JP2009099708A - Connecting method for terminal, bonding structure for terminal, and resin for connection - Google Patents

Connecting method for terminal, bonding structure for terminal, and resin for connection Download PDF

Info

Publication number
JP2009099708A
JP2009099708A JP2007268724A JP2007268724A JP2009099708A JP 2009099708 A JP2009099708 A JP 2009099708A JP 2007268724 A JP2007268724 A JP 2007268724A JP 2007268724 A JP2007268724 A JP 2007268724A JP 2009099708 A JP2009099708 A JP 2009099708A
Authority
JP
Japan
Prior art keywords
resin
connection
connection terminal
terminal
conductive powders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007268724A
Other languages
Japanese (ja)
Inventor
Katsuaki Suganuma
克昭 菅沼
Kanji Otsuka
寛治 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Meisei Gakuen
Original Assignee
Osaka University NUC
Meisei Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Meisei Gakuen filed Critical Osaka University NUC
Priority to JP2007268724A priority Critical patent/JP2009099708A/en
Publication of JP2009099708A publication Critical patent/JP2009099708A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connecting method for connection terminals in which the connection terminals can be electrically connected to each other using capacity coupling. <P>SOLUTION: The connecting method includes the stages of: coating a first connection terminal 11 with a resin 3 for connection; connecting the first connection terminal 11 to a second connection terminal through the resin 3 for connection; and solidifying the resin 3 for connection. In the resin 3 for connection having been solidified, some of a plurality of first conductive powder 32 are dispersed apart from one another, and some of a plurality of second conductive powders 33 come in contact with each other to connect the first connection terminal 11 and second connection terminal 21 to each other. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、端子の接続方法、端子の接合構造、及び接続用樹脂に関する。   The present invention relates to a terminal connection method, a terminal bonding structure, and a connection resin.

従来の電子部品において、端子間の電気的接続ははんだや導電性接着剤を用いるものが大半である。導電性接着剤は、絶縁性の樹脂に複数の導電粉体を混入し、これら導電粉体が互いに接触することにより、端子間の電気的接続を確保する。   In conventional electronic components, most of the electrical connections between terminals use solder or a conductive adhesive. In the conductive adhesive, a plurality of conductive powders are mixed in an insulating resin, and these conductive powders contact each other to ensure electrical connection between terminals.

はんだや導電性接着剤による端子間の接続は、導電物が互いに物理的に接触することのみにより導通を確保するものである。このような場合、接続部分に応力が加わると物理的な接触がなくなり、その結果、導通が確保できなくなる可能性があった。容量結合を用いて接続端子間を電気的に接続できる場合、物理的な接触がなくても導通を確保できる為、上記した問題の発生を抑制できる。   Connection between terminals by solder or conductive adhesive ensures electrical continuity only by the physical contact between the conductive materials. In such a case, when stress is applied to the connection portion, physical contact is lost, and as a result, there is a possibility that conduction cannot be ensured. In the case where the connection terminals can be electrically connected using capacitive coupling, conduction can be ensured without physical contact, and thus the above-described problems can be suppressed.

本発明は上記のような事情を考慮してなされたものであり、その目的は、容量結合を用いて接続端子間を電気的に接続することができる端子の接続方法、端子の接合構造、及び接続用樹脂を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to provide a terminal connection method capable of electrically connecting connection terminals using capacitive coupling, a terminal joining structure, and It is to provide a resin for connection.

上記課題を解決するため、本発明に係る端子の接続方法は、絶縁性の樹脂と、前記樹脂に混入され、平均粒径が5nm以上500nm以下である複数の第1の導電粉体と、前記樹脂に混入され、平均粒径が500nm以上20μm以下である複数の第2の導電粉体とを有する接続用樹脂を第1接続端子に塗布する工程と、
前記第1接続端子と第2接続端子を、前記接続用樹脂を介して接続する工程と、
前記接続用樹脂を固化する工程と、
を具備し、
固化した後の前記接続用樹脂において、少なくとも一部の前記複数の第1の導電粉体は互いに離間した状態で前記接続用樹脂内に分散しており、前記複数の第2の導電粉体の一部は、互いに接触することにより前記第1接続端子と前記第2接続端子を接続している。
In order to solve the above problems, a terminal connection method according to the present invention includes an insulating resin, a plurality of first conductive powders mixed in the resin and having an average particle size of 5 nm to 500 nm, A step of applying a connection resin having a plurality of second conductive powders mixed in the resin and having an average particle diameter of 500 nm to 20 μm on the first connection terminals;
Connecting the first connection terminal and the second connection terminal via the connection resin;
Solidifying the connecting resin;
Comprising
In the connection resin after solidification, at least some of the plurality of first conductive powders are dispersed in the connection resin in a state of being separated from each other, and the plurality of second conductive powders Some connect the first connection terminal and the second connection terminal by contacting each other.

