JP2009099332A - Insulated voltage device - Google Patents

Insulated voltage device Download PDF

Info

Publication number
JP2009099332A
JP2009099332A JP2007268480A JP2007268480A JP2009099332A JP 2009099332 A JP2009099332 A JP 2009099332A JP 2007268480 A JP2007268480 A JP 2007268480A JP 2007268480 A JP2007268480 A JP 2007268480A JP 2009099332 A JP2009099332 A JP 2009099332A
Authority
JP
Japan
Prior art keywords
insulating member
derived
voltage device
insulated
petroleum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007268480A
Other languages
Japanese (ja)
Inventor
Yasuyuki Kurata
保幸 蔵田
Jun Yamakawa
潤 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2007268480A priority Critical patent/JP2009099332A/en
Publication of JP2009099332A publication Critical patent/JP2009099332A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To contribute to global environment conservation during insulating treatment of a conductive member of a voltage device; and to give sufficient durability (for example, strength and degradation-resistance) and electrical characteristics to the voltage device. <P>SOLUTION: A polymer composition obtained by adding and kneading a hydrolysis inhibitor and a crosslinking agent against a polymer material with a biobased material (biodegradable resin or the like) as a base material, is pulverized to obtain an insulative powder. The insulative powder is powder-coated on an insulated section of the conductive member of the voltage device. Thus a biobased insulating member is coated on the insulated section of the conductive member. A petroleum-derived insulating member where a polymer composition consisting of a polymer material with a petroleum-derived material(biodegradable resin or the like) as a base material is melted and again solidified in a designated shape (a tube or the like), is coated to protect an outer periphery face of the biobased insulating member. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、絶縁処理された電圧機器に関するものであって、例えば筐体内に遮断器や断路器等の開閉機器を備えた電圧機器の絶縁処理に係るものである。   The present invention relates to an insulated voltage device, and relates to an insulation process for a voltage device including a switchgear such as a circuit breaker or a disconnector in a housing.

例えば筐体内に遮断器や断路器等の開閉機器を備えた電圧機器(高電圧機器等の重電機器)においては、社会の高度化・集中化に伴って大容量化,小型化が進み、安全性,信頼性(例えば、機械的物性(絶縁破壊電界特性等),電気的物性)等の向上も強く要求されている。例えば、電圧機器の導電部材のうち一部の部位においては、該電圧機器の小型化,安全性等の観点から、絶縁処理(絶縁材料による導電部位の被覆(モールド))が適宜施される。この絶縁処理としては、所望の部位(以下、被絶縁処理部位と称する)に対し絶縁性高分子材料から成る熱収縮チューブ等の絶縁部材(チューブ状,シート状等の所望の形状に成形された絶縁体)で被覆する方法を適用、または被絶縁処理部位に対して被覆物を形成できる程度に微紛化された粉体(以下、絶縁性粉体と称する)をパウダーコーティングする方法を適用することが知られている。   For example, in voltage equipment (heavy electrical equipment such as high-voltage equipment) equipped with switchgear such as circuit breakers and disconnectors in the housing, capacity and size have been reduced along with sophistication and concentration of society. There is also a strong demand for improvements in safety and reliability (for example, mechanical properties (dielectric breakdown field characteristics, etc.), electrical properties). For example, some of the conductive members of the voltage device are appropriately subjected to insulation treatment (covering the conductive portion (molding) with an insulating material) from the viewpoint of miniaturization and safety of the voltage device. As this insulation treatment, a desired part (hereinafter referred to as an insulated part) is formed into a desired shape such as a heat-shrinkable tube made of an insulating polymer material (tube shape, sheet shape, etc.). Applying a method of coating with an insulator), or applying a powder coating method of powder that has been atomized to such an extent that a coating can be formed on the portion to be insulated (hereinafter referred to as insulating powder) It is known.

絶縁部材としては、例えば使用目的に応じて熱可塑性樹脂(ポリエチレン等)や熱硬化性樹脂(エポキシ樹脂等)等の石油由来物質を基材(出発物質)とする高分子材料から成るもの(以下、石油由来絶縁部材と称する)が一般的に用いられてきたが、該石油由来絶縁部材を処分する場合には地球環境保全の観点で種々の問題を引き起こす恐れがある。例えば、石油由来絶縁部材を焼却処分する方法を適用すると種々の有害物質や二酸化炭素を大量に排出し、環境汚染,地球温暖化等の問題を引き起こす恐れがある点で懸念されている。一方、石油由来絶縁部材を単に埋立て処理する方法を適用することもできるが、その埋立て処理に係る最終処分場は年々減少している傾向である。また、石油由来絶縁部材を回収し再利用(リサイクル)する試みもあるが、多大な回収費用やエネルギー(再利用するための燃焼工程等のエネルギー)を要するため、十分には確立されておらず殆ど行われていない。例外的に、品質が比較的均一な石油由来絶縁部材(電圧機器に用いられているポリエチレンケーブル)のみを回収しサーマルエネルギーとして利用されているが、このサーマルエネルギーは燃焼処理工程を要するため、前記のように環境汚染,地球温暖化等の問題を招く恐れがある。   As the insulating member, for example, a material made of a polymer material based on a petroleum-derived substance (starting material) such as a thermoplastic resin (polyethylene, etc.) or a thermosetting resin (epoxy resin, etc.) according to the purpose of use (hereinafter referred to as “insulating member”) Have been used in general, but disposal of the petroleum-derived insulating member may cause various problems from the viewpoint of global environmental conservation. For example, if a method of incinerating petroleum-derived insulating members is applied, various harmful substances and carbon dioxide are discharged in large quantities, which may cause problems such as environmental pollution and global warming. On the other hand, although a method of simply landfilling petroleum-derived insulating members can be applied, the final disposal site related to the landfill treatment tends to decrease year by year. In addition, there are attempts to collect and reuse (recycle) petroleum-derived insulating members, but they are not well established because they require significant collection costs and energy (energy in the combustion process for reuse). Almost never done. Exceptionally, only petroleum-derived insulating members (polyethylene cables used in voltage equipment) with relatively uniform quality are collected and used as thermal energy. However, since this thermal energy requires a combustion treatment process, Like this, there is a risk of causing problems such as environmental pollution and global warming.

近年においては、生物由来物質(生分解性樹脂等)を基材とする高分子材料から成る絶縁部材(以下、生物由来絶縁部材と称する)が注目され始めているが(例えば、特許文献1,2)、生分解性(例えば、比較的低温で溶融し易い物性)を有するものであることから、石油由来絶縁部材と比較して耐久性(例えば、強度,耐劣化性等の寿命)が低く、特に十分な電気的特性(例えば、十分な絶縁性等)を長期間維持する必要がある電圧機器等の製品には不向きであり、実際に工業材料として適用されることは無かった。例えば、所望の形状に固形化(シート状,ペレット状等に固形化)された生物由来絶縁部材であっても、被絶縁処理部位に装着する際に変形したり、被絶縁処理部位の部位との摩擦等により破損し易い。また、パウダーコーティング法を適用した場合には、生物由来絶縁部材の厚さが不十分になったり不均一になり易い恐れがあった。   In recent years, an insulating member (hereinafter referred to as a biologically-derived insulating member) made of a polymer material based on a biological material (such as a biodegradable resin) has begun to attract attention (for example, Patent Documents 1 and 2). ), Because it has biodegradability (for example, physical properties that are easy to melt at a relatively low temperature), durability (for example, life of strength, deterioration resistance, etc.) is low compared to petroleum-derived insulating members, In particular, it is unsuitable for products such as voltage devices that need to maintain sufficient electrical characteristics (for example, sufficient insulation) for a long period of time, and is not actually applied as an industrial material. For example, even a biologically-derived insulating member that has been solidified into a desired shape (solidified into a sheet shape, a pellet shape, etc.) may be deformed when mounted on an insulated treatment site, It is easily damaged by friction. In addition, when the powder coating method is applied, there is a risk that the thickness of the biological insulating member becomes insufficient or non-uniform.

このため、前記の生物由来絶縁部材は、耐久性や電気的特性等を必要としない簡便な製品等(例えば、いわゆるワンウェイ容器等の回収が困難な生活用品)への適用に制限されていた。
特開2002−53699号公報 特開2002−358829号公報。
For this reason, the said biological-derived insulating member has been limited to application to simple products that do not require durability, electrical characteristics, etc. (for example, household goods that are difficult to collect such as so-called one-way containers).
JP 2002-53699 A JP 2002-358829 A.

以上示したようなことから、電圧機器の導電部材の絶縁処理において、地球環境保全に貢献すると共に、十分な耐久性(例えば、強度,耐劣化性等)や電気的特性等を付与できるようにすることが求められている。   As described above, in the insulation treatment of conductive members of voltage equipment, it contributes to global environmental conservation and can provide sufficient durability (for example, strength, deterioration resistance, etc.) and electrical characteristics. It is requested to do.

本発明は、前記課題に基づいてなされたものであり、電圧機器の導電部材の絶縁処理において、前記のように生活用品等に適用されていた技術とは全く異なり、地球環境保全に貢献できると共に、十分な耐久性や電気的特性等を付与できるようにする絶縁処理された電圧機器を提供することにある。   The present invention has been made on the basis of the above problems, and in the insulation treatment of conductive members of voltage equipment, is totally different from the technology applied to daily necessities as described above, and can contribute to global environmental conservation. An object of the present invention is to provide an insulated voltage device that can provide sufficient durability and electrical characteristics.

