JP2009099638A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2009099638A
JP2009099638A JP2007267375A JP2007267375A JP2009099638A JP 2009099638 A JP2009099638 A JP 2009099638A JP 2007267375 A JP2007267375 A JP 2007267375A JP 2007267375 A JP2007267375 A JP 2007267375A JP 2009099638 A JP2009099638 A JP 2009099638A
Authority
JP
Japan
Prior art keywords
bus bar
circuit board
semiconductor element
semiconductor device
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007267375A
Other languages
Japanese (ja)
Other versions
JP5186877B2 (en
Inventor
Masato Hayashi
真人 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007267375A priority Critical patent/JP5186877B2/en
Publication of JP2009099638A publication Critical patent/JP2009099638A/en
Application granted granted Critical
Publication of JP5186877B2 publication Critical patent/JP5186877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve durability by eliminating cold stress to a conducting line of a semiconductor device connected by the conducting line by mounting a semiconductor element and a circuit board in an isolated state so as to reduce an effect of heat generation of the semiconductor element, on an integrated circuit controlling the semiconductor element. <P>SOLUTION: In the semiconductor device, the circuit board 100 is arranged substantially in parallel to a mounting surface of a bus bar 300 mounting the semiconductor device 200. The linear thermal expansion coefficient of a conductive wire 210 for connecting both is made substantially the same with that of the bus bar 300. Also, supports 310, 320 are used which are obtained by extending several points of the mounting surface of the bus bar 300 substantially vertically to the mounting surface. Thereby, the circuit board 100 is hierarchically supported and fixed to the bus bar 300. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、発熱性の半導体素子を含む半導体装置に係り、放熱性、搭載性、高密度性、並びに耐久性に優れた半導体装置の構造に関するものである。   The present invention relates to a semiconductor device including an exothermic semiconductor element, and relates to a structure of a semiconductor device excellent in heat dissipation, mountability, high density, and durability.

自動車等の車両には、半導体素子のスイッチング機能を利用して、燃料噴射制御、点火制御、モータ制御、油圧制御、電力分配制御等の様々な制御を行う半導体装置が種々と搭載されている。
近年、これらの半導体装置の更なる高機能化、高速応答化を図るべく、半導体素子には高い信頼性とともに更なる高電力化、高周波化、小型化等が要求されている。
この為、これらの半導体素子としては、パワーMOSFET(金属酸化膜型電界効果トランジスタ)、IGBT(絶縁ゲートバイポーラトランジスタ)、BSIT(バイポーラモード静電誘導トランジスタ)等のパワーデバイスが用いられている。
このようなパワーデバイスの多くは、作動に伴って発熱し、制御回路の性能や信頼性に影響を与える虞があることから、これらの発熱性の半導体素子を含む半導体装置には種々と放熱対策が講じられている。
A variety of semiconductor devices that perform various controls such as fuel injection control, ignition control, motor control, hydraulic pressure control, and power distribution control by using a switching function of a semiconductor element are mounted on vehicles such as automobiles.
In recent years, semiconductor devices are required to have higher reliability, higher power, higher frequency, smaller size, and the like in order to achieve higher functionality and faster response of these semiconductor devices.
For this reason, as these semiconductor elements, power devices such as power MOSFET (metal oxide field effect transistor), IGBT (insulated gate bipolar transistor), BSIT (bipolar mode electrostatic induction transistor) are used.
Many of these power devices generate heat during operation and may affect the performance and reliability of the control circuit. Therefore, various semiconductor devices including these heat generating semiconductor elements have various heat dissipation measures. Has been taken.

例えば、特許文献1には、発熱性の電子部品を含む各種電子部品が実装されるプリント板と、該プリント板の電子部品実装面に対し熱伝導性の良好な絶縁物を介して接するバスバーとを具備することを特徴とする電子部品の実装構造が開示されている。
又、特許文献2には、バスバー基板と、その電流回路の電流を制御するFETと、このFETの作動を制御する電子回路基板とを備え、上記FETを両基板の間に配設した電気接続箱が開示されている。
又、特許文献3には、放熱部が設けてある箱本体に回路基板を前記放熱部に載置して収容する基板収容箱において、前記放熱部に載置してある第1回路基板と、該第1回路基板に対して平行的に前記箱本体の周壁から突設しており、貫通ネジ穴が形成してある載置部と、該載置部に載置してあり、前記貫通ネジ穴と連通する貫通穴が形成してある第2回路基板と、前記貫通穴を挿通して前記貫通ネジ穴との螺結により前記第2回路基板を前記載置部に固定した状態で、先端部が前記第1回路基板を前記放熱部へ押圧する押圧ネジとを備えることを特徴とする基板収容箱が開示されている。
For example, Patent Document 1 discloses a printed board on which various electronic components including a heat-generating electronic component are mounted, and a bus bar that is in contact with an electronic component mounting surface of the printed board through an insulator having good thermal conductivity. An electronic component mounting structure characterized by comprising:
Further, Patent Document 2 includes a bus bar substrate, an FET for controlling the current of the current circuit, and an electronic circuit substrate for controlling the operation of the FET, and the electric connection in which the FET is disposed between the two substrates. A box is disclosed.
Further, in Patent Document 3, in a substrate housing box that houses a circuit board placed on the heat radiating portion and accommodated in a box body provided with a heat radiating portion, a first circuit board placed on the heat radiating portion; A mounting portion projecting from the peripheral wall of the box body in parallel to the first circuit board, and having a through screw hole formed thereon; and being placed on the mounting portion, the through screw In a state where the second circuit board having a through hole communicating with the hole and the second circuit board fixed to the mounting portion by being screwed with the through screw hole through the through hole, A board housing box is disclosed, wherein the board comprises a pressing screw that presses the first circuit board against the heat radiating section.

ところで、近年、ディーゼルエンジンの暖気を行うグロープラグにおいて、始動時における高速昇温を図る為に低抵抗化が進んでおり、又、燃費向上、燃焼排気エミッションの低減等の要求から、PWM(パルス幅変調)制御等により、始動時のみならず常時グロープラグへの通電が行われるようになっている。
この為グロープラグの制御を行うGCU(グロープラグコントローラ)では、数十Aの大電流を流す必要があり、スイッチング素子としてパワーMOSFETが搭載され、安定した大電流の入出力と高い放熱性とを兼ね備えたGCUの構造が望まれている。
By the way, in recent years, in a glow plug for warming up a diesel engine, the resistance has been lowered in order to increase the temperature at a high speed at the time of start-up. By means of (width modulation) control, the glow plug is always energized as well as at the start.
For this reason, a GCU (glow plug controller) that controls a glow plug needs to pass a large current of several tens of A. A power MOSFET is mounted as a switching element, and stable input / output of a large current and high heat dissipation are achieved. A combined GCU structure is desired.

