JP2010160901A - Insulated coating method, insulator, and voltage apparatus - Google Patents

Insulated coating method, insulator, and voltage apparatus Download PDF

Info

Publication number
JP2010160901A
JP2010160901A JP2009000546A JP2009000546A JP2010160901A JP 2010160901 A JP2010160901 A JP 2010160901A JP 2009000546 A JP2009000546 A JP 2009000546A JP 2009000546 A JP2009000546 A JP 2009000546A JP 2010160901 A JP2010160901 A JP 2010160901A
Authority
JP
Japan
Prior art keywords
coating method
insulating
powder
insulated
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009000546A
Other languages
Japanese (ja)
Inventor
Yasuyuki Kurata
保幸 蔵田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2009000546A priority Critical patent/JP2010160901A/en
Publication of JP2010160901A publication Critical patent/JP2010160901A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulated coating method and an insulator which can contribute to global environment conservation in insulating treatment of a conductive member of voltage apparatus and have sufficient durability (for example, strength and degradation resistance) and electric characteristics after performing a heat-cycle. <P>SOLUTION: A high-polymer composition obtained by adding and kneading silica powder to a high-polymer material which is a living thing-originated material (biodegradable resin) as a base material is attained. The high-polymer composition is made to a biopolymer compound, and a living thing-originated insulating member is coated to an insulated section of the conductive member by powder-coating insulating powder obtained by making the biopolymer compound into fine particles to the conductive member of voltage apparatus. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、絶縁被覆層を形成する方法及び該被覆方法により形成される絶縁体及び、絶縁処理された電圧機器に関するものである。   The present invention relates to a method for forming an insulating coating layer, an insulator formed by the coating method, and an insulated voltage device.

例えば、筐体内に遮断器や断路器等の開閉機器を備えた電圧機器(高電圧機器等の重電機器)においては、社会の高度化・集中化に伴って大容量化、小型化が進み、安全性、信頼性(例えば、機械的物性(絶縁破壊電界特性等)、電気的物性)等の向上も強く要求されている。例えば、電圧機器の導電部材のうち一部の部位においては、該電圧機器の小型化,安全性等の観点から、絶縁処理(絶縁材料による導電部位の被覆(モールド))が適宜施される。この絶縁処理としては、所望の部位(以下、被絶縁処理部位と称する)に対し絶縁性高分子材料から成る熱収縮チューブ等の絶縁部材(チューブ状、シート状等の所望の形状に成形された絶縁体)で被覆する方法を適用、又は被絶縁処理部位に対して被覆物を形成できる程度に微紛化された粉体(以下、絶縁性粉体と称する)をパウダーコーティングする方法を適用することが知られている。   For example, in voltage equipment (heavy electrical equipment such as high-voltage equipment) equipped with switchgear such as circuit breakers and disconnectors in the housing, capacity and size have been reduced with the advancement and concentration of society. There is also a strong demand for improvements in safety, reliability (for example, mechanical properties (dielectric breakdown field characteristics, etc.), electrical properties). For example, some of the conductive members of the voltage device are appropriately subjected to insulation treatment (covering the conductive portion (molding) with an insulating material) from the viewpoint of miniaturization and safety of the voltage device. As this insulation treatment, a desired portion (hereinafter referred to as an insulated portion) is formed into a desired shape such as a heat-shrinkable tube made of an insulating polymer material (tube shape, sheet shape, etc.). Apply a method of coating with an insulator), or apply a method of powder-coating a powder (hereinafter referred to as insulating powder) finely divided to such an extent that a coating can be formed on a portion to be insulated. It is known.

絶縁部材としては、例えば使用目的に応じて熱可塑性樹脂(ポリエチレン等)や熱硬化性樹脂(エポキシ樹脂等)等の石油由来物質を基材(出発物質)とする高分子材料から成るもの(以下、石油由来絶縁部材と称する)が一般的に用いられてきたが、該石油由来絶縁部材を処分する場合には地球環境保全の観点で種々の問題を引き起こすおそれがある。   As the insulating member, for example, a material made of a polymer material based on a petroleum-derived substance (starting material) such as a thermoplastic resin (polyethylene, etc.) or a thermosetting resin (epoxy resin, etc.) according to the purpose of use (hereinafter referred to as “insulating member”) The oil-derived insulating member has been generally used. However, when the oil-derived insulating member is disposed, various problems may be caused from the viewpoint of global environmental conservation.

例えば、石油由来絶縁部材を焼却処分する方法を適用すると種々の有害物質や二酸化炭素を大量に排出し、環境汚染、地球温暖化等の問題を引き起こすおそれがある点で懸念されている。   For example, if a method of incinerating petroleum-derived insulating members is applied, there is a concern that various harmful substances and carbon dioxide may be discharged in large quantities, which may cause problems such as environmental pollution and global warming.

一方、石油由来絶縁部材を単に埋立て処理する方法を適用することもできるが、その埋立て処理に係る最終処分場は年々減少している傾向である。また、石油由来絶縁部材を回収し再利用(リサイクル)する試みもあるが、多大な回収費用やエネルギー(再利用するための燃焼工程等のエネルギー)を要するため、十分には確立されておらず殆ど行われていない。   On the other hand, although a method of simply landfilling petroleum-derived insulating members can be applied, the final disposal site related to the landfill treatment tends to decrease year by year. In addition, there are attempts to collect and reuse (recycle) petroleum-derived insulating members, but they are not well established because they require significant collection costs and energy (energy in the combustion process for reuse). Almost never done.

例外的に、品質が比較的均一な石油由来絶縁部材(電圧機器に用いられているポリエチレンケーブル)のみを回収しサーマルエネルギーとして利用しているが、このサーマルエネルギーは燃焼処理工程を要するため、前記のように環境汚染、地球温暖化等の問題を招くおそれがある。   Exceptionally, only petroleum-derived insulating members (polyethylene cables used in voltage equipment) with relatively uniform quality are recovered and used as thermal energy. However, since this thermal energy requires a combustion treatment process, As such, there is a risk of causing problems such as environmental pollution and global warming.

近年においては、生物由来物質(生分解性樹脂等)を基材とする高分子材料から成る絶縁部材(以下、生物由来絶縁部材と称する)が注目され始めているが(例えば、特許文献1、2)、生分解性(例えば、比較的低温で溶融し易い物性)を有するものであることから、石油由来絶縁部材と比較して耐久性(例えば、強度、耐劣化性等の寿命)が低く、特に十分な電気的特性(例えば、十分な絶縁性等)を長期間維持する必要がある電圧機器等の製品には不向きであり、実際に工業材料として適用されることは無かった。   In recent years, an insulating member made of a polymer material based on a biological material (such as a biodegradable resin) (hereinafter referred to as a biological insulating member) has begun to attract attention (for example, Patent Documents 1 and 2). ), Because it has biodegradability (for example, physical properties that are easy to melt at a relatively low temperature), durability (for example, life of strength, deterioration resistance, etc.) is low compared to petroleum-derived insulating members, In particular, it is unsuitable for products such as voltage devices that need to maintain sufficient electrical characteristics (for example, sufficient insulation) for a long period of time, and is not actually applied as an industrial material.

