JP2009097801A - Boiler, and steam temperature adjusting method for boiler - Google Patents

Boiler, and steam temperature adjusting method for boiler Download PDF

Info

Publication number
JP2009097801A
JP2009097801A JP2007270224A JP2007270224A JP2009097801A JP 2009097801 A JP2009097801 A JP 2009097801A JP 2007270224 A JP2007270224 A JP 2007270224A JP 2007270224 A JP2007270224 A JP 2007270224A JP 2009097801 A JP2009097801 A JP 2009097801A
Authority
JP
Japan
Prior art keywords
superheater
boiler
combustion gas
steam
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007270224A
Other languages
Japanese (ja)
Inventor
Junji Imada
潤司 今田
Hidefumi Nagano
英文 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007270224A priority Critical patent/JP2009097801A/en
Priority to PCT/JP2008/060471 priority patent/WO2009050918A1/en
Priority to KR1020107008392A priority patent/KR20100056564A/en
Priority to CN200880111208A priority patent/CN101821551A/en
Priority to EP08765284A priority patent/EP2199672A1/en
Priority to US12/679,576 priority patent/US20100192876A1/en
Publication of JP2009097801A publication Critical patent/JP2009097801A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/04Controlling superheat temperature by regulating flue gas flow, e.g. by proportioning or diverting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/002Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically involving a single upper drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/02Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes
    • F22B21/04Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes involving a single upper drum and a single lower drum, e.g. the drums being arranged transversely
    • F22B21/08Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes involving a single upper drum and a single lower drum, e.g. the drums being arranged transversely the water tubes being arranged sectionally in groups or in banks, e.g. bent over at their ends
    • F22B21/081Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes involving a single upper drum and a single lower drum, e.g. the drums being arranged transversely the water tubes being arranged sectionally in groups or in banks, e.g. bent over at their ends involving a combustion chamber, placed at the side and built-up from water tubes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boiler and a steam temperature adjusting method for the boiler, which perform an efficient operation by adjusting the pattern of the flow of a combustion gas generated in combustion of a burner and controlling the temperature of the steam produced in a superheater. <P>SOLUTION: In this boiler 10A constituted to allow the combustion gas generated in the combustion of the burner 101 to flow from a furnace 102 through a superheater (SH) 104 and a group of steam generating tubes 105, a downstream portion blocking plate 11A slidable in the vertical direction of the superheater 104 is disposed on a wake side of the combustion gas in an upper portion of the superheater 104 to adjust a flow rate of the combustion gas entering an upper space A of the superheater 104. By adjusting a flow rate of a bypass gas 12 by the downstream portion blocking plate 11A and also adjusting a flow rate of a mainstream gas 13, the steam temperature of the superheater 104 is controlled. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、バーナの燃焼で発生した燃焼ガスが過熱器の上部側を通過する量を調整するように構成されたボイラ及びボイラの蒸気温度調整方法に関する。   The present invention relates to a boiler configured to adjust the amount of combustion gas generated by combustion of a burner passing through the upper side of a superheater and a method for adjusting the steam temperature of the boiler.

従来より採用されている過熱器を備えた舶用ボイラの構成の一例を図6に示す。図6に示すように、従来のボイラ100は、バーナ101と火炉102とフロントバンクチューブ103と過熱器(Super Heater:SH)104と蒸発管群(リアバンクチューブ)105とからなる。バーナ101の燃焼で発生した燃焼ガスは、火炉102からフロントバンクチューブ103、過熱器104、蒸発管群105と熱交換を行いながら流れ、出口側ガスダクト106を経てガス出口107から流出する。このとき、蒸気ドラム108に集められた蒸気を駆動源として図示しない所要な機器に供給される(特許文献1)。
図6中、109は水ドラム、110,111はヘッダー、112はウォールチューブを示している。
An example of the structure of the marine boiler provided with the superheater employ | adopted conventionally is shown in FIG. As shown in FIG. 6, a conventional boiler 100 includes a burner 101, a furnace 102, a front bank tube 103, a super heater (SH) 104, and an evaporation tube group (rear bank tube) 105. Combustion gas generated by the combustion of the burner 101 flows from the furnace 102 while exchanging heat with the front bank tube 103, the superheater 104, and the evaporation tube group 105, and flows out from the gas outlet 107 through the outlet side gas duct 106. At this time, the steam collected on the steam drum 108 is supplied to a required device (not shown) as a drive source (Patent Document 1).
In FIG. 6, 109 is a water drum, 110 and 111 are headers, and 112 is a wall tube.

また、従来のボイラ100では、過熱器104で生成された蒸気の蒸気温度をコントロールするため、蒸気の一部を過熱器104の途中で抜き出し、水ドラム109で減温した後、再度過熱器104と熱交換することで過熱器104で生成された蒸気の出口温度を調整するようにしている。このような方法を所謂CDSH(control desuper heater)という。   Further, in the conventional boiler 100, in order to control the steam temperature of the steam generated by the superheater 104, a part of the steam is extracted in the middle of the superheater 104, the temperature is reduced by the water drum 109, and then again the superheater 104. The outlet temperature of the steam generated by the superheater 104 is adjusted by exchanging heat with the heater. Such a method is referred to as a so-called CDSH (control heater heater).

ボイラ100を効率よく運転するためには、過熱器104や蒸発管群105からなる熱交換管群全体に亘って均一に燃焼ガスが流れている必要があり、従来のボイラ100では、蒸気温度を制御し、ボイラ100を効率よく運転するようにしていた。   In order to operate the boiler 100 efficiently, it is necessary for the combustion gas to flow uniformly over the entire heat exchange tube group including the superheater 104 and the evaporation tube group 105. In the conventional boiler 100, the steam temperature is reduced. The boiler 100 was controlled to operate efficiently.