例えば、図7(a)、(b)に示すような従来のGCU10xは、パワーMOSFET200xと、図略のECUからの信号に従ってパワーMOSFET200xの開閉を制御して図略のグロープラグへの通電を制御する集積回路150xを含む制御回路基板100xと、これらを収納する樹脂製の筐体500xとによって構成されている。
GCU10xでは、発熱性のパワーMOSFET200xと制御回路基板100xとを分離することにより、パワーMOSFET200xからの熱による集積回路150xへの影響を少なくしている。又、金属製のバスバー300xにパワーMOSFET200xを実装して、パワーMOSFET200xの裏面に設けられたドレイン端子211と接続することにより、バスバー300xを、パワーMOSFET200xへの大電流の供給を行う導通回路として利用すると共に、放熱板として利用している。更に、バスバー300xには、絶縁性の接着層410xを介して、ヒートシンク400xが配設され、更なる放熱性の向上を図っている。
特開平5−67889号公報 特開平10−35375号公報 特開2004−14690号公報
For example, the conventional GCU 10x as shown in FIGS. 7A and 7B controls the power MOSFET 200x and the power supply to the glow plug (not shown) by controlling the opening and closing of the power MOSFET 200x according to a signal from the ECU (not shown). The control circuit board 100x including the integrated circuit 150x and the resin casing 500x for storing them are configured.
In the GCU 10x, by separating the heat-generating power MOSFET 200x and the control circuit board 100x, the influence of the heat from the power MOSFET 200x on the integrated circuit 150x is reduced. Further, by mounting the power MOSFET 200x on the metal bus bar 300x and connecting it to the drain terminal 211 provided on the back surface of the power MOSFET 200x, the bus bar 300x is used as a conduction circuit for supplying a large current to the power MOSFET 200x. In addition, it is used as a heat sink. Furthermore, a heat sink 400x is disposed on the bus bar 300x via an insulating adhesive layer 410x to further improve heat dissipation.
JP-A-5-67889 JP-A-10-35375 JP 2004-14690 A

ところが、GCU10xにおいて、制御回路基板100xは、樹脂製の筐体500xにネジ170xによりネジ止め固定されており、バスバー300xに実装されたパワーMOSFET200xのドレイン端子210x、ソース端子220x、ゲート端子230xは、制御回路基板100xと接続されている。   However, in the GCU 10x, the control circuit board 100x is fixed to the resin casing 500x by screws 170x. The drain terminal 210x, the source terminal 220x, and the gate terminal 230x of the power MOSFET 200x mounted on the bus bar 300x are: The control circuit board 100x is connected.

一般的に、ドレイン端子210x、ソース端子220x、ゲート端子230xには、銅又は銅を含む合金が使用され、そのTEC(線熱膨張係数)は、材質によって多少の差はあるが、16〜20ppm程度であり、制御回路基板に用いられるガラスエポキシ樹脂やポリアミド等からなる基板と銅との積層板のTECは20ppm以下で、銅と略同等である。
一方、筐体500xには、成形上の利便性等により、PPS(ポリフェニルサルファイド)、PBT(ポリブチレンテレフタレート)等の熱可塑性樹脂が用いられている。そのTECは、50〜60ppm程度であり、銅に比べて大きい。
In general, the drain terminal 210x, the source terminal 220x, and the gate terminal 230x are made of copper or an alloy containing copper, and the TEC (Linear Thermal Expansion Coefficient) is slightly different depending on the material, but is 16 to 20 ppm. The TEC of the laminated board of copper and glass epoxy resin or polyamide used for the control circuit board is 20 ppm or less, which is substantially equivalent to copper.
On the other hand, a thermoplastic resin such as PPS (polyphenyl sulfide), PBT (polybutylene terephthalate), or the like is used for the casing 500x for convenience in molding. The TEC is about 50 to 60 ppm, which is larger than copper.

このため、ドレイン端子210x、ソース端子220x、ゲート端子230xのTECと、筐体500xのTECとの差により、パワーMOSFET200xの冷熱により発生する各端子210x、220x、230xの伸縮と筐体500xの伸縮とに差が生じる。これにより各端子210x、220x、230xには、大きな冷熱ストレスが生じ、制御回路基板100xと各端子210x、220x、230xとの接続部においてハンダ付けした部位の剥離を招いたり、各端子210x、220x、230xそのものが金属疲労を起こして断線したりする等、GCU10xの信頼性を損なう虞がある。   Therefore, due to the difference between the TEC of the drain terminal 210x, the source terminal 220x, and the gate terminal 230x and the TEC of the casing 500x, the expansion and contraction of the terminals 210x, 220x, and 230x generated by the cold heat of the power MOSFET 200x and the expansion and contraction of the casing 500x. And there is a difference. As a result, a large thermal stress is generated in each of the terminals 210x, 220x, and 230x, leading to peeling of the soldered portion at the connection portion between the control circuit board 100x and each of the terminals 210x, 220x, and 230x, or the terminals 210x, 220x. , 230x itself may cause metal fatigue and break, and the reliability of the GCU 10x may be impaired.

そこで、本発明は上記実情に鑑み、特許文献1〜3にあるような従来技術では、解決できない新規な課題として、発熱性の半導体素子と該半導体素子を制御する制御回路部とを放熱性の向上を図るべく離隔した状態で載置して、導通線によって半導体素子と制御回路部とを接続した半導体装置において、該導電線への冷熱ストレスを解消し、優れた放熱性を具備すると共に、優れた耐久性を具備する半導体装置の提供を目的とするものである。   Therefore, in view of the above circumstances, the present invention has a new problem that cannot be solved by the conventional techniques such as those disclosed in Patent Documents 1 to 3, and a heat-generating semiconductor element and a control circuit unit that controls the semiconductor element are provided with heat-dissipating characteristics. In a semiconductor device in which the semiconductor element is placed in a separated state for improvement, and the semiconductor element and the control circuit unit are connected by a conductive line, the thermal stress on the conductive line is eliminated, and excellent heat dissipation is provided. An object of the present invention is to provide a semiconductor device having excellent durability.

請求項1の発明では、少なくとも、発熱性の半導体素子と、該半導体素子をその表面に実装する金属製のバスバーと、上記半導体素子の作動を制御する集積回路を有する回路基板とを具備する半導体装置において、上記回路基板と上記バスバーの実装面とが略平行になるように配設し、上記半導体素子と上記回路基板とを接続する導通線の線熱膨張係数と、上記バスバーの線熱膨張係数と、上記回路基板の線膨張係数とを略同一とし、上記バスバーの実装面の複数箇所に、該実装面に対して略垂直方向に伸びる支持部を延設して、上記回路基板を該支持部によって支持固定する。   In the invention of claim 1, a semiconductor comprising at least a heat-generating semiconductor element, a metal bus bar for mounting the semiconductor element on a surface thereof, and a circuit board having an integrated circuit for controlling the operation of the semiconductor element. In the apparatus, the circuit board and the mounting surface of the bus bar are disposed so as to be substantially parallel to each other, and a linear thermal expansion coefficient of a conductive wire connecting the semiconductor element and the circuit board is obtained. The coefficient of expansion and the linear expansion coefficient of the circuit board are substantially the same, and support portions extending in a direction substantially perpendicular to the mounting surface are provided at a plurality of locations on the mounting surface of the bus bar, so that the circuit board is It is supported and fixed by the support part.

