JP2009098608A - Manufacturing method of substrate for liquid crystal display apparatus - Google Patents

Manufacturing method of substrate for liquid crystal display apparatus Download PDF

Info

Publication number
JP2009098608A
JP2009098608A JP2008109861A JP2008109861A JP2009098608A JP 2009098608 A JP2009098608 A JP 2009098608A JP 2008109861 A JP2008109861 A JP 2008109861A JP 2008109861 A JP2008109861 A JP 2008109861A JP 2009098608 A JP2009098608 A JP 2009098608A
Authority
JP
Japan
Prior art keywords
photosensitive resin
liquid crystal
layer
crystal display
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008109861A
Other languages
Japanese (ja)
Other versions
JP2009098608A5 (en
Inventor
Tetsuo Yamashita
哲夫 山下
Haruki Nonaka
晴支 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008109861A priority Critical patent/JP2009098608A/en
Publication of JP2009098608A publication Critical patent/JP2009098608A/en
Publication of JP2009098608A5 publication Critical patent/JP2009098608A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Optical Filters (AREA)
  • Materials For Photolithography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a color filter substrate for a liquid crystal display apparatus by which a flattening layer and a patternizing layer can be batch-processed with high film thickness accuracy and further high performance and cost reduction of the liquid crystal display apparatus can be attained. <P>SOLUTION: The flattening layer which is nonphotosensitive and is hardly soluble or insoluble in a developing solution is formed by application and semicuring on the color filter substrate having two or more colored layers. Then a photosensitive resin is applied on the flattening layer, semicured and is exposed via a photomask. Only a photosensitive resin layer is etched by the developing solution and thereby the flattening layer and the patternizing layer can be batch-processed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は非感光性樹脂からなる平坦化層と感光性樹脂からなるパターン化層からなる液晶表示装置用基板の製造方法に関する。   The present invention relates to a method for manufacturing a substrate for a liquid crystal display device comprising a planarizing layer made of a non-photosensitive resin and a patterned layer made of a photosensitive resin.

現在、液晶表示装置は、軽量、薄型、低消費電力等の特性を生かし、ノートPC、携帯情報端末、デスクトップモニタ、デジタルカメラ、大型液晶テレビなど様々な用途で使用されている。携帯端末では場所を選ばない視認性が重要視され、1つの画素内に透過表示、反射表示それぞれでの表示を可能とする半透過型液晶表示装置が開発されている。また、液晶テレビ用途では、高速応答、広視野角化、高コントラスト化などの特性向上が図られている。   Currently, liquid crystal display devices are used in various applications such as notebook PCs, portable information terminals, desktop monitors, digital cameras, and large liquid crystal televisions, taking advantage of characteristics such as light weight, thinness, and low power consumption. In a portable terminal, visibility regardless of location is regarded as important, and a transflective liquid crystal display device has been developed that enables display in each of transmissive display and reflective display within one pixel. In liquid crystal television applications, characteristics such as high-speed response, wide viewing angle, and high contrast are being improved.

液晶表示装置の性能向上に伴い、従来の遮光層、着色層、平坦化層からなる単純な構成のカラーフィルタに、固定スペーサ、液晶配向制御用の樹脂突起物、セルギャップ調整用の樹脂層などの付加構造物を形成したカラーフィルタが開発されている。   Along with the improvement in performance of liquid crystal display devices, conventional color filters consisting of a light-shielding layer, a colored layer, and a flattening layer, fixed spacers, resin protrusions for liquid crystal alignment control, resin layers for cell gap adjustment, etc. Color filters with additional structures have been developed.

例えば、特許文献1に開示されているように、従来のビーズスペーサを散布した液晶表示装置では、ビーズスペーサ周辺で液晶の配向が乱れ、コントラストが低下していたのに対し、カラーフィルタに固定スペーサを形成した液晶表示装置では、固定スペーサを非表示領域に形成することで、コントラストの向上を図ることができる。   For example, as disclosed in Patent Document 1, in a conventional liquid crystal display device in which bead spacers are dispersed, the orientation of liquid crystal is disturbed around the bead spacers and the contrast is lowered. In the liquid crystal display device in which is formed, the contrast can be improved by forming the fixed spacer in the non-display region.

また、非特許文献1に開示されているように、ネガ型の液晶を使用した垂直配向モードの液晶表示装置において、液晶の配向を複数の領域に分割するよう、液晶配向制御用の樹脂突起物を形成することで、視野角の拡大を図ることが可能となっている。   Further, as disclosed in Non-Patent Document 1, in a vertical alignment mode liquid crystal display device using negative liquid crystal, a resin protrusion for controlling liquid crystal alignment so as to divide the liquid crystal alignment into a plurality of regions. By forming the, it is possible to increase the viewing angle.

さらに、非特許文献2には、半透過型液晶表示装置において、反射表示領域に透明樹脂層を形成し、反射表示領域のセルギャップを狭くすることで、透過表示領域との光路長をおよそ同じにし、反射表示領域、透過表示領域ともに明るい半透過型液晶表示装置とする構成が開示されている。   Furthermore, in Non-Patent Document 2, in a transflective liquid crystal display device, a transparent resin layer is formed in a reflective display region, and the cell gap of the reflective display region is narrowed, so that the optical path length with the transmissive display region is approximately the same. In addition, a configuration is disclosed in which the reflective display region and the transmissive display region are both bright transflective liquid crystal display devices.

液晶表示装置における表示領域と非表示領域の対向基板間距離を一定に保つための構成が、特許文献3に開示されている。この方法によれば、一方の基板の非表示領域における液晶側表面にカラーフィルタの膜厚と同一の透明樹脂膜を形成し、その目的を達成することが記載されている。 これらの付加構造体は、パターン加工されており、通常フォトリソ工程を経て、形成される。従って、高性能液晶表示装置に用いられる付加構造物を具備したカラーフィルタでは、単純な構成のカラーフィルタに比べ、フォトリソ工程が多く、コスト増になるという課題があった。   A configuration for keeping the distance between the opposing substrates of the display region and the non-display region in the liquid crystal display device constant is disclosed in Patent Document 3. According to this method, it is described that a transparent resin film having the same thickness as that of the color filter is formed on the liquid crystal side surface in the non-display area of one substrate to achieve the object. These additional structures are patterned and are usually formed through a photolithography process. Therefore, the color filter provided with the additional structure used in the high-performance liquid crystal display device has a problem that the photolithographic process is increased and the cost is increased as compared with the color filter having a simple configuration.