本発明に係る他の端子の接続方法は、固化した状態で柔軟性を有する絶縁性の樹脂と、前記樹脂に混入され、平均粒径が5nm以上500nm以下である複数の第1の導電粉体と、前記樹脂に混入され、平均粒径が500nm以上20μm以下である複数の第2の導電粉体とを有する接続用樹脂を第1接続端子に塗布する工程と、
前記接続用樹脂を固化する工程と、
前記第1接続端子と第2接続端子を、前記接続用樹脂を介して接続する工程と、
を具備し、
固化した後の前記接続用樹脂において、少なくとも一部の前記複数の第1の導電粉体は互いに離間した状態で前記接続用樹脂内に分散しており、前記複数の第2の導電粉体の一部は、互いに接触することにより前記第1接続端子と前記第2接続端子を接続している。
Another terminal connection method according to the present invention includes an insulating resin having flexibility in a solidified state, and a plurality of first conductive powders mixed in the resin and having an average particle diameter of 5 nm to 500 nm. And applying a connecting resin having a plurality of second conductive powders mixed in the resin and having an average particle diameter of 500 nm or more and 20 μm or less to the first connection terminals;
Solidifying the connecting resin;
Connecting the first connection terminal and the second connection terminal via the connection resin;
Comprising
In the connection resin after solidification, at least some of the plurality of first conductive powders are dispersed in the connection resin in a state of being separated from each other, and the plurality of second conductive powders Some connect the first connection terminal and the second connection terminal by contacting each other.

前記絶縁性ペーストは、前記第1接続端子の一面に塗布されるのが好ましい。   The insulating paste is preferably applied to one surface of the first connection terminal.

本発明に係る端子の接合構造は、第1の接続端子と、
第2の接続端子と、
絶縁性の樹脂と、前記樹脂に混入され、平均粒径が5nm以上500nm以下である複数の第1の導電粉体と、前記樹脂に混入され、平均粒径が500nm以上20μm以下である複数の第2の導電粉体とを有しており、前記第1の接続端子と前記第2の接続端子を接続する接続用樹脂と、
を具備し、
少なくとも一部の前記複数の第1の導電粉体は互いに離間した状態で前記接続用樹脂内で分散しており、前記複数の第2の導電粉体の一部は、互いに接触することにより前記第1接続端子と前記第2接続端子を接続している端子の接合構造。
The junction structure of the terminal according to the present invention includes a first connection terminal,
A second connection terminal;
Insulating resin, a plurality of first conductive powders mixed in the resin and having an average particle diameter of 5 nm to 500 nm, and a plurality of first conductive powders mixed in the resin and having an average particle diameter of 500 nm to 20 μm A second conductive powder, and a connection resin for connecting the first connection terminal and the second connection terminal;
Comprising
At least a part of the plurality of first conductive powders are dispersed in the connecting resin in a state of being separated from each other, and a part of the plurality of second conductive powders is brought into contact with each other, thereby A junction structure of a terminal connecting the first connection terminal and the second connection terminal.

前記接続用樹脂は柔軟性を有していてもよい。この場合、前記第1の接続端子及び前記第2の接続端子の少なくとも一方から取り外し可能にすることができる。   The connecting resin may have flexibility. In this case, it can be made removable from at least one of the first connection terminal and the second connection terminal.

前記複数の第1の導電粉体は、信号の交流成分を前記第1接続端子と前記第2接続端子の相互間で伝達し、前記複数の第2の導電粉体は信号の直流成分を前記第1接続端子と前記第2接続端子の相互間で伝達する。   The plurality of first conductive powders transmit an AC component of a signal between the first connection terminal and the second connection terminal, and the plurality of second conductive powders transmit a DC component of the signal. Transmission is performed between the first connection terminal and the second connection terminal.

前記複数の第1の導電粉体に対する前記複数の第2の導電粉体の混入量は、重量比率で2倍以上20倍以下であるのが好ましい。前記接続用樹脂は、好ましくは比誘電率が1000以上であり、さらに好ましくは比透磁率が10以上である。
前記接続用樹脂は、厚さが500nm以上50μm以下であるのが好ましい。
The mixing amount of the plurality of second conductive powders with respect to the plurality of first conductive powders is preferably 2 to 20 times by weight. The connecting resin preferably has a relative dielectric constant of 1000 or more, and more preferably has a relative permeability of 10 or more.
The connecting resin preferably has a thickness of 500 nm to 50 μm.

本発明に係る接続用樹脂は、絶縁性の樹脂と、
前記樹脂に混入され、平均粒径が5nm以上500nm以下である複数の第1の導電粉体と、
前記樹脂に混入され、平均粒径が500nm以上20μm以下である複数の第2の導電粉体とを具備する。
The connecting resin according to the present invention includes an insulating resin,
A plurality of first conductive powders mixed in the resin and having an average particle size of 5 nm or more and 500 nm or less;
A plurality of second conductive powders mixed in the resin and having an average particle size of 500 nm to 20 μm.

本発明によれば、容量結合を用いて前記第1接続端子と前記第2接続端子を電気的に接続することができる。   According to the present invention, the first connection terminal and the second connection terminal can be electrically connected using capacitive coupling.

以下、図面を参照して本発明の実施形態について説明する。図1は本発明の実施形態に係る基板1と電子部品2の接合構造を説明するための断面図であり、図2は図1の要部拡大図である。本実施形態において電子部品2の接続端子21は、接続用樹脂3を介して基板1の接続端子11に接続している。電子部品2は、例えばBump Grid ArrayなどのLSIパッケージである。固化した状態における接続用樹脂3の厚さは、例えば500nm以上50μm以下である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view for explaining a joint structure between a substrate 1 and an electronic component 2 according to an embodiment of the present invention, and FIG. 2 is an enlarged view of a main part of FIG. In the present embodiment, the connection terminal 21 of the electronic component 2 is connected to the connection terminal 11 of the substrate 1 through the connection resin 3. The electronic component 2 is an LSI package such as a Bump Grid Array. The thickness of the connecting resin 3 in the solidified state is, for example, not less than 500 nm and not more than 50 μm.