具体的に、請求項1記載の発明は、電圧機器の導電部材のうち被絶縁処理部位が絶縁処理されたものであって、生物由来物質を基材とする高分子材料と、分子中において−N=C=N−構造を有する加水分解抑制剤と、分子中において−O−O−構造を有する架橋剤と、を含む高分子組成物から成り、前記の被絶縁処理部位に対してパウダーコーティング法によって被覆された生物由来絶縁部材と、石油由来物質を基材とする高分子材料を含んだ高分子組成物から成り、チューブ状に成形されて前記の生物由来絶縁部材に被覆された石油由来絶縁部材と、を備えたことを特徴とする。   Specifically, according to the first aspect of the present invention, a portion to be insulated is insulated among conductive members of a voltage device, and a polymer material based on a biological substance and a molecule- It consists of a polymer composition containing a hydrolysis inhibitor having an N = C = N-structure and a cross-linking agent having an —O—O— structure in the molecule, and powder coating is applied to the above-mentioned insulation target site. A bio-insulating member coated by the method and a polymer composition containing a polymer material based on a petroleum-derived substance, which is formed into a tube and coated with the bio-insulating member. And an insulating member.

請求項2記載の発明は、請求項1記載の発明において、前記の生物由来物質を基材とする高分子材料は、アセチル化セルロース,ポリ乳酸,ポリブチレンサクシネート,ポリトリメチレンテレフタレート,エステル化澱粉,澱粉基ポリマー,キトサン基ポリマーのうち何れか一つ以上のバイオベースポリマーから成ることを特徴とする。   The invention according to claim 2 is the invention according to claim 1, wherein the polymer material based on the biological substance is acetylated cellulose, polylactic acid, polybutylene succinate, polytrimethylene terephthalate, esterification. It is characterized by comprising at least one bio-based polymer among starch, starch-based polymer, and chitosan-based polymer.

請求項3記載の発明は、請求項1または2記載の発明において、前記の石油由来物質を基材とする高分子材料は、ポリエチレン,ポリプロピレン,ポリ塩化ビニル,シリコーン,変性シリコーン,ポリビニルアルコール,変性ポリビニルアルコール,エチレン‐プロピレンターポリマー,ニトリル‐ブタジエンゴムのうち何れか一つ以上のベースポリマーから成ることを特徴とする。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the polymer material based on the petroleum-derived substance is polyethylene, polypropylene, polyvinyl chloride, silicone, modified silicone, polyvinyl alcohol, modified It is characterized by comprising at least one base polymer of polyvinyl alcohol, ethylene-propylene terpolymer, and nitrile-butadiene rubber.

請求項4記載の発明は、請求項1〜3記載の発明において、前記の加水分解抑制剤は、カルボジイミド化合物から成ることを特徴とする。   According to a fourth aspect of the present invention, in the first to third aspects of the present invention, the hydrolysis inhibitor comprises a carbodiimide compound.

請求項5記載の発明は、請求項1〜4記載の発明において、前記の架橋剤は、パーオキサイドから成ることを特徴とする。   According to a fifth aspect of the present invention, in the first to fourth aspects of the present invention, the cross-linking agent comprises a peroxide.

請求項6記載の発明は、請求項1〜5記載の発明において、前記のチューブ状の石油由来絶縁部材の開口部側の縁部は、シール処理されたことを特徴とする。   A sixth aspect of the invention is characterized in that, in the first to fifth aspects of the invention, the edge of the tubular petroleum-derived insulating member on the opening side is sealed.

請求項7記載の発明は、請求項6記載の発明において、前記のシール処理において、水ガラスまたは半田から成る無機系接着剤、あるいはアクリル樹脂,エチレン‐酢酸ビニル樹脂,エポキシ樹脂,イソシアネート系樹脂,フェノール樹脂,ユリア樹脂,シリコーン樹脂および各樹脂の変性品のうち何れか一つ以上から成る有機系接着剤を用いたことを特徴とする。   The invention according to claim 7 is the invention according to claim 6, wherein in the sealing treatment, an inorganic adhesive comprising water glass or solder, or an acrylic resin, an ethylene-vinyl acetate resin, an epoxy resin, an isocyanate resin, An organic adhesive comprising at least one of phenol resin, urea resin, silicone resin and modified products of each resin is used.

請求項8記載の発明は、請求項1〜7記載の発明において、前記の生物由来絶縁部材に用いた高分子組成物は、植物油ベースまたは石油ベースの可塑剤を含んだことを特徴とする。   The invention according to claim 8 is the invention according to claims 1 to 7, characterized in that the polymer composition used for the biological insulating member contains a vegetable oil-based or petroleum-based plasticizer.

請求項9記載の発明は、請求項8記載の発明において、前記の植物油ベースの可塑剤は、エポキシ化大豆油またはエポキシ化亜麻仁油から成ることを特徴とする。   The invention according to claim 9 is the invention according to claim 8, characterized in that the vegetable oil-based plasticizer comprises epoxidized soybean oil or epoxidized linseed oil.

請求項1〜5記載の発明によれば、電気機器において所望の絶縁処理をするにあたり、単に石油由来絶縁部材のみ被覆する場合と比較して、石油由来材料の使用割合が減少する。また、単に生物由来絶縁部材のみを被覆する場合と比較して、十分な絶縁性(破壊電圧値,破壊電界値等),強度,耐劣化性等を付与することが容易となる。   According to the first to fifth aspects of the present invention, when the desired insulation treatment is performed in the electric device, the use ratio of the petroleum-derived material is reduced as compared with the case where only the petroleum-derived insulating member is covered. Moreover, it becomes easy to provide sufficient insulation (breakdown voltage value, breakdown electric field value, etc.), strength, deterioration resistance, and the like as compared with the case where only the biological insulating member is covered.

請求項6,7記載の発明によれば、生物由来絶縁部材と石油由来絶縁部材との間に対する空気,湿気等の侵入を防止し易くなる。   According to the sixth and seventh aspects of the invention, it becomes easy to prevent intrusion of air, moisture and the like between the biological insulating member and the petroleum insulating member.

請求項8,9記載の発明によれば、生物由来絶縁部材の弾性率が低減し、導電部材(被絶縁処理部位)と生物由来絶縁部材との間の線膨張率差が小さくなる。   According to the eighth and ninth aspects of the invention, the elastic modulus of the biologically-derived insulating member is reduced, and the difference in linear expansion coefficient between the conductive member (insulated part to be insulated) and the biologically-derived insulating member is reduced.

以上、請求項1〜9記載の発明によれば、単に石油由来絶縁部材のみ被覆する従来技術と比較して地球環境保全に貢献できると共に、単に生物由来絶縁部材のみを被覆する従来技術と比較して十分な耐久性(例えば、強度,耐劣化性等の寿命)や電気的特性等を付与でき、請求項6〜9記載の発明によれば耐久性がより良好となり、それぞれ実際の重電機器等の電圧機器に十分適用することが可能となる。   As mentioned above, according to invention of Claims 1-9, it can contribute to global environmental conservation compared with the prior art which only coat | covers only a petroleum-derived insulating member, and compared with the prior art which only coat | covers only a biological-derived insulating member. Sufficient durability (for example, life of strength, deterioration resistance, etc.), electrical characteristics, and the like. According to the inventions of claims 6 to 9, durability is further improved, It can be sufficiently applied to voltage devices such as.

以下、本発明の実施の形態における絶縁処理された電圧機器を図面等に基づいて詳細に説明する。   Hereinafter, an insulated voltage device according to an embodiment of the present invention will be described in detail with reference to the drawings.

本実施形態は、例えば電圧機器の導電部材のうち被絶縁処理部位の絶縁処理に係るものであって、単に生物由来絶縁部材のみ、または石油由来絶縁部材のみ被覆する従来技術とは異なるものであり、それら技術を併用し2層の絶縁部材で被覆するものである。すなわち、前記の被絶縁処理部位に対し生物由来絶縁部材を被覆すると共に、その生物由来絶縁部材に対し石油由来絶縁部材を被覆することにより、単に石油由来絶縁部材のみ被覆する従来技術と比較して地球環境保全に貢献できると共に、単に生物由来絶縁部材のみを被覆する従来技術と比較して十分な耐久性(例えば、強度,耐劣化性等の寿命)や電気的特性等を付与できるようにしたものである。   The present embodiment relates to an insulation treatment of an insulated treatment site among conductive members of a voltage device, for example, and is different from a conventional technique in which only a biological-derived insulating member or a petroleum-derived insulating member is covered. These techniques are used together to coat with a two-layer insulating member. That is, as compared with the prior art in which only the petroleum-derived insulating member is covered by coating the biologically-derived insulating member on the above-described insulated treatment site and coating the biological-derived insulating member with the petroleum-derived insulating member. In addition to contributing to global environmental conservation, it is possible to provide sufficient durability (for example, life of strength, deterioration resistance, etc.), electrical characteristics, etc. compared to conventional technologies that only cover biologically-derived insulating members. Is.

<生物由来絶縁部材>
本実施形態の生物由来絶縁部材においては、生物由来物質(生分解性樹脂等)を基材とする高分子材料に対し加水分解抑制剤,架橋剤等を加え混練して得られる高分子組成物を用い、その高分子組成物を微紛化して得られる絶縁性粉体をパウダーコーティングすることにより、被絶縁処理部位に対して被覆されるものである。
<Biological insulating material>
In the biological insulating member of the present embodiment, a polymer composition obtained by adding a hydrolysis inhibitor, a crosslinking agent and the like to a polymer material based on a biological material (such as a biodegradable resin) and kneading. Is used to coat the portion to be insulated by powder coating an insulating powder obtained by micronizing the polymer composition.