これらの課題を解消する方法としては、カラーフィルタの平坦化層と固定スペーサを一括形成することが可能な紫外線透過率制御機能を有する半透過膜と遮光膜より形成された露光マスクが特許文献2に開示されている。この方法によれば、ITO膜からなる紫外線に対する半透過膜とクロム膜等からなる遮光膜の紫外線透過率の差を利用して、ネガ型レジストの光硬化の差を膜べりに反映させ、カラーフィルタの平坦化層と固定スペーサを一括形成している。しかしながら、この方法では膜べり量の大きい半透過露光部、すなわち平坦化層の膜厚の均一性を保つことが困難であった。
特開2001−324716号公報 特開2006−184399号公報 特開2003−202551号公報 Electronic Journal 1997年10月号、33頁 日経マクロデバイス別冊「フラットパネルディスプレイ2003実務編」108頁
As a method for solving these problems, Patent Document 2 discloses an exposure mask formed of a semi-transmissive film having an ultraviolet transmittance control function capable of forming a flattening layer and a fixed spacer of a color filter at once and a light shielding film. Is disclosed. According to this method, the difference in photocuring of the negative resist is reflected in the film slide by utilizing the difference in ultraviolet transmittance between the semi-transmissive film made of ITO film and the light shielding film made of chromium film or the like. A flattening layer and a fixed spacer of the filter are formed at a time. However, with this method, it has been difficult to maintain the uniformity of the film thickness of the transflective exposed portion having a large amount of film slip, that is, the planarizing layer.
JP 2001-324716 A JP 2006-184399 A JP 2003-202551 A Electronic Journal October 1997, page 33 Nikkei Macrodevices separate volume "Flat Panel Display 2003 Practice" 108 pages

本発明は、非感光性樹脂からなる平坦化層と感光性樹脂からなるパターン化層からなる液晶表示装置用基板を低コスト、かつ高品質に得ることができる製造方法を提供することを目的とする。   An object of the present invention is to provide a manufacturing method capable of obtaining a liquid crystal display device substrate comprising a planarizing layer made of a non-photosensitive resin and a patterned layer made of a photosensitive resin at low cost and with high quality. To do.

上記課題を達成するために、本発明は下記の構成からなる。
1.透明基板上に複数の着色層を有し、該着色層上に非感光性樹脂を硬化させてなる第1の層が形成され、さらにその上にパターン加工された感光性樹脂を硬化させてなる第2の層が積層された液晶表示装置用基板の製造方法であって、
少なくとも下記工程をこの順に含むことを特徴とする液晶表示装置用基板の製造方法。
(1)着色層が形成された透明基板上に非感光性樹脂を塗布、セミキュアする工程
(2)該非感光性樹脂層上に感光性樹脂を塗布、セミキュアする工程
(3)該感光性樹脂層にフォトマスクを介して露光する工程
(4)現像液により、感光性樹脂層のみをエッチングする工程
(5)非感光性樹脂層および感光性樹脂層を加熱、硬化させる工程
2.感光性樹脂が、少なくともポリマ、光重合性モノマ、光重合開始剤を含有する樹脂組成物であることを特徴とする(1)に記載の液晶表示装置用基板の製造方法。
3.感光性樹脂が、ナフトキノンジアジド化合物を含有する感光性樹脂組成物であることを特徴とする(1)に記載の液晶表示装置用基板の製造方法。
4.非感光性樹脂が、現像液に対し、不溶性、もしくは難溶性である(1)〜(3)に記載の液晶表示装置用基板の製造方法。
5.パターン加工された感光性樹脂からなる第2の層が垂直配向性液晶の配向制御用の突起物である(1)〜(4)に記載の液晶表示装置用基板の製造方法。
6.パターン加工された感光性樹脂からなる第2の層が固定スペーサである(1)〜(4)に記載の液晶表示装置用基板の製造方法。
7.パターン加工された感光性樹脂からなる第2の層が半透過型液晶表示装置における反射領域の液晶層厚みを調整するギャップ調整層である(1)〜(4)に記載の液晶表示装置用基板の製造方法。
8.パターン加工された感光性樹脂からなる第2の層が液晶表示装置の少なくとも額縁領域の一部に形成されていることを特徴とする(1)〜(4)に記載の液晶表示装置用基板の製造方法。
9.パターン加工された感光性樹脂が黒色顔料、または青色顔料を含むことを特徴とする(8)に記載の液晶表示装置用基板の製造方法。
In order to achieve the above object, the present invention comprises the following constitution.
1. A first layer formed by curing a non-photosensitive resin is formed on a transparent substrate having a plurality of colored layers, and a patterned photosensitive resin is further cured thereon. A method for manufacturing a substrate for a liquid crystal display device in which a second layer is laminated,
The manufacturing method of the board | substrate for liquid crystal display devices characterized by including the following process at least in this order.
(1) A step of applying and semi-curing a non-photosensitive resin on a transparent substrate on which a colored layer is formed (2) A step of applying and semi-curing a photosensitive resin on the non-photosensitive resin layer (3) The photosensitive resin layer (4) Step of exposing through a photomask (4) Step of etching only the photosensitive resin layer with a developer (5) Step of heating and curing the non-photosensitive resin layer and the photosensitive resin layer The method for producing a substrate for a liquid crystal display device according to (1), wherein the photosensitive resin is a resin composition containing at least a polymer, a photopolymerizable monomer, and a photopolymerization initiator.
3. The method for producing a substrate for a liquid crystal display device according to (1), wherein the photosensitive resin is a photosensitive resin composition containing a naphthoquinonediazide compound.
4. The method for producing a substrate for a liquid crystal display device according to any one of (1) to (3), wherein the non-photosensitive resin is insoluble or hardly soluble in the developer.
5. The method for producing a substrate for a liquid crystal display device according to any one of (1) to (4), wherein the second layer made of the patterned photosensitive resin is a protrusion for controlling the alignment of the vertical alignment liquid crystal.
6. The method for producing a substrate for a liquid crystal display device according to any one of (1) to (4), wherein the second layer made of the patterned photosensitive resin is a fixed spacer.
7. The liquid crystal display device according to any one of (1) to (4), wherein the second layer made of the patterned photosensitive resin is a gap adjustment layer that adjusts the thickness of the liquid crystal layer in the reflective region of the transflective liquid crystal display device. Manufacturing method for industrial use.
8. The liquid crystal display device according to any one of (1) to (4), wherein the patterned second layer made of a photosensitive resin is formed in at least a part of the frame region of the liquid crystal display device. A method for manufacturing a substrate.
9. The method for producing a substrate for a liquid crystal display device according to (8), wherein the patterned photosensitive resin contains a black pigment or a blue pigment.

本発明の液晶表示装置用基板の製造方法によって、液晶表示装置用カラーフィルタの平坦化層とパターン化層を膜厚精度よく、一括加工することが出来、液晶表示装置の高性能化、低コスト化を図ることができる。   According to the method for manufacturing a substrate for a liquid crystal display device of the present invention, the flattening layer and the patterned layer of the color filter for the liquid crystal display device can be collectively processed with high film thickness accuracy, and the performance and cost of the liquid crystal display device can be improved. Can be achieved.

本発明者らは液晶表示装置用カラーフィルタの平坦化層とパターン化層を膜厚精度よく、一括加工する方法について鋭意検討した結果、以下の方法によって可能であることを見出した。   As a result of intensive studies on a method of collectively processing the flattening layer and the patterned layer of the color filter for a liquid crystal display device with high film thickness accuracy, the present inventors have found that the following method is possible.