請求項1の発明によれば、上記半導体素子の発熱と冷却とが繰り返されても、上記支持部と上記導通線の線熱膨張係数が略同一であるので、上記支持部の軸方向の伸縮が常に一致し、上記導通線に対して上下方向の冷熱ストレスが生じ難い。又、上記バスバーの実装面と上記導通線と上記回路基板との線熱膨張係数が略同一であるので、上記バスバーの実装面に対して水平方向の伸縮も常に一致し、上記導通線に対して水平方向の冷熱ストレスも生じ難い。従って、回路基板と半導体素子とを階層構造に配設して、集積回路への半導体素子の発熱の影響を少なくして、動作安定性の向上を図った半導体装置の耐久性が更に向上する。   According to the first aspect of the present invention, even if heat generation and cooling of the semiconductor element are repeated, the linear thermal expansion coefficients of the support portion and the conducting wire are substantially the same, and therefore the axial expansion and contraction of the support portion. Are always consistent, and it is difficult for the thermal stress in the vertical direction to occur with respect to the conductive line. In addition, since the coefficient of linear thermal expansion of the mounting surface of the bus bar, the conductive wire, and the circuit board is substantially the same, the horizontal expansion and contraction with respect to the mounting surface of the bus bar always coincides with each other. Therefore, horizontal heat stress is also unlikely to occur. Therefore, the durability of the semiconductor device in which the circuit board and the semiconductor element are arranged in a hierarchical structure to reduce the influence of the heat generation of the semiconductor element on the integrated circuit and the operational stability is improved further improves.

請求項2の発明では、上記半導体素子と上記バスバーと上記回路基板とを内部に収納する絶縁性樹脂からなる筐体を具備し、上記回路基板を上記筐体の内周壁から離隔して保持する。   According to a second aspect of the present invention, there is provided a casing made of an insulating resin that accommodates the semiconductor element, the bus bar, and the circuit board therein, and the circuit board is held away from the inner peripheral wall of the casing. .

請求項2の発明によれば、上記半導体素子と上記回路基板とが上記筐体の熱収縮に伴う冷熱ストレスを全く受けることがないので、半導体装置の耐久性が更に向上する。   According to the invention of claim 2, since the semiconductor element and the circuit board are not subjected to any thermal stress accompanying thermal contraction of the casing, the durability of the semiconductor device is further improved.

具体的には、請求項3の発明の様に、上記バスバーは、銅、銅−亜鉛合金、銅−錫合金、銅−ニッケル合金、銅−亜鉛−ニッケル合金のいずれかの金属材料を用いて形成するのが望ましい。   Specifically, as in the invention of claim 3, the bus bar is made of any metal material of copper, copper-zinc alloy, copper-tin alloy, copper-nickel alloy, copper-zinc-nickel alloy. It is desirable to form.

請求項3の発明によれば、上記導通線と上記バスバーと上記回路基板との線熱膨張係数を略同一にできる。加えて、これらの金属材料は、熱伝導率も高く、放熱性に優れているので、上記半導体素子を速やかに冷却できる。更に、これらの金属材料は、抵抗値が低く、上記半導体素子への大電流の供給が容易である。従って、半導体装置の耐久性と安定性とが更に向上する。   According to invention of Claim 3, the linear thermal expansion coefficient of the said conducting wire, the said bus-bar, and the said circuit board can be made substantially the same. In addition, since these metal materials have high thermal conductivity and excellent heat dissipation, the semiconductor element can be quickly cooled. Further, these metal materials have a low resistance value and can easily supply a large current to the semiconductor element. Therefore, the durability and stability of the semiconductor device are further improved.

請求項4の発明では、複数の上記半導体素子を上記バスバーに実装し、上記バスバーと複数の上記半導体素子とを導通せしめる。   In a fourth aspect of the invention, the plurality of semiconductor elements are mounted on the bus bar, and the bus bar and the plurality of semiconductor elements are made conductive.

請求項4の発明によれば、複数の上記半導体素子へバスバーから共通の電位を供給できる。バスバーは、基板上での回路形成に比較して遙に抵抗値を低くできるので、上記半導体素子への大電流の供給が容易である。従って、半導体装置の耐久性と安定性とが更に向上する。又、複数の半導体素子を一つのバスバーに実装することにより効率的に放熱できるので、集積密度を上げ、半導体装置の更なる小型化を図ることもできる。   According to the invention of claim 4, a common potential can be supplied from the bus bar to the plurality of semiconductor elements. Since the bus bar can have a resistance value much lower than that of circuit formation on the substrate, it is easy to supply a large current to the semiconductor element. Therefore, the durability and stability of the semiconductor device are further improved. Further, since a plurality of semiconductor elements can be efficiently radiated by mounting them on one bus bar, the integration density can be increased and the semiconductor device can be further miniaturized.

請求項5の発明では、上記バスバーの実装面に対向する面側に、電気絶縁性の接着剤を介して、高熱伝導率を有する材料からなるヒートシンクを配設する。   In a fifth aspect of the present invention, a heat sink made of a material having a high thermal conductivity is disposed on the surface side facing the mounting surface of the bus bar via an electrically insulating adhesive.

請求項5の発明によれば、上記半導体素子から放出された熱が上記バスバーを介して上記ヒートシンクに放出され、上記半導体素子が速やかに冷却されるので、半導体装置の更なる耐久性の向上並びに動作の安定化を図ることができる。   According to the invention of claim 5, the heat released from the semiconductor element is released to the heat sink through the bus bar, and the semiconductor element is quickly cooled. The operation can be stabilized.

請求項6の発明では、内燃機関の気筒毎に設けられたグロープラグへの通電を上記半導体素子のスイッチングによって制御するグロープラグ制御装置に、請求項1ないし5のいずれか1項に記載の半導体装置を適用する。   According to a sixth aspect of the present invention, there is provided a glow plug control device for controlling energization to a glow plug provided for each cylinder of an internal combustion engine by switching the semiconductor element, and the semiconductor according to any one of the first to fifth aspects. Apply the device.

請求項6の発明によれば、半導体素子の導通線への冷熱ストレスが生じがたく、耐久性に優れたグロープラグ制御装置が実現できる。   According to the sixth aspect of the present invention, it is possible to realize a glow plug control device that is less susceptible to thermal stress on the conductive wire of the semiconductor element and has excellent durability.

図1を参照して本発明の第1の実施形態として半導体装置10について説明する。バスバー300は、例えば銅、銅とニッケルとの合金等の金属材料によって平板上に形成されている。その表面には、動作時のオン電流によって発熱する発熱性の半導体素子200が実装されている。
回路基板100は、ガラスエポキシ樹脂等の基板に半導体素子200を制御する集積回路150や抵抗、コンデンサ、コイル等の受動部品が実装され、入出力回路等が形成されている。
バスバー300の外周縁の複数箇所が支持部310、320として実装面に対して略垂直方向に伸びる略柱状に延設されている。バスバー300の実装面と回路基板100とは、略並行に配設されており、支持部310、320によって、回路基板100がバスバー300と階層状態となるように支持固定されている。
半導体素子200は、回路基板100に形成された回路と導通線210によって導通状態となっている。
A semiconductor device 10 will be described with reference to FIG. 1 as a first embodiment of the present invention. The bus bar 300 is formed on a flat plate using a metal material such as copper or an alloy of copper and nickel. A heat-generating semiconductor element 200 that generates heat due to an on-current during operation is mounted on the surface.
The circuit board 100 includes an integrated circuit 150 for controlling the semiconductor element 200 and a passive component such as a resistor, a capacitor, and a coil mounted on a substrate such as a glass epoxy resin to form an input / output circuit and the like.
A plurality of locations on the outer peripheral edge of the bus bar 300 are extended as substantially support columns 310 and 320 in a substantially columnar shape extending in a direction substantially perpendicular to the mounting surface. The mounting surface of the bus bar 300 and the circuit board 100 are disposed substantially in parallel, and the circuit board 100 is supported and fixed so as to be in a hierarchical state with the bus bar 300 by the support portions 310 and 320.
The semiconductor element 200 is in a conductive state by a circuit formed on the circuit board 100 and a conductive line 210.