[高分子材料]
生物由来絶縁部材の高分子組成物に適用される高分子材料としては、基材となる生物由来物質の種類,生成プロセス等によって種々のものを適用でき、例えば絶縁性,材質の均質性等の観点からアセチル化セルロース,ポリ乳酸,ポリブチレンサクシネート,ポリトリメチレンテレフタレート,エステル化澱粉,澱粉基ポリマー,キトサン基ポリマー等に区分されるバイオベースポリマーが挙げられ、これら各バイオベースポリマーを適宜単数または複数併用できる。これらのうち、ポリブチレンサクシネートから成るものにおいては比較的柔軟性を有する。
[Polymer material]
As the polymer material applied to the polymer composition of the biological insulating member, various materials can be applied depending on the type of biological material used as the base material, the production process, etc. From the viewpoint, bio-based polymers classified into acetylated cellulose, polylactic acid, polybutylene succinate, polytrimethylene terephthalate, esterified starch, starch-based polymer, chitosan-based polymer, etc. can be mentioned. Or more than one. Of these, those made of polybutylene succinate are relatively flexible.

なお、前記のポリブチレンサクシネートの各成分のうちコハク酸,ブタンジオールにおいては石油由来のものが一般的であったが、近年においては生物由来のものも出現し始めていることから、該ポリブチレンサクシネートをバイオベースポリマーとして適用できることは明らかである。   Of the components of the polybutylene succinate, succinic acid and butanediol are generally derived from petroleum. However, in recent years, those derived from living organisms have started to appear. It is clear that succinate can be applied as a bio-based polymer.

これらバイオベースポリマーにおいては、カーボンニュートラルであることから、たとえ該バイオベースポリマーを用いた製品等を焼却処分しても新たな二酸化炭素が発生することは殆ど無いものと思われる。   Since these bio-based polymers are carbon neutral, it is considered that new carbon dioxide is hardly generated even if a product or the like using the bio-based polymer is incinerated.

[加水分解抑制剤]
前記高分子組成物に適用される加水分解抑制剤としては、分子中において−N=C=N−構造(R1−N=C=N−R2構造(R1,R2はアルキル基))を有し、活性水素(加水分解によって生じるカルボン酸,水酸基の活性水素)との補足反応による加水分解抑制効果を奏するものを適用し、例えばカルボジイミド化合物が挙げられる。前記のR1,R2の種類によって加水分解抑制剤自体の物性や反応速度等は異なるものの、本質的機能(活性水素との補足反応等)は略同一である。
[Hydrolysis inhibitor]
As a hydrolysis inhibitor applied to the polymer composition, a —N═C═N— structure (R 1 —N═C═N—R 2 structure (R 1 and R 2 are alkyl groups) in the molecule) For example, a carbodiimide compound may be used, for example, which exhibits an effect of inhibiting hydrolysis by a supplementary reaction with active hydrogen (carboxylic acid generated by hydrolysis, active hydrogen of hydroxyl group). Although the physical properties and reaction rate of the hydrolysis inhibitor itself vary depending on the types of R 1 and R 2 , the essential functions (such as supplementary reaction with active hydrogen) are substantially the same.

[架橋剤]
前記高分子組成物に適用される架橋剤としては、分子中において−O−O−構造を有し、所定温度で架橋反応を起こすものを適用し、例えばパーオキサイドが挙げられる。このパーオキサイドにおいては、−O−O−構造部位が熱的影響を受けてラジカル分解する特性を有し、架橋剤として適用できるものであり、半減期温度の異なる種々のもの(例えば、日本油脂社製のパーヘキサV(10時間半減期温度105℃),パークミルD(10時間半減期温度116℃),パーヘキサ25B(10時間半減期温度118℃),パーブチルP(10時間半減期温度119℃),パーブチルC(10時間半減期温度120℃),パーヘキシルD(10時間半減期温度116℃),パーブチルD(10時間半減期温度124℃),パーヘキシン25B(10時間半減期温度128℃))が知られている。
[Crosslinking agent]
As a crosslinking agent applied to the polymer composition, one having an —O—O— structure in the molecule and causing a crosslinking reaction at a predetermined temperature is used, and examples thereof include peroxide. This peroxide has the property of radically decomposing the —O—O— structure site under the influence of heat, and can be applied as a cross-linking agent. Various peroxides having different half-life temperatures (for example, Japanese fats and oils) Perhexa V (10-hour half-life temperature 105 ° C), Permill D (10-hour half-life temperature 116 ° C), Perhexa 25B (10-hour half-life temperature 118 ° C), Perbutyl P (10-hour half-life temperature 119 ° C) Perbutyl C (10-hour half-life temperature 120 ° C), Perhexyl D (10-hour half-life temperature 116 ° C), Perbutyl D (10-hour half-life temperature 124 ° C), Perhexine 25B (10-hour half-life temperature 128 ° C)) Are known.

なお、前記のパーオキサイドを高分子材料等と共に混練する場合、その混練機,混練物中の高分子材料等の配合量,混練条件,冷却機構の有無等によって、混練物の温度上昇の程度が異なる。例えば、該高分子材料の溶融温度以上の雰囲気下に保持され、該高分子材料においては自己発熱(せん断熱が発生)することもあり、これら熱によってパーオキサイドが意に反してラジカル分解し架橋反応を起こすことがある。   When the peroxide is kneaded with a polymer material or the like, the temperature rise of the kneaded material depends on the kneading machine, the blending amount of the polymer material or the like in the kneaded material, kneading conditions, the presence or absence of a cooling mechanism, etc. Different. For example, the polymer material is maintained in an atmosphere at a temperature higher than the melting temperature of the polymer material, and the polymer material may self-heat (shear heat is generated). May cause a reaction.

このため、パーオキサイドの種類,配合量等においては適宜選定(例えば、半減期温度が前記の溶融温度近隣以上のパーオキサイドを選定)することが好ましい。例えば、高分子材料の溶融温度が約110℃,せん断熱が約20℃の場合には、例えば、パーブチルD,パーヘキシン25B等を用いる。また、パーオキサイドにおいては、消防法上の観点で危険物として取り扱われている製品が存在するが、例えば不活性充填剤等を配合して成る非危険物グレードの製品も存在し、適宜選択することが好ましい。   For this reason, it is preferable to select appropriately (for example, to select a peroxide having a half-life temperature in the vicinity of the melting temperature or above) in the kind, blending amount, and the like of the peroxide. For example, when the melting temperature of the polymer material is about 110 ° C. and the shear heat is about 20 ° C., for example, perbutyl D, perhexine 25B, or the like is used. In addition, in peroxide, there are products that are handled as dangerous goods from the viewpoint of the Fire Service Law, but there are also non-dangerous goods grade products that contain, for example, inert fillers, etc. It is preferable.

[絶縁性粉体]
前記の高分子組成物を微粉化して得られる絶縁性粉体としては、該絶縁性粉体を用いてパウダーコーティング法により目的とする導電部材(被絶縁処理部位)に生物由来絶縁部材を形成できる程度に、微紛化したものを適用する。例えば、平均粒径が30μm〜300μm程度、望ましくは50μm〜250μm程度に微紛化されたものが挙げられる。なお、例えば平均粒径が比較的大きいもの(例えば、500μm以上のもの)については、除外、あるいは再度微紛化(パウダーコーティング法により被絶縁処理部位に対して生物由来絶縁部材を形成できる程度に微紛化)を行ってから適用しても良い。また、微紛化によって得られる絶縁性粉体の粒径,粉体形状は、微紛化に用いる装置の種類(機種,型式等)や微紛化時間等によって変化するものの、前記のようにパウダーコーティング法により目的とする生物由来絶縁部材を形成できる程度の範囲であれば良い。
[Insulating powder]
As an insulating powder obtained by pulverizing the polymer composition, a biological insulating member can be formed on a target conductive member (insulated treatment site) by a powder coating method using the insulating powder. Apply a finely pulverized one. For example, the average particle size is about 30 μm to 300 μm, preferably about 50 μm to 250 μm. In addition, for example, those having a relatively large average particle diameter (for example, those having a particle size of 500 μm or more) are excluded or re-micronized (to the extent that a biologically-derived insulating member can be formed on the part to be insulated by the powder coating method). It may be applied after pulverization. In addition, although the particle size and powder shape of the insulating powder obtained by pulverization vary depending on the type of device (model, model, etc.) used for pulverization, the pulverization time, etc., as described above. Any range may be used as long as the target biological insulating member can be formed by the powder coating method.

前記の微紛化に用いる装置においては、種々のミル装置を適用することができ、例えば回転,衝撃,振動等による装置が挙げられる。なお、ミル装置による微紛化の際に少なからず熱が発生し、該熱によって目的とする絶縁性粉体自体が意図しない溶融(自己融着)や劣化する恐れがある。このような場合には、ミル装置全体や一部(微紛化に係る部分)を冷却することが好ましく、微紛化前の高分子組成物自体を予め冷却(冷蔵庫,冷凍庫,液体窒素等を用いて冷却)しても良い。また、高分子組成物が大きな塊状態である等の理由により、該高分子組成物をミル装置に投入できない場合、その投入ができる程度まで高分子組成物を粗粉砕しても良い。   Various milling apparatuses can be applied to the apparatus used for the above-mentioned micronization, and examples include apparatuses using rotation, impact, vibration and the like. It should be noted that heat is not a little generated during the pulverization by the mill apparatus, and the intended insulating powder itself may be unintentionally melted (self-bonded) or deteriorated due to the heat. In such a case, it is preferable to cool the entire mill device or a part (part relating to pulverization), and the polymer composition itself before pulverization is cooled in advance (refrigerator, freezer, liquid nitrogen, etc.). Cooling). In addition, when the polymer composition cannot be charged into the mill apparatus due to a large lump state of the polymer composition, the polymer composition may be coarsely pulverized to such an extent that the polymer composition can be charged.