すなわち、複数の着色層を有するカラーフィルタ基板上に、非感光性、かつ現像液に対して、難溶、もしくは不溶の平坦化層を塗布、セミキュア後に、感光性樹脂を塗布、セミキュアする。続いて、フォトマスクを介し、露光した後、現像液により、感光性樹脂層のみをエッチングすることで、平坦化層とパターン化層を一括加工することが可能となる。   That is, a non-photosensitive and insoluble or insoluble flattening layer is applied to a developing solution on a color filter substrate having a plurality of colored layers. After semi-curing, a photosensitive resin is applied and semi-cured. Subsequently, after exposure through a photomask, only the photosensitive resin layer is etched with a developer, whereby the planarization layer and the patterned layer can be collectively processed.

カラーフィルタをフォトリソ加工で得る方法としては、非感光ポリイミド法と感光アクリル法があるが、非感光ポリイミド法の製造装置に適用することがより好ましい。非感光ポリイミド法においては、非感光性のポリイミドペーストを塗布、セミキュア後、ポジレジストを塗布、セミキュア、露光後に、現像液で非感光性ポリイミドとポジレジストを一括でパターン加工する。その後、ポジレジストを適当な剥離溶剤で剥離し、加熱硬化させる。このように、非感光ポリイミド法の製造装置においては、1工程内に2つの塗布、セミキュア工程が含まれており、本発明の製造方法を適用しやすい。   As a method for obtaining a color filter by photolithography, there are a non-photosensitive polyimide method and a photo-acrylic method, but it is more preferable to apply to a non-photosensitive polyimide method manufacturing apparatus. In the non-photosensitive polyimide method, a non-photosensitive polyimide paste is applied, semi-cured, a positive resist is applied, semi-cured, and exposed, and then the non-photosensitive polyimide and the positive resist are patterned at once with a developer. Thereafter, the positive resist is stripped with a suitable stripping solvent and cured by heating. Thus, in the manufacturing apparatus of the non-photosensitive polyimide method, two coating and semi-cure processes are included in one process, and it is easy to apply the manufacturing method of the present invention.

本発明におけるセミキュアとは、主に溶剤成分の揮発を目的とした比較的低温での熱処理を指し、具体的には180゜C以下での熱処理のことをいう。セミキュアの温度については、上記範囲であれば特に限定はないが、溶剤の揮発が不十分である場合、感光性樹脂を塗布した際に、溶剤置換が起こり、下地の非感光性平坦化層が膨潤する恐れがあるため100゜C以上が好ましい。より好ましくは、130゜C以上であり、さらに好ましくは150゜C以上である。セミキュアをおこなう方法については、下地の非感光性平坦化層に影響がなければ特に制限はなく、ホットプレート、熱風オーブン、IRヒーター等公知の方法を用いることができる。また、同様にセミキュア時間についても特に制限はなく、1分〜90分程度の時間で行うことができる。   The semi-cure in the present invention refers to heat treatment at a relatively low temperature mainly for the purpose of volatilization of the solvent component, and specifically refers to heat treatment at 180 ° C. or lower. The temperature of the semi-cure is not particularly limited as long as it is in the above range, but when the solvent is not sufficiently volatilized, solvent replacement occurs when the photosensitive resin is applied, and the underlying non-photosensitive planarizing layer is Since there exists a possibility of swelling, 100 degreeC or more is preferable. More preferably, it is 130 ° C or higher, and further preferably 150 ° C or higher. The method for performing the semi-cure is not particularly limited as long as it does not affect the underlying non-photosensitive planarizing layer, and a known method such as a hot plate, a hot air oven, an IR heater can be used. Similarly, the semi-cure time is not particularly limited, and can be performed in a time of about 1 minute to 90 minutes.

本発明における非感光性の平坦化層については、その樹脂成分について特に限定はなく、エポキシ樹脂、アクリルエポキシ樹脂、アクリル樹脂、シロキサンポリマ、ポリイミド、ケイ素含有ポリイミド、ポリイミドシロキサン等を用いることができる。   About the non-photosensitive planarization layer in this invention, there is no limitation in particular about the resin component, An epoxy resin, an acrylic epoxy resin, an acrylic resin, a siloxane polymer, a polyimide, a silicon containing polyimide, a polyimide siloxane etc. can be used.

感光性樹脂についても、特に制限なく使用することが出来、ポリマ、光重合性モノマ、光重合開始剤等を含有する、いわゆるネガ型の感光性樹脂組成物であってもよく、ナフトキノンジアジド化合物等の光酸発生剤を含有するポジ型の感光性樹脂組成物であってもよい。感光性樹脂組成物に用いられる溶剤としては、樹脂成分を溶解し、下地となるセミキュア後の非感光性樹脂層を膨潤、溶解させないものであれば、特に制限なく使用することができる。   The photosensitive resin can also be used without any particular limitation, and may be a so-called negative photosensitive resin composition containing a polymer, a photopolymerizable monomer, a photopolymerization initiator, or the like, such as a naphthoquinone diazide compound. A positive photosensitive resin composition containing the photoacid generator may be used. As the solvent used in the photosensitive resin composition, any solvent can be used without particular limitation as long as it dissolves the resin component and does not swell and dissolve the non-photosensitive resin layer after semi-curing as a base.

例えばメチルセロソルブ、エチルセロソルブ、メチルカルビトール、エチルカルビトール、プロピレングリコールモノエチルエーテルなどのエチレングリコールあるいはプロピレングリコール誘導体、あるいは、プロピレングリコールモノエチルエーテルアセテート、アセト酢酸エチル、メチル―3―メトキシプロピオネート、3―メチル―3―メトキシブチルアセテートなどの脂肪族エステル類、あるいは、エタノール、3―メチル―3―メトキシブタノールなどの脂肪族アルコール類、シクロペンタノン、シクロヘキサノンなどのケトン類、N―メチル―2―ピロリドン、N,N―ジメチルアセトアミド、N,N―ジメチルホルムアミドなどのアミド系極性溶媒、β―プロピオラクトン、γ―ブチロラクトン、γ―バレロラクトン、δ―バレロラクトン、γ―カプロラクトン、ε―カプロラクトンなどのラクトン類を用いることができる。これら樹脂成分を溶解する単独あるいは2種類以上の溶媒の混合溶媒を、適宜組み合わせて使用するのが好ましい。この場合は、副溶剤として、使用する樹脂に対する貧溶媒を用いることも可能である。好ましい溶媒としては、特に限定されるわけではないが、例えばロピレングリコールモノエチルエーテルなどのエチレングリコールあるいはプロピレングリコール誘導体とシクロヘキサノンなどのケトン類との混合溶媒などがあげられる。   For example, ethylene glycol or propylene glycol derivatives such as methyl cellosolve, ethyl cellosolve, methyl carbitol, ethyl carbitol, propylene glycol monoethyl ether, or propylene glycol monoethyl ether acetate, ethyl acetoacetate, methyl-3-methoxypropionate Aliphatic esters such as 3-methyl-3-methoxybutylacetate, aliphatic alcohols such as ethanol and 3-methyl-3-methoxybutanol, ketones such as cyclopentanone and cyclohexanone, N-methyl- Amide polar solvents such as 2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, β-propiolactone, γ-butyrolactone, γ-valerolactone, δ-va Rorakuton, .gamma.-caprolactone, lactones such as ε- caprolactone can be used. It is preferable to use a single solvent or a mixed solvent of two or more solvents that dissolve these resin components in an appropriate combination. In this case, a poor solvent for the resin to be used can be used as the auxiliary solvent. The preferred solvent is not particularly limited, and examples thereof include a mixed solvent of ethylene glycol or propylene glycol derivative such as propylene glycol monoethyl ether and ketones such as cyclohexanone.