接続用樹脂3は、基材となる絶縁性の樹脂31の中に、第1の導電粉体32及び第2の導電粉体33をそれぞれ複数混入したものである。樹脂31は、溶媒を気化させ、若しくは重合又は縮合により固化している。   The connection resin 3 is obtained by mixing a plurality of first conductive powders 32 and second conductive powders 33 in an insulating resin 31 serving as a base material. The resin 31 is solidified by vaporizing the solvent or by polymerization or condensation.

樹脂31は、固化した状態において柔軟性を有していても良い。この場合、接続用樹脂3は、樹脂31と接続端子11,21の間のファンデルワールス力により、接続端子11,21それぞれに接着することができる。樹脂31は、例えば有機物であるが、ゴム又はゲル状の材料であることが望ましく、好ましくはシリコーンゲルまたはゴムである。樹脂31は、真空処理に耐えるため、望ましくはモノマー、プライマー及び低分子が混入されていないゴムまたはゲルである。また樹脂31は、シリコーン以外の場合は、望ましくは分子骨格に追従性がある-O-や-S-基が適切の導入されている。樹脂31は、接続端子11,21の表面に十分に追従する場合、ファンデルワールス力でも十分な接着力を有する。従って、樹脂31としてのゴムまたはゲルの側鎖はアルキル基でも十分であるが、電気接続介在シートの凹凸による接触面積が不足して接着力が不十分なときは、側鎖に適切な分極基、たとえばアミン基、アミノ基、カルボキシル基、水酸基などを導入するのが好ましい。工程途中で電子部品を取り外しする場合は、この取り外しが可能な接着力に制御する。この場合、完成後圧力をかけて接触面積を増大させ、安定性を確保する。しかしこの後でも接合がファンデルワールスを主体としているため、基本的に取り外しが可能である。   The resin 31 may have flexibility in a solidified state. In this case, the connection resin 3 can be bonded to the connection terminals 11 and 21 by the van der Waals force between the resin 31 and the connection terminals 11 and 21, respectively. The resin 31 is, for example, an organic material, but is desirably a rubber or gel-like material, and is preferably a silicone gel or rubber. The resin 31 is preferably a rubber or gel that is not mixed with monomers, primers, and low molecules in order to withstand vacuum processing. In addition, when the resin 31 is other than silicone, an —O— or —S— group having a conformable molecular skeleton is appropriately introduced. When the resin 31 sufficiently follows the surfaces of the connection terminals 11 and 21, the resin 31 has sufficient adhesive force even with van der Waals force. Therefore, the side chain of the rubber or gel as the resin 31 may be an alkyl group, but when the contact area due to the unevenness of the electrical connection intervening sheet is insufficient and the adhesive force is insufficient, an appropriate polarization group for the side chain For example, it is preferable to introduce an amine group, amino group, carboxyl group, hydroxyl group or the like. When removing an electronic component in the middle of the process, the adhesive force is controlled so that it can be removed. In this case, the contact area is increased by applying pressure after completion to ensure stability. However, even after this, since the joining is mainly made of van der Waals, it can be removed basically.

第1の導電粉体32は、例えば、銀などの金属粉体、又は金属核を絶縁膜で被覆し、更に前記絶縁膜を導電膜で被覆した複合粉体であり、平均粒径は5nm以上500nm以下であるが、5nm以上100nm以下であってもよい。第1の導電粉体32の混入量は、例えば樹脂31に対する重量比で0.05倍以上0.5倍以下である。第1の導電粉体32は、樹脂31が固化した状態において、少なくとも一部、例えば50%以上が、互いに5nm以上500nm以下の間隔で分散している。残りの第1の導電粉体32は、一部が凝集している。また残りの第1の導電粉体32の一部は、互いに接触することにより接続端子11,21を接続している。第1の導電粉体32は粒状(好ましくは球状)であるのが好ましいが、フレーク状であっても良い。   The first conductive powder 32 is, for example, a metal powder such as silver, or a composite powder in which a metal core is covered with an insulating film, and the insulating film is further covered with a conductive film, and the average particle size is 5 nm or more. Although it is 500 nm or less, 5 nm or more and 100 nm or less may be sufficient. The mixing amount of the first conductive powder 32 is, for example, 0.05 times or more and 0.5 times or less in a weight ratio with respect to the resin 31. In the state where the resin 31 is solidified, at least a part, for example, 50% or more of the first conductive powder 32 is dispersed at an interval of 5 nm to 500 nm. The remaining first conductive powder 32 is partially agglomerated. Further, a part of the remaining first conductive powder 32 connects the connection terminals 11 and 21 by contacting each other. The first conductive powder 32 is preferably granular (preferably spherical), but may be flaky.