特開2002−243106号公報JP 2002-243106 A

しかしながら、過熱器104はコの字型の構造となっているため、図7に示すように、燃焼ガスが過熱器104を通過することなく過熱器104の上部側の上部空間Aをバイパスガス113としてバイパス通過すると、この上部空間Aを流れる燃焼ガスは過熱器104の吸熱に寄与しないため、過熱器104や蒸発管群105からなる熱交換管群との間の熱交換が行われず、過熱器104での熱交換率が低下し、蒸気温度が不足する原因となる、という問題がある。   However, since the superheater 104 has a U-shaped structure, as shown in FIG. 7, the bypass gas 113 passes through the upper space A on the upper side of the superheater 104 without the combustion gas passing through the superheater 104. Since the combustion gas flowing in the upper space A does not contribute to the heat absorption of the superheater 104, heat exchange with the heat exchanger tube group including the superheater 104 and the evaporation tube group 105 is not performed. There is a problem in that the heat exchange rate at 104 is reduced and the steam temperature becomes insufficient.

また、CDSHの調整範囲以上に蒸気温度が変動、即ち、例えば560℃以上に高くなる場合、あるいは例えば515℃以下で不足し、定格で運転できない場合がある、という問題がある。   Further, there is a problem that the steam temperature fluctuates beyond the adjustment range of CDSH, that is, when it becomes higher than, for example, 560 ° C.

本発明は、前記問題に鑑み、バーナの燃焼で発生した燃焼ガスの流れのパターンを調整し、過熱器で生成される蒸気の蒸気温度を制御し、効率的な運転を可能としたボイラ及びボイラの蒸気温度調整方法を提供することを課題とする。   In view of the above problems, the present invention adjusts the flow pattern of combustion gas generated by combustion of a burner, controls the steam temperature of steam generated by a superheater, and enables a boiler and a boiler capable of efficient operation It is an object of the present invention to provide a method for adjusting the steam temperature.

上述した課題を解決するための本発明の第1の発明は、バーナの燃焼で発生した燃焼ガスが、火炉から過熱器、蒸発管群を通過して流れるように構成したボイラにおいて、前記過熱器上部を流れる前記燃焼ガスの上流側、後流側の何れか一方又は両方に前記過熱器の上下方向にスライド自在又は一端を回転軸として開度調整自在な遮蔽板を設け、前記過熱器の上部空間に入る前記燃焼ガスの流量を調整することを特徴とするボイラにある。   A first invention of the present invention for solving the above-described problem is a boiler configured such that combustion gas generated by combustion of a burner flows from a furnace through a superheater and an evaporation tube group, and the superheater A shield plate is provided on either or both of the upstream side and the downstream side of the combustion gas flowing in the upper part and is slidable in the vertical direction of the superheater or the opening degree of which can be adjusted with one end as a rotation axis, and the upper part of the superheater. The boiler is characterized in that the flow rate of the combustion gas entering the space is adjusted.

第2の発明は、第1の発明において、前記過熱器の途中で抜出した蒸気の一部を、水ドラムで減温した後、前記過熱器に再度送給し、前記過熱器の蒸気温度を調整することを特徴とするボイラにある。   According to a second invention, in the first invention, after a part of the steam extracted in the middle of the superheater is reduced in temperature by a water drum, it is fed again to the superheater, and the steam temperature of the superheater is set. The boiler is characterized by adjusting.

第3の発明は、バーナの燃焼で発生した燃焼ガスを、火炉から過熱器、蒸発管群を通過して流れるように構成したボイラの蒸気温度調整方法において、前記過熱器上部の前記燃焼ガスの後流側、上流側の何れか一方又は両方に設けられたスライド自在又は一端を回転軸として開度調整自在な遮蔽板を前記過熱器の上下方向にスライドさせるか開度調整し、前記過熱器上部空間に入る前記燃焼ガスの流量を調整することを特徴とするボイラの蒸気温度調整方法にある。   According to a third aspect of the present invention, there is provided a boiler steam temperature adjusting method in which combustion gas generated by combustion of a burner is configured to flow from a furnace through a superheater and an evaporator tube group. The superheater is slidably provided on one or both of the downstream side and the upstream side, or a shield plate whose opening degree is adjustable with one end as a rotation axis is slid in the vertical direction of the superheater or the opening degree is adjusted. The method of adjusting the steam temperature of a boiler is characterized in that the flow rate of the combustion gas entering the upper space is adjusted.

第4の発明は、第3の発明において、前記過熱器の途中で蒸気の一部を抜出し、抜出した蒸気を水ドラムで減温した後、前記過熱器に再度送給し、前記過熱器の蒸気温度を調整することを特徴とするボイラの蒸気温度調整方法にある。   According to a fourth invention, in the third invention, a part of the steam is extracted in the middle of the superheater, the temperature of the extracted steam is reduced by a water drum, and then supplied again to the superheater. The present invention is a boiler steam temperature adjusting method characterized by adjusting the steam temperature.

本発明によれば、過熱器上部の燃焼ガスの上流側、後流側の何れか一方又は両方に前記過熱器の上下方向にスライド自在又は一端を回転軸として開度調整自在な遮蔽板を設けることで、バーナの燃焼で発生した燃焼ガスの流れのパターンを調整できるため、前記過熱器での吸熱に寄与する燃焼ガス量を変化させ、前記過熱器で生成される蒸気の蒸気温度を制御すると共に、制御可能な温度範囲を広げ、ボイラの効率的な運転を可能とすることができる。   According to the present invention, there is provided a shielding plate that is slidable in the vertical direction of the superheater, or whose opening is adjustable with one end as a rotation axis, on one or both of the upstream side and the downstream side of the combustion gas above the superheater. Therefore, the flow pattern of the combustion gas generated by the burner combustion can be adjusted, so that the amount of combustion gas contributing to the heat absorption in the superheater is changed, and the steam temperature of the steam generated in the superheater is controlled. At the same time, the controllable temperature range can be expanded to enable efficient operation of the boiler.