非感光性樹脂組成物、ならびに感光性樹脂組成物を塗布する方法としては、ディップ法、ロールコーティング法、スピンコーティング法、ダイコーティング法、ダイコーティングとスピンコーティング併用法、ワイヤーバーコーティング法などが好適に用いられる。基板上に感光性樹脂組成物を塗布した後、風乾、減圧乾燥、加熱乾燥などにより、溶媒を除去し、感光性樹脂組成物の塗膜を形成する。オーブンあるいはホットプレートでセミキュアを行う前に、減圧乾燥工程を設けることにより、対流によって生じる塗布欠点が解消されより好ましい。続いて、フォトリソグラフ加工の露光工程を行う。該感光性樹脂組成物の塗膜上にマスクを設置し、超高圧水銀灯、ケミカル灯、高圧水銀灯等を用いて、紫外線により選択的に露光する。   Suitable methods for applying the non-photosensitive resin composition and the photosensitive resin composition include a dipping method, a roll coating method, a spin coating method, a die coating method, a die coating and spin coating combined method, and a wire bar coating method. Used for. After the photosensitive resin composition is applied on the substrate, the solvent is removed by air drying, reduced pressure drying, heat drying or the like to form a coating film of the photosensitive resin composition. It is more preferable to provide a reduced-pressure drying step before performing semi-cure in an oven or a hot plate, since the coating defects caused by convection are eliminated. Subsequently, an exposure process of photolithography processing is performed. A mask is set on the coating film of the photosensitive resin composition and selectively exposed to ultraviolet rays using an ultrahigh pressure mercury lamp, a chemical lamp, a high pressure mercury lamp or the like.

露光量は特に限定されるわけではないが、365nmにおける放射照度の時間積分値で表した場合、好ましくは30〜500mJ/cmである。露光ギャップは特に限定されるわけではないが、マスク汚れの点から50μm以上が好ましい。 The amount of exposure is not particularly limited, but is preferably 30 to 500 mJ / cm 2 when expressed by the time integral value of irradiance at 365 nm. The exposure gap is not particularly limited, but is preferably 50 μm or more from the viewpoint of mask contamination.

アルカリ現像液は有機アルカリ現像液と無機アルカリ現像液のどちらも用いることができる。無機アルカリ現像液では炭酸ナトリウム、水酸化ナトリウム、水酸化カリウムの水溶液などが好適に用いられる。有機アルカリ現像液ではテトラメチルアンモニウムヒドロキシド水溶液、メタノールアミンなどのアミン系水溶液が好適に用いられる。   As the alkali developer, either an organic alkali developer or an inorganic alkali developer can be used. In the inorganic alkaline developer, an aqueous solution of sodium carbonate, sodium hydroxide, potassium hydroxide or the like is preferably used. In the organic alkali developer, an aqueous amine solution such as an aqueous tetramethylammonium hydroxide solution or methanolamine is preferably used.

これら現像液のアルカリ性物質の濃度は特に限定されるわけではないが、通常0.01〜50質量%、好ましくは0.05〜5質量%である。また、現像液には界面活性剤も好ましく用いられ、非イオン系界面活性剤などを0.01〜10質量%、より好ましくは0.1〜5質量%添加することでパターン形状を向上させることもできる。   The concentration of the alkaline substance in the developer is not particularly limited, but is usually 0.01 to 50% by mass, preferably 0.05 to 5% by mass. Further, a surfactant is also preferably used in the developer, and the pattern shape is improved by adding a nonionic surfactant or the like in an amount of 0.01 to 10% by mass, more preferably 0.1 to 5% by mass. You can also.

アルカリ現像はディップ現像、シャワー現像、パドル現像などの方法が可能であり、これらを組み合わせても良い。現像後はアルカリ現像液を除去するために適宜純水などによる洗浄工程を加えても良い。   Alkali development can be performed by dip development, shower development, paddle development or the like, and these may be combined. After the development, a washing step with pure water or the like may be appropriately added to remove the alkali developer.

現像工程を経て得られた平坦化膜と感光性樹脂より得られたパターン化層の積層樹脂層を、その後、加熱処理する。加熱処理は通常、空気中、窒素雰囲気中、あるいは、真空中などで、170〜300℃、好ましくは180〜260℃の温度のもとで、0.25〜5時間、連続的または段階的に行われる。   Thereafter, the laminated resin layer of the planarized film obtained through the development process and the patterned layer obtained from the photosensitive resin is subjected to heat treatment. The heat treatment is usually performed in air, in a nitrogen atmosphere, or in a vacuum at a temperature of 170 to 300 ° C, preferably 180 to 260 ° C, continuously or stepwise for 0.25 to 5 hours. Done.

感光性樹脂をパターン加工して得られるパターン化層については、その機能、形状等に特に制限はなく、固定スペーサ、透明樹脂層、液晶配向制御用突起等、さまざまな機能、形状等を持つものであって良い。   The patterned layer obtained by patterning the photosensitive resin is not particularly limited in its function, shape, etc., and has various functions, shapes, etc., such as fixed spacers, transparent resin layers, liquid crystal alignment control projections, etc. It may be.

例えば、半透過型液晶表示装置用のカラーフィルタにおいて、基板全面に非感光性樹脂からなる平坦化層と、対向基板の反射電極と対向する位置に液晶層の厚さを調整するための透明樹脂層からなるパターン化層を一括加工してもよいし、液晶表示装置用のカラーフィルタにおいて、基板全面に非感光性樹脂からなる平坦化層と、表示領域と額縁領域の総膜厚を等しくし、すなわちセルギャップを均一とする様に、額縁領域に透明樹脂層からなるパターン化層を一括加工してもよい。
なお、ここで額縁領域とは、表示領域の周縁部に形成される遮光部のことをいう。
For example, in a color filter for a transflective liquid crystal display device, a flattening layer made of a non-photosensitive resin on the entire surface of the substrate, and a transparent resin for adjusting the thickness of the liquid crystal layer to a position facing the reflective electrode of the counter substrate Patterned layers consisting of layers may be processed at once, or in a color filter for a liquid crystal display device, the total thickness of the flattened layer made of non-photosensitive resin, the display area and the frame area on the entire surface of the substrate is made equal. That is, a patterned layer made of a transparent resin layer may be collectively processed in the frame region so that the cell gap is uniform.
Here, the frame region refers to a light shielding portion formed at the peripheral edge of the display region.