前記の絶縁性粉体における粉体同士の融着(自己融着)や接着を防止する方法としては、高分子材料の他にシリカや炭酸カルシウム等の無機粉体を配合した高分子組成物を微紛化する方法も考えられる。前記の無機粉体においては、目的とする絶縁性粉体の特性を損わない程度であれば適宜用いることができ、例えば平均粒径0.1μm〜20μm程度のものを0.1wt%〜10wt%添加する。   As a method for preventing fusion (self-fusion) and adhesion between powders in the insulating powder, a polymer composition containing inorganic powders such as silica and calcium carbonate in addition to a polymer material is used. A method for making fine particles is also conceivable. The inorganic powder can be appropriately used as long as it does not impair the properties of the target insulating powder. For example, those having an average particle size of about 0.1 μm to 20 μm are 0.1 wt% to 10 wt%. %Added.

[被覆方法]
前記のパウダーコーティング法においては、例えば流動浸漬法,静電塗装法が挙げられる。これら流動浸漬法,静電塗装法は、それぞれのプロセスは異なるものの、その目的(被覆),結果(被覆される程度)は同様である。
[Coating method]
Examples of the powder coating method include a fluid dipping method and an electrostatic coating method. Although the fluid immersion method and the electrostatic coating method are different from each other, the purpose (coating) and the result (the degree of coating) are the same.

前記の流動浸漬法の場合は、目的とする導電部材の被絶縁処理部位の表面を予め加熱(予熱)しておき、絶縁性粉体が充填された流動浸漬槽内に前記の導電部材(少なくとも、被絶縁処理部位)を浸漬することにより、前記の予熱によって絶縁性粉体を溶融し、被絶縁処理部位に対し該溶融物を付着させて生物由来絶縁部材を形成させる方法である。前記の流動浸漬槽においては、絶縁性粉体の大きさ(熱硬化性樹脂の場合はBステージ)と同等程度、または該絶縁性粉体の大きさ以下の形状の孔が側壁(底壁等)に複数個穿設された多孔性型の構造のものが適用され、例えば焼結,繊維クロス,機械加工によって得られるものが挙げられる。   In the case of the fluidized immersion method, the surface of the insulation target portion of the target conductive member is preheated (preheated), and the conductive member (at least in the fluidized immersion bath filled with insulating powder) In other words, the insulating powder is soaked by the above preheating to melt the insulating powder, and the melt is attached to the insulated portion to form a biological insulating member. In the fluidized immersion bath, holes having a shape equivalent to or smaller than the size of the insulating powder (B stage in the case of thermosetting resin) or less than the size of the insulating powder are side walls (bottom wall, etc.). And a porous type structure having a plurality of perforations, for example, those obtained by sintering, fiber cloth, or machining.

前記のように側壁に穿設された各孔から流動浸漬槽内に対し、空気,乾燥空気,窒素,乾燥窒素等の不活性気体を均等に噴出(大気圧下で噴出)することにより、該流動浸漬槽内の絶縁性粉体を流動させることができる。そして、前記のように流動する絶縁性粉体に対し、前記のように加熱された被絶縁処理部位を接触(流動浸漬槽内に浸漬して接触)させることにより、被絶縁処理部位に対し絶縁性粉体の溶融物が付着し被覆される。   By injecting an inert gas such as air, dry air, nitrogen, and dry nitrogen from each hole formed in the side wall as described above into the fluid immersion bath (ejecting under atmospheric pressure), The insulating powder in the fluid immersion bath can be fluidized. Then, the insulating part that has been heated as described above is brought into contact with the insulating powder that flows as described above (soaked in a fluidized immersion bath) to thereby insulate the part to be insulated. A melt of conductive powder adheres and is coated.

前記の不活性気体の流量においては、目的とする絶縁性粉体の粒径,分布,形状,密度等に応じて適宜設定する。例えば気体流量(cm3/分)を有効面積(流動浸漬槽のうち不活性気体が均一に噴出される領域の有効面積(cm2))で除した値の線速(cm/分)に基づいて設定することができる。例えば、0.5cm/分〜50cm/分(より好ましくは1cm/分〜20cm/分)程度に設定する。 The flow rate of the inert gas is appropriately set according to the particle size, distribution, shape, density, etc. of the target insulating powder. For example, based on the linear velocity (cm / min) of the value obtained by dividing the gas flow rate (cm 3 / min) by the effective area (effective area (cm 2 ) of the region where the inert gas is uniformly ejected in the fluidized immersion bath). Can be set. For example, it is set to about 0.5 cm / min to 50 cm / min (more preferably 1 cm / min to 20 cm / min).

[導電部材(被絶縁処理部位)]
被覆対象である導電部材(被絶縁処理部位)は、前記の絶縁性粉体の溶融物が付着し被覆されるものであれば種々の材質(銅,鉄,アルミニウム等),形状(円柱状,角柱状,線状,平板状,編線状等)のものを適用でき、例えば銅ブスバー等が挙げられる。例えば被絶縁処理部位にエッジ部が存在していても大きな問題はないが、該エッジ部を面取り加工(C面加工,R面加工)した場合には、該エッジカバー率が改善され絶縁性粉体の溶融物による生物由来絶縁部材の厚さが十分となり、応力による該生物由来絶縁部材の亀裂等の危険性を低減することができるため好ましい。例えば、導電部材(例えば、ブスバー)が引抜き成型等により形成される場合には、前記のエッジ部をR面にしておくことが好ましい。なお、前記の危険性の低減度合いは、前記の面取り加工の程度によって異なるが、前記のようにたとえエッジ部が存在していても大きな問題は無いため、該面取り加工はコスト等を考慮して適宜行えば良い。
[Conductive member (insulated part)]
The conductive member (insulated part) to be coated can be made of various materials (copper, iron, aluminum, etc.) and shapes (cylindrical, A prismatic shape, a linear shape, a flat plate shape, a knitted wire shape, or the like can be applied, and examples thereof include a copper bus bar. For example, there is no major problem even if an edge portion is present in the part to be insulated. However, when the edge portion is chamfered (C surface processing, R surface processing), the edge cover ratio is improved and the insulating powder is improved. The thickness of the biological insulating member due to the melt of the body is sufficient, and the risk of cracking of the biological insulating member due to stress can be reduced, which is preferable. For example, when a conductive member (for example, a bus bar) is formed by pultrusion molding or the like, it is preferable that the edge portion is an R surface. The degree of risk reduction varies depending on the degree of the chamfering process, but there is no major problem even if the edge portion exists as described above. What is necessary is just to carry out suitably.

導電部材のうち、例えば導電性を必要とする箇所(例えば電気的接続され得る箇所)や作業上の保持,位置決め等に係る箇所(位置決め用の孔等)は絶縁処理を必要としないため、適宜マスキングを行うことが好ましい。   Of the conductive members, for example, portions that require electrical conductivity (for example, locations that can be electrically connected) and locations that are related to work holding, positioning, etc. (positioning holes, etc.) do not require insulation treatment. It is preferable to perform masking.

被絶縁処理部位表面の予熱温度は、該被絶縁処理部位を流動浸漬槽内に浸漬した際に絶縁性粉体の溶融物が付着し被覆される温度範囲とし、絶縁性粉体の加工温度(軟化温度,溶融点,ガラス転移温度等)、該被絶縁処理部位自体の熱容量(比熱,比重,形状等による熱容量),放熱(冷却)特性、目的とする生物由来絶縁部材厚さに応じて適宜設定できるものである。予熱温度が低過ぎる場合には絶縁性粉体(溶融物)が被絶縁処理部位に付着し難くなり、予熱温度が高過ぎる場合には被覆された生物由来絶縁部材において変色,発泡,膨張等が発生し易くなるため、例えば、絶縁性粉体の加工温度よりも20℃低い温度から、該絶縁性粉体が分解する温度までの範囲とする。好ましくは、絶縁性粉体の加工温度から、該加工温度よりも100℃高い温度までの範囲とする。本実施形態の絶縁性粉体を適用した場合の具体例としては、110℃〜240℃程度の温度範囲が挙げられる。   The preheating temperature of the surface to be insulated is set to a temperature range in which the melt of the insulating powder adheres and is coated when the portion to be insulated is immersed in the fluidized immersion bath, and the processing temperature of the insulating powder ( (Softening temperature, melting point, glass transition temperature, etc.), heat capacity (heat capacity due to specific heat, specific gravity, shape, etc.), heat dissipation (cooling) characteristics, and thickness of target biological insulating material It can be set. When the preheating temperature is too low, the insulating powder (melt) becomes difficult to adhere to the part to be insulated, and when the preheating temperature is too high, discoloration, foaming, expansion, etc. occur in the coated biological insulating member. In order to generate easily, it is set as the range from the temperature 20 degreeC lower than the processing temperature of insulating powder to the temperature which this insulating powder decomposes | disassembles, for example. Preferably, the range is from the processing temperature of the insulating powder to a temperature 100 ° C. higher than the processing temperature. A specific example of the case where the insulating powder of the present embodiment is applied includes a temperature range of about 110 ° C. to 240 ° C.