また、前記過熱器の途中で抜出した蒸気の一部を、水ドラムで減温した後、前記過熱器に再度送給し、前記過熱器の蒸気温度を調整することで、更に前記過熱器で生成される蒸気の蒸気温度を制御することができる。   In addition, after a part of the steam extracted in the middle of the superheater is reduced in temperature by a water drum, it is sent again to the superheater, and the steam temperature of the superheater is adjusted, so that the superheater further The steam temperature of the steam generated can be controlled.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

本発明による実施例1に係るボイラについて、図面を参照して説明する。
本実施例に係るボイラは、図6に示すような従来のボイラの構成と同様であるため、同一部材には同一の符号を付して重複した説明は省略する。
図1は、本発明の実施例1に係るボイラの構成を示す概略図である。
図1に示すように、本実施例に係るボイラ10Aは、バーナ101の燃焼で発生した燃焼ガスが、火炉102から過熱器(SH)104、蒸発管群105を通過して流れるように構成したボイラにおいて、過熱器104上部の前記燃焼ガスの後流側に過熱器104の上下方向にスライド可能な下流部遮蔽板11Aを設け、過熱器104の上部空間Aに入る燃焼ガスの流量を調整するものである。
また、本実施例において、燃焼ガスのうち、過熱器104の上部空間Aに入る燃焼ガスをバイパスガス12とし、過熱器104を通過する燃焼ガスを主流ガス13とする。
The boiler which concerns on Example 1 by this invention is demonstrated with reference to drawings.
The boiler according to the present embodiment has the same configuration as that of the conventional boiler as shown in FIG. 6, and therefore, the same members are denoted by the same reference numerals and redundant description is omitted.
FIG. 1 is a schematic diagram illustrating a configuration of a boiler according to Embodiment 1 of the present invention.
As shown in FIG. 1, the boiler 10 </ b> A according to the present embodiment is configured such that the combustion gas generated by the combustion of the burner 101 flows from the furnace 102 through the superheater (SH) 104 and the evaporation tube group 105. In the boiler, a downstream shielding plate 11A slidable in the vertical direction of the superheater 104 is provided on the upstream side of the combustion gas above the superheater 104, and the flow rate of the combustion gas entering the upper space A of the superheater 104 is adjusted. Is.
In this embodiment, the combustion gas that enters the upper space A of the superheater 104 among the combustion gases is the bypass gas 12, and the combustion gas that passes through the superheater 104 is the mainstream gas 13.

本実施例に係るボイラ10Aにおいては、下流部遮蔽板11Aを燃焼ガスの流れ方向に対して直行する向きに設置している。過熱器104上部の前記燃焼ガスの後流側に設けた下流部遮蔽板11Aを上下方向にスライド可能とし、過熱器104の上部空間Aに入るバイパスガス12の流量を下流部遮蔽板11Aにより調整することにより、過熱器104を通過する主流ガス13の流量を調整するようにしている。   In the boiler 10A according to the present embodiment, the downstream shielding plate 11A is installed in a direction perpendicular to the flow direction of the combustion gas. The downstream shielding plate 11A provided on the wake side of the combustion gas above the superheater 104 is slidable in the vertical direction, and the flow rate of the bypass gas 12 entering the upper space A of the superheater 104 is adjusted by the downstream shielding plate 11A. By doing so, the flow rate of the mainstream gas 13 passing through the superheater 104 is adjusted.

図2は、過熱器でのバイパスガスと主流ガスのガス流れを示す説明図である。図2に示すように、下流部遮蔽板11Aを上下方向にスライドさせることで、バイパスガス12の流量を調整し、主流ガス13の流量を調整することができる。
即ち、従来のボイラ100では、整流板等を用いて燃焼ガスの流動を調整し、燃焼ガスが過熱器104と蒸発管群105とに均一に流れるようにしているのに対し、本実施例に係るボイラ10Aは、スライド可能な下流部遮蔽板11Aを用いて上下方向にスライドさせ、過熱器104の上部空間Aに入るバイパスガス12の流量を直接調整することで、過熱器104を通過する主流ガス13の流量を調整し、過熱器104で生成される蒸気の蒸気温度を制御できるようにしている。
FIG. 2 is an explanatory diagram showing the gas flows of the bypass gas and the mainstream gas in the superheater. As shown in FIG. 2, the flow rate of the bypass gas 12 can be adjusted and the flow rate of the mainstream gas 13 can be adjusted by sliding the downstream shielding plate 11 </ b> A in the vertical direction.
That is, in the conventional boiler 100, the flow of the combustion gas is adjusted using a rectifying plate or the like so that the combustion gas flows uniformly to the superheater 104 and the evaporation tube group 105. The boiler 10 </ b> A is slid in the vertical direction using the slidable downstream shielding plate 11 </ b> A and directly adjusts the flow rate of the bypass gas 12 entering the upper space A of the superheater 104. The flow rate of the gas 13 is adjusted so that the steam temperature of the steam generated by the superheater 104 can be controlled.

よって、下流部遮蔽板11Aを上下方向にスライドさせ、過熱器104の上部空間Aに入るバイパスガス12の流量を調整し、主流ガス13の流量を調整することで、過熱器104の吸熱に寄与する燃焼ガス量を変化させることができるため、過熱器104の蒸気温度を制御することができる。   Therefore, the downstream shielding plate 11A is slid in the vertical direction, the flow rate of the bypass gas 12 entering the upper space A of the superheater 104 is adjusted, and the flow rate of the mainstream gas 13 is adjusted, thereby contributing to the heat absorption of the superheater 104. Since the amount of combustion gas to be changed can be changed, the steam temperature of the superheater 104 can be controlled.

また、下流部遮蔽板11Aは、過熱器104の上部空間Aと同じ高さかそれ以上とするのが好ましい。上部空間Aに流入するバイパスガス12を下流部遮蔽板11Aで制御できるようにするためである。   Further, the downstream shielding plate 11 </ b> A is preferably the same height as or higher than the upper space A of the superheater 104. This is because the bypass gas 12 flowing into the upper space A can be controlled by the downstream shielding plate 11A.