実施例1
[非感光性樹脂組成物(平坦化層用)の調製]
トリメリット酸 65.05gをγ−ブチロラクトン 280gに溶解した後に、γ−アミノプロピルトリエトキシシラン 74.95gを添加し、120℃で2時間加熱した。得られた溶液 20gに、ビスフェノキシエタノールフルオレンジグリシジルエーテル 7g、ジエチレングリコールジメチルエーテル 15gを加えて、室温(約23℃)で、2時間攪拌して、カラーフィルター用非感光性樹脂溶液組成物を得た。
Example 1
[Preparation of non-photosensitive resin composition (for flattening layer)]
After dissolving 65.05 g of trimellitic acid in 280 g of γ-butyrolactone, 74.95 g of γ-aminopropyltriethoxysilane was added and heated at 120 ° C. for 2 hours. To 20 g of the resulting solution, 7 g of bisphenoxyethanol fluorenediglycidyl ether and 15 g of diethylene glycol dimethyl ether were added and stirred at room temperature (about 23 ° C.) for 2 hours to obtain a non-photosensitive resin solution composition for a color filter.

[非感光性樹脂組成物の塗布、セミキュア]
得られたカラーフィルター用非感光性樹脂溶液組成物を別途用意した樹脂ブラックマトリクス層、着色層からなるカラーフィルター基板に本キュア後の厚さが1.5μmとなるようにスピンコートし、熱風オーブンで130℃で5分加熱することにより、セミキュア処理した非感光性樹脂組成物の塗膜を得た。
[Application of non-photosensitive resin composition, semi-cure]
The obtained non-photosensitive resin solution composition for color filter was spin-coated on a color filter substrate consisting of a resin black matrix layer and a colored layer separately prepared so that the thickness after this curing was 1.5 μm, and a hot air oven Was heated at 130 ° C. for 5 minutes to obtain a semi-cured non-photosensitive resin composition coating film.

[感光性樹脂組成物(透明樹脂層用)の調製]
アクリル共重合体溶液(ダイセル化学工業株式会社製サイクロマーP、ACA−250、43質量%溶液)70.0g、多官能モノマとしてジペンタエリスリトールヘキサアクリレート30.0g、光重合開始剤として2−メリル−1−「4−(メチルチオ)フェニル」−2−モルフォリノプロパン−1−オンを10.0g、紫外線吸収剤に2−(2H−ベンゾトリアゾール−2−イル)−4−(1、1、3、3−テトラメチルブチル)フェノールを3g、溶剤としてシクロペンタノン217.5gを加え、アクリル樹脂濃度(アクリル共重合体とモノマの合計濃度)20質量%の感光性透明樹脂組成物(A)を得た。
[Preparation of photosensitive resin composition (for transparent resin layer)]
70.0 g of acrylic copolymer solution (Daicel Chemical Industries, Ltd., Cyclomer P, ACA-250, 43 mass% solution), 30.0 g of dipentaerythritol hexaacrylate as a polyfunctional monomer, and 2-meryl as a photopolymerization initiator 10.0 g of -1- “4- (methylthio) phenyl” -2-morpholinopropan-1-one and 2- (2H-benzotriazol-2-yl) -4- (1,1, 3 g of 3,3-tetramethylbutyl) phenol and 217.5 g of cyclopentanone as a solvent were added, and a photosensitive transparent resin composition (A) having an acrylic resin concentration (total concentration of acrylic copolymer and monomer) of 20% by mass. Got.

[感光性樹脂組成物の塗布、セミキュア]
非感光性樹脂溶液組成物を塗布、セミキュアして得られたカラーフィルター基板に、感光性透明樹脂組成物(A)を本キュア後の膜厚が厚さ2.0μmとなるようにスピンコートし、熱風オーブンで90℃で5分加熱することにより、セミキュア処理した非感光性樹脂組成物からなる平坦化層と感光性樹脂組成物(A)からなる樹脂層の積層塗膜を得た。
[Coating of photosensitive resin composition, semi-cure]
The color filter substrate obtained by applying and semi-curing the non-photosensitive resin solution composition is spin-coated with the photosensitive transparent resin composition (A) so that the film thickness after the main curing is 2.0 μm. Then, by heating in a hot air oven at 90 ° C. for 5 minutes, a laminated coating film of a planarizing layer made of a semi-cured non-photosensitive resin composition and a resin layer made of the photosensitive resin composition (A) was obtained.

[平坦化層と透明樹脂層の一括形成]
キャノン株式会社製紫外線露光機PLA−501Fを用い、フォトマスクパターンを介して300mJ/cm(365nmの紫外線強度)露光した。露光後、テトラメチルアンモニウムハイドロオキサイドの0.5%の水溶液からなる現像液に浸漬し、現像した。230℃で30分熱処理し、膜厚1.5μmの平坦化層上に、膜厚2.0μm、幅30μmの透明樹脂層が半透過型液晶表示装置用カラーフィルタの反射領域にストライプ状に形成されたカラーフィルタ基板を一括形成により得ることができた。
実施例2
[感光性樹脂組成物(固定スペーサ用)の調製]
アクリル共重合体溶液(ダイセル化学工業株式会社製サイクロマーP、ACA−250、43質量%溶液)70.0g、多官能モノマとしてジペンタエリスリトールヘキサアクリレート30.0g、光重合開始剤として2−メリル−1−「4−(メチルチオ)フェニル」−2−モルフォリノプロパン−1−オンを10.0g、溶剤としてシクロペンタノン217.5gを加え、アクリル樹脂濃度(アクリル共重合体とモノマの合計濃度)20質量%の感光性透明樹脂組成物(B)を得た。
[Batch formation of flattening layer and transparent resin layer]
Using a UV exposure machine PLA-501F manufactured by Canon Inc., exposure was carried out through a photomask pattern at 300 mJ / cm 2 (365 nm UV intensity). After the exposure, the film was immersed in a developer composed of a 0.5% aqueous solution of tetramethylammonium hydroxide and developed. A heat treatment is performed at 230 ° C. for 30 minutes, and a transparent resin layer having a thickness of 2.0 μm and a width of 30 μm is formed in a stripe shape on the reflective region of the color filter for a transflective liquid crystal display device on the planarizing layer having a thickness of 1.5 μm. The obtained color filter substrate could be obtained by batch formation.
Example 2
[Preparation of photosensitive resin composition (for fixed spacer)]
70.0 g of acrylic copolymer solution (Daicel Chemical Industries, Ltd., Cyclomer P, ACA-250, 43 mass% solution), 30.0 g of dipentaerythritol hexaacrylate as a polyfunctional monomer, and 2-meryl as a photopolymerization initiator −1- “4- (methylthio) phenyl” -2-morpholinopropan-1-one was added in an amount of 10.0 g, and cyclopentanone 217.5 g was added as a solvent, and the acrylic resin concentration (total concentration of acrylic copolymer and monomer) was added. ) 20% by mass of a photosensitive transparent resin composition (B) was obtained.