流動浸漬槽に対する被絶縁処理部位の浸漬時間,浸漬位置(浸漬中の空間的位置,方向)は、前記の溶融物による生物由来絶縁部材厚さ,被絶縁処理部位の予熱温度,形状等に応じて設定することができ、該浸漬を複数回繰り返して行っても良い。   The soaking time and soaking position (spatial position and direction during soaking) of the part to be insulated with respect to the fluidized immersion bath depends on the thickness of the biologically-derived insulating member by the melt, the preheating temperature of the part to be insulated, the shape, etc. The immersion may be repeated a plurality of times.

なお、被絶縁処理部位の浸漬開始から一定の浸漬時間までの間において、生物由来絶縁部材厚さは時間経過と共に厚くなるものの、該一定の浸漬時間以降においては、該生物由来絶縁部材厚さは一定あるいは不均一(表面状態が粗)になり易くなる。例えば、被絶縁処理部位の形状によっては、溶融物が定着し難い場合(例えば、剥離する場合)や重力により垂れ下がる場合があり、厚さが不均一になり易くなる。このような傾向は、予熱温度が低過ぎたり高過ぎても起こり得るものと思われ、浸漬時間,浸漬回数,浸漬位置,被絶縁処理部位の予熱温度等を適宜調整することが好ましい。   In addition, during the period from the start of immersion of the part to be insulated to the constant immersion time, the biological insulating member thickness increases with time, but after the predetermined immersion time, the biological insulating member thickness is It tends to be constant or non-uniform (surface condition is rough). For example, depending on the shape of the part to be insulated, the melt may be difficult to fix (for example, when peeled) or may hang down due to gravity, and the thickness tends to be non-uniform. Such a tendency seems to occur even if the preheating temperature is too low or too high, and it is preferable to appropriately adjust the immersion time, the number of immersions, the immersion position, the preheating temperature of the part to be insulated, and the like.

また、前記のように被覆された生物由来絶縁部材は、熱処理等を施すことにより架橋しても良い。例えば、前記のように被覆した後に施され得る熱処理(例えば、被覆物の肉厚のバラツキ,表面荒れ,内部応力の緩和等を図る目的の熱処理)によって架橋しても良い。   Further, the biological insulating member coated as described above may be cross-linked by performing a heat treatment or the like. For example, the cross-linking may be performed by heat treatment that can be performed after coating as described above (for example, heat treatment for the purpose of reducing the thickness variation of the coating, surface roughness, internal stress, etc.).

<石油由来絶縁部材>
本実施形態の石油由来絶縁部材においては、石油由来物質(生分解性樹脂等)を基材とする高分子材料から成る高分子組成物を用い、その高分子組成物を溶融し所望の形状(例えば、被絶縁処理部位の形状,生物由来絶縁部材の厚さ等に応じた形状)に固形化してチューブ状,シート状等に成形されたものが適用される。具体的には熱収縮チューブ等が挙げられる。
<Oil-derived insulating material>
In the petroleum-derived insulating member of this embodiment, a polymer composition made of a polymer material based on a petroleum-derived substance (such as a biodegradable resin) is used, and the polymer composition is melted to obtain a desired shape ( For example, what is solidified into a shape corresponding to the shape of the part to be insulated, the thickness of the biological insulating member, etc., and formed into a tube shape, a sheet shape or the like is applied. Specifically, a heat shrinkable tube etc. are mentioned.

[高分子材料]
本実施形態の石油由来絶縁部材の高分子組成物に適用される高分子材料としては、石油由来物質の種類,生成プロセス等によって種々のものを適用でき、例えばポリエチレン,ポリプロピレン,ポリ塩化ビニル,シリコーン,変性シリコーン,ポリビニルアルコール,変性ポリビニルアルコール,エチレン‐プロピレンターポリマー,ニトリル‐ブタジエンゴム等から成り絶縁性を有するベースポリマーが挙げられ、これら各ベースポリマーを適宜単数または複数併用できる。
[Polymer material]
As the polymer material applied to the polymer composition of the petroleum-derived insulating member of the present embodiment, various materials can be applied depending on the type of petroleum-derived substance, the production process, etc., for example, polyethylene, polypropylene, polyvinyl chloride, silicone , Modified silicone, polyvinyl alcohol, modified polyvinyl alcohol, ethylene-propylene terpolymer, nitrile-butadiene rubber, etc., and base polymers having insulating properties. These base polymers can be used singly or in combination as appropriate.

[被覆方法]
石油由来絶縁部材は、被絶縁処理部位に被覆された生物由来絶縁部材の外周面を保護するように被覆されるものであり、例えば熱収縮チューブの場合には、該チューブ内周面側で生物由来絶縁部材外周面を包み、所定条件で収縮処理(熱処理)することにより両者を密着させる。
[Coating method]
The petroleum-derived insulating member is coated so as to protect the outer peripheral surface of the biological-derived insulating member coated on the part to be insulated. For example, in the case of a heat-shrinkable tube, the biological-derived insulating member The outer peripheral surface of the derived insulating member is wrapped, and both are brought into close contact with each other by shrinkage treatment (heat treatment) under predetermined conditions.

石油由来絶縁部材と生物由来絶縁部材とが十分密着(例えば、収縮処理等により密着)されている場合には、例えば両者の間に空気,湿気等が侵入する可能性は低いが、必要に応じて前記のように石油由来絶縁部材等の縁部(熱収縮チューブの場合にはチューブ両端部側(開口部側))をシール処理しても良い。   When the petroleum-derived insulating member and the biological-derived insulating member are sufficiently adhered (for example, adhered by shrinkage treatment), for example, there is a low possibility that air, moisture, etc. intrude between them, but if necessary As described above, the edge of the petroleum-derived insulating member or the like (in the case of a heat-shrinkable tube, both ends of the tube (opening side)) may be sealed.

前記のシール処理においては、カシメ等の物理的処理を施す方法や、接着剤等を用いる化学的処理を施す方法が挙げられる。接着剤としては、水ガラス,半田等の無機系接着剤や、アクリル樹脂,エチレン‐酢酸ビニル樹脂,エポキシ樹脂,イソシアネート系樹脂,フェノール樹脂,ユリア樹脂,シリコーン樹脂および各樹脂の変性品(例えば、変性シリコーン)等の有機系接着剤が挙げられる。   Examples of the sealing process include a method of performing a physical process such as caulking, and a method of performing a chemical process using an adhesive or the like. Adhesives include inorganic adhesives such as water glass and solder, acrylic resins, ethylene-vinyl acetate resins, epoxy resins, isocyanate resins, phenol resins, urea resins, silicone resins, and modified products of each resin (for example, Organic adhesives such as modified silicone).

<その他>
本実施形態の生物由来絶縁部材,石油由来絶縁部材においては、高分子材料等の他に、高分子材料成形技術の分野で一般的に用いられている各種添加剤、例えば熱安定剤,光安定剤(紫外線防止剤),酸化防止剤,老化防止剤,顔料,着色剤,無機充填剤(フィラー),微小無機充填材(ナノ粒子)、難燃剤、抗菌剤、防腐食剤等を、目的とする電圧機器用絶縁性粉体,絶縁処理方法,電圧機器の特性を損わない程度で適宜用いても良い。
<Others>
In the bio-derived insulating member and petroleum-derived insulating member of the present embodiment, in addition to the polymer material, various additives generally used in the field of polymer material molding technology, such as a heat stabilizer, a light stabilizer, etc. Aiming at agents (ultraviolet ray inhibitors), antioxidants, anti-aging agents, pigments, colorants, inorganic fillers (fillers), fine inorganic fillers (nanoparticles), flame retardants, antibacterial agents, anticorrosion agents, etc. Insulating powder for voltage equipment, insulation processing method, and voltage equipment may be appropriately used as long as the characteristics of the voltage equipment are not impaired.

例えば、生物由来絶縁部材の場合、パウダーコーティング法での溶融物による被覆の安定化を目的とした過酸化物添加による架橋や、官能基の安定化を目的としたカップリング剤の添加等を適宜行っても良い。   For example, in the case of biologically derived insulating members, cross-linking by addition of peroxide for the purpose of stabilizing the coating by the melt in the powder coating method, addition of a coupling agent for the purpose of stabilizing the functional group, etc. You can go.

また、導電部材(被絶縁処理部位)と生物由来絶縁部材との間では、両者の線膨張率差により熱応力等が発生し得るため、必要に応じて、生物由来絶縁部材の高分子組成物においては可塑剤等が配合されたものを適用する。該可塑剤としては、該高分子組成物中に可溶なものであって、生物由来絶縁部材の弾性率を低減し熱応力を緩和させ得るものであれば、種々のものを適用できる。具体的には、植物油ベースの化成物としてエポキシ化大豆油,エポキシ化亜麻仁油等のエポキシ化植物油や、石油ベースのものとして燐酸エステル,フタル酸エステル,脂肪族塩基酸エステル,二価アルコールエステル,オキシ酸エステル,樟脳,アビエチン酸メチル,ポリプロピレングリコール類の高分子系のものが挙げられ、これら各可塑剤を適宜単数または複数併用できる。   Moreover, since a thermal stress etc. may generate | occur | produce between a electrically-conductive member (insulation process site | part) and a biological-derived insulating member by both linear expansion coefficient difference, the polymer composition of a biological-derived insulating member is needed as needed. In this case, the one containing a plasticizer or the like is applied. As the plasticizer, various plasticizers can be applied as long as they are soluble in the polymer composition and can reduce the elastic modulus of the biological insulating member and relieve the thermal stress. Specifically, epoxidized vegetable oils such as epoxidized soybean oil and epoxidized linseed oil as chemicals based on vegetable oils, phosphate esters, phthalic acid esters, aliphatic basic acid esters, dihydric alcohol esters, Examples thereof include polymers of oxyacid esters, camphor, methyl abietate, and polypropylene glycols, and these plasticizers can be used singly or in combination as appropriate.

