JP2013185524A - Coal-fired power generation plant - Google Patents

Coal-fired power generation plant Download PDF

Info

Publication number
JP2013185524A
JP2013185524A JP2012052472A JP2012052472A JP2013185524A JP 2013185524 A JP2013185524 A JP 2013185524A JP 2012052472 A JP2012052472 A JP 2012052472A JP 2012052472 A JP2012052472 A JP 2012052472A JP 2013185524 A JP2013185524 A JP 2013185524A
Authority
JP
Japan
Prior art keywords
pressure turbine
high pressure
steam
coal
sent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012052472A
Other languages
Japanese (ja)
Inventor
Yoshiharu Hayashi
喜治 林
Tsutomu Shibata
強 柴田
Masahito Handa
雅人 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012052472A priority Critical patent/JP2013185524A/en
Priority to PCT/JP2013/053822 priority patent/WO2013132994A1/en
Publication of JP2013185524A publication Critical patent/JP2013185524A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/34Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
    • F22B21/341Vertical radiation boilers with combustion in the lower part
    • F22B21/343Vertical radiation boilers with combustion in the lower part the vertical radiation combustion chamber being connected at its upper part to a sidewards convection chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve cost reduction by limiting the range of a heat transfer pipe which uses a high-quality material having high heat resistance in a boiler which is increased in efficiency by increasing the temperature of steam.SOLUTION: In a conventional boiler, an economizer that is set in a front stage of a boiler outlet is removed, and a low pressure reheater 20 is installed instead. Water supply to a boiler 1 is sent first to a water wall 11 on a furnace side. Then, steam that is overheated by first to fourth superheaters 12 to 15 that are high pressure main steam systems is sent to an ultra high pressure turbine 2, and the exhaust air thereof is sent to a high pressure turbine 3. The exhaust air of the high pressure turbine 3 is returned to the boiler 1, and the steam overheated by a primary high pressure reheater 18 and a secondary high pressure reheater 19 that are high pressure reheating steam systems is sent to an intermediate pressure turbine 4. The exhaust air of the intermediate pressure turbine 4 is returned to the boiler 1, overheated by the low pressure reheater 20 that is a low pressure reheating steam system, and is sent to a low pressure turbine 5.

Description

本発明は石炭火力発電プラントに関する。   The present invention relates to a coal-fired power plant.

発電プラントに使用される燃料の中で、石炭は世界中に広く分布し、価格も安く、安定している。このため、今後も石炭火力発電は電力の安定供給に重要な役割を果たすことが期待されている。しかしながら、石炭火力は、LNGや石油などを燃料とする他方式の火力発電に比べて、発電量当たりのCO2排出量が最も多いことから、さらなる高効率化が求められている。 Among the fuels used in power plants, coal is widely distributed throughout the world, its price is cheap and stable. For this reason, coal-fired power generation is expected to continue to play an important role in the stable supply of electricity. However, since coal thermal power has the largest amount of CO 2 emission per power generation compared with other types of thermal power generation using LNG, oil, or the like as fuel, further improvement in efficiency is required.

このような状況を踏まえ、石炭火力ボイラの分野では、蒸気温度を高温化することにより効率向上を図っている。現行の商用ボイラの場合、蒸気温度は約600℃である。   Based on this situation, in the field of coal-fired boilers, efficiency is improved by increasing the steam temperature. For current commercial boilers, the steam temperature is about 600 ° C.

さらなる効率化を目指して、蒸気温度を従来の600℃より上昇させようとすると、伝熱管の材料は、従来の一般SUS材(18Cr−8Ni系SUS材)から、超耐熱材料を使用することが余儀なくされる。超耐熱材料の重量当たりの価格は、一般SUS材の約10倍であり、一般SUS材に比べて加工・溶接も難しいことから、ボイラの高コスト化につながる。   If the steam temperature is to be raised from the conventional 600 ° C. for further efficiency, the heat transfer tube material may be a super heat resistant material from a conventional general SUS material (18Cr-8Ni SUS material). Forced. The price per weight of the super heat resistant material is about 10 times that of a general SUS material, and processing and welding are difficult as compared with a general SUS material, leading to higher cost of the boiler.