また、本実施例に係るボイラ10Aにおいては、下流部遮蔽板11Aの高さは、過熱器104と上部空間Aとを合わせた全体の高さに対して10〜15%の範囲とするのが好ましい。具体的には、上部空間Aが過熱器104と上部空間Aとを合わせた全体の高さの15%程度である時、下流部遮蔽板11Aにより上部空間Aを遮断し、過熱器104で生成される蒸気の蒸気温度は、下流部遮蔽板11Aで上部空間Aを遮断しない場合に比べ、約25%程度、更には30%程度、過熱器104で生成される蒸気の温度を制御することができる。   Further, in the boiler 10A according to the present embodiment, the height of the downstream shielding plate 11A is in the range of 10 to 15% with respect to the total height of the superheater 104 and the upper space A. preferable. Specifically, when the upper space A is about 15% of the total height of the superheater 104 and the upper space A, the upper space A is blocked by the downstream shielding plate 11A and generated by the superheater 104. The steam temperature of the generated steam is about 25%, further about 30%, compared to the case where the upper space A is not blocked by the downstream shielding plate 11A, and the temperature of the steam generated by the superheater 104 can be controlled. it can.

また、本実施例に係るボイラ10Aにおいては、下流部遮蔽板11Aを既設のボイラに設けるようにしてもよく、新たに製造されるボイラに設けるようにしてもよい。このとき、下流部遮蔽板11Aを既設のボイラに設ける場合、図3−1に示すように、過熱器104の高さH1と上部空間Aとを合わせた全体の高さH0に対して上部空間Aの高さh1の分だけ下流部遮蔽板11Aによりバイパスガス12の流量を調整し、主流ガス13の流量を調整することができる。 Further, in the boiler 10A according to the present embodiment, the downstream shielding plate 11A may be provided in an existing boiler, or may be provided in a newly manufactured boiler. At this time, when the downstream shielding plate 11A is provided in the existing boiler, as shown in FIG. 3A, the total height H 0 of the superheater 104 combined with the height H 1 and the upper space A is used. The flow rate of the bypass gas 12 can be adjusted by the downstream shielding plate 11A by the height h 1 of the upper space A, and the flow rate of the mainstream gas 13 can be adjusted.

これに対し、下流側遮蔽板11Aを新たに製造されるボイラに設ける場合、図3−2に示すように、既設のボイラの過熱器104の高さH1よりも過熱器104の高さH2を低くし、上部空間Aの高さh2を高くすることができる。よって、既設のボイラよりも高くした上部空間Aの高さh2の分だけ下流部遮蔽板11Aにより調整できるバイパスガス12の流量を大きくし、主流ガス13の流量の調整量を大きくすることができるため、過熱器104の吸熱に寄与する燃焼ガス量の変化量を多くし、過熱器104の蒸気温度の制御することができる幅を大きくとることができる。 In contrast, in the case of providing a boiler that is newly manufactured downstream shield plate 11A, as shown in Figure 3-2, the height H of the superheater 104 than the height H 1 of the superheater 104 of the existing boiler 2 can be reduced, and the height h 2 of the upper space A can be increased. Thus, it increases the flow rate of the bypass gas 12 can be adjusted by the amount corresponding to the height h 2 downstream shield plate 11A of the upper space A and higher than the existing boiler, increasing the amount of adjustment of the flow rate of the mainstream gas 13 Therefore, the amount of change in the amount of combustion gas that contributes to the heat absorption of the superheater 104 can be increased, and the range in which the steam temperature of the superheater 104 can be controlled can be increased.

また、本実施例に係るボイラ10Aにおいては、過熱器104で生成される蒸気の蒸気温度の制御可能な温度範囲を大きくするため、過熱器104の上部空間Aの高さを大きくしてもよい。過熱器104の上部空間Aの高さを大きくし、下流部遮蔽板11Aの上下方向へのスライドできる幅を大きくすることで、主流ガス13の流量を調整することができ、過熱器104で生成される蒸気の蒸気温度の制御可能な温度範囲を大きくすることができる。   Further, in the boiler 10A according to the present embodiment, the height of the upper space A of the superheater 104 may be increased in order to increase the controllable temperature range of the steam temperature of the steam generated by the superheater 104. . By increasing the height of the upper space A of the superheater 104 and increasing the width of the downstream shielding plate 11A that can be slid in the vertical direction, the flow rate of the mainstream gas 13 can be adjusted and generated by the superheater 104. The controllable temperature range of the steam temperature of the generated steam can be increased.

また、本実施例に係るボイラ10Aにおいては、従来のボイラ100で用いられている蒸気温度制御方法のように、蒸気の一部を過熱器104の途中で抜き出し、水ドラム109で減温した後、再度過熱器104と熱交換し、過熱器104で生成された蒸気の出口温度を調整する所謂CDSHを併用するようにしてもよい。本実施例に係るボイラ10Aで用いられる下流側遮蔽板11Aで、燃焼ガスの流動を制御し蒸気温度を制御すると共に、所謂CDSHにより生成された蒸気を制御するようにすることで、過熱器104で生成される蒸気の蒸気温度の制御可能な温度範囲を更に大きくすることができる。   Further, in the boiler 10A according to the present embodiment, after a part of the steam is extracted in the middle of the superheater 104 and the temperature is reduced by the water drum 109 as in the steam temperature control method used in the conventional boiler 100. Then, heat exchange with the superheater 104 may be performed again, and so-called CDSH for adjusting the outlet temperature of the steam generated by the superheater 104 may be used in combination. The downstream side shield plate 11A used in the boiler 10A according to the present embodiment controls the flow of combustion gas to control the steam temperature, and controls the steam generated by so-called CDSH. The controllable temperature range of the steam temperature of the steam generated in (1) can be further increased.

よって、本実施例に係るボイラ10Aによれば、過熱器104の上部空間Aに入るバイパスガス12の流量を下流部遮蔽板11Aにより調整することにより、過熱器104を通過する主流ガス13の流量を調整することができるため、過熱器104の吸熱に寄与する燃焼ガス量を変化させることができ、過熱器104で生成される蒸気の蒸気温度を制御することができる。   Therefore, according to the boiler 10A according to the present embodiment, the flow rate of the mainstream gas 13 passing through the superheater 104 is adjusted by adjusting the flow rate of the bypass gas 12 entering the upper space A of the superheater 104 with the downstream shielding plate 11A. Therefore, the amount of combustion gas contributing to the heat absorption of the superheater 104 can be changed, and the steam temperature of the steam generated by the superheater 104 can be controlled.