バスバー300、支持部310、320及び導通線210に用いられている銅及び銅合金のTECは、16〜20ppm程度であり、回路基板100に用いられるガラスエポキシ樹脂のTECは20ppm以下である。
従って、半導体素子200の発熱と冷却とが繰り返されても、支持部310、320と導通線210のTECが略同一であるので、支持部310、320の軸方向の伸縮が常に一致し、導通線210に対して上下方向の冷熱ストレスが生じ難い。
又、バスバー300の実装面と導通線210と回路基板との線熱膨張係数が略同一であるので、バスバー300の実装面に対して水平方向の伸縮も常に一致し、導通線210に対して水平方向の冷熱ストレスも生じ難い。
従って、回路基板100と半導体素子200とを階層構造に配設して、集積回路150への半導体素子200の発熱の影響を少なくして、動作安定性の向上を図った半導体装置10の耐久性が向上する。
The TEC of copper and copper alloy used for the bus bar 300, the support portions 310 and 320, and the conducting wire 210 is about 16 to 20 ppm, and the TEC of the glass epoxy resin used for the circuit board 100 is 20 ppm or less.
Therefore, even if heat generation and cooling of the semiconductor element 200 are repeated, the TECs of the support portions 310 and 320 and the conducting wire 210 are substantially the same. A heat stress in the vertical direction is unlikely to occur with respect to the line 210.
Further, since the linear thermal expansion coefficients of the mounting surface of the bus bar 300, the conductive line 210, and the circuit board are substantially the same, the horizontal expansion and contraction with respect to the mounting surface of the bus bar 300 always coincides with each other. Horizontal heat stress is also unlikely to occur.
Therefore, the durability of the semiconductor device 10 in which the circuit board 100 and the semiconductor element 200 are arranged in a hierarchical structure to reduce the influence of heat generated by the semiconductor element 200 on the integrated circuit 150 and to improve the operational stability. Will improve.

バスバー300と支持部310、320とは、銅、銅と亜鉛との合金、銅と錫との合金、銅とニッケルとの合金、銅と亜鉛とニッケルとの合金のいずれかの金属材料を用いて形成するのが好ましい。
回路基板100は、ガラスエポキシ樹脂と銅とを積層したものやポリアミドと銅とを積層したものなどを用いるのが望ましい。
特に、半導体素子200として、パワーMOSFET(金属酸化膜型電界効果トランジスタ)、IGBT(絶縁ゲートバイポーラトランジスタ)、BSIT(バイポーラモード静電誘導トランジスタ)等の大電流を制御するパワーデバイスを用いた場合に、本発明の効果が大きい。
又、本実施形態においては、バスバー300の実装面と支持部310、320とが一体的に形成された例を示したが、必ずしも両者は一体である必要はなく、バスバー300と導通線210と複数の支持部310、320とが略同一の線熱膨張係数を有する材料を用いて形成されていれば、支持部310、320がバスバー300と別部材で形成されていても本発明の効果を発揮できる。
The bus bar 300 and the support portions 310 and 320 are made of any metal material such as copper, an alloy of copper and zinc, an alloy of copper and tin, an alloy of copper and nickel, or an alloy of copper, zinc and nickel. Is preferably formed.
As the circuit board 100, it is desirable to use a laminate of glass epoxy resin and copper or a laminate of polyamide and copper.
In particular, when a power device that controls a large current, such as a power MOSFET (metal oxide field effect transistor), IGBT (insulated gate bipolar transistor), or BSIT (bipolar mode electrostatic induction transistor), is used as the semiconductor element 200. The effect of the present invention is great.
Further, in the present embodiment, an example in which the mounting surface of the bus bar 300 and the support portions 310 and 320 are integrally formed is shown. However, the two are not necessarily integrated, and the bus bar 300 and the conducting wire 210 are not necessarily integrated. If the plurality of support portions 310 and 320 are formed using a material having substantially the same linear thermal expansion coefficient, the effect of the present invention can be obtained even if the support portions 310 and 320 are formed of a member separate from the bus bar 300. Can demonstrate.

図2を参照して、本発明の第2の実施形態における半導体装置としてGCU10(グロープラグ制御ユニット)について詳述する。
図2は、GCU10の要部の構成概要を示す分解斜視図である。
回路基板100には、後述する回路が形成され、集積回路150、シャント抵抗140等が実装されている。
電源コネクタ部110には、電源端子111がインサート成形され、出力コネクタ部120には、出力端子121がインサート成形され、入力コネクタ部130には、入力端子131がインサート成形されている。
回路基板100には、電源端子挿入孔112、出力端子挿入孔122、入力端子挿入孔132が穿設されている。
電源端子111、出力端子121、入力端子131は、それぞれ電源端子挿入孔112、出力端子挿入孔122、入力端子挿入孔132に挿入され、回路基板100に形成された回路にハンダ付け等により導通接続されている。
With reference to FIG. 2, a GCU 10 (glow plug control unit) will be described in detail as a semiconductor device according to the second embodiment of the present invention.
FIG. 2 is an exploded perspective view illustrating a configuration outline of a main part of the GCU 10.
A circuit described later is formed on the circuit board 100, and an integrated circuit 150, a shunt resistor 140, and the like are mounted thereon.
A power terminal 111 is insert-molded in the power connector section 110, an output terminal 121 is insert-molded in the output connector section 120, and an input terminal 131 is insert-molded in the input connector section 130.
The circuit board 100 has a power terminal insertion hole 112, an output terminal insertion hole 122, and an input terminal insertion hole 132.
The power supply terminal 111, the output terminal 121, and the input terminal 131 are inserted into the power supply terminal insertion hole 112, the output terminal insertion hole 122, and the input terminal insertion hole 132, respectively, and are electrically connected to the circuit formed on the circuit board 100 by soldering or the like. Has been.

平板状のバスバー300の表面には、半導体素子としてパワーMOSFET200が、複数個実装され、ハンダ箔240によって固着され、バスバー300とパワーMOSFET200の下面に放熱板を兼ねて設けられている下面ドレイン端子211と導通している。尚、本実施形態においては、パワーMOSFET200が4個載置された例を示したが、搭載する半導体素子の数を限定するものではなく適宜変更可能である。
パワーMOSFET200と回路基板100とを接続する導通線として、ドレイン端子210、ソース端子220、ゲート端子230が、パワーMOSFET200から垂直方向に伸びて、回路基板100に穿設されたドレイン端子挿入孔211、ソース端子挿入孔221、ゲート端子挿入孔231に挿入され、回路基板100の表面に形成された回路と接続されている。パワーMOSFET200は、ネジ250を用いてバスバー300にネジ止めしても良い。
A plurality of power MOSFETs 200 as semiconductor elements are mounted on the surface of the flat bus bar 300 and are fixed by solder foils 240, and are provided on the lower surface of the bus bar 300 and the power MOSFET 200 as a heat sink. And continuity. In the present embodiment, an example is shown in which four power MOSFETs 200 are mounted. However, the number of semiconductor elements to be mounted is not limited and can be changed as appropriate.
A drain terminal 210, a source terminal 220, and a gate terminal 230 extend vertically from the power MOSFET 200 as conduction lines connecting the power MOSFET 200 and the circuit board 100, and are formed in the circuit board 100. The circuit is inserted into the source terminal insertion hole 221 and the gate terminal insertion hole 231 and connected to a circuit formed on the surface of the circuit board 100. The power MOSFET 200 may be screwed to the bus bar 300 using screws 250.