例えば、所望の形状に固形化(シート状、ペレット状等に固形化)された生物由来絶縁部材であっても、被絶縁処理部位に装着する際に変形したり、被絶縁処理部位の部位との摩擦等により破損し易い。また、パウダーコーティング法を適用した場合には、生物由来絶縁部材の厚さが不十分になったり不均一になり易いおそれがあった。   For example, even a biologically-derived insulating member that has been solidified into a desired shape (solidified into a sheet shape, a pellet shape, etc.) may be deformed when mounted on an insulated treatment site, It is easily damaged by friction. In addition, when the powder coating method is applied, there is a possibility that the thickness of the biological insulating member becomes insufficient or non-uniform.

このため、前記の生物由来絶縁部材は、耐久性や電気的特性等を必要としない簡便な製品等(例えば、いわゆるワンウェイ容器等の回収が困難な生活用品)への適用に制限されていた。   For this reason, the said biological-derived insulating member has been limited to application to simple products that do not require durability, electrical characteristics, etc. (for example, household goods that are difficult to collect such as so-called one-way containers).

これらの問題に対して、生物由来物質(生分解性樹脂等)の破壊電圧を向上させるために、PLA(ポリ乳酸)やPBS(ポリブチレンサクシネート)のようなバイオベースポリマー(非化石原料由来高分子)に加水分解制御剤、有機化酸化物を添加する方法がとられている。さらに、架橋剤(パーオキサイド)処理による水蒸気浸透制御や熱収縮チューブ処理をすることにより、高温・高湿度下で長期寿命が確保できるようになってきている(例えば、特許文献3)。   To solve these problems, bio-based polymers (derived from non-fossil raw materials) such as PLA (polylactic acid) and PBS (polybutylene succinate) are used to improve the breakdown voltage of biological materials (such as biodegradable resins). A method of adding a hydrolysis control agent and an organic oxide to a polymer) is employed. Furthermore, it has become possible to ensure a long-term life under high temperature and high humidity by performing water vapor permeation control by heat treatment with a crosslinking agent (peroxide) or heat shrink tube treatment (for example, Patent Document 3).

特開2002−53699号公報JP 2002-53699 A 特開2002−358829号公報JP 2002-358829 A 特開2008−257976号公報JP 2008-257976 A

バイオベースポリマーを使用した場合、被覆対象である導体と被覆される絶縁体間の線膨張率差により、稀に低温側で熱応力破断が生じるおそれがあった。電圧機器の導電部材の絶縁処理において、地球環境保全に貢献すると共に、十分な耐久性(例えば、強度,耐劣化性等)や電気的特性等を付与できるようにすることが求められている。   When a bio-based polymer is used, thermal stress fracture may occur on the low temperature side rarely due to a difference in linear expansion coefficient between the conductor to be coated and the insulator to be coated. In insulating treatment of conductive members of voltage equipment, it is required to contribute to global environmental conservation and to be able to impart sufficient durability (for example, strength, deterioration resistance, etc.) and electrical characteristics.

本発明は、前記課題に基づいてなされたものであり、電圧機器の導電部材の絶縁処理において、前記のように生活用品等に適用されていた技術とは全く異なり、地球環境保全に貢献できると共に、十分な耐久性や電気的特性等を付与できるようにする絶縁被覆方法を提供することにある。   The present invention has been made on the basis of the above problems, and in the insulation treatment of conductive members of voltage equipment, is totally different from the technology applied to daily necessities as described above, and can contribute to global environmental conservation. Another object of the present invention is to provide an insulating coating method that can provide sufficient durability and electrical characteristics.

具体的に、請求項1記載の絶縁被覆方法は、生物由来物質を基材とする高分子材料と、シリカ粉末とを含む高分子組成物を、被絶縁処理部位に対してパウダーコーティング法によって被覆することを特徴とする。   Specifically, the insulating coating method according to claim 1 is a method in which a polymer composition containing a polymer material based on a biological material and silica powder is coated on a portion to be insulated by a powder coating method. It is characterized by doing.

請求項2記載の絶縁被覆方法は、請求項1に記載の絶縁被覆方法において、前記基材100重量に対して添加されるシリカ粉末の重量は、30重量以上110重量以下であることを特徴とする。   The insulating coating method according to claim 2 is characterized in that, in the insulating coating method according to claim 1, the weight of the silica powder added to 100 weights of the base material is 30 to 110 weights. To do.

請求項3記載の絶縁被覆方法は、請求項1に記載の絶縁被覆方法において、前記基材100重量に対して添加されるシリカ粉末の重量は、40重量以上100重量以下である
ことを特徴とする。
The insulating coating method according to claim 3 is characterized in that, in the insulating coating method according to claim 1, the weight of the silica powder added to 100 weights of the base material is 40 to 100 weights. To do.

請求項4記載の絶縁被覆方法は、請求項1から請求項3のいずれか1項に記載の絶縁被覆方法において、前記シリカ粉末の平均粒径は、5μm以上20μm以下であることを特徴とする。   The insulating coating method according to claim 4 is the insulating coating method according to any one of claims 1 to 3, wherein an average particle diameter of the silica powder is 5 μm or more and 20 μm or less. .

請求項5記載の絶縁被覆方法は、請求項1から請求項4のいずれか1項に記載の絶縁被覆方法において、前記基材は、アセチル化セルロース、ポリ乳酸、ポリブチレンサクシネート、ポリトリメチレンテレフタレート、エステル化澱粉、澱粉基ポリマー、キトサン基ポリマーのうちいずれか一つ以上のバイオベースポリマーから成ることを特徴とする。   The insulating coating method according to claim 5 is the insulating coating method according to any one of claims 1 to 4, wherein the base material is acetylated cellulose, polylactic acid, polybutylene succinate, polytrimethylene. It is characterized by comprising at least one bio-based polymer among terephthalate, esterified starch, starch-based polymer, and chitosan-based polymer.

請求項6記載の絶縁被覆方法は、請求項1から請求項5のいずれか1項に記載の絶縁被覆方法において、前記高分子組成物には、分子中において−N=C=N−構造を有する加水分解抑制剤が添加されることを特徴とする。   The insulating coating method according to claim 6 is the insulating coating method according to any one of claims 1 to 5, wherein the polymer composition has a -N = C = N- structure in a molecule. The hydrolysis inhibitor which has is added, It is characterized by the above-mentioned.

請求項7記載の絶縁被覆方法は、請求項1から請求項6のいずれか1項に記載の絶縁被覆方法において、前記高分子組成物には、分子中において−O−O−構造を有する架橋剤が添加されることを特徴とする。   The insulating coating method according to claim 7 is the insulating coating method according to any one of claims 1 to 6, wherein the polymer composition has a cross-link having an —O—O— structure in a molecule. An agent is added.

請求項8に記載の絶縁体は、生物由来物質を基材とする高分子材料とシリカ粉末を含む高分子組成物が、被絶縁処理部位に対してパウダーコーティング法によって被覆されたことを特徴とする。   The insulator according to claim 8 is characterized in that a polymer composition containing a polymer material based on a biological substance and silica powder is coated on a portion to be insulated by a powder coating method. To do.

請求項9に記載の電圧機器は、生物由来物質を基材とする高分子材料とシリカ粉末を含む高分子組成物が、被絶縁処理部位に対してパウダーコーティング法によって絶縁処理されたことを特徴とする。   The voltage device according to claim 9, wherein a polymer composition including a polymer material based on a biological material and silica powder is insulated by a powder coating method with respect to a site to be insulated. And

以上、本発明の絶縁被覆方法によれば、地球環境保全に貢献できると共に、十分な耐久性(例えば、強度、耐劣化性等の寿命)や電気的特性等を有する絶縁体を得ることができる。   As described above, according to the insulating coating method of the present invention, it is possible to obtain an insulator that can contribute to global environmental conservation and has sufficient durability (for example, life such as strength and deterioration resistance) and electrical characteristics. .