また、上部空間Aの高さを大きくすることで、下流部遮蔽板11Aにより調整できるバイパスガス12の流量を大きくし、主流ガス13の流量の調整量を大きくすることができるため、過熱器104の蒸気温度を制御することができる幅を大きくとることができる。   Further, by increasing the height of the upper space A, the flow rate of the bypass gas 12 that can be adjusted by the downstream shielding plate 11A can be increased, and the adjustment amount of the flow rate of the mainstream gas 13 can be increased. The range in which the steam temperature can be controlled can be increased.

本発明による実施例2に係るボイラについて、図4を参照して説明する。
図4は、本実施例に係るボイラの構成を示す概略図である。
本実施例に係るボイラは、実施例1に係るボイラの構成と同様であるため、同一部材には同一の符号を付して重複した説明は省略する。
図4に示すように、本実施例に係るボイラ10Bは、図1に示すボイラ10Aの過熱器104上部を流れる燃焼ガスの上流側に上流部遮蔽板11Bと、過熱器104上部を流れる燃焼ガスの下流側に設けた下流部遮蔽板11Aに代えて、一端を回転軸として開度調整自在な下流部遮蔽板11Cとを設けるようにしたものである。
また、下流部遮蔽板11Cは上端側又は下端側の何れかを回転軸として開度調整自在とし、図4では、下流部遮蔽板11Cの下端側を回転軸として開度調整自在としている。
The boiler which concerns on Example 2 by this invention is demonstrated with reference to FIG.
FIG. 4 is a schematic diagram illustrating the configuration of the boiler according to the present embodiment.
Since the boiler which concerns on a present Example is the same as that of the structure of the boiler which concerns on Example 1, the same code | symbol is attached | subjected to the same member and the overlapping description is abbreviate | omitted.
As shown in FIG. 4, the boiler 10B according to the present embodiment includes an upstream shielding plate 11B on the upstream side of the combustion gas flowing over the superheater 104 of the boiler 10A shown in FIG. Instead of the downstream shielding plate 11A provided on the downstream side, a downstream shielding plate 11C whose opening degree is adjustable with one end as a rotation axis is provided.
In addition, the opening degree of the downstream shielding plate 11C can be adjusted with the upper end side or the lower end side as a rotation axis, and in FIG. 4, the opening degree can be adjusted with the lower end side of the downstream shielding plate 11C as a rotation axis.

過熱器104上部の前記燃焼ガスの上流側に設けた上流部遮蔽板11Bを上下方向にスライド可能とし、過熱器104の上部側の燃焼ガスの下流側に設けた下流部遮蔽板11Cの下端を回転軸として開度調整自在とすることにより、過熱器104を通過する主流ガス13の流量を調整している。   The upstream shielding plate 11B provided on the upstream side of the combustion gas above the superheater 104 is slidable in the vertical direction, and the lower end of the downstream shielding plate 11C provided on the downstream side of the combustion gas on the upper side of the superheater 104 is The flow rate of the mainstream gas 13 passing through the superheater 104 is adjusted by making the opening degree adjustable as a rotation shaft.

図5−1は、本発明の実施例1に係るボイラにおける燃焼ガスの流動を示す説明図であり、図5−2は、本発明の実施例2に係るボイラにおける燃焼ガスの流動を示す説明図である。尚、図5−2では、下流部遮蔽板11Cの上端側を回転軸として開度調整自在としている。
図5−1に示すように、本発明の実施例1に係るボイラ10Aにおける燃焼ガスのうち、バイパスガス12は下流部遮蔽板11Aにより、過熱器104の下流側で過熱器104内に流動するように制御されるため、過熱器104の上流側では吸熱に寄与しない。これに対し、図5−2に示すように、本発明の実施例2に係るボイラ10Bでは、上流部遮蔽板11Bを上側にスライドさせることで、バイパスガス12を主流ガス13に合流させることができる。
5-1 is explanatory drawing which shows the flow of the combustion gas in the boiler which concerns on Example 1 of this invention, and FIG. 5-2 is description which shows the flow of the combustion gas in the boiler which concerns on Example 2 of this invention. FIG. In FIG. 5B, the opening degree can be adjusted with the upper end side of the downstream shielding plate 11C as the rotation axis.
As shown in FIG. 5A, among the combustion gases in the boiler 10A according to the first embodiment of the present invention, the bypass gas 12 flows into the superheater 104 on the downstream side of the superheater 104 by the downstream shielding plate 11A. Therefore, the upstream side of the superheater 104 does not contribute to heat absorption. On the other hand, as shown in FIG. 5B, in the boiler 10B according to the second embodiment of the present invention, the bypass gas 12 can be joined to the mainstream gas 13 by sliding the upstream shielding plate 11B upward. it can.

また、下流部遮蔽板11Cを閉じることで、バイパスガス12または過熱器104の上部空間Aに上昇する主流ガス13を下流部遮蔽板11Cにより過熱器104の上部空間Aから抜けるのを遮断することができる。よって、主流ガス13の流量の割合を多くすることができる。このため、過熱器104の上流側、下流側の両方で過熱器104内を流動するように制御することで、過熱器104の上流側、下流側の両方でバイパスガス12と主流ガス13とが過熱器104の吸熱に寄与することができる。   In addition, by closing the downstream shielding plate 11C, the mainstream gas 13 rising to the upper space A of the bypass gas 12 or the superheater 104 is blocked from exiting from the upper space A of the superheater 104 by the downstream shielding plate 11C. Can do. Therefore, the ratio of the flow rate of the mainstream gas 13 can be increased. Therefore, by controlling the flow in the superheater 104 on both the upstream side and the downstream side of the superheater 104, the bypass gas 12 and the mainstream gas 13 are generated on both the upstream side and the downstream side of the superheater 104. This can contribute to the heat absorption of the superheater 104.

よって、本発明の実施例2に係るボイラ10Bを用いれば、更に過熱器104で生成される蒸気の蒸気温度を制御できる温度幅を広げることができる。   Therefore, if the boiler 10B which concerns on Example 2 of this invention is used, the temperature range which can control the vapor | steam temperature of the vapor | steam produced | generated with the superheater 104 can be expanded further.