次に、本実施形態における絶縁処理された電圧機器の実施例を説明する。下記の各実施例では、矩形平板状(長さ1200mm,幅40mm,厚さ5mm)の銅ブスバーの両端部側(それぞれの端部から長手方向に100mmの領域)をマスキングし、その銅ブスバーの中央部(マスキング領域以外)に対し絶縁性粉体を用いて流動浸漬法により種々の条件で絶縁処理して生物由来絶縁部材を被覆し、さらに該生物由来絶縁部材を石油由来絶縁部材で被覆することにより種々の試料を得、それら各試料の電気的特性,耐久性を調べた。   Next, an example of an insulated voltage device in the present embodiment will be described. In each of the following embodiments, both ends of a rectangular flat plate (length: 1200 mm, width: 40 mm, thickness: 5 mm) are masked on both sides (regions of 100 mm in the longitudinal direction from the respective ends), and the copper bus bar The center part (other than the masking region) is coated with a biological insulating member by using an insulating powder under various conditions by a fluid immersion method, and further covering the biological insulating member with a petroleum-derived insulating member. As a result, various samples were obtained, and the electrical characteristics and durability of each sample were examined.

[実施例1]
生物由来絶縁部材として、まず、ペレット状のポリブチレンサクシネート(三菱化学社製のGS Pla AZ−61T(MI=30))100phrに液状のパーオキサイド(日本油脂社製のパーブチルD)2phrを振り掛け、粉体状のカルボジイミド(日清紡績社製のカルボジライトLA−1)4phrと共に予備混合した。次に、前記の混合物を二軸混練押出機(ベルストルフ社製のZE40A)に投入して混練し、その混練物をストランド状に掃引(二軸押出し温度130℃で掃引)して、ペレタイザーによって長さ数mm程度の形状に切断することにより、ペレット状の高分子組成物を得た。そして、スパイラルミル(セイシン企業社製)を冷却(ミル装置全体や一部を冷却)しながら、そのミルに対し前記の高分子組成物(必要に応じて冷蔵庫または液体窒素等により冷却処理された高分子組成物)を投入し微紛化して平均粒径30〜300μmの絶縁性粉体を得た。
[Example 1]
As a biological insulating member, first, 100 phr of pellet-shaped polybutylene succinate (GS Pla AZ-61T (MI = 30) manufactured by Mitsubishi Chemical Corporation) was sprinkled with 2 phr of liquid peroxide (Perbutyl D manufactured by Nippon Oil & Fats Co., Ltd.). The mixture was premixed with 4 phr of powdered carbodiimide (Carbodilite LA-1 manufactured by Nisshinbo Industries, Inc.). Next, the mixture is put into a twin-screw kneader-extruder (ZE40A manufactured by Belstolf) and kneaded, and the kneaded product is swept into a strand (swept at a twin-screw extrusion temperature of 130 ° C.) and then long by a pelletizer. A pellet-shaped polymer composition was obtained by cutting into a shape of about several millimeters. Then, while cooling the spiral mill (manufactured by Seishin Enterprise Co., Ltd.) (cooling the whole mill device or a part of the mill), the mill was cooled with the above-described polymer composition (refrigerator or liquid nitrogen as required) (Polymer composition) was added and pulverized to obtain an insulating powder having an average particle size of 30 to 300 μm.

その後、前記の絶縁性粉体を流動浸漬槽(仲田コーティング社製)に投入し、該浸漬槽内に不活性気体(窒素ガス)を噴出(流速0.5〜50cm/分で噴出)して絶縁性粉体を流動させ、前記のマスキングされた銅ブスバー表面を110〜240℃の温度範囲で予熱してから該絶縁性粉体中に1回または2回浸漬(各浸漬時間は1〜20秒間)し、該絶縁性粉体の溶融物を付着させることにより、生物由来絶縁部材(肉厚1.4mm)が被覆された試料P1を得た。   Thereafter, the insulating powder is put into a fluidized immersion tank (manufactured by Nakata Coating Co., Ltd.), and an inert gas (nitrogen gas) is ejected into the immersion tank (a flow rate of 0.5 to 50 cm / min). The insulating powder is flowed, and the masked copper bus bar surface is preheated in a temperature range of 110 to 240 ° C. and then immersed in the insulating powder once or twice (each immersion time is 1 to 20). The sample P1 coated with the biologically-derived insulating member (thickness: 1.4 mm) was obtained by adhering a melt of the insulating powder.

また、前記の試料Pの生物由来絶縁部材に対し、石油由来絶縁部材として熱収縮チューブ(西日本電線社製のニシチューブNPR(40‐20‐1))を被覆し150℃の炉中にて30分放置して収縮処理することにより、試料(石油由来絶縁部材の肉厚1mmの試料)S1を得た。   In addition, the biologically-derived insulating member of the sample P is covered with a heat-shrinkable tube (Nishitube NPR (40-20-1) manufactured by West Japan Electric Cable Co., Ltd.) as a petroleum-derived insulating member, and 30 in a furnace at 150 ° C. A sample (a sample having a thickness of 1 mm of a petroleum-derived insulating member) S1 was obtained by allowing the sample to stand for shrinkage.

そして、前記の各試料P,S1において、交流電圧を印加(マスキングにより溶融物が被覆されなかった両端部に印加)した場合の絶縁破壊電圧値(BDV値),破壊電界値を測定することにより電気的特性を調べ、その結果を下記表1に示した。また、前記の各試料P,S1を恒温高湿槽内(95℃−95RH%,促進倍率;温度は10℃‐2倍速、湿度は絶対湿度に比例し温度‐湿度の相乗効果は無いものと仮定)に放置することにより、絶縁破壊電圧値が初期値の80%以下になるまで意図的に劣化処理し、その劣化処理に至るまでの日数を促進寿命日数として記録することにより耐久性を調べ、その結果を下記表1に示した。   Then, in each of the samples P and S1, by measuring the breakdown voltage value (BDV value) and the breakdown electric field value when an AC voltage is applied (applied to both ends where the melt was not covered by masking) The electrical characteristics were examined, and the results are shown in Table 1 below. In addition, the samples P and S1 are placed in a constant temperature and high humidity tank (95 ° C-95RH%, acceleration magnification; temperature is 10 ° C-2 times speed, humidity is proportional to absolute humidity, and there is no synergistic effect of temperature-humidity) Assuming that the dielectric breakdown voltage value is intentionally degraded to 80% or less of the initial value, the durability is examined by recording the number of days until the degradation treatment as the accelerated life days. The results are shown in Table 1 below.

Figure 2009099332
Figure 2009099332

前記表1に示す結果から、生物由来絶縁部材,石油由来絶縁部材を併用した試料S1は、単に生物由来絶縁部材のみを用いた試料Pと比較すると、特に絶縁破壊電圧値が高く促進寿命日数も長い(2倍以上長い)ことから、電気的特性,耐久性が共に良好であることを判明した。また、前記の劣化処理による促進寿命日数から、試料S1の耐久性は一般的な重電機器の保障期間(約30年)を十分満たす程度であることが読み取れる。さらに、例えば生物由来絶縁部材を厚くしなくとも、石油由来絶縁部材によって、十分な厚さの2層構造の絶縁部材が被覆されることが読み取れる。   From the results shown in Table 1, the sample S1 using both the biologically-derived insulating member and the petroleum-derived insulating member has a particularly high dielectric breakdown voltage value and an accelerated lifespan as compared with the sample P using only the biologically-derived insulating member. Since it is long (more than twice as long), it was found that both electrical characteristics and durability were good. Moreover, it can be read from the accelerated life days due to the above-described deterioration treatment that the durability of the sample S1 is sufficient to satisfy a general heavy electrical equipment warranty period (about 30 years). Further, for example, it can be read that the insulating member having a sufficient thickness of the two-layer structure is covered with the petroleum-derived insulating member without increasing the thickness of the biological insulating member.

[実施例2]
本実施例2では、前記の試料S1において、生物由来絶縁部材に被覆された石油由来絶縁部材(熱収縮チューブ)の両端部側(開口部側)をエポキシ接着剤(Cotrnics社製の#4538)でシール処理することにより、試料S2を得た。また、前記のエポキシ接着剤の替わりに変性シリコーン接着剤(セメダイン社製のPM100)を適用してシール処理することにより、試料S3を得た。そして、実施例1と同様の方法により電気的特性,耐久性を調べ、その結果を下記表2に示した。
[Example 2]
In Example 2, in the sample S1, both ends (openings) of the petroleum-derived insulating member (heat-shrinkable tube) covered with the biological insulating member were bonded with an epoxy adhesive (# 4538 manufactured by Cotronics). The sample S2 was obtained by performing a sealing treatment with Also, a sample S3 was obtained by applying a modified silicone adhesive (PM100 manufactured by Cemedine Co., Ltd.) instead of the epoxy adhesive and performing a sealing treatment. Then, electrical characteristics and durability were examined by the same method as in Example 1, and the results are shown in Table 2 below.