バスバー300の角部の3箇所にバスバー300の実装面に対して略垂直方向に板状に伸びる支持部310、320、330が形成されている。
回路基板100には、支持部挿入孔321、331が穿設されており、支持部310は、電源端子挿入孔112に電源端子111と共に挿入され、支持部320、330は支持部挿入孔321、331に挿入され、回路基板100をバスバー300の実装面に対して略行の階層状態となるように支持固定している。
従って、本実施形態においても、上記実施形態と同様に、導通線として回路基板100とパワーMOSFET200とを導通接続するドレイン端子210、ソース端子220、ゲート端子230に働く冷熱ストレスを緩和することができる。
Support portions 310, 320, and 330 are formed at three corners of the bus bar 300 so as to extend in a plate shape in a direction substantially perpendicular to the mounting surface of the bus bar 300.
The circuit board 100 is provided with support portion insertion holes 321 and 331, the support portion 310 is inserted into the power terminal insertion hole 112 together with the power terminal 111, and the support portions 320 and 330 are the support portion insertion holes 321, The circuit board 100 is supported and fixed so as to be in a substantially hierarchical state with respect to the mounting surface of the bus bar 300.
Therefore, also in the present embodiment, similarly to the above-described embodiment, the thermal stress acting on the drain terminal 210, the source terminal 220, and the gate terminal 230 that electrically connect the circuit board 100 and the power MOSFET 200 as conductive lines can be reduced. .

更に、バスバー300の角部の3箇所に設けられた支持部310、320、330のて3箇所で支持することにより、回路基板100に反りなどがあっても、回路基板100を安定して支持固定できる。
又、3点支持とすることにより、回路基板100とバスバー300とのそれぞれの角部の内一箇所が拘束されていないので、回路基板100、バスバー300とも、熱収縮による歪を逃がすことができ、ドレイン端子210、ソース端子220、ゲート端子230に働く冷熱ストレスを更に緩和することができる。。
Further, by supporting the support portions 310, 320, and 330 provided at the three corners of the bus bar 300, the circuit substrate 100 can be stably supported even when the circuit substrate 100 is warped. Can be fixed.
In addition, by supporting three points, one of the corners of the circuit board 100 and the bus bar 300 is not constrained, so both the circuit board 100 and the bus bar 300 can release distortion caused by heat shrinkage. The thermal stress acting on the drain terminal 210, the source terminal 220, and the gate terminal 230 can be further alleviated. .

加えて、支持部310の形成されている外周辺と支持部320、330の形成されている外周辺とは、互いに直交している。この為、支持部310と支持部320、330とが互いに剛性を補強し相い、振動等の外力に対する支持剛性が高められている。従って、GCU10の耐久性が更に向上している。   In addition, the outer periphery where the support part 310 is formed and the outer periphery where the support parts 320 and 330 are formed are orthogonal to each other. For this reason, the support part 310 and the support parts 320 and 330 mutually reinforce the rigidity, and the support rigidity against external force such as vibration is enhanced. Therefore, the durability of the GCU 10 is further improved.

支持部310は、電源端子111と電気的に接続状態となっており、複数のパワーMOSFET200に共通の電源電位を供給可能となっている。   The support 310 is electrically connected to the power supply terminal 111 and can supply a common power supply potential to the plurality of power MOSFETs 200.

バスバー300の実装面と対向する下面側には、熱伝導性が良く電気絶縁性の接着剤410を介してヒートシンク400が接着されている。ヒートシンク400は、アルミニウム等の高い熱伝導率を有した金属材料等を用いて形成され、パワーMOSFET200からの放熱性を向上させている。   A heat sink 400 is bonded to the lower surface of the bus bar 300 facing the mounting surface via an adhesive 410 having good thermal conductivity and electrical insulation. The heat sink 400 is formed using a metal material or the like having a high thermal conductivity such as aluminum, and improves heat dissipation from the power MOSFET 200.

バスバー300は、回路基板100上での回路形成に比較して遙に抵抗値を低くできるので、パワーMOSFET200への大電流の供給が容易である。
又、電源入力回路をバスバー300によって形成することによって、回路基板100に電源入力回路を形成する必要がないので出力用回路の占有面積を多く取る事ができ、大電流を流しやすくなる。従って、GCU10の耐久性と安定性との更なる向上が期待できる。更に、複数のパワーMOSFET200を一つのバスバー300に実装することにより、効率的に放熱できるので、集積密度を上げ、GCU10の小型化を図ることも期待できる。
Since the bus bar 300 can have a resistance value much lower than that of the circuit formation on the circuit board 100, it is easy to supply a large current to the power MOSFET 200.
In addition, since the power input circuit is formed by the bus bar 300, it is not necessary to form the power input circuit on the circuit board 100, so that the area occupied by the output circuit can be increased and a large current can easily flow. Therefore, further improvement in durability and stability of the GCU 10 can be expected. Furthermore, since a plurality of power MOSFETs 200 are mounted on one bus bar 300, heat can be efficiently radiated, so that the integration density can be increased and the GCU 10 can be reduced in size.

図3は、GCU10の組付け状態での詳細を示し、(a)は、平面模式図、(b)は断面図である。尚、本図に示した回路基板100の回路パターンは模式的なもので、実際の回路を限定するものではない。
パワーMOSFET200を実装したバスバー300と集積回路150を含む回路基板100とは、絶縁性樹脂からなる筐体500に収納されている。又、筐体500の下端部において、ヒートシンク400に固定してある。
回路基板100の外周縁と筐体500の内周壁との間には間隙が設けられており、回路基板100は筐体500の熱収縮の影響を受けない。
3 shows details of the assembled state of the GCU 10, (a) is a schematic plan view, and (b) is a cross-sectional view. Note that the circuit pattern of the circuit board 100 shown in this drawing is schematic and does not limit the actual circuit.
The bus bar 300 on which the power MOSFET 200 is mounted and the circuit board 100 including the integrated circuit 150 are housed in a housing 500 made of an insulating resin. Further, the lower end of the housing 500 is fixed to the heat sink 400.
A gap is provided between the outer peripheral edge of the circuit board 100 and the inner peripheral wall of the housing 500, so that the circuit board 100 is not affected by the thermal contraction of the housing 500.