従って、過熱器104の上部空間Aに入るバイパスガス12の流量を上流部遮蔽板11B及び下流部遮蔽板11Cで調整することで、過熱器104を通過する主流ガス13の流量を調整することができる。これにより、過熱器104の吸熱に寄与する燃焼ガス量を変化させることができ、過熱器104の蒸気温度を制御することができる。   Accordingly, the flow rate of the main gas 13 passing through the superheater 104 can be adjusted by adjusting the flow rate of the bypass gas 12 entering the upper space A of the superheater 104 with the upstream shielding plate 11B and the downstream shielding plate 11C. it can. Thereby, the amount of combustion gas contributing to the heat absorption of the superheater 104 can be changed, and the steam temperature of the superheater 104 can be controlled.

よって、本実施例に係るボイラ10Bによれば、過熱器104の上部空間Aに入るバイパスガス12の流量を上流部遮蔽板11Bと下流部遮蔽板11Cとにより調整することにより、過熱器104を通過する主流ガス13の流量を調整することができるため、過熱器104の吸熱に寄与する燃焼ガス量を変化させることができ、過熱器104の蒸気温度を制御することができる。   Therefore, according to the boiler 10B according to the present embodiment, the superheater 104 is adjusted by adjusting the flow rate of the bypass gas 12 entering the upper space A of the superheater 104 with the upstream shielding plate 11B and the downstream shielding plate 11C. Since the flow rate of the mainstream gas 13 passing through can be adjusted, the amount of combustion gas contributing to the heat absorption of the superheater 104 can be changed, and the steam temperature of the superheater 104 can be controlled.

また、本実施例に係るボイラ10Bにおいては、過熱器104上部に上流部遮蔽板11Bと下流部遮蔽板11Cとを設けるようにしているが、本発明はこれに限定されるものではなく、過熱器104上部に上流部遮蔽板11B、下流部遮蔽板11Cの何れか一方のみを設けるようにしてもよい。また、過熱器104上部には、下流部遮蔽板11Cに代えて図1に示す実施例1に係るボイラ10Aの下流部遮蔽板11Aを設け、上流部遮蔽板11Bと併設するようにしてもよい。更には、上流部遮蔽板11Bを下流部遮蔽板11Cと同様に一端を回転軸として開度調整自在な遮蔽板とし、過熱器104上部の上流側、下流側の両方を開度調整自在な遮蔽板としてもよい。   Moreover, in the boiler 10B which concerns on a present Example, although the upstream part shielding plate 11B and the downstream part shielding plate 11C are provided in the superheater 104 upper part, this invention is not limited to this, superheated Only one of the upstream shielding plate 11B and the downstream shielding plate 11C may be provided on the top of the vessel 104. In addition, instead of the downstream shielding plate 11C, a downstream shielding plate 11A of the boiler 10A according to the first embodiment shown in FIG. 1 may be provided on the upper portion of the superheater 104, and may be provided along with the upstream shielding plate 11B. . Further, the upstream shielding plate 11B is a shielding plate whose opening degree can be adjusted with one end as a rotation axis similarly to the downstream shielding plate 11C, and both the upstream side and the downstream side of the upper portion of the superheater 104 can be opened. It is good also as a board.

また、本発明に係るボイラ10A、10Bは、燃焼ガスの流動パターンを変え、過熱器104を通過する燃焼ガスの流量を調整することで、過熱器104の吸熱に寄与する燃焼ガス量を変化させることで、過熱器104の蒸気温度を制御できるため、舶用ボイラとして用いることができるが、本発明はこれに限定されるものではない。   Further, the boilers 10A and 10B according to the present invention change the flow pattern of the combustion gas and adjust the flow rate of the combustion gas passing through the superheater 104, thereby changing the amount of combustion gas contributing to the heat absorption of the superheater 104. Therefore, since the steam temperature of the superheater 104 can be controlled, it can be used as a marine boiler, but the present invention is not limited to this.

以上のように、本発明に係るボイラ及びボイラの蒸気温度調整方法は、過熱器の上部空間に入る燃焼ガスの流量を遮蔽板により調整し、燃焼ガスの流動パターンを変え、前記過熱器を通過する燃焼ガスの流量を調整することで、前記過熱器の吸熱に寄与する燃焼ガス量を変化させることができるため、前記過熱器の蒸気温度の制御が可能なボイラ及びボイラの蒸気温度調整方法に適している。   As described above, the boiler and the steam temperature adjustment method for the boiler according to the present invention adjust the flow rate of the combustion gas entering the upper space of the superheater with the shielding plate, change the flow pattern of the combustion gas, and pass through the superheater. By adjusting the flow rate of the combustion gas, the amount of combustion gas that contributes to the heat absorption of the superheater can be changed. Therefore, a boiler capable of controlling the steam temperature of the superheater and a method for adjusting the steam temperature of the boiler are provided. Is suitable.

本発明の実施例1に係るボイラの構成を示す概略図である。It is the schematic which shows the structure of the boiler which concerns on Example 1 of this invention. 過熱器でのバイパスガスと主流ガスのガス流れを示す説明図である。It is explanatory drawing which shows the gas flow of the bypass gas and mainstream gas in a superheater. 下流部遮蔽板を既設のボイラに設ける場合の説明図である。It is explanatory drawing in the case of providing a downstream part shielding board in the existing boiler. 下流部遮蔽板を新設のボイラに設ける場合の説明図である。It is explanatory drawing in the case of providing a downstream part shielding board in a newly installed boiler. 本発明の実施例2に係るボイラの構成を示す概略図である。It is the schematic which shows the structure of the boiler which concerns on Example 2 of this invention. 本発明の実施例1に係るボイラにおける燃焼ガスの流動を示す説明図である。It is explanatory drawing which shows the flow of the combustion gas in the boiler which concerns on Example 1 of this invention. 本発明の実施例2に係るボイラにおける燃焼ガスの流動を示す説明図である。It is explanatory drawing which shows the flow of the combustion gas in the boiler which concerns on Example 2 of this invention. 従来の過熱器を備えたボイラの構成の一例を示す図である。It is a figure which shows an example of a structure of the boiler provided with the conventional superheater. 従来のボイラにおける燃焼ガスの流れを示す図である。It is a figure which shows the flow of the combustion gas in the conventional boiler.