従来のボイラで採用されているバンク構成の例として、特許文献1が挙げられる。節炭器、火炉壁(水壁)、1次〜4次過熱器で過熱された蒸気を高圧タービンに送り、高圧タービンの排気をボイラに戻し、1次〜2次再熱器で過熱された蒸気を中圧タービンに送り、中圧タービンの排気を低圧タービンに送る蒸気の流れになっている。   Patent document 1 is mentioned as an example of the bank structure employ | adopted with the conventional boiler. Steam saver, furnace wall (water wall), steam heated by primary to quaternary superheater was sent to high pressure turbine, exhaust of high pressure turbine was returned to boiler, and was heated by primary to secondary reheater The steam flows to the intermediate pressure turbine and the exhaust of the intermediate pressure turbine to the low pressure turbine.

特開2007−263505号公報JP 2007-263505 A

現行のボイラに対して、最終の蒸気温度を上昇させると、上流から下流までのバンク全ての蒸気温度が高温化する。つまり、高温域である2〜4次過熱器と2次再熱器に超耐熱材料を使用することにより高コストになるのに加えて、物量の大きい1次過熱器をCr鋼から一般SUS材に変えることによっても、高コストをもたらす。   When the final steam temperature is increased with respect to the current boiler, the steam temperature of all banks from upstream to downstream is increased. In other words, the use of super heat-resistant materials for the 2nd to 4th superheaters and the secondary reheater that are in the high temperature range, in addition to the high cost, the primary superheater with a large quantity is changed from Cr steel to a general SUS material Even changing to a high cost.

また、現行のボイラに対して、最終の蒸気温度を上昇させた場合、中圧タービンが排出する蒸気をそのまま低圧タービンへ供給すると、現行のボイラと同等の発電出力を得られなかった。   Further, when the final steam temperature is raised with respect to the current boiler, if the steam discharged from the intermediate pressure turbine is supplied to the low pressure turbine as it is, the power generation output equivalent to that of the current boiler cannot be obtained.

そこで本発明の目的は、最終の蒸気温度を現行ボイラよりも上昇させたボイラにおいても、コスト低減を図るとともに、効率を向上させることにある。   Accordingly, an object of the present invention is to reduce the cost and improve the efficiency even in a boiler in which the final steam temperature is increased from that of the current boiler.

石炭ボイラ、高圧タービン、中圧タービン、低圧タービンを有し、前記石炭ボイラには給水が供給される火炉水壁を備え、前記石炭ボイラにて過熱された蒸気が供給される高圧タービンと、該高圧タービンからの排気が供給される前記石炭ボイラの高圧再熱蒸気系と、該高圧再熱蒸気系で過熱された蒸気が送られる中圧タービンと、該中圧タービンの排気が送られる前記石炭ボイラの出口前段に設置された低圧再熱器と、該低圧再熱器で加熱された蒸気が送られる低圧タービンを備えることを特徴とする。   A coal boiler, a high-pressure turbine, an intermediate-pressure turbine, a low-pressure turbine, the coal boiler having a furnace water wall to which feed water is supplied, and a high-pressure turbine to which steam heated by the coal boiler is supplied; A high pressure reheat steam system of the coal boiler to which exhaust from a high pressure turbine is supplied, an intermediate pressure turbine to which steam superheated in the high pressure reheat steam system is sent, and the coal to which exhaust of the intermediate pressure turbine is sent It is characterized by comprising a low-pressure reheater installed at the upstream stage of the boiler outlet, and a low-pressure turbine to which steam heated by the low-pressure reheater is sent.