以下、本発明の実施の形態における絶縁被覆方法について説明する。   Hereinafter, the insulating coating method in the embodiment of the present invention will be described.

本発明に係る絶縁被覆方法は、高分子系の絶縁構成材料全てに関するものであり、特に高電圧かつ高温になる電力系統の絶縁に適用できるものである。   The insulation coating method according to the present invention relates to all polymer-based insulation constituent materials, and is particularly applicable to insulation of a power system having a high voltage and a high temperature.

現行の絶縁材料の代替材料として、非化石原料の高分子材料(生物由来物質)を使用するものである。生物由来物質にシリカ粉末を混合し、パウダーコーティング法で導電部材(被絶縁処理部位)に絶縁層を形成することにより、導電部材と絶縁層の間の線膨張率差が低減し、ヒートサイクル後も良好な絶縁特性を維持する。   A non-fossil raw material polymer material (biological material) is used as an alternative to the current insulating material. By mixing silica powder with a biological material and forming an insulating layer on the conductive member (insulated part) by the powder coating method, the difference in linear expansion coefficient between the conductive member and the insulating layer is reduced. Maintain good insulation properties.

<生物由来絶縁部材>
本実施形態の生物由来絶縁部材においては、生物由来物質(生分解性樹脂等)を基材とする高分子材料に対し加水分解抑制剤、架橋剤等を加え混練して得られる高分子組成物にシリカ粉末を添加する。そして、そのシリカ粉末を添加した高分子組成物を微紛化して得られる絶縁性粉体がパウダーコーティング法により、被絶縁処理部位に対して被覆されるものである。
<Biological insulating material>
In the biological insulating member of the present embodiment, a polymer composition obtained by adding a hydrolysis inhibitor, a crosslinking agent or the like to a polymer material based on a biological material (such as a biodegradable resin) and kneading the polymer material. Add silica powder. The insulating powder obtained by micronizing the polymer composition to which the silica powder is added is coated on the portion to be insulated by the powder coating method.

[高分子材料]
生物由来絶縁部材の高分子組成物に適用される高分子材料としては、基材となる生物由来物質の種類、生成プロセス等によって種々のものを適用できる。
[Polymer material]
As the polymer material applied to the polymer composition of the biological insulating member, various materials can be applied depending on the type of biological material used as the base material, the generation process, and the like.

例えば絶縁性、材質の均質性等の観点からアセチル化セルロース、ポリ乳酸、ポリブチレンサクシネート、ポリトリメチレンテレフタレート、エステル化澱粉、澱粉基ポリマー、キトサン基ポリマー等に区分されるバイオベースポリマーが挙げられる。   For example, bio-based polymers classified into acetylated cellulose, polylactic acid, polybutylene succinate, polytrimethylene terephthalate, esterified starch, starch-based polymer, chitosan-based polymer, etc. from the viewpoint of insulation, material homogeneity, etc. It is done.

これら各バイオベースポリマーを適宜単数又は複数併用できる。これらのうち、ポリブチレンサクシネートから成るものにおいては比較的柔軟性を有する。   These biobase polymers can be used singly or in combination as appropriate. Of these, those made of polybutylene succinate are relatively flexible.

なお、前記ポリブチレンサクシネートの各成分のうちコハク酸、ブタンジオールにおいては石油由来のものが一般的であったが、近年においては生物由来のものも出現し始めていることから、該ポリブチレンサクシネートをバイオベースポリマーとして適用できることは明らかである(例えば、実施例で使用するGS Pla(登録商標)は、コハク酸、ブタンジオールと共に乳酸を共重合させている)。   Of the components of the polybutylene succinate, succinic acid and butanediol are generally derived from petroleum, but in recent years, those derived from living organisms have begun to appear. It is clear that the nate can be applied as a bio-based polymer (for example, GS Pla® used in the examples copolymerizes lactic acid with succinic acid and butanediol).

これらバイオベースポリマーにおいては、カーボンニュートラルであることから、たとえ該バイオベースポリマーを用いた製品等を焼却処分しても新たな二酸化炭素が発生することは殆ど無いものと思われる。   Since these bio-based polymers are carbon neutral, it is considered that new carbon dioxide is hardly generated even if a product or the like using the bio-based polymer is incinerated.

[シリカ粉末]
高分子組成物に添加されるシリカ粉末は、平均粒径が5〜20μmのものを用いる。ここでいう平均粒径とは、体積基準での累積分布の50%に相当する粒子径であり、湿式粒度分布測定装置により測定されるものである。
[Silica powder]
The silica powder added to the polymer composition has an average particle size of 5 to 20 μm. The average particle diameter here is a particle diameter corresponding to 50% of the cumulative distribution on a volume basis, and is measured by a wet particle size distribution measuring apparatus.

[加水分解抑制剤]
前記高分子組成物に適用される加水分解抑制剤としては、分子中において−N=C=N−構造(R1−N=C=N−R2構造(R1,R2はアルキル基))を有し、活性水素(加水分解によって生じるカルボン酸、水酸基の活性水素)との補足反応による加水分解抑制効果を奏するものを適用し、例えばカルボジイミド化合物が挙げられる。前記のR1、R2の種類によって加水分解抑制剤自体の物性や反応速度等は異なるものの、本質的機能(活性水素との補足反応等)は略同一である。
[Hydrolysis inhibitor]
As a hydrolysis inhibitor applied to the polymer composition, a —N═C═N— structure (R 1 —N═C═N—R 2 structure (R 1 and R 2 are alkyl groups) in the molecule) For example, a carbodiimide compound may be used. The compound having an effect of inhibiting hydrolysis by a supplemental reaction with active hydrogen (carboxylic acid generated by hydrolysis, active hydrogen of a hydroxyl group). Although the physical properties and reaction rate of the hydrolysis inhibitor itself vary depending on the types of R 1 and R 2 , the essential functions (such as supplemental reaction with active hydrogen) are substantially the same.

[架橋剤]
前記高分子組成物に適用される架橋剤としては、分子中において−O−O−構造を有し、所定温度で架橋反応を起こすものを適用し、例えばパーオキサイドが挙げられる。このパーオキサイドにおいては、−O−O−構造部位が熱的影響を受けてラジカル分解する特性を有し、架橋剤として適用できるものであり、半減期温度の異なる種々のもの(例えば、日本油脂社製のパーヘキサV(10時間半減期温度105℃)、パークミルD(10時間半減期温度116℃)、パーヘキサ25B(10時間半減期温度118℃)、パーブチルP(10時間半減期温度119℃)、パーブチルC(10時間半減期温度120℃)、パーヘキシルD(10時間半減期温度116℃)、パーブチルD(10時間半減期温度124℃)、パーヘキシン25B(10時間半減期温度128℃))が知られている。
[Crosslinking agent]
As a crosslinking agent applied to the polymer composition, one having an —O—O— structure in the molecule and causing a crosslinking reaction at a predetermined temperature is used, and examples thereof include peroxide. This peroxide has the property of radically decomposing the —O—O— structure site under the influence of heat, and can be applied as a cross-linking agent. Various peroxides having different half-life temperatures (for example, Japanese fats and oils) Perhexa V (10-hour half-life temperature 105 ° C), Permill D (10-hour half-life temperature 116 ° C), Perhexa 25B (10-hour half-life temperature 118 ° C), Perbutyl P (10-hour half-life temperature 119 ° C) Perbutyl C (10-hour half-life temperature 120 ° C), Perhexyl D (10-hour half-life temperature 116 ° C), Perbutyl D (10-hour half-life temperature 124 ° C), Perhexine 25B (10-hour half-life temperature 128 ° C)) Are known.