電源端子111とバスバー300の支持部310とは、回路基板100の電源端子挿入孔112に挿入され、回路基板100の表面に形成された電極パターン113と接続されている。
出力端子121は、回路基板100の出力端子122に挿入され、回路基板100の表面に形成された回路パターン123の一端に接続けされ、回路パターン123の他端には、所定の抵抗値を有するシャント抵抗140の一端が接続されている
更にシャント抵抗140の他端は、パワーMOSFET200のソース端子220と回路パターン222を介して接続されている。
シャント抵抗140の上流側には回路141が形成され、下流側には回路142が形成され、それぞれ集積回路150の入出力端子151の内、所定の位置に接続され、シャント抵抗140の電圧降下を測定して、ソース端子220から出力される電流値が測定可能となっている。
The power supply terminal 111 and the support portion 310 of the bus bar 300 are inserted into the power supply terminal insertion hole 112 of the circuit board 100 and connected to the electrode pattern 113 formed on the surface of the circuit board 100.
The output terminal 121 is inserted into the output terminal 122 of the circuit board 100 and connected to one end of the circuit pattern 123 formed on the surface of the circuit board 100, and the other end of the circuit pattern 123 has a predetermined resistance value. One end of the shunt resistor 140 is connected. The other end of the shunt resistor 140 is connected to the source terminal 220 of the power MOSFET 200 via the circuit pattern 222.
A circuit 141 is formed on the upstream side of the shunt resistor 140, and a circuit 142 is formed on the downstream side, which are respectively connected to predetermined positions in the input / output terminals 151 of the integrated circuit 150, and the voltage drop of the shunt resistor 140 is reduced. The current value output from the source terminal 220 can be measured.

パワーMOSFET200のドレイン端子210は、下面ドレイン端子211とパワーMOSFET200の内部で接続されている。
ドレイン端子210は、回路基板100に穿設されたドレイン端子挿入孔211に挿入され、更に回路基板100の表面に形成された回路パターン212の一端に接続され、回路パターン212の他端は集積回路150の入出力端子151の内、所定の端子に接続され、ドレイン端子210に供給される電源電圧を測定可能となっている。
入力端子131は、回路基板100に穿設された入力端子挿入孔132に挿入され、回路パターン133の一端に接続され、回路パターン133の他端は集積回路150の入出力端子151の内、所定の端子に接続され、外部に設けられた図略のECUからの信号を集積回路150に入力している。
The drain terminal 210 of the power MOSFET 200 is connected to the lower surface drain terminal 211 inside the power MOSFET 200.
The drain terminal 210 is inserted into a drain terminal insertion hole 211 formed in the circuit board 100, and further connected to one end of a circuit pattern 212 formed on the surface of the circuit board 100. The other end of the circuit pattern 212 is an integrated circuit. The power supply voltage supplied to the drain terminal 210 can be measured by being connected to a predetermined terminal among the 150 input / output terminals 151.
The input terminal 131 is inserted into an input terminal insertion hole 132 formed in the circuit board 100 and connected to one end of the circuit pattern 133. The other end of the circuit pattern 133 is a predetermined input / output terminal 151 of the integrated circuit 150. A signal from an unillustrated ECU provided outside is input to the integrated circuit 150.

本発明の第2の実施形態におけるGCU10を用いたグロープラグ通電制御装置1を図4に等価回路で示す。
図略の内燃機関は、複数の気筒によって構成されており、気筒毎にグロープラグ70が設けられている。電源90からグロープラグ70への通電をパワーMOSFET200のスイッチングによって制御している。尚、気筒の数は、適宜変更可能であるので図中にはnで示してある。
パワーMOSFET200は、ECU80からの通電指令に従って集積回路150によってオンオフ制御されている。
グロープラグ70への通電は、内燃機関の燃焼状況に応じて、集積回路150によってPWM(パルス幅変調)制御がなされている。
FIG. 4 shows an equivalent circuit of the glow plug energization control device 1 using the GCU 10 according to the second embodiment of the present invention.
The internal combustion engine (not shown) includes a plurality of cylinders, and a glow plug 70 is provided for each cylinder. Energization from the power supply 90 to the glow plug 70 is controlled by switching of the power MOSFET 200. Since the number of cylinders can be changed as appropriate, it is indicated by n in the figure.
The power MOSFET 200 is ON / OFF controlled by the integrated circuit 150 in accordance with an energization command from the ECU 80.
The energization of the glow plug 70 is PWM (pulse width modulation) controlled by the integrated circuit 150 in accordance with the combustion state of the internal combustion engine.

図5を参照して、本発明の効果を説明する。本図(a)は、実施例1として、本発明の第2の実施形態におけるGCU10の断面図、本図(b)は、比較例1として、従来構造のGCU10xの断面図である。
本図(a)に示すように、パワーMOSFET200の発熱と冷却とが繰り返されても、支持部310、320、330と導通線210、220、230のTECが略同一であるので、支持部310、320、330の軸方向の伸縮が常に一致し、導通線210、220、230に対して上下方向の冷熱ストレスが生じ難い。
又、バスバー300の実装面と導通線210、220、230と回路基板100とのTECが略同一であるので、バスバー300の実装面に対して水平方向の伸縮も常に一致し、導通線210、220、230に対して水平方向の冷熱ストレスも生じ難い。
更に、回路基板100とパワーMOSFET200とは、筐体500及び筐体蓋510から離隔しているので、筐体500及び筐体蓋510の熱収縮に伴う冷熱ストレスを全く受けることがない。
従って、回路基板100とパワーMOSFET200とを階層構造に配設して、集積回路150へのパワーMOSFET200の発熱の影響を少なくして、動作安定性の向上を図ったGCU10の耐久性の向上が期待できる。
The effect of the present invention will be described with reference to FIG. This figure (a) is sectional drawing of GCU10 in the 2nd Embodiment of this invention as Example 1, and this figure (b) is sectional drawing of GCU10x of the conventional structure as Comparative Example 1. FIG.
As shown in FIG. 5A, even if heat generation and cooling of the power MOSFET 200 are repeated, the TECs of the support portions 310, 320, and 330 and the conductive wires 210, 220, and 230 are substantially the same. , 320 and 330 always coincide with each other in the axial direction, and it is difficult for the vertical and vertical thermal stresses to occur on the conductive wires 210, 220 and 230.
Further, since the TEC of the mounting surface of the bus bar 300 and the conductive lines 210, 220, 230 and the circuit board 100 are substantially the same, the horizontal expansion and contraction with respect to the mounting surface of the bus bar 300 always coincides with each other. It is also difficult for thermal stress in the horizontal direction to occur with respect to 220 and 230.
Furthermore, since the circuit board 100 and the power MOSFET 200 are separated from the casing 500 and the casing lid 510, the circuit board 100 and the power MOSFET 200 are not subjected to any thermal stress accompanying thermal contraction of the casing 500 and the casing lid 510.
Accordingly, the circuit board 100 and the power MOSFET 200 are arranged in a hierarchical structure so that the influence of heat generated by the power MOSFET 200 on the integrated circuit 150 is reduced, and the durability of the GCU 10 is expected to improve the operational stability. it can.

一方、本図(b)に示すように、従来構造のGCU10xでは、回路基板100xが筐体500xにネジ170xによって固定されている。
従って、筐体500x及び筐体蓋510xのTECと回路基板100xとのTECとの差が大きいので、筐体500x及び筐体蓋510xの熱収縮によって回路基板100xが引っ張られ、導通線210x、220x、230xに大きな冷熱ストレスが働き、導通線210x、220x、230xの破断や、ハンダ部の剥離を招く虞があった。
On the other hand, as shown in FIG. 7B, in the GCU 10x having the conventional structure, the circuit board 100x is fixed to the housing 500x with screws 170x.
Accordingly, since the difference between the TEC of the casing 500x and the casing lid 510x and the TEC of the circuit board 100x is large, the circuit board 100x is pulled by the thermal contraction of the casing 500x and the casing lid 510x, and the conductive wires 210x, 220x. , 230x is subjected to a large thermal stress, which may cause breakage of the conductive wires 210x, 220x, and 230x and peeling of the solder portion.

