pressure value (bottom point pressure value) and the time T are set as one set and stored in the RAM 38. In step S28, the stored time T of the RAM 38 is examined, and the cuff pressure value at the point where the decrease change of the time T becomes equal to or less than the specified value is stored in the RAM 38 as the diastolic blood pressure (minimum blood pressure value). In step S29, the on-off valve 16 is opened, the exhaust valve / constant speed exhaust valve 22 is fully opened, and the exhaust is quickly exhausted to bring the cuff pressure to atmospheric pressure. In step S30, the blood pressure value recorded in the RAM 38 is displayed, and the series of blood pressure measurement operations is completed. In addition to displaying the systolic blood pressure value and the diastolic blood pressure value, a pulse wave signal (pulse wave waveform signal) is displayed on the first axis of the pressure signal stored in the RAM 38 as the storage means for the pulse wave waveform change. Two-dimensional display as the second axis, and in conjunction with this two-dimensional display, the measured systolic blood pressure value, the index indicating that it is a diastolic blood pressure value is displayed with characters or symbols, the contraction measured by the user The validity of the systolic blood pressure value and the diastolic blood pressure value can be easily visually confirmed. In the above-described embodiment, the diastolic blood pressure value is calculated and calculated in a state where pressure is reduced after cuff pressurization. However, a pulse wave (pulse wave shape) is stored in the RAM 38 at the time of cuff pressurization, and after the cuff is depressurized. After calculating and calculating the systolic blood pressure value, all the cuffs (air bags) may be immediately opened to the atmospheric pressure, and the systolic blood pressure value and the diastolic blood pressure value may be displayed on the display unit.

最後に、図5(a)〜(b)はダンパー装置18の外観斜視図、立体分解図であり、図5(c)は配管図である。   Finally, FIGS. 5A and 5B are an external perspective view and a three-dimensional exploded view of the damper device 18, and FIG. 5C is a piping diagram.

ダンパー装置18は第3配管13に接続されるニップル18d、18cを一体成型した本体18aと、弾性膜18bと、フランジ部材18fとから完成される。具体的には、弾性膜18bは天然ゴム、シリコーンゴム等の素材を用いて薄肉状に成型されて図示のような帽子状体として準備される。この弾性膜18bには鍔部が一体形成されており、この鍔部を本体18aとフランジ部材18fとの間で挟持するようにネジ止め固定されることで完成する。以上のダンパー装置18によれば圧力に比例して容積が大きくなるとともに圧力の平滑化を行うことが可能となるのでサブ空気袋7の加減圧をより安定的に行うことができるようになる。   The damper device 18 is completed from a main body 18a integrally formed with nipples 18d and 18c connected to the third pipe 13, an elastic film 18b, and a flange member 18f. Specifically, the elastic film 18b is molded into a thin wall shape using a material such as natural rubber or silicone rubber, and is prepared as a hat-shaped body as shown in the figure. The elastic film 18b is integrally formed with a flange, and is completed by screwing and fixing the flange between the main body 18a and the flange member 18f. According to the damper device 18 described above, the volume increases in proportion to the pressure and the pressure can be smoothed. Therefore, the sub-air bag 7 can be pressurized and decompressed more stably.

本発明の一実施形態の血圧測定装置を字メスブロック図である。It is a character knife block diagram of the blood pressure measuring device of one embodiment of the present invention. カフ本体1を上腕に装着した後の様子を図示した断面図である。It is sectional drawing which illustrated the mode after mounting the cuff main body 1 to the upper arm. (a)は血圧測定装置の加圧ルーチンの1様態(開閉弁16が開状態からのカフ加圧)の動作説明フローチャートである。(b)は血圧測定装置のカフ加圧ルーチンの別の様態(開閉弁16が閉状態からのカフ加圧)の動作説明フローチャートである。(A) is an operation | movement explanatory flowchart of 1 aspect (cuff pressurization from the on-off valve 16 being an open state) of the pressurization routine of a blood-pressure measuring device. (B) is an operation explanatory flowchart of another aspect of the cuff pressurization routine of the blood pressure measurement device (cuff pressurization when the on-off valve 16 is closed). 血圧測定装置のカフ減圧ルーチンの動作説明フローチャートである。It is a flowchart explaining operation | movement of the cuff decompression routine of a blood-pressure measuring device. (a)〜(b)はダンパー装置18の外観斜視図および立体分解図であり、(c)は配管図である。(A)-(b) is the external appearance perspective view and three-dimensional exploded view of the damper apparatus 18, (c) is a piping diagram. 脈波のボトム点(B)およびピーク点間の最大変化点(A)を示す図である。It is a figure which shows the bottom point (B) of a pulse wave, and the maximum change point (A) between peak points.