なお、前記のパーオキサイドを高分子材料等と共に混練する場合、その混練機、混練物中の高分子材料等の配合量、混練条件、冷却機構の有無等によって、混練物の温度上昇の程度が異なる。例えば、該高分子材料の溶融温度以上の雰囲気下に保持され、該高分子材料においては自己発熱(せん断熱が発生)することもあり、これら熱によってパーオキサイドが意に反してラジカル分解し架橋反応を起こすことがある。   When the peroxide is kneaded with a polymer material, etc., the temperature rise of the kneaded material depends on the kneading machine, the blending amount of the polymer material in the kneaded material, kneading conditions, the presence or absence of a cooling mechanism, etc. Different. For example, the polymer material is maintained in an atmosphere at a temperature higher than the melting temperature of the polymer material, and the polymer material may self-heat (shear heat is generated). May cause a reaction.

このため、パーオキサイドの種類、配合量等においては適宜選定(例えば、半減期温度が前記の溶融温度近隣以上のパーオキサイドを選定)することが好ましい。例えば、高分子材料の溶融温度が約110℃、せん断熱が約20℃の場合には、例えば、パーブチルD、パーヘキシン25B等を用いる。また、パーオキサイドにおいては、消防法上の観点で危険物として取り扱われている製品が存在するが、例えば不活性充填剤等を配合して成る非危険物グレードの製品も存在し、適宜選択することが好ましい。   For this reason, it is preferable to appropriately select (for example, select a peroxide having a half-life temperature in the vicinity of the melting temperature) as to the kind and amount of the peroxide. For example, when the melting temperature of the polymer material is about 110 ° C. and the shear heat is about 20 ° C., for example, perbutyl D, perhexine 25B, or the like is used. In addition, in peroxide, there are products that are handled as dangerous goods from the viewpoint of the Fire Service Law, but there are also non-dangerous goods grade products that contain, for example, inert fillers, etc. It is preferable.

[絶縁性粉体]
前記シリカ粉末含有高分子組成物を微粉化して得られる絶縁性粉体としては、該絶縁性粉体を用いてパウダーコーティング法により目的とする導電部材(被絶縁処理部位)に生物由来絶縁部材を形成できる程度に、微紛化したものを適用する。例えば、平均粒径が30μm〜300μm程度、望ましくは50μm〜250μm程度に微紛化されたものが挙げられる。
[Insulating powder]
As the insulating powder obtained by pulverizing the silica powder-containing polymer composition, a biologically-derived insulating member is applied to a target conductive member (insulated treatment site) by a powder coating method using the insulating powder. Apply micronized material to the extent that it can be formed. For example, the average particle size is about 30 μm to 300 μm, preferably about 50 μm to 250 μm.

なお、例えば平均粒径が比較的大きいもの(例えば、500μm以上のもの)については、除外、あるいは再度微紛化(パウダーコーティング法により被絶縁処理部位に対して生物由来絶縁部材を形成できる程度に微紛化)を行ってから適用しても良い。   In addition, for example, those having a relatively large average particle diameter (for example, those having a particle size of 500 μm or more) are excluded or re-micronized (to the extent that a biologically-derived insulating member can be formed on an insulating treatment site by a powder coating method) It may be applied after pulverization.

また、微紛化によって得られる絶縁性粉体の粒径、粉体形状は、微紛化に用いる装置の種類(機種,型式等)や微紛化時間等によって変化するものの、前記のようにパウダーコーティング法により目的とする生物由来絶縁部材を形成できる程度の範囲であれば良い。   In addition, although the particle size and powder shape of the insulating powder obtained by pulverization vary depending on the type (model, model, etc.) of the device used for pulverization, the pulverization time, etc., as described above. Any range may be used as long as the target biological insulating member can be formed by the powder coating method.

前記の微紛化に用いる装置においては、種々のミル装置を適用することができ、例えば回転、衝撃、振動等による装置が挙げられる。なお、ミル装置による微紛化の際に少なからず熱が発生し、該熱によって目的とする絶縁性粉体自体が意図しない溶融(自己融着)や劣化するおそれがある。このような場合には、ミル装置全体や一部(微紛化に係る部分)を冷却することが好ましく、微紛化前の高分子組成物自体を予め冷却(冷蔵庫,冷凍庫,液体窒素等を用いて冷却)しても良い。また、高分子組成物が大きな塊状態である等の理由により、該高分子組成物をミル装置に投入できない場合、その投入ができる程度まで高分子組成物を粗粉砕しても良い。   Various milling apparatuses can be applied to the apparatus used for the above-mentioned fine pulverization, and examples include apparatuses using rotation, impact, vibration and the like. It should be noted that there is a considerable amount of heat generated during the pulverization by the mill apparatus, and the target insulating powder itself may be unintentionally melted (self-bonding) or deteriorated due to the heat. In such a case, it is preferable to cool the entire mill device or a part (part relating to pulverization), and the polymer composition itself before pulverization is cooled in advance (refrigerator, freezer, liquid nitrogen, etc.). Cooling). In addition, when the polymer composition cannot be charged into the mill apparatus due to a large lump state of the polymer composition, the polymer composition may be coarsely pulverized to such an extent that the polymer composition can be charged.

[被覆方法]
前記のパウダーコーティング法においては、例えば流動浸漬法、静電塗装法が挙げられる。これら流動浸漬法、静電塗装法は、それぞれのプロセスは異なるものの、その目的(被覆)、結果(被覆される程度)は同様である。
[Coating method]
Examples of the powder coating method include a fluid dipping method and an electrostatic coating method. Although the fluid immersion method and the electrostatic coating method are different in each process, the purpose (coating) and the result (the degree of coating) are the same.

前記の流動浸漬法の場合は、目的とする導電部材の被絶縁処理部位の表面を予め加熱(予熱)しておき、絶縁性粉体が充填された流動浸漬槽内に前記の導電部材(少なくとも、被絶縁処理部位)を浸漬することにより、前記の予熱によって絶縁性粉体を溶融し、被絶縁処理部位に対し該溶融物を付着させて生物由来絶縁部材を形成させる方法である。前記の流動浸漬槽においては、絶縁性粉体の大きさ(熱硬化性樹脂の場合はBステージ)と同等程度、又は該絶縁性粉体の大きさ以下の形状の孔が側壁(底壁等)に複数個穿設された多孔性型の構造のものが適用され、例えば焼結、繊維クロス、機械加工によって得られるものが挙げられる。   In the case of the fluidized immersion method, the surface of the insulation target portion of the target conductive member is preheated (preheated), and the conductive member (at least in the fluidized immersion bath filled with insulating powder) In other words, the insulating powder is soaked by the above preheating to melt the insulating powder, and the melt is attached to the insulated portion to form a biological insulating member. In the fluidized immersion bath, holes having a shape equivalent to or smaller than the size of the insulating powder (B stage in the case of thermosetting resin) or less than the size of the insulating powder are side walls (bottom wall, etc.). And a porous type structure having a plurality of perforations, for example, those obtained by sintering, fiber cloth, or machining.