符号の説明Explanation of symbols

10A、10B ボイラ
11A、11C 下流部遮蔽板
11B 上流部遮蔽板
12 バイパスガス
13 主流ガス
101 バーナ
102 火炉
103 フロントバンクチューブ
104 過熱器(SH)
105 蒸発管群(リアバンクチューブ)
106 出口側ガスダクト
107 ガス出口
108 蒸気ドラム
109 水ドラム
110、111 ヘッダー
112 ウォールチューブ
A 上部空間
0 過熱器の高さと上部空間とを合わせた全体の高さ
1、H2 過熱器の高さ
1、h2 上部空間Aの高さ
10A, 10B Boilers 11A, 11C Downstream shielding plate 11B Upstream shielding plate 12 Bypass gas 13 Mainstream gas 101 Burner 102 Furnace 103 Front bank tube 104 Superheater (SH)
105 Evaporation tube group (rear bank tube)
106 Outlet side gas duct 107 Gas outlet 108 Steam drum 109 Water drum 110, 111 Header 112 Wall tube A Upper space H 0 Total height of superheater and upper space combined H 1 , H 2 Superheater height h 1 , h 2 height of upper space A

Claims (4)

バーナの燃焼で発生した燃焼ガスが、火炉から過熱器、蒸発管群を通過して流れるように構成したボイラにおいて、
前記過熱器上部を流れる前記燃焼ガスの上流側、後流側の何れか一方又は両方に前記過熱器の上下方向にスライド自在又は一端を回転軸として開度調整自在な遮蔽板を設け、
前記過熱器の上部空間に入る前記燃焼ガスの流量を調整することを特徴とするボイラ。
In the boiler configured so that the combustion gas generated by the burner combustion flows from the furnace through the superheater and the evaporator tube group,
Provided with a shielding plate that can be slidable in the vertical direction of the superheater or adjusted at one end as a rotation axis on either or both of the upstream side and the downstream side of the combustion gas flowing through the upper part of the superheater,
The boiler characterized by adjusting the flow rate of the combustion gas entering the upper space of the superheater.
請求項1において、
前記過熱器の途中で抜出した蒸気の一部を、水ドラムで減温した後、前記過熱器に再度送給し、前記過熱器の蒸気温度を調整することを特徴とするボイラ。
In claim 1,
A boiler characterized in that a part of the steam extracted in the middle of the superheater is reduced in temperature by a water drum and then fed again to the superheater to adjust the steam temperature of the superheater.
バーナの燃焼で発生した燃焼ガスを、火炉から過熱器、蒸発管群を通過して流れるように構成したボイラの蒸気温度調整方法において、
前記過熱器上部の前記燃焼ガスの後流側、上流側の何れか一方又は両方に設けられたスライド自在又は一端を回転軸として開度調整自在な遮蔽板を前記過熱器の上下方向にスライドさせるか開度調整し、前記過熱器上部空間に入る前記燃焼ガスの流量を調整することを特徴とするボイラの蒸気温度調整方法。
In the method for adjusting the steam temperature of the boiler configured to flow the combustion gas generated by the combustion of the burner from the furnace through the superheater and the evaporator tube group,
A sliding plate provided on one or both of the upstream side and the upstream side of the combustion gas in the upper part of the superheater or a shield plate whose opening degree can be adjusted with one end as a rotation axis is slid in the vertical direction of the superheater. A method for adjusting the steam temperature of a boiler, comprising adjusting the opening degree and adjusting the flow rate of the combustion gas entering the superheater upper space.
請求項3において、
前記過熱器の途中で蒸気の一部を抜出し、抜出した蒸気を水ドラムで減温した後、前記過熱器に再度送給し、前記過熱器の蒸気温度を調整することを特徴とするボイラの蒸気温度調整方法。
In claim 3,
A part of steam is extracted in the middle of the superheater, and after the temperature of the extracted steam is reduced by a water drum, the steam is re-supplied to the superheater and the steam temperature of the superheater is adjusted. Steam temperature adjustment method.
JP2007270224A 2007-10-17 2007-10-17 Boiler, and steam temperature adjusting method for boiler Pending JP2009097801A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007270224A JP2009097801A (en) 2007-10-17 2007-10-17 Boiler, and steam temperature adjusting method for boiler
PCT/JP2008/060471 WO2009050918A1 (en) 2007-10-17 2008-06-06 Boiler and steam temperature regulation method of boiler
KR1020107008392A KR20100056564A (en) 2007-10-17 2008-06-06 Boiler and steam temperature regulation method of boiler
CN200880111208A CN101821551A (en) 2007-10-17 2008-06-06 Boiler, and steam temperature adjusting method for boiler
EP08765284A EP2199672A1 (en) 2007-10-17 2008-06-06 Boiler and steam temperature regulation method of boiler
US12/679,576 US20100192876A1 (en) 2007-10-17 2008-06-06 Boiler and method for adjusting temperature of steam output from boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007270224A JP2009097801A (en) 2007-10-17 2007-10-17 Boiler, and steam temperature adjusting method for boiler

Publications (1)

Publication Number Publication Date
JP2009097801A true JP2009097801A (en) 2009-05-07

Family

ID=40567201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007270224A Pending JP2009097801A (en) 2007-10-17 2007-10-17 Boiler, and steam temperature adjusting method for boiler

Country Status (6)

Country Link
US (1) US20100192876A1 (en)
EP (1) EP2199672A1 (en)
JP (1) JP2009097801A (en)
KR (1) KR20100056564A (en)
CN (1) CN101821551A (en)
WO (1) WO2009050918A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138076A (en) * 2016-02-05 2017-08-10 三菱重工業株式会社 Boiler and floating body facility including the same
JP2018176032A (en) * 2017-04-06 2018-11-15 ウシオ電機株式会社 Light irradiation device
WO2020144988A1 (en) * 2019-01-08 2020-07-16 三菱重工業株式会社 Ship boiler and method for reconstructing ship boiler