第2の導電粉体33は、例えば、銀などの金属粉体であり、平均粒径は500nm以上20μm以下である。第2の導電粉体33の一部は、互いに接触することにより接続端子11,21を接続している。第2の導電粉体33はフレーク状であっても良いし、粒状であってもよい。なお、第1の導電粉体32は第2の導電粉体33に対して相対的に高価であるが、第1の導電粉体32に対する複数の第2の導電粉体33の混入量を、重量比率で2倍以上20倍以下にすると、第1の導電粉体32の混入量を抑制でき、その結果、費用対効果を大きくすることができる。   The second conductive powder 33 is, for example, a metal powder such as silver, and the average particle diameter is 500 nm or more and 20 μm or less. Part of the second conductive powder 33 is connected to the connection terminals 11 and 21 by being in contact with each other. The second conductive powder 33 may be flaky or granular. Although the first conductive powder 32 is relatively expensive with respect to the second conductive powder 33, the amount of the plurality of second conductive powders 33 mixed in the first conductive powder 32 is When the weight ratio is 2 times or more and 20 times or less, the mixing amount of the first conductive powder 32 can be suppressed, and as a result, cost effectiveness can be increased.

このような構成において、接続端子11,21相互間は、第1の導電粉体32による容量結合で電気的に接続し、かつこの容量結合と並列に、第2の導電粉体33の物理的な接触による電気的に接続する。接続端子11,21相互間にパルス信号が入力されると、パルス信号の交流成分は、主に第1の導電粉体32による容量結合によって接続端子11,21相互間を伝播する。またパルス信号の直流成分は、第2の導電粉体33の物理的な接触によって接続端子11,21相互間を伝播する。パルス信号の周波数は低周波数(例えば1MHz)〜高周波(例えば3GHz)の範囲内のいずれの値であってもよい。   In such a configuration, the connection terminals 11 and 21 are electrically connected to each other by capacitive coupling by the first conductive powder 32, and the second conductive powder 33 is physically connected in parallel with the capacitive coupling. Electrical connection by simple contact. When a pulse signal is input between the connection terminals 11 and 21, the AC component of the pulse signal propagates between the connection terminals 11 and 21 mainly by capacitive coupling by the first conductive powder 32. The direct current component of the pulse signal propagates between the connection terminals 11 and 21 by physical contact of the second conductive powder 33. The frequency of the pulse signal may be any value within a range from a low frequency (for example, 1 MHz) to a high frequency (for example, 3 GHz).

接続用樹脂3の比誘電率は、後述する理由により1000以上になり、また比透磁率も10以上になる。このため、上記した容量結合による抵抗値は十分に小さくなる。例えば接続端子11,21が80μmφであり、固化した状態における接続用樹脂3の厚みが50μmである場合、接続端子11,21及び接続用樹脂3の相互間における接触抵抗は数mΩ〜数十Ωであるが、接続容量は5pFから数十pFが達成でき、通常の電子装置の接続として十分実用可能な値となる。特にパルス信号の周波数が1GHz以上場合は、はんだ接続よりよい接続伝送特性が得られる。   The relative dielectric constant of the connecting resin 3 is 1000 or more for the reason described later, and the relative permeability is 10 or more. For this reason, the resistance value due to the capacitive coupling described above is sufficiently small. For example, when the connection terminals 11 and 21 are 80 μmφ and the thickness of the connection resin 3 in the solidified state is 50 μm, the contact resistance between the connection terminals 11 and 21 and the connection resin 3 is several mΩ to several tens of Ω. However, the connection capacitance can be achieved from 5 pF to several tens of pF, which is a value that is sufficiently practical for connection of a normal electronic device. In particular, when the frequency of the pulse signal is 1 GHz or higher, connection transmission characteristics better than solder connection can be obtained.

次に、上記した端子の接合構造の製造方法の第1例について説明する。本例において、接続用樹脂3の樹脂31は、固化した状態において柔軟性を有していても良いし、柔軟性を有していなくても良い。まず固化する前の接続用樹脂3を準備する。次いで接続端子11又は接続端子21のいずれか一方の表面に、接続用樹脂3を塗布する。次いで、接続端子11及び接続端子21を、接続用樹脂3を介して接続し、その後樹脂31の溶媒を気化させ、若しくは樹脂31を重合又は縮合させることにより、接続用樹脂3を固化する。この場合、接続用樹脂31と接続端子11,21は、樹脂31の接着力により接続する。   Next, a first example of a method for manufacturing the above-described terminal bonding structure will be described. In this example, the resin 31 of the connecting resin 3 may have flexibility in a solidified state or may not have flexibility. First, the connecting resin 3 before solidification is prepared. Next, the connection resin 3 is applied to one surface of either the connection terminal 11 or the connection terminal 21. Next, the connection terminal 11 and the connection terminal 21 are connected via the connection resin 3, and then the solvent for the resin 31 is vaporized, or the resin 31 is polymerized or condensed to solidify the connection resin 3. In this case, the connection resin 31 and the connection terminals 11 and 21 are connected by the adhesive force of the resin 31.