符号の説明Explanation of symbols

1 カフ本体、2 カフ部材、6 脈波検出用空気袋、7 サブ空気袋、8 阻血用空気袋、11 第1配管、12 第2配管、13 第3配管、14 流体抵抗器、16 開閉弁、18 ダンパー装置、22 急速排気弁兼定速排気弁、23 ポンプ(加減圧手段)、31 圧力センサ(カフ圧力検出手段) 1 cuff body, 2 cuff member, 6 pulse wave detection air bag, 7 sub air bag, 8 blood-blocking air bag, 11 first piping, 12 second piping, 13 third piping, 14 fluid resistor, 16 on-off valve , 18 damper device, 22 quick exhaust valve / constant speed exhaust valve, 23 pump (pressure increasing / decreasing means), 31 pressure sensor (cuff pressure detecting means)

Claims (4)

血圧測定部位に対して脱着自在に設けられるカフ部材と、前記カフ部材の血圧測定部位に接する側に敷設され血圧測定部位全体を圧迫する阻血用空気袋と前記阻血用空気袋の血圧測定部位に接する側に敷設されて血圧測定部位の血管の心臓側を圧迫するサブ空気袋と、前記阻血用空気袋の血圧測定部位に接する側の血圧測定部位の血管の中央部やや下流側に敷設され血圧測定部位の末梢側に流れる血流により発生する脈波を検出する脈波検出用空気袋から構成されるカフ本体と、
前記カフ本体を加圧および減圧するための加減圧手段と、
前記脈波検出用空気袋および前記阻血用空気袋のカフ圧信号を得るカフ圧力検出手段と、
該カフ圧力検出手段で検出したカフ圧力信号を記憶するカフ圧記憶手段と、
前記カフ圧力信号から、重畳している脈波信号を得る脈波検出手段と、
前記圧力信号と前記脈波信号を記憶する記憶手段と、
前記圧力信号と前記脈波信号に基づき血圧値を決定する血圧決定手段と、
前記血圧値を表示する血圧表示手段と、を備えた血圧測定装置であって、
前記脈波検出用空気袋と前記カフ圧力検出手段の間に接続される第1配管と、
前記阻血用空気袋と前記加減圧手段との間に接続され、かつ、前記カフ圧検出手段と流体抵抗器を介して接続される第2配管と、
前記サブ空気袋と前記加減圧手段との間に開閉弁を介して接続される第3配管とを備え、
血圧測定に必要な脈波を前記脈波検出手段で検出するときには、前記開閉弁を閉状態にし、発生する一連の脈波波形変化を前記脈波検出手段により前記脈波信号として得ることで、収縮期血圧と拡張期血圧とを測定可能にすることを特徴とする血圧測定装置。
A cuff member that is detachably attached to the blood pressure measurement site, an air bag for ischemia that is laid on the side of the cuff member that contacts the blood pressure measurement site, and compresses the entire blood pressure measurement site, and a blood pressure measurement site for the air bag for ischemia A sub-air bag that is laid on the contact side and compresses the heart side of the blood vessel of the blood pressure measurement site, and a blood pressure laid on the blood pressure measurement site of the blood pressure measurement site on the side of the blood pressure measurement site that is in contact with the blood pressure measurement site slightly downstream A cuff body composed of a pulse wave detection air bag for detecting a pulse wave generated by blood flow flowing to the peripheral side of the measurement site;
Pressurizing and depressurizing means for pressurizing and depressurizing the cuff body;
Cuff pressure detecting means for obtaining cuff pressure signals of the pulse wave detecting air bag and the ischemic air bag;
Cuff pressure storage means for storing a cuff pressure signal detected by the cuff pressure detection means;
Pulse wave detection means for obtaining a superimposed pulse wave signal from the cuff pressure signal;
Storage means for storing the pressure signal and the pulse wave signal;
Blood pressure determining means for determining a blood pressure value based on the pressure signal and the pulse wave signal;
A blood pressure measurement device comprising: a blood pressure display means for displaying the blood pressure value;
A first pipe connected between the pulse wave detection air bladder and the cuff pressure detection means;