[平坦化層と透明樹脂層(固定スペーサ用)の一括形成]
実施例1と同様にして作成した非感光性樹脂溶液組成物を塗布、セミキュアして得られたカラーフィルター基板に、感光性透明樹脂組成物(B)を本キュア後の膜厚が厚さ4.0μmとなるようにスピンコートし、熱風オーブンで90℃で5分加熱することにより、セミキュア処理した非感光性樹脂組成物からなる平坦化層と感光性樹脂組成物(B)からなる樹脂層の積層塗膜を得た。
[Batch formation of flattening layer and transparent resin layer (for fixed spacer)]
A non-photosensitive resin solution composition prepared in the same manner as in Example 1 was applied and semi-cured, and the film thickness after the main curing of the photosensitive transparent resin composition (B) was 4 on the color filter substrate. A flattened layer made of a non-photosensitive resin composition and a resin layer made of a photosensitive resin composition (B), which were spin-coated to 0.0 μm and heated in a hot air oven at 90 ° C. for 5 minutes. A laminated coating film was obtained.

続いて、キャノン株式会社製紫外線露光機PLA−501Fを用い、フォトマスクパターンを介して300mJ/cm(365nmの紫外線強度)露光した。露光後、テトラメチルアンモニウムハイドロオキサイドの0.5%の水溶液からなる現像液に浸漬し、現像した。230℃で30分熱処理し、膜厚1.5μmの平坦化層上に、膜厚4.0μm、直径15μmの透明樹脂層が非表示領域に形成されたカラーフィルタ基板を一括形成により得ることができた。
実施例3
[平坦化層と液晶配向制御用突起の一括形成]
実施例1と同様にして作成した非感光性樹脂溶液組成物を塗布、セミキュアして得られたカラーフィルター基板に、シプレイファーイースト製ポジレジスト“SRC−200”を本キュア後の膜厚が厚さ1.5μmとなるように塗布し、90℃のオーブンで10分間乾燥し、セミキュア処理した非感光性樹脂組成物からなる平坦化層とポジレジストからなる樹脂層の積層塗膜を得た。
Then, 300 mJ / cm < 2 > (365 nm ultraviolet intensity) exposure was carried out through the photomask pattern using Canon Inc. ultraviolet exposure machine PLA-501F. After the exposure, the film was immersed in a developer composed of a 0.5% aqueous solution of tetramethylammonium hydroxide and developed. Heat treatment is performed at 230 ° C. for 30 minutes, and a color filter substrate in which a transparent resin layer having a thickness of 4.0 μm and a diameter of 15 μm is formed in a non-display region on a flattening layer having a thickness of 1.5 μm can be obtained by batch formation did it.
Example 3
[Batch formation of planarization layer and liquid crystal alignment control protrusions]
A positive resist “SRC-200” manufactured by Shipley Far East is applied to a color filter substrate obtained by applying and semi-curing a non-photosensitive resin solution composition prepared in the same manner as in Example 1, and the film thickness after this cure is thick. The film was applied to a thickness of 1.5 μm and dried in an oven at 90 ° C. for 10 minutes to obtain a laminated coating film of a planarizing layer made of a semi-cured non-photosensitive resin composition and a resin layer made of a positive resist.

続いて、キャノン株式会社製紫外線露光機PLA−501Fを用い、フォトマスクパターンを介して50mJ/cm(365nmの紫外線強度)露光した。露光後、テトラメチルアンモニウムハイドロオキサイドの2.0%の水溶液からなる現像液に浸漬し、現像した。230℃で30分熱処理し、膜厚1.5μmの平坦化層上に、膜厚1.5μm、幅15μmのストライプ状の液晶配向制御用突起が形成されたカラーフィルタ基板を一括形成により得ることができた。
実施例4
[平坦化層と額縁上透明樹脂層の一括形成]
実施例1と同様にして作成した非感光性樹脂溶液組成物を塗布、セミキュアして得られたカラーフィルター基板に、感光性透明樹脂組成物(A)を本キュア後の膜厚が厚さ2.0μmとなるようにスピンコートし、熱風オーブンで90℃で5分加熱することにより、セミキュア処理した非感光性樹脂組成物からなる平坦化層と感光性樹脂組成物(A)からなる樹脂層の積層塗膜を得た。
Subsequently, exposure was carried out at 50 mJ / cm 2 (ultraviolet intensity of 365 nm) through a photomask pattern using a UV exposure machine PLA-501F manufactured by Canon Inc. After exposure, the film was developed by being immersed in a developer composed of a 2.0% aqueous solution of tetramethylammonium hydroxide. Heat treatment at 230 ° C. for 30 minutes to obtain a color filter substrate having a 1.5 μm-thick stripe-shaped projection for controlling liquid crystal alignment formed on a flattening layer having a thickness of 1.5 μm by batch formation. I was able to.
Example 4
[Batch formation of flattening layer and transparent resin layer on frame]
The film thickness after the main curing of the photosensitive transparent resin composition (A) is applied to the color filter substrate obtained by applying and semi-curing the non-photosensitive resin solution composition prepared in the same manner as in Example 1. A flattened layer made of a non-photosensitive resin composition and a resin layer made of a photosensitive resin composition (A), which were spin-coated to 0.0 μm and heated in a hot air oven at 90 ° C. for 5 minutes. A laminated coating film was obtained.