次に、上記した端子の接合構造の製造方法の第2例について説明する。本例において、接続用樹脂3の樹脂31は、固化した状態において柔軟性を有しており、接続用樹脂31と接続端子11,21はファンデルワールス力により接続する。まず固化する前の接続用樹脂3を準備する。次いで接続端子11又は接続端子21のいずれか一方の表面に、接続用樹脂3を塗布する。次いで、樹脂31の溶媒を気化させ、若しくは樹脂31を重合又は縮合させることにより、接続用樹脂3を固化する。その後、接続端子11及び接続端子21を、接続用樹脂3を介して互いに押し付け、互いに接続させる。本例の場合、接続端子11,21は、図3に示すように、接続用樹脂3から着脱可能にすることができる。固化した状態における接続用樹脂3の接着性を制御することにより、接続用樹脂3を、半永久的な永久接着接続シートまたは取り替え自由な接合シートとしても使用できる。   Next, a second example of the manufacturing method of the terminal junction structure described above will be described. In this example, the resin 31 of the connection resin 3 has flexibility in a solidified state, and the connection resin 31 and the connection terminals 11 and 21 are connected by van der Waals force. First, the connecting resin 3 before solidification is prepared. Next, the connection resin 3 is applied to one surface of either the connection terminal 11 or the connection terminal 21. Next, the connection resin 3 is solidified by evaporating the solvent of the resin 31 or polymerizing or condensing the resin 31. Thereafter, the connection terminal 11 and the connection terminal 21 are pressed against each other via the connection resin 3 to be connected to each other. In the case of this example, the connection terminals 11 and 21 can be made detachable from the connection resin 3 as shown in FIG. By controlling the adhesiveness of the connecting resin 3 in the solidified state, the connecting resin 3 can be used as a semi-permanent permanent adhesive connecting sheet or a replaceable joining sheet.

次に、接続用樹脂3の比誘電率及び比透磁率が高い理由を説明する。金属内の自由電子はプラズマのように振舞うことができるが、その摂動は量子化してプラズモンと呼ばれており、電子スピンの摂動はマグノンと呼ばれている。金属内において摂動は均質化しているが、電磁波に対して反応し、誘電率や透磁率が現れる。誘電率はプラズマ内と同様に負の値である。透磁率が負の値の自然界物質は常磁性体である。この両者共にとちらかが正の値であり、電磁波を反射する材料となっている。プラズモンやマグノンがナノ寸法でベクトルをはっきり持つようになると、隣り合う導電粉体のプラズモンやマグノンと干渉することで非常に大きな負の比誘電率と比透磁率、例えばマイナス1000以上1千万の値を示すことができる。両者が負の値になると電磁波の屈折率は負の値になるが、負の掛け算になり、物質が正となる状態を保つため、電磁エネルギは通過する条件となる。   Next, the reason why the relative dielectric constant and relative permeability of the connecting resin 3 are high will be described. Free electrons in a metal can behave like plasma, but the perturbation is quantized and called plasmon, and the electron spin perturbation is called magnon. Although the perturbation is homogenized in the metal, it reacts to electromagnetic waves, and dielectric constant and permeability appear. The dielectric constant is a negative value as in the plasma. A natural substance having a negative permeability is a paramagnetic substance. Both of these are positive values and are materials that reflect electromagnetic waves. When a plasmon or magnon has a nano-sized vector and has a clear vector, it interferes with the plasmon or magnon of an adjacent conductive powder, thereby causing a very large negative relative permittivity and relative permeability, for example, minus 1000 to 10 million. A value can be indicated. When both values are negative, the refractive index of the electromagnetic wave becomes negative, but it is a negative multiplication, and the electromagnetic energy passes through in order to keep the substance in a positive state.

プラズモンやマグノンが持つベクトルの寸法を、図4を用いて説明する。絶縁性の樹脂41内における円筒形の導電粉体42の半径をr、導電粉体42の中心間距離をaとすると、プラズマ周波数ωepに対して式1が成り立つ。ここで、neff=電子密度、meff=電子有効質量、c0=光速、ε=真空中の誘電率である。この摂動は0次共振のため低周波からプラズマ周波数まで負の値の誘電率を持つ。はっきりとしたベクトルを持てばよいため円筒の長さに対して無関係であり、相互共振の関係から粉体間隔に対して大きく変動する。

Figure 2009099708
The dimension of the vector that plasmon or magnon has will be described with reference to FIG. When the radius of the cylindrical conductive powder 42 in the insulating resin 41 is r, and the distance between the centers of the conductive powder 42 is a, Equation 1 is established for the plasma frequency ωep . Here, n eff = electron density, m eff = electron effective mass, c 0 = velocity of light, ε 0 = dielectric constant in vacuum. This perturbation has a negative dielectric constant from the low frequency to the plasma frequency because of zero-order resonance. Since it is sufficient to have a clear vector, it is irrelevant to the length of the cylinder, and varies greatly with respect to the powder interval due to the mutual resonance relationship.
Figure 2009099708

透磁率に対する式も同様に式2に表すことができる。

Figure 2009099708
Similarly, the equation for the magnetic permeability can be expressed by Equation 2.
Figure 2009099708

そして、接続端子11,21の間における接続用樹脂3の容量CはC=Aεrε0/dで表せるが、上記したように比誘電率が高いため、大きな接続容量が取れる。ここでCは容量[F]、Aは電極面積[m2]、dは誘電体の厚み[m]、εrは比誘電率、ε0は真空中の誘電率[F/m]=8.854×10-12である。なお接続用樹脂3の容量Cは、主に第1の導電粉体32に由来する。 The capacitance C of the connection resin 3 between the connection terminals 11 and 21 can be expressed by C = Aε r ε 0 / d. However, since the relative dielectric constant is high as described above, a large connection capacitance can be obtained. Where C is the capacitance [F], A is the electrode area [m 2 ], d is the dielectric thickness [m], ε r is the relative dielectric constant, ε 0 is the dielectric constant [F / m] in vacuum = 8.854 × 10 -12 . The capacity C of the connecting resin 3 is mainly derived from the first conductive powder 32.