A second pipe connected between the air bag for ischemia and the pressure increasing / decreasing means, and connected to the cuff pressure detecting means via a fluid resistor;
A third pipe connected via an on-off valve between the sub air bag and the pressure-increasing / decreasing means;
When detecting the pulse wave necessary for blood pressure measurement by the pulse wave detecting means, the on-off valve is closed, and a series of generated pulse wave waveform changes are obtained as the pulse wave signal by the pulse wave detecting means. A blood pressure measuring device capable of measuring systolic blood pressure and diastolic blood pressure.
前記開閉弁を開けた状態にて前記加圧手段にて加圧を開始し、規定値に至ったら、もしくは加圧を開始してから規定時間経過したら、前記開閉弁を閉じることを特徴とする請求項1の血圧測定装置 Pressurization is started by the pressurizing means in a state where the on-off valve is opened, and the on-off valve is closed when a prescribed value is reached or when a prescribed time has elapsed since the start of pressurization. The blood pressure measurement device according to claim 1. 前記開閉弁を閉じた状態にて前記加圧手段にて加圧を開始し、カフ圧力が第1の規定値に至ったら、もしくは加圧を開始してから規定時間経過したら、前記開閉弁を開にし、カフ圧力が前記第1の規定値より高い第2の規定値になったら、もしくは、前記開閉弁を開にしてから第2の規定時間経過したら、閉にすることを特徴とする請求項1の血圧測定装置。 Pressurization is started by the pressurizing means in a state where the on-off valve is closed, and when the cuff pressure reaches the first specified value, or when a specified time has elapsed since the start of pressurization, the on-off valve is The valve is opened and closed when the cuff pressure reaches a second specified value higher than the first specified value, or when a second specified time elapses after the on-off valve is opened. Item 1. The blood pressure measurement device according to item 1. 前記第3配管の前記開閉弁と前記カフ本体との間に圧力により容積が大きくなるバル−ンを設けたことを特徴とする請求項1に記載の血圧測定装置。 The blood pressure measuring device according to claim 1, wherein a balloon whose volume is increased by pressure is provided between the on-off valve of the third pipe and the cuff body.
JP2007277546A 2007-10-25 2007-10-25 Blood pressure measurement device Active JP5111053B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007277546A JP5111053B2 (en) 2007-10-25 2007-10-25 Blood pressure measurement device
PCT/JP2008/069056 WO2009054382A1 (en) 2007-10-25 2008-10-21 Blood pressure measuring device and method for controlling the blood pressure measuring device
TW97140750A TWI358280B (en) 2007-10-25 2008-10-24 Blood pressure measuring apparatus and control met

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007277546A JP5111053B2 (en) 2007-10-25 2007-10-25 Blood pressure measurement device

Publications (2)

Publication Number Publication Date
JP2009101055A true JP2009101055A (en) 2009-05-14
JP5111053B2 JP5111053B2 (en) 2012-12-26

Family

ID=40703468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007277546A Active JP5111053B2 (en) 2007-10-25 2007-10-25 Blood pressure measurement device

Country Status (1)