続いて、キャノン株式会社製紫外線露光機PLA−501Fを用い、フォトマスクパターンを介して300mJ/cm(365nmの紫外線強度)露光した。露光後、テトラメチルアンモニウムハイドロオキサイドの0.5%の水溶液からなる現像液に浸漬し、現像した。230℃で30分熱処理し、膜厚1.5μmの平坦化層上に、膜厚2.0μmの透明樹脂層が額縁領域に形成され、表示領域と額縁領域の総膜厚が互いに等しいカラーフィルタ基板を一括形成により得ることができた。
実施例5
[感光性黒色樹脂組成物の調製]
三菱マテリアル(株)製チタンブラック13M−T(窒化チタン)300g、アクリルポリマー(P3)の3―メチル―3―メトキシブタノール45質量%溶液150g、およびプロピレングリコールターシャリーブチルエーテル1050gを秤量し、ジルコニアビーズが充填されたミル型分散機を用いて2000rpmで4時間分散し、顔料濃度20質量%の顔料分散液(TB1)を得た。この顔料分散液(TB1)533gにビスフェノキシエタノールフルオレンジアクリレートのプロピレングリコールモノメチルエーテルアセテート50質量%溶液32.6g、多官能モノマーとしてジペンタエリスリトールヘキサアクリレート(日本化薬(株)製DHPA)のプロピレングリコールモノメチルエーテルアセテート50質量%溶液32.6g、光重合開始剤として“イルガキュア”369 15.5g、旭電化工業(株)“アデカ(登録商標)オプトマー”N−1919 4.3gおよびN,N’−テトラエチル−4,4’−ジアミノベンゾフェノン1.6g、接着性改良剤としてE2−AP1(50%溶液)8.57g(対固形分2質量%)、シリコーン系界面活性剤のプロピレングリコールモノメチルエーテルアセテート10質量%溶液5.36gを3―メチル―3−メトキシ−ブチルアセテート439gおよびプロピレングリコールモノメチルエーテルアセテート16gにに溶解した溶液を添加、混合し、黒色カラーレジスト(固形分濃度18質量%)を調製し、感光性黒色樹脂組成物(C)を得た。
Then, 300 mJ / cm < 2 > (365 nm ultraviolet intensity) exposure was carried out through the photomask pattern using Canon Inc. ultraviolet exposure machine PLA-501F. After the exposure, the film was immersed in a developer composed of a 0.5% aqueous solution of tetramethylammonium hydroxide and developed. A color filter that is heat-treated at 230 ° C. for 30 minutes, a transparent resin layer having a thickness of 2.0 μm is formed in a frame region on a flattening layer having a thickness of 1.5 μm, and the total thickness of the display region and the frame region is equal to each other The substrate could be obtained by batch formation.
Example 5
[Preparation of photosensitive black resin composition]
Weigh 300 g of Titanium Black 13M-T (titanium nitride) manufactured by Mitsubishi Materials Corporation, 150 g of a 45% by weight 3-methyl-3-methoxybutanol solution of acrylic polymer (P3), and 1050 g of propylene glycol tertiary butyl ether, and zirconia beads. Was dispersed at 2000 rpm for 4 hours to obtain a pigment dispersion (TB1) having a pigment concentration of 20% by mass. Propylene glycol of dipentaerythritol hexaacrylate (DHPA manufactured by Nippon Kayaku Co., Ltd.) as a polyfunctional monomer in 533 g of this pigment dispersion (TB1), 32.6 g of a 50% by weight solution of propylene glycol monomethyl ether acetate of bisphenoxyethanol full orange acrylate Monomethyl ether acetate 50 mass% solution 32.6 g, “Irgacure” 369 15.5 g as photopolymerization initiator, Asahi Denka Kogyo Co., Ltd. “ADEKA (registered trademark) Optmer” N-1919 4.3 g and N, N′- 1.6 g of tetraethyl-4,4′-diaminobenzophenone, 8.57 g of E2-AP1 (50% solution) as an adhesion improver (2% by mass of solid content), propylene glycol monomethyl ether acetate 10 of silicone surfactant quality A solution prepared by dissolving 5.36 g of a% solution in 439 g of 3-methyl-3-methoxy-butyl acetate and 16 g of propylene glycol monomethyl ether acetate was added and mixed to prepare a black color resist (solid content concentration 18% by mass). A photosensitive black resin composition (C) was obtained.

[平坦化層と額縁上黒色樹脂層の一括形成]
実施例1と同様にして作成した非感光性樹脂溶液組成物を塗布、セミキュアして得られたカラーフィルター基板に、感光性黒色樹脂組成物(C)を本キュア後の膜厚が厚さ2.0μmとなるようにスピンコートし、熱風オーブンで90℃で5分加熱することにより、セミキュア処理した非感光性樹脂組成物からなる平坦化層と感光性樹脂組成物(C)からなる樹脂層の積層塗膜を得た。
[Batch formation of flattening layer and black resin layer on frame]
A non-photosensitive resin solution composition prepared in the same manner as in Example 1 was applied and semi-cured, and then the photosensitive black resin composition (C) was cured to a thickness of 2 after the main curing. Spin coating to 0.0 μm, heating in a hot air oven at 90 ° C. for 5 minutes, a semi-cured planarization layer made of a non-photosensitive resin composition and a resin layer made of a photosensitive resin composition (C) A laminated coating film was obtained.

続いて、キャノン株式会社製紫外線露光機PLA−501Fを用い、フォトマスクパターンを介して300mJ/cm(365nmの紫外線強度)露光した。露光後、テトラメチルアンモニウムハイドロオキサイドの0.5%の水溶液からなる現像液に浸漬し、現像した。230℃で30分熱処理し、膜厚1.5μmの平坦化層上に、膜厚2.0μmの黒色樹脂層が額縁領域に形成され、表示領域と額縁領域の総膜厚が互いに等しいカラーフィルタ基板を一括形成により得ることができた。 Then, 300 mJ / cm < 2 > (365 nm ultraviolet intensity) exposure was carried out through the photomask pattern using Canon Inc. ultraviolet exposure machine PLA-501F. After the exposure, the film was immersed in a developer composed of a 0.5% aqueous solution of tetramethylammonium hydroxide and developed. A color filter that is heat-treated at 230 ° C. for 30 minutes, a black resin layer having a thickness of 2.0 μm is formed in a frame region on a flattening layer having a thickness of 1.5 μm, and the total thickness of the display region and the frame region is equal to each other The substrate could be obtained by batch formation.

Claims (9)

透明基板上に複数の着色層を有し、該着色層上に非感光性樹脂を硬化させてなる第1の層が形成され、さらにその上にパターン加工された感光性樹脂を硬化させてなる第2の層が積層された液晶表示装置用基板の製造方法であって、
少なくとも下記工程をこの順に含むことを特徴とする液晶表示装置用基板の製造方法。
(1)着色層が形成された透明基板上に非感光性樹脂を塗布、セミキュアする工程
(2)該非感光性樹脂層上に感光性樹脂を塗布、セミキュアする工程
(3)該感光性樹脂層にフォトマスクを介して露光する工程
(4)現像液により、感光性樹脂層のみをエッチングする工程
(5)非感光性樹脂層および感光性樹脂層を加熱、硬化させる工程
A first layer formed by curing a non-photosensitive resin is formed on a transparent substrate having a plurality of colored layers, and a patterned photosensitive resin is further cured thereon. A method for manufacturing a substrate for a liquid crystal display device in which a second layer is laminated,
The manufacturing method of the board | substrate for liquid crystal display devices characterized by including the following process at least in this order.
(1) A step of applying and semi-curing a non-photosensitive resin on a transparent substrate on which a colored layer is formed (2) A step of applying and semi-curing a photosensitive resin on the non-photosensitive resin layer (3) The photosensitive resin layer (4) Step of etching only the photosensitive resin layer with a developer (5) Step of heating and curing the non-photosensitive resin layer and the photosensitive resin layer
感光性樹脂が、少なくともポリマ、光重合性モノマ、光重合開始剤を含有する樹脂組成物であることを特徴とする請求項1に記載の液晶表示装置用基板の製造方法。 The method for producing a substrate for a liquid crystal display device according to claim 1, wherein the photosensitive resin is a resin composition containing at least a polymer, a photopolymerizable monomer, and a photopolymerization initiator. 感光性樹脂が、ナフトキノンジアジド化合物を含有する感光性樹脂組成物であることを特徴とする請求項1に記載の液晶表示装置用基板の製造方法。 The method for producing a substrate for a liquid crystal display device according to claim 1, wherein the photosensitive resin is a photosensitive resin composition containing a naphthoquinone diazide compound. 非感光性樹脂が、現像液に対し、不溶性、もしくは難溶性である請求項1〜3に記載の液晶表示装置用基板の製造方法。 The method for producing a substrate for a liquid crystal display device according to claim 1, wherein the non-photosensitive resin is insoluble or hardly soluble in the developer. パターン加工された感光性樹脂からなる第2の層が垂直配向性液晶の配向制御用の突起物である請求項1〜4に記載の液晶表示装置用基板の製造方法。 The method for producing a substrate for a liquid crystal display device according to claim 1, wherein the second layer made of the patterned photosensitive resin is a protrusion for controlling the alignment of vertical alignment liquid crystal. パターン加工された感光性樹脂からなる第2の層が固定スペーサである請求項1〜4に記載の液晶表示装置用基板の製造方法。 The method for manufacturing a substrate for a liquid crystal display device according to claim 1, wherein the second layer made of a photosensitive resin subjected to pattern processing is a fixed spacer. パターン加工された感光性樹脂からなる第2の層が半透過型液晶表示装置における反射領域の液晶層厚みを調整するギャップ調整層である請求項1〜4に記載の液晶表示装置用基板の製造方法。 5. The liquid crystal display device substrate according to claim 1, wherein the second layer made of the patterned photosensitive resin is a gap adjusting layer that adjusts the thickness of the liquid crystal layer in the reflective region of the transflective liquid crystal display device. Method. パターン加工された感光性樹脂からなる第2の層が液晶表示装置の少なくとも額縁領域の一部に形成されていることを特徴とする請求項1〜4に記載の液晶表示装置用基板の製造方法。 5. The method for producing a substrate for a liquid crystal display device according to claim 1, wherein the second layer made of the photosensitive resin subjected to pattern processing is formed on at least a part of the frame region of the liquid crystal display device. . パターン加工された感光性樹脂が黒色顔料、または青色顔料を含むことを特徴とする請求項8に記載の液晶表示装置用基板の製造方法。 The method for producing a substrate for a liquid crystal display device according to claim 8, wherein the patterned photosensitive resin contains a black pigment or a blue pigment.
JP2008109861A 2007-09-27 2008-04-21 Manufacturing method of substrate for liquid crystal display apparatus Pending JP2009098608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008109861A JP2009098608A (en) 2007-09-27 2008-04-21 Manufacturing method of substrate for liquid crystal display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007251057 2007-09-27
JP2008109861A JP2009098608A (en) 2007-09-27 2008-04-21 Manufacturing method of substrate for liquid crystal display apparatus