また、接続端子11と接続端子21それぞれをコイル状にした場合、接続端子11,21のインダクタンスLはL=dμrμ0/Aの関係で大きなインダクティブ接続が取れる。ここでLはインダクタンス[H]、Aは接続端子11,21の面積[m2]、dは接続端子11,21の厚み[m]、μrは比透磁率、μ0は真空中の透磁率[H/m]=1.25×10-6である。この場合、容量結合とインダクティブ結合の複合結合が本発明で容易に実現し、直流に近い周波数から高周波までを非接触で接合できる。電磁エネルギは電界Eと磁界Hで伝達可能でW=EHwd [W]であり、CとLの大きさに比例する。また金属接触のためのフレークの混入で直流電力も供給できる。 Also, when the connection terminals 21 respectively to the connection terminals 11 in a coil shape, the inductance L of the connecting terminals 11 and 21 large inductive connection can be established in relation L = dμ r μ 0 / A . Here, L is the inductance [H], A is the area [m 2 ] of the connection terminals 11 and 21, d is the thickness [m] of the connection terminals 11 and 21, μ r is the relative permeability, and μ 0 is the permeability in vacuum. Magnetic permeability [H / m] = 1.25 × 10 −6 . In this case, composite coupling of capacitive coupling and inductive coupling can be easily realized by the present invention, and a frequency from a frequency close to DC to a high frequency can be joined in a non-contact manner. The electromagnetic energy can be transmitted by the electric field E and the magnetic field H, and W = EHwd [W], which is proportional to the size of C and L. Also, DC power can be supplied by mixing flakes for metal contact.

以上、本発明によれば、容量結合を用いて接続端子間を電気的に接続することができる。また、ハンダで接続端子間を接続する場合に対して、接続に必要な労力が少なくなる。また、固化した後の接続用樹脂3に柔軟性を持たせた場合、界面ずれを不問とすることができ、その結果、柔軟性を付与した接続も可能であり、接合部分に生じる応力を小さくできる。また、接続端子11,21を、接続用樹脂3から着脱可能にすることができる。この場合、設計的自由度や検査や修理の容易性を確保できる。   As described above, according to the present invention, the connection terminals can be electrically connected using capacitive coupling. In addition, labor required for connection is reduced compared to the case where the connection terminals are connected by solder. Further, when the connecting resin 3 after solidification is made flexible, the interface deviation can be made unquestioned. As a result, the connection with flexibility can be made, and the stress generated in the joint portion can be reduced. it can. Further, the connection terminals 11 and 21 can be detachable from the connection resin 3. In this case, design freedom and ease of inspection and repair can be ensured.

尚、本発明は上述した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。   Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

実施形態に係る基板1と電子部品2の接合構造を説明するための断面図。Sectional drawing for demonstrating the junction structure of the board | substrate 1 and electronic component 2 which concern on embodiment. 図1の要部拡大図。The principal part enlarged view of FIG. 接続端子21を接続用樹脂3から外した状態を示す図。The figure which shows the state which removed the connecting terminal 21 from the resin 3 for a connection. プラズモンやマグノンが持つベクトルの寸法を説明する図。The figure explaining the dimension of the vector which plasmon and magnon have.

符号の説明Explanation of symbols

1…基板、2…電子部品、3…接続用樹脂、11,21…接続端子、31,41…樹脂、32…第1の導電粉体、33…第2の導電粉体,42…導電粉体 DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Electronic component, 3 ... Connection resin, 11, 21 ... Connection terminal, 31, 41 ... Resin, 32 ... 1st electrically conductive powder, 33 ... 2nd electrically conductive powder, 42 ... Conductive powder body

Claims (11)