図6(a)、(b)、(c)、(d)に、本発明の要部であるバスバーの形状例を示す。上記実施形態においては、バスバー300の支持部310、320、330を角部に設けた例を示したが、(a)に示すバスバー300aのように支持部310a、320a、330aの位置は適宜変更可能である。又、(b)に示すバスバー300bのように、支持部310b、320bを断面略L字形の屈曲形状に形成して支持剛性を高めても良い。更に、上記実施形態では、バスバー300は矩形に設けた例を示したが、(c)に示すバスバー300cのように、使用形態に応じて異形に設けても良い。又、上記実施形態では、支持部310、320、330は、バスバー300の外周縁の複数箇所を外側に向かって伸びる帯状に延設して、これを垂直に引き起こして形成したが、(d)に示すバスバー300dのように、平板状のバスバー300dの支持部310d、320d、330dをプレス加工等により垂直方向に有低円柱状に突設するように圧延しても良い。
又、バスバー300と回路基板100との接続は、上記実施形態では、回路基板100に穿設した挿入孔112、321、331に支持部310、320、330の先端を挿入したが、支持部310、320、330の先端に屈曲部を設けて、該屈曲部にネジ孔を設けて、回路基板100をネジ止めする構造としても良い。
FIGS. 6A, 6B, 6C, and 6D show examples of the shape of the bus bar, which is the main part of the present invention. In the above embodiment, the example in which the support portions 310, 320, and 330 of the bus bar 300 are provided at the corners has been shown. However, the positions of the support portions 310a, 320a, and 330a are appropriately changed as in the bus bar 300a shown in FIG. Is possible. Further, like the bus bar 300b shown in FIG. 5B, the support portions 310b and 320b may be formed in a bent shape having a substantially L-shaped cross section to increase the support rigidity. Furthermore, in the above-described embodiment, the example in which the bus bar 300 is provided in a rectangular shape has been described. However, the bus bar 300 may be provided in a different shape according to the usage pattern, as in the bus bar 300c illustrated in (c). In the above embodiment, the support portions 310, 320, and 330 are formed by extending a plurality of locations on the outer peripheral edge of the bus bar 300 in a strip shape that extends outward, and causing this to occur vertically. Like the bus bar 300d shown in FIG. 3, the support portions 310d, 320d, and 330d of the flat bus bar 300d may be rolled so as to project in a low columnar shape in the vertical direction by pressing or the like.
In the above embodiment, the bus bar 300 and the circuit board 100 are connected by inserting the tips of the support portions 310, 320, and 330 into the insertion holes 112, 321, and 331 formed in the circuit board 100. 320, 330 may be provided with a bent portion, and a screw hole may be provided in the bent portion so that the circuit board 100 is screwed.

本発明は上記実施形態に限定するものではなく、本発明の趣旨を逸脱しない限りにおいて、半導体装置の用途、機能に応じて、使用する半導体素子、集積回路の機能、形状等は適宜変更可能であり、例えば、半導体素子のスイッチング機能を利用して、燃料噴射制御、点火制御、モータ制御、油圧制御、電力分配制御等の様々な制御を行う半導体装置への適用が可能である。   The present invention is not limited to the above-described embodiment, and the semiconductor element to be used, the function, shape, etc. of the integrated circuit can be appropriately changed according to the use and function of the semiconductor device without departing from the spirit of the present invention. For example, the present invention can be applied to a semiconductor device that performs various controls such as fuel injection control, ignition control, motor control, hydraulic pressure control, and power distribution control using a switching function of a semiconductor element.

は、本発明の第1の実施形態における半導体装置の要部断面図。These are principal part sectional drawings of the semiconductor device in the 1st Embodiment of this invention. は、本発明の第2の実施形態におけるグロープラグコントローラの構成概要を示す分解斜視図。These are the disassembled perspective views which show the structure outline | summary of the glow plug controller in the 2nd Embodiment of this invention. は、本発明の第2の実施形態におけるグロープラグコントローラの詳細を示し、(a)は、その平面図、(b)は、その断面図。These show the detail of the glow plug controller in the 2nd Embodiment of this invention, (a) is the top view, (b) is the sectional drawing. は、本発明の第2の実施形態におけるグロープラグコントローラを用いたグロープラグ制御システムの全体構成を示す等価回路図。These are equivalent circuit diagrams which show the whole structure of the glow plug control system using the glow plug controller in the 2nd Embodiment of this invention. (a)は、本発明の第2の実施形態における効果を示す要部断面図、(b)は比較例として従来構造のグロープラグコントローラの問題点を示す断面図。(A) is principal part sectional drawing which shows the effect in the 2nd Embodiment of this invention, (b) is sectional drawing which shows the problem of the glow plug controller of a conventional structure as a comparative example. (a)、(b)、(c)、(d)は、本発明の他の実施形態におけるバスバーの形状例を示す斜視図。(A), (b), (c), (d) is a perspective view which shows the example of a shape of the bus-bar in other embodiment of this invention. は、従来のグロープラグコントローラの詳細を示し、(a)は、その平面図、(b)は、その断面図。These show the detail of the conventional glow plug controller, (a) is the top view, (b) is the sectional drawing.

符号の説明Explanation of symbols

10 半導体装置
100 回路基板
150 集積回路
200 半導体素子
210 導通線
300 バスバー
310、320支持部
DESCRIPTION OF SYMBOLS 10 Semiconductor device 100 Circuit board 150 Integrated circuit 200 Semiconductor element 210 Conduction line 300 Bus bar 310,320 support part

Claims (6)