Country Link
JP (1) JP5111053B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158479A1 (en) * 2010-06-16 2011-12-22 テルモ株式会社 Sphygmomanometer
JP2017505685A (en) * 2014-02-13 2017-02-23 日本電気株式会社 Sphygmomanometer and cuff
CN112971751A (en) * 2019-12-12 2021-06-18 华为技术有限公司 Electronic equipment for measuring blood pressure
WO2022217640A1 (en) * 2021-04-13 2022-10-20 研和智能科技(杭州)有限公司 Blood pressure measurement apparatus and control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000079101A (en) * 1998-09-04 2000-03-21 Osamu Tochikubo Sphygmomanometer and its cuff belt
JP2003093357A (en) * 2001-09-27 2003-04-02 Terumo Corp Electronic tonometer
JP2004121806A (en) * 2002-08-05 2004-04-22 Nippon Colin Co Ltd Blood pressure measuring apparatus
JP2006334153A (en) * 2005-06-02 2006-12-14 Shibuya Kogyo Co Ltd Sphygmomanometer
JP2007044362A (en) * 2005-08-11 2007-02-22 A & D Co Ltd Cuff for blood pressure pulse wave inspection
JP2007125417A (en) * 1992-03-04 2007-05-24 Sherwood Services Ag Medical suturing device, single-strike die mechanism, and method for using the die mechanism for forming medical suturing device
JP2008307181A (en) * 2007-06-13 2008-12-25 Terumo Corp Blood pressure measuring instrument

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125417A (en) * 1992-03-04 2007-05-24 Sherwood Services Ag Medical suturing device, single-strike die mechanism, and method for using the die mechanism for forming medical suturing device
JP2000079101A (en) * 1998-09-04 2000-03-21 Osamu Tochikubo Sphygmomanometer and its cuff belt
JP2003093357A (en) * 2001-09-27 2003-04-02 Terumo Corp Electronic tonometer
JP2004121806A (en) * 2002-08-05 2004-04-22 Nippon Colin Co Ltd Blood pressure measuring apparatus
JP2006334153A (en) * 2005-06-02 2006-12-14 Shibuya Kogyo Co Ltd Sphygmomanometer
JP2007044362A (en) * 2005-08-11 2007-02-22 A & D Co Ltd Cuff for blood pressure pulse wave inspection
JP2008307181A (en) * 2007-06-13 2008-12-25 Terumo Corp Blood pressure measuring instrument

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158479A1 (en) * 2010-06-16 2011-12-22 テルモ株式会社 Sphygmomanometer
JP2017505685A (en) * 2014-02-13 2017-02-23 日本電気株式会社 Sphygmomanometer and cuff
CN112971751A (en) * 2019-12-12 2021-06-18 华为技术有限公司 Electronic equipment for measuring blood pressure
WO2022217640A1 (en) * 2021-04-13 2022-10-20 研和智能科技(杭州)有限公司 Blood pressure measurement apparatus and control method

Also Published As

Publication number Publication date
JP5111053B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
US8740804B2 (en) Blood pressure measuring cuff, blood pressure measuring apparatus, blood pressure measuring method, cuff, and cuff manufacturing method
JP4795777B2 (en) Blood pressure measurement cuff, blood pressure measurement device, and blood pressure measurement method
JP3587837B2 (en) Arterial stiffness evaluation device
KR101099235B1 (en) Sphygmomanometry apparatus
JP5043707B2 (en) Blood pressure measurement device and control method thereof
JP2001333888A (en) Sphygmomanometer
JP5741087B2 (en) Blood pressure information measuring device
US8430821B2 (en) Blood pressure measuring apparatus
JP4943748B2 (en) Blood pressure measurement device, measurement method thereof, and storage medium
JP5111053B2 (en) Blood pressure measurement device
JP5112756B2 (en) Blood pressure measurement device
WO2011105195A1 (en) Blood pressure information measurement device, and method for determining attachment state of cuff for blood pressure information measurement device
JP4943870B2 (en) Blood pressure measuring device and cuff
JP4819594B2 (en) Blood pressure measurement cuff, blood pressure measurement device, and blood pressure measurement method
JP2009284965A (en) Blood pressure information measuring instrument
CN112203583B (en) Auxiliary device and area of driving blood
JP2011156212A (en) Blood pressure information measuring instrument
JP3818853B2 (en) Electronic blood pressure monitor
JP5112767B2 (en) Blood pressure measurement device
JP5107535B2 (en) Blood pressure measurement device
WO2000013583A1 (en) Hemodynamometer and its cuff band
JP4943869B2 (en) Blood pressure measurement device
JP4352952B2 (en) Blood pressure measuring device
JP2002360525A (en) Electronic sphygmomanometer
JP2000060809A (en) Bloodless sphygmomanometer and bloodless sphygmomanometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5111053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250