本発明によれば、最終の蒸気温度を現行ボイラよりも上昇させたボイラにおいても、コスト低減を図るとともに、効率を向上させることが可能である。   According to the present invention, it is possible to reduce costs and improve efficiency even in a boiler whose final steam temperature is higher than that of the current boiler.

本発明の第一実施例である石炭火力発電プラントを示す概略構成図である。It is a schematic block diagram which shows the coal thermal power plant which is a 1st Example of this invention. 比較例のボイラを有する石炭火力発電プラントを示す概略構成図である。It is a schematic block diagram which shows the coal thermal power plant which has the boiler of a comparative example. 各バンクの出口蒸気温度と使用材料の関係を示す模式図である。It is a schematic diagram which shows the relationship between the outlet steam temperature of each bank, and the material used. 本発明の第二実施例である石炭火力発電プラントを示す概略構成図である。It is a schematic block diagram which shows the coal thermal power plant which is a 2nd Example of this invention. 本発明の第三実施例である石炭火力発電プラントに備わるCO2吸収装置の概略構成図である。Is a schematic diagram of a CO 2 absorber included in coal-fired power plants is a third embodiment of the present invention. 本発明の第三実施例である石炭火力発電プラントを示す概略構成図である。It is a schematic block diagram which shows the coal thermal power plant which is the 3rd Example of this invention. 本発明の第四実施例である石炭火力発電プラントを示す概略構成図である。It is a schematic block diagram which shows the coal thermal power plant which is 4th Example of this invention.

本発明は、主蒸気温度を高温化した石炭ボイラを有する石炭火力発電プラントを対象として、ボイラの伝熱管に低級材料の選定が可能となるバンク構成にすることにより低コスト化を実現した石炭火力発電プラントを対象とする。
ここで、比較例として蒸気温度が従来の600℃の場合におけるボイラと蒸気タービンの構成を図2に示した。
The present invention is directed to a coal-fired power plant having a coal boiler whose main steam temperature is increased, and a coal-fired power plant that realizes cost reduction by adopting a bank configuration that enables selection of lower materials for the heat transfer tubes of the boiler. For power plants.
Here, as a comparative example, the configuration of the boiler and the steam turbine when the steam temperature is 600 ° C. is shown in FIG.

ボイラ1への給水は、最初に節炭器10に入る。節炭器での給水は低温であるので、他の熱交換器に比べて低温のガスで加熱することが可能である。このため、節炭器はボイラ出口の手前に設置される。節炭器で加熱された給水は、水壁(火炉壁)11に入る。水壁では、水が蒸発して蒸気となる。水が液相から気相へ相変化する際には蒸発潜熱を含めて、多くの熱量が必要である。このため、最も高温のガスが流れる水壁で水を蒸発させる。水壁で生成した蒸気は、1次過熱器12、2次過熱器13、3次過熱器14、4次過熱器15の順に流れて過熱され、最終加熱器である4次過熱器を出た蒸気は、高圧タービン3に送られる。   The water supply to the boiler 1 enters the economizer 10 first. Since the water supply in the economizer is low in temperature, it can be heated with a low-temperature gas compared to other heat exchangers. For this reason, the economizer is installed in front of the boiler exit. The water supply heated by the economizer enters the water wall (furnace wall) 11. At the water wall, water evaporates and becomes steam. When water undergoes a phase change from a liquid phase to a gas phase, a large amount of heat is required including latent heat of vaporization. For this reason, water is evaporated at the water wall through which the hottest gas flows. The steam generated on the water wall flows in the order of the primary superheater 12, the secondary superheater 13, the tertiary superheater 14, and the fourth superheater 15 and is superheated, and then exits the fourth superheater that is the final heater. The steam is sent to the high pressure turbine 3.