絶縁性の樹脂と、前記樹脂に混入され、平均粒径が5nm以上500nm以下である複数の第1の導電粉体と、前記樹脂に混入され、平均粒径が500nm以上20μm以下である複数の第2の導電粉体とを有する接続用樹脂を第1接続端子に塗布する工程と、
前記第1接続端子と第2接続端子を、前記接続用樹脂を介して接続する工程と、
前記接続用樹脂を固化する工程と、
を具備し、
固化した後の前記接続用樹脂において、少なくとも一部の前記複数の第1の導電粉体は互いに離間した状態で前記接続用樹脂内に分散しており、前記複数の第2の導電粉体の一部は、互いに接触することにより前記第1接続端子と前記第2接続端子を接続している端子の接続方法。
Insulating resin, a plurality of first conductive powders mixed in the resin and having an average particle diameter of 5 nm to 500 nm, and a plurality of first conductive powders mixed in the resin and having an average particle diameter of 500 nm to 20 μm Applying a connection resin having a second conductive powder to the first connection terminal;
Connecting the first connection terminal and the second connection terminal via the connection resin;
Solidifying the connecting resin;
Comprising
In the connection resin after solidification, at least some of the plurality of first conductive powders are dispersed in the connection resin in a state of being separated from each other, and the plurality of second conductive powders A part of the method of connecting the terminals connecting the first connection terminal and the second connection terminal by contacting each other.
固化した状態で柔軟性を有する絶縁性の樹脂と、前記樹脂に混入され、平均粒径が5nm以上500nm以下である複数の第1の導電粉体と、前記樹脂に混入され、平均粒径が500nm以上20μm以下である複数の第2の導電粉体とを有する接続用樹脂を第1接続端子に塗布する工程と、
前記接続用樹脂を固化する工程と、
前記第1接続端子と第2接続端子を、前記接続用樹脂を介して接続する工程と、
を具備し、
固化した後の前記接続用樹脂において、少なくとも一部の前記複数の第1の導電粉体は互いに離間した状態で前記接続用樹脂内に分散しており、前記複数の第2の導電粉体の一部は、互いに接触することにより前記第1接続端子と前記第2接続端子を接続している端子の接続方法。
An insulating resin having flexibility in a solidified state, a plurality of first conductive powders mixed in the resin and having an average particle size of 5 nm to 500 nm, and mixed in the resin, the average particle size is Applying a connection resin having a plurality of second conductive powders of 500 nm or more and 20 μm or less to the first connection terminals;
Solidifying the connecting resin;
Connecting the first connection terminal and the second connection terminal via the connection resin;
Comprising
In the connection resin after solidification, at least some of the plurality of first conductive powders are dispersed in the connection resin in a state of being separated from each other, and the plurality of second conductive powders A part of the method of connecting the terminals connecting the first connection terminal and the second connection terminal by contacting each other.
前記絶縁性ペーストは、前記第1接続端子の一面に塗布される請求項2に記載の端子の接続方法。   The terminal connection method according to claim 2, wherein the insulating paste is applied to one surface of the first connection terminal. 第1の接続端子と、
第2の接続端子と、
絶縁性の樹脂と、前記樹脂に混入され、平均粒径が5nm以上500nm以下である複数の第1の導電粉体と、前記樹脂に混入され、平均粒径が500nm以上20μm以下である複数の第2の導電粉体とを有しており、前記第1の接続端子と前記第2の接続端子を接続する接続用樹脂と、
を具備し、
少なくとも一部の前記複数の第1の導電粉体は互いに離間した状態で前記接続用樹脂内に分散しており、前記複数の第2の導電粉体の一部は、互いに接触することにより前記第1接続端子と前記第2接続端子を接続している端子の接合構造。
A first connection terminal;
A second connection terminal;
Insulating resin, a plurality of first conductive powders mixed in the resin and having an average particle diameter of 5 nm to 500 nm, and a plurality of first conductive powders mixed in the resin and having an average particle diameter of 500 nm to 20 μm A second conductive powder, and a connection resin for connecting the first connection terminal and the second connection terminal;
Comprising
At least a part of the plurality of first conductive powders is dispersed in the connecting resin in a state of being separated from each other, and a part of the plurality of second conductive powders is brought into contact with each other, thereby A junction structure of a terminal connecting the first connection terminal and the second connection terminal.
前記接続用樹脂は柔軟性を有しており、前記第1の接続端子及び前記第2の接続端子の少なくとも一方から取り外し可能である請求項4に記載の端子の接合構造。   The terminal connection structure according to claim 4, wherein the connection resin has flexibility and is removable from at least one of the first connection terminal and the second connection terminal. 前記複数の第1の導電粉体は、信号の交流成分を前記第1接続端子と前記第2接続端子の相互間で伝達し、
前記複数の第2の導電粉体は信号の直流成分を前記第1接続端子と前記第2接続端子の相互間で伝達する請求項4又は5に記載の端子の接合構造。
The plurality of first conductive powders transmit an AC component of a signal between the first connection terminal and the second connection terminal,
The terminal joining structure according to claim 4 or 5, wherein the plurality of second conductive powders transmit a DC component of a signal between the first connection terminal and the second connection terminal.
前記複数の第1の導電粉体に対する前記複数の第2の導電粉体の混入量は、重量比率で2倍以上20倍以下である請求項4〜6のいずれか一項に記載の端子の接合構造。   The mixing amount of the plurality of second conductive powders with respect to the plurality of first conductive powders is not less than 2 times and not more than 20 times by weight ratio. Junction structure. 前記接続用樹脂は比誘電率が1000以上である請求項4〜7のいずれか一項に記載の端子の接合構造。   The terminal connecting structure according to claim 4, wherein the connecting resin has a relative dielectric constant of 1000 or more. 前記接続用樹脂は比透磁率が10以上である請求項4〜8に記載の端子の接合構造。   The terminal bonding structure according to claim 4, wherein the connecting resin has a relative magnetic permeability of 10 or more. 前記接続用樹脂は、厚さが500nm以上50μm以下である請求項4〜9のいずれか一項に記載の端子の接合構造。   The junction structure of a terminal according to any one of claims 4 to 9, wherein the connection resin has a thickness of 500 nm or more and 50 µm or less. 絶縁性の樹脂と、
前記樹脂に混入され、平均粒径が5nm以上500nm以下である複数の第1の導電粉体と、
前記樹脂に混入され、平均粒径が500nm以上20μm以下である複数の第2の導電粉体と、
を具備する接続用樹脂。
An insulating resin;
A plurality of first conductive powders mixed in the resin and having an average particle size of 5 nm or more and 500 nm or less;
A plurality of second conductive powders mixed in the resin and having an average particle size of 500 nm or more and 20 μm or less;
A connecting resin comprising:
JP2007268724A 2007-10-16 2007-10-16 Connecting method for terminal, bonding structure for terminal, and resin for connection Pending JP2009099708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007268724A JP2009099708A (en) 2007-10-16 2007-10-16 Connecting method for terminal, bonding structure for terminal, and resin for connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007268724A JP2009099708A (en) 2007-10-16 2007-10-16 Connecting method for terminal, bonding structure for terminal, and resin for connection