Figure 2009099332
Figure 2009099332

前記表2に示す結果から、シール処理した試料S2,S3は、シール処理しない試料S1と比較すると、絶縁破壊電圧値,破壊電界値は同程度であり、促進寿命日数はさらに長く(1.2倍以上長く)なったことから、電気的特性,耐久性が共に良好であることを判明した。特に、シール処理によって、生物由来絶縁部材と石油由来絶縁部材との間に対する空気,湿気等の侵入が確実に防止されていることを読み取れる。   From the results shown in Table 2, the sealed samples S2 and S3 have the same breakdown voltage value and breakdown electric field value as compared with the non-sealed sample S1, and the accelerated life days are further increased (1.2). It was found that both electrical characteristics and durability were good. In particular, it can be seen that the sealing process reliably prevents the entry of air, moisture, etc. between the biological insulating member and the petroleum insulating member.

[実施例3]
本実施例3では、生物由来絶縁部材において、試料S1と同じポリブチレンサクシネート100phr,パーオキサイド2phr,カルボジイミド4phrを用いると共に、可塑剤としてエポキシ化亜麻仁油(ダイセル化学社製のダイマックL500)5phrを用い、試料S1と同じ方法により銅ブスバーに対して生物由来絶縁部材,石油由来絶縁部材を順次形成した後、試料S2,S3と同じ方法によりシール処理を行って試料S4(エポキシ接着剤を用いたもの),S5(変性シリコーン接着剤を用いたもの)を得た。そして、実施例1と同様の方法により電気的特性,耐久性を調べた。また、電圧機器の実環境で想定される温度変化(ブスバーに掛かりうる高温領域から、冬場の北海道で機器停止時に掛かりうる低音領域までの変化)を想定して、前記の各試料S4,S5をそれぞれ高温雰囲気下(100℃)と低温雰囲気下(−40℃)とに放置する作業(1サイクル;100℃・8時間、−40℃・8時間、過渡時間各4時間)を30サイクル繰り返してヒートサイクルテストを行った後、それぞれの絶縁破壊電圧値(以下、ヒートサイクル後破壊電圧値と称する)を測定した。なお、試料P,S1〜S3においても、試料S4,S5と同じ方法によりヒートサイクル後破壊電圧値を測定した。
[Example 3]
In Example 3, 100 phr of polybutylene succinate, 2 phr of peroxide, and 4 phr of carbodiimide, which are the same as those of the sample S1, are used in the biological insulating member. The biologically-derived insulating member and the petroleum-derived insulating member are sequentially formed on the copper bus bar by the same method as the sample S1, and then the sealing process is performed by the same method as the samples S2 and S3 to obtain the sample S4 (using epoxy adhesive) And S5 (using a modified silicone adhesive). Then, the electrical characteristics and durability were examined by the same method as in Example 1. In addition, assuming the temperature change assumed in the actual environment of the voltage device (change from the high temperature region that can be applied to the bus bar to the low sound region that can be applied when the device is stopped in Hokkaido in winter), the samples S4 and S5 are The work (1 cycle; 100 ° C., 8 hours, −40 ° C., 8 hours, transient time 4 hours each), which is left in a high temperature atmosphere (100 ° C.) and a low temperature atmosphere (−40 ° C.), is repeated 30 cycles. After performing the heat cycle test, each dielectric breakdown voltage value (hereinafter referred to as a post-heat cycle breakdown voltage value) was measured. In Samples P and S1 to S3, the breakdown voltage value after heat cycle was measured by the same method as Samples S4 and S5.

Figure 2009099332
Figure 2009099332

前記表3に示すように、可塑剤を用いない試料P,S1〜S3においては、ヒートサイクルテストを終える前に生物由来絶縁部材の破損が観られたことから、該ヒートサイクルテストによってブスバーと生物由来絶縁部材との間で熱応力が発生したことが読み取れる。一方、可塑剤を用いた試料S4,S5は、試料S2,S3と比較すると、絶縁破壊電圧値,破壊電界値,促進寿命日数は同程度であり、ヒートサイクル後破壊電圧値は初期値と殆ど変わらないことから、電気的特性,耐久性が共に良好であることを判明した。特に、可塑剤を用いたことによって、温度変化に対する耐久性が高く、実際の電圧機器により適していることが読み取れる。   As shown in Table 3, in samples P and S1 to S3 that do not use a plasticizer, the biological insulating member was damaged before the heat cycle test was completed. It can be seen that thermal stress has occurred with the originating insulating member. On the other hand, the samples S4 and S5 using the plasticizer have the same breakdown voltage value, breakdown electric field value, and accelerated life days as compared with the samples S2 and S3, and the breakdown voltage value after the heat cycle is almost the same as the initial value. Since it did not change, it was found that both electrical characteristics and durability were good. In particular, it can be seen that the use of a plasticizer has high durability against temperature changes and is more suitable for an actual voltage device.

なお、各S1〜S5の生物由来絶縁部材の形成において、予熱温度を100℃〜280℃に設定したところ、該予熱温度が100℃以下の場合には絶縁性粉体の溶融物による被覆が観られず、該予熱温度が260℃以上の場合には生物由来絶縁部材において変色,発泡,膨張等が生じ易いことを確認できた。また、該予熱温度が110℃〜240℃程度であれば、生物由来絶縁部材を十分形成することができ、前記の変色,発泡,膨張等が生じないことを確認できた。   In the formation of the biologically-derived insulating members S1 to S5, when the preheating temperature was set to 100 ° C. to 280 ° C., when the preheating temperature was 100 ° C. or less, the coating of the insulating powder with the melt was observed. In other words, it was confirmed that discoloration, foaming, expansion and the like were likely to occur in the biological insulating member when the preheating temperature was 260 ° C. or higher. In addition, when the preheating temperature is about 110 ° C. to 240 ° C., it was possible to sufficiently form the biological insulating member, and it was confirmed that the above-described discoloration, foaming, expansion and the like did not occur.

したがって、実施例1〜3のように、被絶縁処理部位に対し生物由来絶縁部材を被覆すると共に、その生物由来絶縁部材に対し石油由来絶縁部材を被覆し、必要に応じて、生物由来絶縁部材において可塑剤を適用したり、接着剤によるシール処理を行うことにより、電圧機器の導電部材の絶縁処理において、地球環境保全に貢献すると共に、十分な耐久性(例えば、強度,耐劣化性等)や電気的特性等を付与でき、実際の重電機器等の電圧機器に十分適用可能であることを確認できた。   Therefore, as in Examples 1 to 3, the biologically-derived insulating member is coated on the part to be insulated, and the biologically-derived insulating member is covered with the petroleum-derived insulating member. By applying a plasticizer or sealing with an adhesive, the insulation of conductive members of voltage equipment contributes to global environmental conservation and has sufficient durability (for example, strength, deterioration resistance, etc.) It can be confirmed that it can be applied to voltage devices such as actual heavy electrical devices.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

Claims (9)