Publications (2)

Publication Number Publication Date
JP2009098608A true JP2009098608A (en) 2009-05-07
JP2009098608A5 JP2009098608A5 (en) 2011-06-02

Family

ID=40701632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008109861A Pending JP2009098608A (en) 2007-09-27 2008-04-21 Manufacturing method of substrate for liquid crystal display apparatus

Country Status (1)

Country Link
JP (1) JP2009098608A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347021A (en) * 1999-06-07 2000-12-15 Dainippon Printing Co Ltd Color filter and its manufacture
JP2001183513A (en) * 1999-12-22 2001-07-06 Hitachi Ltd Color filter, its manufacturing method, and color liquid crystal display device
JP2004354845A (en) * 2003-05-30 2004-12-16 Toray Ind Inc Color filter for liquid crystal display device, and liquid crystal display device
JP2005115315A (en) * 2003-09-16 2005-04-28 Sony Corp Liquid crystal display device and its manufacturing method
JP2005283747A (en) * 2004-03-29 2005-10-13 Toray Ind Inc Color filter substrate for liquid crystal display device and liquid crystal display device
JP2006098673A (en) * 2004-09-29 2006-04-13 Toppan Printing Co Ltd Substrate having protrusion for alignment control and liquid crystal display device using the substrate
JP2006251783A (en) * 2005-02-10 2006-09-21 Toray Ind Inc Color filter for liquid crystal display apparatus, and liquid crystal display apparatus
JP2006330309A (en) * 2005-05-25 2006-12-07 Dainippon Printing Co Ltd Liquid crystal display element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347021A (en) * 1999-06-07 2000-12-15 Dainippon Printing Co Ltd Color filter and its manufacture
JP2001183513A (en) * 1999-12-22 2001-07-06 Hitachi Ltd Color filter, its manufacturing method, and color liquid crystal display device
JP2004354845A (en) * 2003-05-30 2004-12-16 Toray Ind Inc Color filter for liquid crystal display device, and liquid crystal display device
JP2005115315A (en) * 2003-09-16 2005-04-28 Sony Corp Liquid crystal display device and its manufacturing method
JP2005283747A (en) * 2004-03-29 2005-10-13 Toray Ind Inc Color filter substrate for liquid crystal display device and liquid crystal display device
JP2006098673A (en) * 2004-09-29 2006-04-13 Toppan Printing Co Ltd Substrate having protrusion for alignment control and liquid crystal display device using the substrate
JP2006251783A (en) * 2005-02-10 2006-09-21 Toray Ind Inc Color filter for liquid crystal display apparatus, and liquid crystal display apparatus
JP2006330309A (en) * 2005-05-25 2006-12-07 Dainippon Printing Co Ltd Liquid crystal display element

Similar Documents

Publication Publication Date Title
JP2006259716A (en) Photosensitive coloring composition and color filter
JP3912663B2 (en) Color filter pixel formation method, liquid crystal display color filter, liquid crystal display spacer and alignment control protrusion formation method, liquid crystal display spacer and alignment control protrusion
US10288928B2 (en) Photomask and method of manufacturing color filter substrate
JPWO2018116988A1 (en) Organic EL display device
JP4509107B2 (en) Positive photosensitive resin composition and resulting interlayer insulating film and microlens
JP2009145800A (en) Method of manufacturing color filter substrate for liquid crystal display
TW201229574A (en) Method for producing color filter, display element and color filter
JP2003149429A (en) Method for forming color filter with protruding structure and color filter with protruding structure
JP2010039345A (en) Resin composition for liquid crystal display and method for producing substrate for liquid crystal display
JP3960311B2 (en) Curable resin composition for die coating, color filter, method for producing color filter, and liquid crystal display device
JP2000199967A (en) Production of black matrix made of resin, production of color filter using the black matrix, and liquid crystal device using color filter produced by the method
JP2009098608A (en) Manufacturing method of substrate for liquid crystal display apparatus
KR100763429B1 (en) Positive-working photosensitive thermosetting resin composition, material for transfer and method of forming an image
JP2018036328A (en) Method for forming resist pattern
JP4252711B2 (en) Manufacturing method of color filter
JP2011048293A (en) Photosensitive resin composition, substrate for liquid crystal display device using the same, and liquid crystal display device
KR20100063571A (en) Colored photosensitive resin composition and color filter prepared by using the same
JP5472868B2 (en) Color filter substrate and liquid crystal display device
JP6569204B2 (en) LAMINATE MANUFACTURING METHOD AND LAMINATE
JPH10293397A (en) Radiation sensitive composition for color filter
JP2009210973A (en) Color filter substrate for liquid crystal display device
JP2003149430A (en) Method for forming color filter with protruding structure and color filter with protruding structure
JP2001228628A (en) Developing solution for developing photosensitive resin, image forming method, method for producing color filter, method for producing active matrix substrate with color filter and liquid crystal display
KR101979012B1 (en) Photosensitive Composition for Patterning Black Matrix and Process for forming Patterns of Black Matrix Using the Composition
KR102397093B1 (en) A photosensitive resin composition, color filter and display device comprising the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130226