Publications (1)

Publication Number Publication Date
JP2009099708A true JP2009099708A (en) 2009-05-07

Family

ID=40702445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007268724A Pending JP2009099708A (en) 2007-10-16 2007-10-16 Connecting method for terminal, bonding structure for terminal, and resin for connection

Country Status (1)

Country Link
JP (1) JP2009099708A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023624A (en) * 2009-07-17 2011-02-03 Fuji Xerox Co Ltd Semiconductor integrated circuit device
JP2013501405A (en) * 2009-07-29 2013-01-10 イマコー・インコーポレーテッド Ultrasonic imaging transducer acoustic stack with integrated electrical connections

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079570A (en) * 1996-09-03 1998-03-24 Haisoole Kk Method of electrically jointing electronic element chip to wiring circuit
JP2001237039A (en) * 2000-02-23 2001-08-31 Nec Corp Ic socket
JP2002322456A (en) * 2001-04-23 2002-11-08 Asahi Glass Co Ltd Anisotropic electroconductive paste
JP2003037341A (en) * 2001-07-23 2003-02-07 Shin Etsu Polymer Co Ltd Conductive contact element, film type connector and its connection structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079570A (en) * 1996-09-03 1998-03-24 Haisoole Kk Method of electrically jointing electronic element chip to wiring circuit
JP2001237039A (en) * 2000-02-23 2001-08-31 Nec Corp Ic socket
JP2002322456A (en) * 2001-04-23 2002-11-08 Asahi Glass Co Ltd Anisotropic electroconductive paste
JP2003037341A (en) * 2001-07-23 2003-02-07 Shin Etsu Polymer Co Ltd Conductive contact element, film type connector and its connection structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023624A (en) * 2009-07-17 2011-02-03 Fuji Xerox Co Ltd Semiconductor integrated circuit device
JP2013501405A (en) * 2009-07-29 2013-01-10 イマコー・インコーポレーテッド Ultrasonic imaging transducer acoustic stack with integrated electrical connections

Similar Documents

Publication Publication Date Title
Lim et al. Stretchable conductive nanocomposite based on alginate hydrogel and silver nanowires for wearable electronics
US7326633B2 (en) Anisotropic conductive film
TW200848486A (en) Method of connecting electronic component, and connected structure
TWI486976B (en) Conductive particles and an anisotropic conductive connecting material using the same, and a method for producing a conductive particle body
JPS61173471A (en) Heat compressed connector
TWI691976B (en) Anisotropic conductive film, its manufacturing method and connecting structure
KR20030008607A (en) High adhesion triple layered anisotropic conductive adhesive film
JP2001011503A (en) New conductive fine particle and its use
TW201318123A (en) Anisotropic conductive film and fabrication method thereof
TW200850094A (en) Electric device, connecting method and adhesive film
TWI264735B (en) Anisotropic electrical conductive film and its manufacturing method thereof
WO2015056518A1 (en) Anisotropic conductive film
JP2011179015A (en) Structure for bonding metal plate and piezoelectric body
JP2013520544A (en) Adhesive with anisotropic conductivity and method for producing and using the same
WO2018101051A1 (en) Multilayer substrate connecting body and transmission line device
WO2005031759A1 (en) Conductive particle and anisotropic conductive adhesive using same
JP2009099708A (en) Connecting method for terminal, bonding structure for terminal, and resin for connection
JP2000151084A (en) Anisotropic conductive adhesive film
JP2006032335A (en) Anisotropic conductive adhesion film
CN113421698A (en) Flexible conductive film capable of being firmly welded and preparation method and application thereof
TWI632219B (en) Conductive tape and preparation method thereof
JP2015097240A (en) Metal foil for press adhesion, and electronic component package
CN109943253B (en) Anisotropic conductive adhesive, preparation method and display device
CN101256998B (en) Semiconductor device using anisotropic conductive adhesive layer and manufacturing method thereof
JP2005116291A (en) Anisotropic conductive film and its forming method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20101013

Free format text: JAPANESE INTERMEDIATE CODE: A711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101015

RD02 Notification of acceptance of power of attorney

Effective date: 20101015

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20101018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101015

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101110

RD04 Notification of resignation of power of attorney

Effective date: 20101111

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A975 Report on accelerated examination

Effective date: 20101209

Free format text: JAPANESE INTERMEDIATE CODE: A971005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A131 Notification of reasons for refusal

Effective date: 20110517

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A02 Decision of refusal

Effective date: 20111021

Free format text: JAPANESE INTERMEDIATE CODE: A02