前記のように側壁に穿設された各孔から流動浸漬槽内に対し、空気、乾燥空気、窒素、乾燥窒素等の不活性気体を均等に噴出(大気圧下で噴出)することにより、該流動浸漬槽内の絶縁性粉体を流動させることができる。   By equally injecting an inert gas such as air, dry air, nitrogen, dry nitrogen, etc. (injected under atmospheric pressure) into the fluid immersion tank from each hole formed in the side wall as described above, The insulating powder in the fluid immersion bath can be fluidized.

そして、前記のように流動する絶縁性粉体に対し、前記のように加熱された被絶縁処理部位を接触(流動浸漬槽内に浸漬して接触)させることにより、被絶縁処理部位に対し絶縁性粉体の溶融物が付着し被覆される。   Then, the insulating part that has been heated as described above is brought into contact with the insulating powder that flows as described above (soaked in a fluidized immersion bath) to thereby insulate the part to be insulated. A melt of conductive powder adheres and is coated.

前記の不活性気体の流量においては、目的とする絶縁性粉体の粒径、分布、形状、密度等に応じて適宜設定する。例えば気体流量(cm3/分)を有効面積(流動浸漬槽のうち不活性気体が均一に噴出される領域の有効面積(cm2))で除した値の線速(cm/分)に基づいて設定することができる。例えば、0.5cm/分〜50cm/分(より好ましくは1cm/分〜20cm/分)程度に設定する。 The flow rate of the inert gas is appropriately set according to the particle size, distribution, shape, density, etc. of the target insulating powder. For example, based on the linear velocity (cm / min) of the value obtained by dividing the gas flow rate (cm 3 / min) by the effective area (effective area (cm 2 ) of the region where the inert gas is uniformly ejected in the fluidized immersion bath). Can be set. For example, it is set to about 0.5 cm / min to 50 cm / min (more preferably 1 cm / min to 20 cm / min).

[導電部材(被絶縁処理部位)]
被覆対象である導電部材(被絶縁処理部位)は、前記の絶縁性粉体の溶融物が付着し被覆されるものであれば種々の材質(銅、鉄、アルミニウム等)、形状(円柱状、角柱状、線状、平板状、編線状等)のものを適用でき、例えば銅ブスバー等が挙げられる。
[Conductive member (insulated part)]
The conductive member to be coated (insulated part) can be any of various materials (copper, iron, aluminum, etc.) and shapes (columnar, (A prismatic shape, a linear shape, a flat plate shape, a knitted wire shape, etc.) can be applied, and examples thereof include a copper bus bar.

例えば被絶縁処理部位にエッジ部が存在していても大きな問題は無いが、該エッジ部を面取り加工(C面加工,R面加工)した場合には、該エッジカバー率が改善され絶縁性粉体の溶融物による生物由来絶縁部材の厚さが十分となり、応力による該生物由来絶縁部材の亀裂等の危険性を低減することができるため好ましい。   For example, there is no major problem even if an edge portion is present in the part to be insulated, but when the edge portion is chamfered (C surface processing, R surface processing), the edge coverage is improved and the insulating powder is improved. The thickness of the biological insulating member due to the melt of the body is sufficient, and the risk of cracking of the biological insulating member due to stress can be reduced, which is preferable.

例えば、導電部材(例えば、ブスバー)が引抜き成型等により形成される場合には、前記のエッジ部をR面にしておくことが好ましい。なお、前記の危険性の低減度合いは、前記の面取り加工の程度によって異なるが、前記のようにたとえエッジ部が存在していても大きな問題は無いため、該面取り加工はコスト等を考慮して適宜行えば良い。   For example, when a conductive member (for example, a bus bar) is formed by pultrusion molding or the like, it is preferable that the edge portion is an R surface. The degree of risk reduction varies depending on the degree of the chamfering process, but there is no major problem even if the edge portion exists as described above. What is necessary is just to carry out suitably.

導電部材のうち、例えば導電性を必要とする箇所(例えば電気的接続され得る箇所)や作業上の保持、位置決め等に係る箇所(位置決め用の孔等)は絶縁処理を必要としないため、適宜マスキングを行うことが好ましい。   Of the conductive members, for example, portions that require electrical conductivity (for example, locations that can be electrically connected) and locations related to work holding, positioning, etc. (positioning holes, etc.) do not require insulation treatment, so It is preferable to perform masking.

被絶縁処理部位表面の予熱温度は、該被絶縁処理部位を流動浸漬槽内に浸漬した際に絶縁性粉体の溶融物が付着し被覆される温度範囲とし、絶縁性粉体の加工温度(軟化温度、溶融点、ガラス転移温度等)、該被絶縁処理部位自体の熱容量(比熱、比重、形状等による熱容量)、放熱(冷却)特性、目的とする生物由来絶縁部材厚さに応じて適宜設定できるものである。   The preheating temperature of the surface to be insulated is set to a temperature range in which the melt of the insulating powder adheres and is coated when the portion to be insulated is immersed in the fluidized immersion bath, and the processing temperature of the insulating powder ( (Softening temperature, melting point, glass transition temperature, etc.), heat capacity (specific heat, specific gravity, heat capacity due to shape, etc.) of the part to be insulated itself, heat dissipation (cooling) characteristics, and thickness of the target biologically-derived insulating member It can be set.

予熱温度が低過ぎる場合には絶縁性粉体(溶融物)が被絶縁処理部位に付着し難くなり、予熱温度が高過ぎる場合には被覆された生物由来絶縁部材において変色、発泡、膨張等が発生し易くなるため、例えば、絶縁性粉体の加工温度よりも20℃低い温度から、該絶縁性粉体が分解する温度までの範囲とする。好ましくは、絶縁性粉体の加工温度から、該加工温度よりも100℃高い温度までの範囲とする。本実施形態の絶縁性粉体を適用した場合の具体例としては、110℃〜240℃程度の温度範囲が挙げられる。   When the preheating temperature is too low, the insulating powder (melt) becomes difficult to adhere to the part to be insulated, and when the preheating temperature is too high, discoloration, foaming, expansion, etc. occur in the coated biological insulating member. In order to generate easily, it is set as the range from the temperature 20 degreeC lower than the processing temperature of insulating powder to the temperature which this insulating powder decomposes | disassembles, for example. Preferably, the range is from the processing temperature of the insulating powder to a temperature 100 ° C. higher than the processing temperature. A specific example of the case where the insulating powder of the present embodiment is applied includes a temperature range of about 110 ° C. to 240 ° C.

流動浸漬槽に対する被絶縁処理部位の浸漬時間、浸漬位置(浸漬中の空間的位置、方向)は、前記の溶融物による生物由来絶縁部材厚さ、被絶縁処理部位の予熱温度、形状等に応じて設定することができ、該浸漬を複数回繰り返して行っても良い。   The soaking time and soaking position (spatial position and direction during soaking) of the part to be insulated with respect to the fluidized immersion tank depends on the thickness of the biologically-derived insulating member by the melt, the preheating temperature of the part to be insulated, the shape, etc. The immersion may be repeated a plurality of times.