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5010425B2 (en) * 2007-10-17 2012-08-29 三菱重工業株式会社 Reheat boiler and gas temperature control method for reheat boiler
CN102287807B (en) * 2011-06-17 2015-10-14 江苏太湖锅炉股份有限公司 The flue gas temperature regulation structure of high-temperature flue import
CN102537937A (en) * 2012-02-26 2012-07-04 哈尔滨锅炉厂有限责任公司 Device for adjusting temperature of reheated steam of boiler by aid of three tail-flues

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204119U (en) * 1985-06-10 1986-12-23
JPH08145301A (en) * 1994-11-25 1996-06-07 Babcock Hitachi Kk Waste heat recovering boiler
JP2000337604A (en) * 1999-05-25 2000-12-08 Mitsubishi Heavy Ind Ltd Desuperheating device
JP2001317893A (en) * 2000-05-02 2001-11-16 Mitsubishi Heavy Ind Ltd Gas short circuit pass preventive baffle
JP2002243106A (en) * 2001-02-21 2002-08-28 Mitsubishi Heavy Ind Ltd Boiler
JP2004301479A (en) * 2003-04-01 2004-10-28 Babcock Hitachi Kk Exhaust heat recovering boiler having exhaust gas bypassing flow preventing structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2226445A (en) * 1937-05-05 1940-12-24 Babcock & Wilcox Co Fluid heat exchange apparatus
US2223199A (en) * 1938-11-25 1940-11-26 Superheater Co Ltd Superheater
US2842104A (en) * 1955-08-10 1958-07-08 Foster Wheeler Corp Vapor generator
JPH05248603A (en) * 1992-03-09 1993-09-24 Babcock Hitachi Kk Reheater outlet steam temperature adjusting device
JPH0828808A (en) * 1994-07-19 1996-02-02 Babcock Hitachi Kk Waste heat-recovering boiler device and its controlling method
JP2002147701A (en) * 2000-11-08 2002-05-22 Babcock Hitachi Kk Exhaust heat recovery steam generating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204119U (en) * 1985-06-10 1986-12-23
JPH08145301A (en) * 1994-11-25 1996-06-07 Babcock Hitachi Kk Waste heat recovering boiler
JP2000337604A (en) * 1999-05-25 2000-12-08 Mitsubishi Heavy Ind Ltd Desuperheating device
JP2001317893A (en) * 2000-05-02 2001-11-16 Mitsubishi Heavy Ind Ltd Gas short circuit pass preventive baffle
JP2002243106A (en) * 2001-02-21 2002-08-28 Mitsubishi Heavy Ind Ltd Boiler
JP2004301479A (en) * 2003-04-01 2004-10-28 Babcock Hitachi Kk Exhaust heat recovering boiler having exhaust gas bypassing flow preventing structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138076A (en) * 2016-02-05 2017-08-10 三菱重工業株式会社 Boiler and floating body facility including the same
JP2018176032A (en) * 2017-04-06 2018-11-15 ウシオ電機株式会社 Light irradiation device
JP7003431B2 (en) 2017-04-06 2022-01-20 ウシオ電機株式会社 Light irradiation device
TWI774734B (en) * 2017-04-06 2022-08-21 日商牛尾電機股份有限公司 light irradiation device
WO2020144988A1 (en) * 2019-01-08 2020-07-16 三菱重工業株式会社 Ship boiler and method for reconstructing ship boiler
JP2020112278A (en) * 2019-01-08 2020-07-27 三菱重工マリンマシナリ株式会社 Marine boiler, and method of modifying marine boiler
CN113302122A (en) * 2019-01-08 2021-08-24 三菱重工业株式会社 Marine boiler and method for modifying marine boiler
JP7152957B2 (en) 2019-01-08 2022-10-13 三菱重工マリンマシナリ株式会社 Marine boiler and modification method of marine boiler
CN113302122B (en) * 2019-01-08 2024-04-12 三菱重工船用机械株式会社 Boiler for ship and method for modifying boiler for ship

Also Published As

Publication number Publication date
WO2009050918A1 (en) 2009-04-23
US20100192876A1 (en) 2010-08-05
EP2199672A1 (en) 2010-06-23
KR20100056564A (en) 2010-05-27
CN101821551A (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP2009097801A (en) Boiler, and steam temperature adjusting method for boiler
EP2300691B1 (en) Steam generation system having a main and auxiliary steam generator
JP4909853B2 (en) Power plant and control method thereof
DK2442061T3 (en) Process for cooling a combustion plant&#39;s flue gases in a heat exchanger in a steam generating plant
JP5022204B2 (en) Marine boiler structure
JP5360560B2 (en) boiler
JP5348477B2 (en) Boiler and concentrated blow method
JP2013185524A (en) Coal-fired power generation plant
JP2007315726A (en) Once-through exhaust heat recovery boiler
JP2011021768A (en) Boiler
KR101280130B1 (en) Reheat boiler
JP2007298244A (en) Exhaust heat recovery boiler
JP2006207901A (en) Hot water apparatus
JP2006242517A (en) Reheat steam temperature control method, control device, and boiler plant using the same
KR101191496B1 (en) Reheat boiler and gas temperature control method of reheat boiler
JP5766527B2 (en) Method and apparatus for controlling once-through boiler
JP2007120867A (en) Hot water supply system
JP6091020B2 (en) Boiler, marine steam turbine propulsion system equipped with the same, ship equipped with the same, and boiler control method
JP2001116208A (en) Waste heat recovery boiler with duct burner
JP2002243106A (en) Boiler
JP2005315492A (en) Waste heat recovery boiler with stabilizing burner and method of operating the same
CN107525411B (en) Step-type heating furnace vaporization cooling device for producing superheated steam
JP6828612B2 (en) Binary power generation system
JP2006250657A (en) Operation method for nuclear power plant
JP2005090230A (en) Heating furnace system using gas turbine exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120321