少なくとも、発熱性の半導体素子と、該半導体素子をその表面に実装する金属製のバスバーと、上記半導体素子の作動を制御する集積回路を有した回路基板とを具備する半導体装置において、
上記回路基板と上記バスバーの実装面とが略平行になるように配設し、
上記半導体素子と上記回路基板とを接続する導通線の線熱膨張係数と、上記バスバーの線熱膨張係数と、上記回路基板の線膨張係数とを略同一とし、
上記バスバーの実装面の複数箇所に、該実装面に対して略垂直方向に伸びる支持部を延設して、上記回路基板を該支持部によって支持固定することを特徴とする半導体装置。
In a semiconductor device comprising at least a heat-generating semiconductor element, a metal bus bar for mounting the semiconductor element on a surface thereof, and a circuit board having an integrated circuit for controlling the operation of the semiconductor element,
Arranged so that the circuit board and the mounting surface of the bus bar are substantially parallel,
The linear thermal expansion coefficient of the conducting wire connecting the semiconductor element and the circuit board, the linear thermal expansion coefficient of the bus bar, and the linear expansion coefficient of the circuit board are substantially the same,
A semiconductor device comprising: a plurality of support portions extending in a direction substantially perpendicular to the mounting surface at a plurality of locations on the mounting surface of the bus bar, and the circuit board being supported and fixed by the supporting portion.
上記半導体素子と上記バスバーと上記回路基板とを内部に収納する絶縁性樹脂からなる筐体を具備し、上記回路基板を上記筐体の内周壁から離隔して保持する請求項1に記載の半導体装置。   2. The semiconductor according to claim 1, further comprising a housing made of an insulating resin that accommodates the semiconductor element, the bus bar, and the circuit board therein, and holding the circuit board apart from an inner peripheral wall of the housing. apparatus. 上記バスバーは、銅、銅−亜鉛合金、銅−錫合金、銅−ニッケル合金、銅−亜鉛−ニッケル合金のいずれかの金属材料を用いて形成する請求項1または2に記載の半導体装置。   3. The semiconductor device according to claim 1, wherein the bus bar is formed using any metal material of copper, a copper-zinc alloy, a copper-tin alloy, a copper-nickel alloy, and a copper-zinc-nickel alloy. 複数の上記半導体素子を上記バスバーに実装し、上記バスバーと複数の上記半導体素子とを導通せしめる請求項1ないし3のいずれか1項に記載の半導体装置。   4. The semiconductor device according to claim 1, wherein the plurality of semiconductor elements are mounted on the bus bar, and the bus bar and the plurality of semiconductor elements are electrically connected. 5. 上記バスバーの実装面と対向する面側に、電気絶縁性の接着剤を介して、高熱伝導率を有する材料からなるヒートシンクを配設した請求項1ないし4のいずれか1項に記載の半導体装置。   5. The semiconductor device according to claim 1, wherein a heat sink made of a material having high thermal conductivity is disposed on a surface side facing the mounting surface of the bus bar via an electrically insulating adhesive. . 内燃機関の気筒毎に設けられたグロープラグへの通電を上記半導体素子のスイッチングによって制御するグロープラグ制御装置に適用される請求項1ないし5のいずれか1項に記載の半導体装置。   6. The semiconductor device according to claim 1, which is applied to a glow plug control device that controls energization to a glow plug provided for each cylinder of an internal combustion engine by switching of the semiconductor element.
JP2007267375A 2007-10-15 2007-10-15 Semiconductor device Active JP5186877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007267375A JP5186877B2 (en) 2007-10-15 2007-10-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007267375A JP5186877B2 (en) 2007-10-15 2007-10-15 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2009099638A true JP2009099638A (en) 2009-05-07
JP5186877B2 JP5186877B2 (en) 2013-04-24

Family

ID=40702393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007267375A Active JP5186877B2 (en) 2007-10-15 2007-10-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5186877B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124488A (en) * 2009-12-14 2011-06-23 Anden Electronic circuit device
JP2011172413A (en) * 2010-02-19 2011-09-01 Autonetworks Technologies Ltd Electrical junction box
JP2015021816A (en) * 2013-07-18 2015-02-02 矢崎総業株式会社 Shunt resistance current sensor
WO2015093219A1 (en) * 2013-12-20 2015-06-25 ボッシュ株式会社 Glow plug failure diagnostic method and glow plug failure diagnostic apparatus
JP5792192B2 (en) * 2010-12-16 2015-10-07 ボッシュ株式会社 Glow plug drive control method and glow plug drive control device
DE102013107563B4 (en) * 2012-08-21 2017-04-27 Borgwarner Ludwigsburg Gmbh Igniter for gasoline engines
JP2019021790A (en) * 2017-07-19 2019-02-07 ダイキン工業株式会社 Electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106567041B (en) * 2016-11-09 2018-09-18 东南大学 A kind of preparation method suitable for the gold-plated nickel material of silica gel push-button

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621261U (en) * 1992-08-19 1994-03-18 株式会社富士通ゼネラル Power module
JP2000068446A (en) * 1998-08-25 2000-03-03 Hitachi Ltd Power semiconductor module
JP2002293202A (en) * 2001-03-30 2002-10-09 Auto Network Gijutsu Kenkyusho:Kk Power distributor for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621261U (en) * 1992-08-19 1994-03-18 株式会社富士通ゼネラル Power module
JP2000068446A (en) * 1998-08-25 2000-03-03 Hitachi Ltd Power semiconductor module
JP2002293202A (en) * 2001-03-30 2002-10-09 Auto Network Gijutsu Kenkyusho:Kk Power distributor for vehicle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124488A (en) * 2009-12-14 2011-06-23 Anden Electronic circuit device
CN102143673A (en) * 2009-12-14 2011-08-03 安电株式会社 Electronic circuit device
CN102143673B (en) * 2009-12-14 2015-04-01 安电株式会社 Electronic circuit device
JP2011172413A (en) * 2010-02-19 2011-09-01 Autonetworks Technologies Ltd Electrical junction box
JP5792192B2 (en) * 2010-12-16 2015-10-07 ボッシュ株式会社 Glow plug drive control method and glow plug drive control device
DE102013107563B4 (en) * 2012-08-21 2017-04-27 Borgwarner Ludwigsburg Gmbh Igniter for gasoline engines
JP2015021816A (en) * 2013-07-18 2015-02-02 矢崎総業株式会社 Shunt resistance current sensor
WO2015093219A1 (en) * 2013-12-20 2015-06-25 ボッシュ株式会社 Glow plug failure diagnostic method and glow plug failure diagnostic apparatus
JPWO2015093219A1 (en) * 2013-12-20 2017-03-16 ボッシュ株式会社 Glow plug fault diagnosis method and glow plug fault diagnosis device
JP2019021790A (en) * 2017-07-19 2019-02-07 ダイキン工業株式会社 Electronic device
JP6989760B2 (en) 2017-07-19 2022-01-12 ダイキン工業株式会社 Electronics

Also Published As

Publication number Publication date
JP5186877B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5186877B2 (en) Semiconductor device
JP7001960B2 (en) Circuit configuration
KR20060054393A (en) Electronic unit and method for manufacturing an electronic unit
US20120113603A1 (en) Electronic circuit device
JP4911009B2 (en) Semiconductor device including bus bar and bus bar
JP2008291730A (en) Engine control device
US10405464B2 (en) Electronic power module, electronic architecture comprising same, voltage converter and electric machine comprising same
JP2018198304A (en) Coil device, substrate-equipped coil device, and electrical junction box
JP2009123812A (en) Electronic control device of heat radiating structure
JP2004519849A (en) Apparatus comprising a power supply module device and an integrated circuit mounted on support means
CN106256063B (en) circuit structure and electric connection box
JP2015026820A (en) Electronic apparatus
CN112056011B (en) Circuit structure and electrical connection box
JP2013522894A (en) CIRCUIT DEVICE AND VEHICLE CONTROL DEVICE INCLUDING CIRCUIT DEVICE
JP2019169638A (en) Heating component mounting structure
CN107666817B (en) Controller subassembly, control box and fan
JP2002344177A (en) Electronic device
WO2019087327A1 (en) Semiconductor device, production method therefor, and automobile
CN113728526B (en) Wiring board
JP2017073445A (en) Power conversion device
JP2013207214A (en) Injection molded substrate and substrate assembly
JP2018142590A (en) Power supply device, and switching hub comprising the same
JP2017163809A (en) Electric motor control device
JP2007048550A (en) Ion generating device
JP2006156719A (en) Component unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5186877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250