なお、被絶縁処理部位の浸漬開始から一定の浸漬時間までの間において、生物由来絶縁部材厚さは時間経過と共に厚くなるものの、該一定の浸漬時間以降においては、該生物由来絶縁部材厚さは一定あるいは不均一(表面状態が粗)になり易くなる。   In addition, during the period from the start of immersion of the part to be insulated to the constant immersion time, the biological insulating member thickness increases with time, but after the predetermined immersion time, the biological insulating member thickness is It tends to be constant or non-uniform (surface condition is rough).

例えば、被絶縁処理部位の形状によっては、溶融物が定着し難い場合(例えば、剥離する場合)や重力により垂れ下がる場合があり、厚さが不均一になり易くなる。このような傾向は、予熱温度が低過ぎたり高過ぎても起こり得るものと思われ、浸漬時間、浸漬回数、浸漬位置、被絶縁処理部位の予熱温度等を適宜調整することが好ましい。   For example, depending on the shape of the part to be insulated, the melt may be difficult to fix (for example, when peeled) or may hang down due to gravity, and the thickness tends to be non-uniform. Such a tendency seems to occur even if the preheating temperature is too low or too high, and it is preferable to appropriately adjust the immersion time, the number of immersions, the immersion position, the preheating temperature of the part to be insulated, and the like.

また、前記のように被覆された生物由来絶縁部材は、熱処理等を施すことにより架橋しても良い。例えば、前記のように被覆した後に施され得る熱処理(例えば、被覆物の肉厚のバラツキ、表面荒れ、内部応力の緩和等を図る目的の熱処理)によって架橋しても良い。   Further, the biological insulating member coated as described above may be cross-linked by performing a heat treatment or the like. For example, the cross-linking may be performed by heat treatment that can be performed after coating as described above (for example, heat treatment for the purpose of reducing the thickness variation of the coating, surface roughness, internal stress, etc.).

<その他>
本実施形態の生物由来絶縁部材,石油由来絶縁部材においては、高分子材料等の他に、高分子材料成形技術の分野で一般的に用いられている各種添加剤、例えば熱安定剤、光安定剤(紫外線防止剤)、酸化防止剤、老化防止剤、顔料、着色剤、無機充填剤(フィラー)、微小無機充填材(ナノ粒子)、難燃剤、抗菌剤、防腐食剤等を、目的とする電圧機器用絶縁性粉体、絶縁処理方法、電圧機器の特性を損わない程度で適宜用いても良い。
<Others>
In the bio-derived insulating member and petroleum-derived insulating member of the present embodiment, in addition to the polymer material, various additives generally used in the field of polymer material molding technology, such as a heat stabilizer, a light stabilizer, etc. Aiming at agents (ultraviolet ray inhibitors), antioxidants, anti-aging agents, pigments, colorants, inorganic fillers (fillers), fine inorganic fillers (nanoparticles), flame retardants, antibacterial agents, anticorrosives, etc. Insulating powder for voltage equipment, insulation processing method, and voltage equipment may be used as appropriate as long as the characteristics of the voltage equipment are not impaired.

例えば、生物由来絶縁部材の場合、パウダーコーティング法での溶融物による被覆の安定化を目的とした過酸化物添加による架橋や、官能基の安定化を目的としたカップリング剤の添加等を適宜行っても良い。   For example, in the case of biologically derived insulating members, cross-linking by addition of peroxide for the purpose of stabilizing the coating by the melt in the powder coating method, addition of a coupling agent for the purpose of stabilizing the functional group, etc. You can go.

次に、本実施形態における絶縁処理された電圧機器の実施例を説明する。下記の各実施例では、矩形平板状(長さ1200mm、幅40mm、厚さ5mm)の銅ブスバーの両端部側(それぞれの端部から長手方向に100mmの領域)をマスキングし、その銅ブスバーの中央部(マスキング領域以外)に対し絶縁性粉体を用いて流動浸漬法により種々の条件で絶縁処理して生物由来絶縁部材を被覆し、さらに該生物由来絶縁部材を石油由来絶縁部材で被覆することにより種々の試料を得、それら各試料の電気的特性、耐久性を調べた。   Next, an example of an insulated voltage device in the present embodiment will be described. In each of the following examples, both ends of a rectangular flat plate (length: 1200 mm, width: 40 mm, thickness: 5 mm) are masked on both ends (100 mm in the longitudinal direction from each end), and the copper bus bar The center part (other than the masking region) is coated with a biological insulating member by using an insulating powder under various conditions by a fluid immersion method, and further covering the biological insulating member with a petroleum-derived insulating member. Thus, various samples were obtained, and the electrical characteristics and durability of each sample were examined.

[実施例]
生物由来絶縁部材として、まず、ペレット状のポリブチレンサクシネート(三菱化学社製のGS Pla(登録商標) AZ−61T(MI=30))に液状のパーオキサイド(日本油脂社製のパーブチルD)2phrを振り掛け、粉体状のカルボジイミド(日清紡績社製のカルボジライトLA−1)4phrと共に予備混合した。
[Example]
As a biologically-derived insulating member, first, a pellet of polybutylene succinate (GS Pla (registered trademark) AZ-61T (MI = 30) manufactured by Mitsubishi Chemical Corporation) and liquid peroxide (Perbutyl D manufactured by NOF Corporation) 2 phr was sprinkled and premixed together with 4 phr of powdered carbodiimide (Carbodilite LA-1 manufactured by Nisshinbo Industries, Inc.).

さらに、この予備混合時にシリカ粉末(龍森社製のMCF−4(平均粒径12μm))を添加した。シリカ粉末の添加量は、10phrから120phr加え、10phr毎にサンプルを作成した。   Furthermore, silica powder (manufactured by Tatsumori Co., Ltd., MCF-4 (average particle size 12 μm)) was added during the preliminary mixing. The amount of silica powder added was 10 phr to 120 phr, and samples were prepared every 10 phr.

シリカ粉末を添加しないサンプルを比較例1とし、シリカ粉末を10phr、20phr、120phr添加したサンプルを、それぞれ比較例2、比較例3、比較例4とした。そして、シリカ粉末を30phr〜110phr添加したサンプルをそれぞれ実施例1〜実施例9とした。   A sample to which no silica powder was added was referred to as Comparative Example 1, and samples to which 10 phr, 20 phr, and 120 phr of silica powder were added were referred to as Comparative Example 2, Comparative Example 3, and Comparative Example 4, respectively. And the sample which added 30 phr-110 phr of silica powder was made into Example 1- Example 9, respectively.

次に、前記の混合物を二軸混練押出機(ベルストルフ社製のZE40A)に投入して混練し、その混練物をストランド状に掃引(二軸押出し温度130℃で掃引)して、ペレタイザーによって長さ数mm程度の形状に切断することにより、ペレット状の高分子組成物を得た。   Next, the mixture is put into a twin-screw kneader-extruder (ZE40A manufactured by Belstolf) and kneaded. A pellet-shaped polymer composition was obtained by cutting into a shape of about several millimeters.

そして、スパイラルミル(セイシン企業社製)を冷却(ミル装置全体や一部を冷却)しながら、そのミルに対し前記の高分子組成物(必要に応じて冷蔵庫又は液体窒素等により冷却処理された高分子組成物)を投入し微紛化して平均粒径30〜300μmの絶縁性粉体を得た。   Then, while cooling the spiral mill (manufactured by Seishin Enterprise Co., Ltd.) (cooling the whole mill apparatus or a part thereof), the mill was cooled with the above-described polymer composition (if necessary, with a refrigerator or liquid nitrogen, etc.) (Polymer composition) was added and pulverized to obtain an insulating powder having an average particle size of 30 to 300 μm.