電圧機器の導電部材のうち被絶縁処理部位が絶縁処理されたものであって、
生物由来物質を基材とする高分子材料と、分子中において−N=C=N−構造を有する加水分解抑制剤と、分子中において−O−O−構造を有する架橋剤と、を含む高分子組成物から成り、前記の被絶縁処理部位に対してパウダーコーティング法によって被覆された生物由来絶縁部材と、
石油由来物質を基材とする高分子材料を含んだ高分子組成物から成り、チューブ状に成形されて前記の生物由来絶縁部材に被覆された石油由来絶縁部材と、
を備えたことを特徴とする絶縁処理された電圧機器。
Of the conductive member of the voltage device, the part to be insulated is insulated,
A polymer material comprising a biological material as a base material, a hydrolysis inhibitor having a —N═C═N— structure in the molecule, and a crosslinking agent having a —O—O— structure in the molecule. A biologically-derived insulating member made of a molecular composition and coated by a powder coating method on the above-mentioned insulating treatment site;
A petroleum-derived insulating member comprising a polymer composition containing a polymer material based on a petroleum-derived substance, molded into a tube shape and covered with the biologically-derived insulating member;
An insulated voltage device characterized by comprising:
前記の生物由来物質を基材とする高分子材料は、アセチル化セルロース,ポリ乳酸,ポリブチレンサクシネート,ポリトリメチレンテレフタレート,エステル化澱粉,澱粉基ポリマー,キトサン基ポリマーのうち何れか一つ以上のバイオベースポリマーから成ることを特徴とする請求項1記載の絶縁処理された電圧機器。   The polymer material based on the biological material is at least one of acetylated cellulose, polylactic acid, polybutylene succinate, polytrimethylene terephthalate, esterified starch, starch-based polymer, and chitosan-based polymer. The insulated voltage device according to claim 1, comprising: a bio-based polymer. 前記の石油由来物質を基材とする高分子材料は、ポリエチレン,ポリプロピレン,ポリ塩化ビニル,シリコーン,変性シリコーン,ポリビニルアルコール,変性ポリビニルアルコール,エチレン‐プロピレンターポリマー,ニトリル‐ブタジエンゴムのうち何れか一つ以上のベースポリマーから成ることを特徴とする請求項1または2記載の絶縁処理された電圧機器。   The polymer material based on the petroleum-derived substance is any one of polyethylene, polypropylene, polyvinyl chloride, silicone, modified silicone, polyvinyl alcohol, modified polyvinyl alcohol, ethylene-propylene terpolymer, and nitrile-butadiene rubber. 3. Insulated voltage device according to claim 1 or 2, characterized in that it comprises one or more base polymers. 前記の加水分解抑制剤は、カルボジイミド化合物から成ることを特徴とする請求項1〜3の何れかに記載の絶縁処理された電圧機器。   The insulated voltage device according to claim 1, wherein the hydrolysis inhibitor is composed of a carbodiimide compound. 前記の架橋剤は、パーオキサイドから成ることを特徴とする請求項1〜4の何れかに記載の絶縁処理された電圧機器。   The insulated voltage device according to claim 1, wherein the crosslinking agent is made of peroxide. 前記のチューブ状の石油由来絶縁部材の開口部側の縁部は、シール処理されたことを特徴とする請求項1〜5の何れかに記載の絶縁処理された電圧機器。   6. The insulated voltage device according to claim 1, wherein an edge of the tubular petroleum-derived insulating member on the opening side is sealed. 前記のシール処理において、水ガラスまたは半田から成る無機系接着剤、あるいはアクリル樹脂,エチレン‐酢酸ビニル樹脂,エポキシ樹脂,イソシアネート系樹脂,フェノール樹脂,ユリア樹脂,シリコーン樹脂および各樹脂の変性品のうち何れか一つ以上から成る有機系接着剤を用いたことを特徴とする請求項6記載の絶縁処理された電圧機器。   Among the above-mentioned sealing treatment, among inorganic adhesives made of water glass or solder, or acrylic resin, ethylene-vinyl acetate resin, epoxy resin, isocyanate resin, phenol resin, urea resin, silicone resin, and modified products of each resin 7. The insulated voltage device according to claim 6, wherein an organic adhesive composed of at least one of them is used. 前記の生物由来絶縁部材に用いた高分子組成物は、植物油ベースまたは石油ベースの可塑剤を含んだことを特徴とする請求項1〜7の何れかに記載の絶縁処理された電圧機器。   The insulated voltage apparatus according to claim 1, wherein the polymer composition used for the biological insulating member includes a vegetable oil-based or petroleum-based plasticizer. 前記の植物油ベースの可塑剤は、エポキシ化大豆油またはエポキシ化亜麻仁油から成ることを特徴とする請求項8記載の絶縁処理された電圧機器。   9. The insulated voltage device of claim 8, wherein the vegetable oil based plasticizer comprises epoxidized soybean oil or epoxidized linseed oil.
JP2007268480A 2007-10-16 2007-10-16 Insulated voltage device Pending JP2009099332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007268480A JP2009099332A (en) 2007-10-16 2007-10-16 Insulated voltage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007268480A JP2009099332A (en) 2007-10-16 2007-10-16 Insulated voltage device

Publications (1)

Publication Number Publication Date
JP2009099332A true JP2009099332A (en) 2009-05-07

Family

ID=40702163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007268480A Pending JP2009099332A (en) 2007-10-16 2007-10-16 Insulated voltage device

Country Status (1)

Country Link
JP (1) JP2009099332A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152870A (en) * 2019-03-22 2020-09-24 Mcppイノベーション合同会社 Resin composition and wire coating material
JP2021142754A (en) * 2019-06-26 2021-09-24 大日本印刷株式会社 Laminate of polyester resin composition

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214305A (en) * 1991-07-26 1993-08-24 Sumitomo Electric Ind Ltd Flame-retardant adhesive and thermally shrinkable tube
JPH07207113A (en) * 1993-12-03 1995-08-08 Takenaka Komuten Co Ltd Production of biodegradable resin composition
WO2001048763A2 (en) * 1999-12-28 2001-07-05 Alstom (Switzerland) Ltd Method for producing insulations of electric conductors by means of powder coating
JP2002358829A (en) * 2001-03-29 2002-12-13 Mitsui Chemicals Inc Electric insulation material
JP2003096281A (en) * 2001-09-26 2003-04-03 Mitsui Chemicals Inc Aqueous dispersing element, fine particle and coating film of biodegradable polyester, and production method thereof
JP2004099671A (en) * 2002-09-06 2004-04-02 Unitika Ltd Biodegradable film and its manufacturing method
JP2004107630A (en) * 2002-07-24 2004-04-08 Toray Ind Inc Polylactic acid-based film
JP2004175985A (en) * 2002-11-28 2004-06-24 Toray Ind Inc Thermoplastic resin pellet and method for producing molded polyester article
WO2005014069A1 (en) * 2003-08-05 2005-02-17 Phoqus Pharmaceuticals Limited Coating of surgical devices
JP2005200470A (en) * 2004-01-13 2005-07-28 Toyota Boshoku Corp Method for producing molding having woody fiber bonded with resin
JP2006117810A (en) * 2004-10-22 2006-05-11 Sony Corp Resin composition and molding made therefrom
JP2008138060A (en) * 2006-12-01 2008-06-19 Meidensha Corp Insulating polymer material composition and conductor
JP2008257975A (en) * 2007-04-04 2008-10-23 Meidensha Corp Insulating powder for voltage equipment, insulating method, and voltage equipment

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214305A (en) * 1991-07-26 1993-08-24 Sumitomo Electric Ind Ltd Flame-retardant adhesive and thermally shrinkable tube
JPH07207113A (en) * 1993-12-03 1995-08-08 Takenaka Komuten Co Ltd Production of biodegradable resin composition
WO2001048763A2 (en) * 1999-12-28 2001-07-05 Alstom (Switzerland) Ltd Method for producing insulations of electric conductors by means of powder coating
JP2003520664A (en) * 1999-12-28 2003-07-08 アルストム (スウィツァーランド) リミテッド Method for producing conductor insulator by powder coating
JP2002358829A (en) * 2001-03-29 2002-12-13 Mitsui Chemicals Inc Electric insulation material
JP2003096281A (en) * 2001-09-26 2003-04-03 Mitsui Chemicals Inc Aqueous dispersing element, fine particle and coating film of biodegradable polyester, and production method thereof
JP2004107630A (en) * 2002-07-24 2004-04-08 Toray Ind Inc Polylactic acid-based film
JP2004099671A (en) * 2002-09-06 2004-04-02 Unitika Ltd Biodegradable film and its manufacturing method
JP2004175985A (en) * 2002-11-28 2004-06-24 Toray Ind Inc Thermoplastic resin pellet and method for producing molded polyester article
WO2005014069A1 (en) * 2003-08-05 2005-02-17 Phoqus Pharmaceuticals Limited Coating of surgical devices
JP2007501044A (en) * 2003-08-05 2007-01-25 フォウカス ファーマスーティカルズ リミティド Surgical device coating
JP2005200470A (en) * 2004-01-13 2005-07-28 Toyota Boshoku Corp Method for producing molding having woody fiber bonded with resin
JP2006117810A (en) * 2004-10-22 2006-05-11 Sony Corp Resin composition and molding made therefrom
JP2008138060A (en) * 2006-12-01 2008-06-19 Meidensha Corp Insulating polymer material composition and conductor
JP2008257975A (en) * 2007-04-04 2008-10-23 Meidensha Corp Insulating powder for voltage equipment, insulating method, and voltage equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152870A (en) * 2019-03-22 2020-09-24 Mcppイノベーション合同会社 Resin composition and wire coating material
JP2021142754A (en) * 2019-06-26 2021-09-24 大日本印刷株式会社 Laminate of polyester resin composition
JP7279734B2 (en) 2019-06-26 2023-05-23 大日本印刷株式会社 Laminate of polyester resin composition

Similar Documents

Publication Publication Date Title
JP6095572B2 (en) Composition comprising polymer and conductive carbon
CN102827331B (en) Cross-linkable resin composition, electric wire and molding processing electric wire
Mosiewicki et al. Recent developments in plant oil based functional materials
KR20130102615A (en) Composition of polyamides with low concentration of carboxamide groups and electrically conductive carbon
JP2017097978A (en) Opening-seal plate for closed type power storage device, method for manufacturing the same, and closed type power storage device
JP2009099332A (en) Insulated voltage device
JP2002358829A (en) Electric insulation material
JP5266659B2 (en) Insulating powder for voltage equipment, voltage equipment
JP2010160901A (en) Insulated coating method, insulator, and voltage apparatus
EP2048173A1 (en) Insulating polymer material composition
JP5109449B2 (en) Insulation treatment method, voltage equipment
JP2008138060A (en) Insulating polymer material composition and conductor
JP5359008B2 (en) Method for producing insulating polymer material composition
KR100330200B1 (en) Composite plastics and manufacturing method of the same
CN112778964B (en) Hot melt adhesive, preparation method thereof and lead insulation method
JP2016141794A (en) Insulating coating composition, resin molded product for high voltage equipment, metal tank and gas-insulated switchgear
JP5532562B2 (en) Insulating polymer material composition
JP5303840B2 (en) Insulating polymer material composition
KR20150067060A (en) Electrically Conductive Adhesive Composition and Adhesive Film using the same
JP2001348493A (en) Flame-retardant resin composition
US20090198040A1 (en) Insulating polymer material composition
RU2603679C2 (en) Powder coating with low temperature of application
US20240002674A1 (en) Composition and method for improving durability of electrically insulating and waterproofing gel coating systems
US11739067B2 (en) Super-hydrophobic electrothermal epoxy resin composite material and preparation and self-repairing method therefor
JPS6358192B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100603

A977 Report on retrieval

Effective date: 20120831

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507