その後、前記の絶縁性粉体を流動浸漬槽(仲田コーティング社製)に投入し、該浸漬槽内に不活性気体(窒素ガス)を噴出(流速0.5〜50cm/分で噴出)して絶縁性粉体を流動させ、前記のマスキングされた銅ブスバー表面を180℃で予熱してから該絶縁性粉体中に上下1回ずつ(各浸漬時間は10秒間)し、該絶縁性粉体の溶融物を付着させることにより、生物由来絶縁部材(肉厚1.4mm)が被覆された試料を得た。   Thereafter, the insulating powder is put into a fluidized immersion tank (manufactured by Nakata Coating Co., Ltd.), and an inert gas (nitrogen gas) is ejected into the immersion tank (a flow rate of 0.5 to 50 cm / min). The insulating powder is made to flow, and the masked copper bus bar surface is preheated at 180 ° C., and then is once in the insulating powder (each immersion time is 10 seconds). A sample coated with a biological insulating member (thickness: 1.4 mm) was obtained by adhering a melt of

まず、前記各試料(比較例1〜4、実施例1〜9)において、交流電圧を印加(マスキングにより溶融物が被覆されなかった両端部に印加)した場合の初期絶縁破壊電圧値(BDV値)、初期破壊電界値を測定することにより電気的特性を調べた。   First, in each of the samples (Comparative Examples 1 to 4 and Examples 1 to 9), an initial breakdown voltage value (BDV value) when an alternating voltage is applied (applied to both ends where the melt was not coated by masking). ), The electrical characteristics were examined by measuring the initial breakdown electric field value.

次に、電圧機器の実環境で想定される温度変化(ブスバーに掛かりうる高温領域から、冬場の北海道で機器停止時に掛かりうる低音領域までの変化)を想定して、前記各試料をそれぞれ高温雰囲気下(100℃)と低温雰囲気下(−40℃)とに放置する作業(1サイクル;100℃・8時間、−40℃・8時間、過渡時間各4時間)を30サイクル繰り返してヒートサイクルテストを行った後、それぞれの絶縁破壊電圧値(以下、ヒートサイクル後破壊電圧値と称する)を測定した。   Next, assuming the temperature change assumed in the actual environment of the voltage device (change from the high temperature region that can be applied to the bus bar to the low sound region that can be applied when the device is stopped in winter in Hokkaido), each sample is subjected to a high temperature atmosphere. Heat cycle test with 30 cycles of work (1 cycle; 100 ° C, 8 hours, -40 ° C, 8 hours, transient time 4 hours each) left in a low temperature (100 ° C) and low temperature atmosphere (-40 ° C) Then, each dielectric breakdown voltage value (hereinafter referred to as a post-heat cycle breakdown voltage value) was measured.

初期破壊電圧値、初期破壊電界値測定の結果及び、ヒートサイクル後の破壊電圧測定値の結果を表1に示す。   Table 1 shows the results of the initial breakdown voltage value, the initial breakdown electric field value measurement, and the breakdown voltage measurement value after the heat cycle.

Figure 2010160901
Figure 2010160901

表1に示す結果から、非化石原料であるバイオベースポリマーにシリカ粉末を添加することによって、導体の線膨張率差による熱破壊を抑え、ヒートサイクル後も絶縁特性を維持することができることがわかった。   From the results shown in Table 1, it can be seen that by adding silica powder to the bio-based polymer that is a non-fossil raw material, it is possible to suppress thermal breakdown due to the difference in the coefficient of linear expansion of the conductor and to maintain the insulation characteristics even after the heat cycle. It was.

表1に示すように、シリカ粉末を添加していない又は、シリカ粉末の添加量が少ない試料(比較例1〜3)においては、ヒートサイクルテストを終える前の初期の段階で生物由来絶縁部材の破損が観られたことから、該ヒートサイクルテストによってブスバーと生物由来絶縁部材との間で熱応力が発生したことが読み取れる。   As shown in Table 1, in the sample (Comparative Examples 1 to 3) in which the silica powder was not added or the amount of silica powder added was small, the biological insulating member was in the initial stage before the heat cycle test was completed. Since breakage was observed, it can be read that thermal stress was generated between the bus bar and the biological insulating member by the heat cycle test.

一方、シリカ粉末の添加量が30phr以上110phr以下の試料(実施例1〜9)では、ヒートサイクル後も十分な絶縁特性を有している。特に、シリカ粉末の添加量が40phr以上110phr以下の試料(実施例2〜8)のヒートサイクル後破壊電圧値は初期破壊電圧値と殆ど変わらないことから、電気的特性、耐久性が共に良好であることを判明した。   On the other hand, the samples (Examples 1 to 9) in which the addition amount of silica powder is 30 phr or more and 110 phr or less have sufficient insulating properties even after the heat cycle. In particular, since the breakdown voltage value after the heat cycle of the sample (Examples 2 to 8) in which the addition amount of silica powder is 40 phr or more and 110 phr or less is almost the same as the initial breakdown voltage value, both electrical characteristics and durability are good. Turned out to be.

また、シリカ粉末の添加量が120phr以上(比較例4)の試料では、絶縁性粉体が高粘度となり生物由来絶縁部材の成形性が失われてしまうことが確認された。   In addition, it was confirmed that in the sample in which the amount of silica powder added was 120 phr or more (Comparative Example 4), the insulating powder had a high viscosity and the moldability of the biological insulating member was lost.

したがって、シリカ粉末の添加量が30phr以上110phr以下であることが好ましく、特にシリカ粉末の添加量が40phr以上100phr以下であることが好ましい。   Therefore, the addition amount of silica powder is preferably 30 phr or more and 110 phr or less, and the addition amount of silica powder is particularly preferably 40 phr or more and 100 phr or less.

なお、生物由来絶縁部材の形成において、予熱温度を100℃〜280℃に設定したところ、該予熱温度が100℃以下の場合には絶縁性粉体の溶融物による被覆が観られず、該予熱温度が260℃以上の場合には生物由来絶縁部材において変色、発泡、膨張等が生じ易いことを確認できた。また、該予熱温度が110℃〜240℃程度であれば、生物由来絶縁部材を十分形成することができ、前記の変色、発泡、膨張等が生じないことを確認できた。   In the formation of the biologically-derived insulating member, when the preheating temperature was set to 100 ° C. to 280 ° C., when the preheating temperature was 100 ° C. or less, the insulation powder was not covered with the melt and the preheating was not observed. When the temperature was 260 ° C. or higher, it was confirmed that discoloration, foaming, expansion, and the like were likely to occur in the biological insulating member. Moreover, if this preheating temperature is about 110 degreeC-240 degreeC, it could confirm that a biological origin insulation member could fully be formed and the said discoloration, foaming, expansion | swelling, etc. would not arise.

したがって、実施例のように、被絶縁処理部位に対しシリカ粉末を添加した生物由来絶縁部材を被覆すると、電圧機器の導電部材の絶縁処理において、地球環境保全に貢献すると共に、十分な耐久性(例えば、強度,耐劣化性等)や電気的特性等を付与でき、実際の重電機器等の電圧機器に十分適用可能であることを確認できた。   Therefore, as in the embodiment, when the biologically-derived insulating member to which silica powder is added is coated on the portion to be insulated, in the insulation treatment of the conductive member of the voltage device, it contributes to global environmental conservation and has sufficient durability ( For example, strength, deterioration resistance, etc.) and electrical characteristics can be imparted, and it has been confirmed that the present invention is sufficiently applicable to voltage devices such as actual heavy electrical devices.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形及び修正が可能であることは、当業者にとって明白なことであり、このような変形及び修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications can be made within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

Claims (9)

生物由来物質を基材とする高分子材料とシリカ粉末を含む高分子組成物を、被絶縁処理部位に対してパウダーコーティング法によって被覆する
ことを特徴とする絶縁被覆方法。
An insulating coating method, wherein a polymer composition containing a polymer material based on a biological material and silica powder is coated on a portion to be insulated by a powder coating method.
前記基材100重量に対して添加されるシリカ粉末の重量は、
30重量以上110重量以下である
ことを特徴とする請求項1に記載の絶縁被覆方法。
The weight of the silica powder added to 100 weight of the substrate is
The insulation coating method according to claim 1, wherein the insulation coating method is 30 to 110 weight.
前記基材100重量に対して添加されるシリカ粉末の重量は、
40重量以上100重量以下である
ことを特徴とする請求項1に記載の絶縁被覆方法。
The weight of the silica powder added to 100 weight of the substrate is
The insulation coating method according to claim 1, wherein the insulation coating method is 40 to 100 weights.
前記シリカ粉末の平均粒径は、
5μm以上20μm以下である
ことを特徴とする請求項1から請求項3のいずれか1項に記載の絶縁被覆方法。
The average particle size of the silica powder is
The insulating coating method according to claim 1, wherein the insulating coating method is 5 μm or more and 20 μm or less.
前記基材は、アセチル化セルロース、ポリ乳酸、ポリブチレンサクシネート、ポリトリメチレンテレフタレート、エステル化澱粉、澱粉基ポリマー、キトサン基ポリマーのうちいずれか一つ以上のバイオベースポリマーから成る
ことを特徴とする請求項1から請求項4のいずれか1項に記載の絶縁被覆方法。
The substrate is composed of at least one bio-based polymer of acetylated cellulose, polylactic acid, polybutylene succinate, polytrimethylene terephthalate, esterified starch, starch-based polymer, and chitosan-based polymer. The insulating coating method according to any one of claims 1 to 4.
前記高分子組成物には、
分子中において−N=C=N−構造を有する加水分解抑制剤が添加される
ことを特徴とする請求項1から請求項5のいずれか1項に記載の絶縁被覆方法。
The polymer composition includes
6. The insulating coating method according to claim 1, wherein a hydrolysis inhibitor having a —N═C═N— structure is added in the molecule.
前記高分子組成物には、
分子中において−O−O−構造を有する架橋剤が添加される
ことを特徴とする請求項1から請求項6のいずれか1項に記載の絶縁被覆方法。
The polymer composition includes
The insulating coating method according to any one of claims 1 to 6, wherein a crosslinking agent having an -O-O- structure in the molecule is added.
生物由来物質を基材とする高分子材料とシリカ粉末を含む高分子組成物が、被絶縁処理部位に対してパウダーコーティング法によって被覆された
ことを特徴とする絶縁体。
An insulator, wherein a polymer composition containing a polymer material based on a biological substance and silica powder is coated on a portion to be insulated by a powder coating method.
生物由来物質を基材とする高分子材料とシリカ粉末を含む高分子組成物が、被絶縁処理部位に対してパウダーコーティング法によって絶縁処理された
ことを特徴とする電圧機器。
A voltage device, wherein a polymer composition including a polymer material based on a biological material and silica powder is insulated by a powder coating method on a portion to be insulated.
JP2009000546A 2009-01-06 2009-01-06 Insulated coating method, insulator, and voltage apparatus Pending JP2010160901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009000546A JP2010160901A (en) 2009-01-06 2009-01-06 Insulated coating method, insulator, and voltage apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009000546A JP2010160901A (en) 2009-01-06 2009-01-06 Insulated coating method, insulator, and voltage apparatus

Publications (1)

Publication Number Publication Date
JP2010160901A true JP2010160901A (en) 2010-07-22

Family

ID=42577933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009000546A Pending JP2010160901A (en) 2009-01-06 2009-01-06 Insulated coating method, insulator, and voltage apparatus

Country Status (1)

Country Link
JP (1) JP2010160901A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103087358A (en) * 2011-11-01 2013-05-08 住友橡胶工业株式会社 High damping composition
CN104900299A (en) * 2015-04-10 2015-09-09 西北核技术研究所 Polymer insulator with uniform hole distribution on surface and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103087358A (en) * 2011-11-01 2013-05-08 住友橡胶工业株式会社 High damping composition
JP2013095864A (en) * 2011-11-01 2013-05-20 Sumitomo Rubber Ind Ltd High-damping composition
CN104900299A (en) * 2015-04-10 2015-09-09 西北核技术研究所 Polymer insulator with uniform hole distribution on surface and preparation method thereof
CN104900299B (en) * 2015-04-10 2017-01-18 西北核技术研究所 Polymer insulator with uniform hole distribution on surface and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6095572B2 (en) Composition comprising polymer and conductive carbon
KR101805960B1 (en) Composition of polyamides with low concentration of carboxamide groups and electrically conductive carbon
Fan et al. Core–shell structured biopolymer@ BaTiO3 nanoparticles for biopolymer nanocomposites with significantly enhanced dielectric properties and energy storage capability
WO2015067569A1 (en) Self-healing thermally conductive polymer materials
KR101666881B1 (en) Manufacturing method of metal-free CNT Composite materials having excellent chemical resistance and electric resistance, CNT pellet used the same that, product manufactured thereby
Poh et al. Tensile, dielectric, and thermal properties of epoxy composites filled with silica, mica, and calcium carbonate
KR102600796B1 (en) Electrical insulating resin composition for internal discharge only
EP3567083A1 (en) Insulating and heat-radiating coating composition, and insulating and heat-radiating product implemented therewith
Apeldorn et al. Dielectric properties of highly filled thermoplastics for printed circuit boards
CN103282438A (en) Polyamide 12 composition containing carbon nanotubes
Hamzah et al. Electrical insulation characteristics of alumina, titania, and organoclay nanoparticles filled PP/EPDM nanocomposites
Islam et al. High density polyethylene and metal oxides based nanocomposites for high voltage cable application
JP2010160901A (en) Insulated coating method, insulator, and voltage apparatus
JP5266659B2 (en) Insulating powder for voltage equipment, voltage equipment
JP2002358829A (en) Electric insulation material
Jamail et al. Effect of nanofillers on the polarization and depolarization current characteristics of new LLDPE-NR compound for high voltage application
JP5109449B2 (en) Insulation treatment method, voltage equipment
JP2009099332A (en) Insulated voltage device
JP2008138060A (en) Insulating polymer material composition and conductor
JP5359008B2 (en) Method for producing insulating polymer material composition
Dolatshah et al. Long‐chain branching of polyethylene terephthalate: Rheological/thermal properties of polyethylene terephthalate/carbon nanotube nanocomposite
Ramkumar et al. Investigation on dielectric properties of HDPE with alumina nano fillers
CA2991858A1 (en) Partial discharge-resistant electrical insulating resin composition
CN104845079A (en) Antistatic halogen-free flame-retardant PET/PTT alloy and preparation method thereof
Ohki et al. Dielectric properties of biodegradable polymers