蒸気は1次過熱器から4次過熱器へと流れるに従い、温度が高くなる。つまり、過熱器の最初に位置する1次過熱器は、他の過熱器に比べて、低温のガスで蒸気を加熱することができる。したがって、1次過熱器は後部伝面側(火炉の後段側)に設置される。2次〜4次過熱器は蒸気をより高温に上昇させるため、高温のガスで加熱することが必要であり、火炉の上部に設置される。ただし、火炉の上部はバーナ火炎からの輻射熱を直接受けるため、火炎状態の影響を受けやすく、蒸気温度に揺らぎが生じやすい。高圧タービンへ送る蒸気、すなわち、4次過熱器の出口蒸気温度は所定の値に制御する必要がある。このため、4次過熱器は、バーナ火炎の影響を受けにくい個所に設置する。通常は、ボイラのノーズの上に設置し、ノーズによって火炎からの輻射熱を直接受けないようにする。これに対し、2次過熱器は、火炉上部のバーナに最も近い位置に設置する。   As the steam flows from the primary superheater to the fourth superheater, the temperature increases. That is, the primary superheater located at the beginning of the superheater can heat the steam with a low-temperature gas as compared with other superheaters. Therefore, the primary superheater is installed on the rear transmission side (the rear stage side of the furnace). Since the secondary to quaternary superheater raises the steam to a higher temperature, it needs to be heated with a high-temperature gas, and is installed in the upper part of the furnace. However, since the upper part of the furnace directly receives the radiant heat from the burner flame, it is easily affected by the flame condition and the steam temperature is likely to fluctuate. The steam sent to the high-pressure turbine, that is, the outlet steam temperature of the fourth superheater needs to be controlled to a predetermined value. For this reason, the 4th superheater is installed in the place where it is hard to receive the influence of a burner flame. It is usually installed on the boiler nose so that the nose does not directly receive radiant heat from the flame. On the other hand, the secondary superheater is installed at a position closest to the burner at the top of the furnace.

以上のように、節炭器から過熱器を通して蒸気を加熱する系統を主蒸気系と呼ぶ。一方、高圧タービンの排気は、ボイラに戻されて再度加熱される。高圧タービンの排気蒸気を再度加熱する系統は再熱系と呼ばれる。再熱系の蒸気は、主蒸気に比べて蒸気圧力が低くなっている。   As described above, a system that heats steam from a economizer through a superheater is called a main steam system. On the other hand, the exhaust from the high-pressure turbine is returned to the boiler and heated again. A system for reheating the exhaust steam of the high-pressure turbine is called a reheating system. The steam pressure of the reheat system is lower than that of the main steam.

再熱蒸気は、最初にボイラの1次再熱器16に入る。1次再熱器は、後部伝面側に1次過熱器と併設する形で設置する。1次再熱器で加熱された蒸気は、次いで、2次再熱器17に送られる。2次再熱器は、火炉上部の2〜4次過熱器の後段側に設置される。2次再熱器で加熱された蒸気は、中圧タービン4に送られ、中圧タービンの排気は低圧タービン5へと送られる。   The reheat steam first enters the boiler primary reheater 16. The primary reheater is installed on the rear transmission side in the form of being attached to the primary superheater. The steam heated by the primary reheater is then sent to the secondary reheater 17. A secondary reheater is installed in the back | latter stage side of the 2nd-4th superheater of a furnace upper part. The steam heated by the secondary reheater is sent to the intermediate pressure turbine 4, and the exhaust of the intermediate pressure turbine is sent to the low pressure turbine 5.

主蒸気系では高圧タービンへ送る蒸気の温度を制御するのに、低温の水を主蒸気配管に噴霧するスプレイで行う(図では省略)。一方、再熱系では中圧タービンへ送る蒸気の温度を制御するのに、ガス分配ダンパ30を使用する。1次再熱器と1次過熱器の間には隔壁が設置され、ガスはそれぞれの流路に分かれて流れる。ガス分配ダンパは、二つのガス流路を流れるガスの分配比率を変える働きをもつ。再熱蒸気温度が所定の値より低い場合には、1次再熱器側のガス流路を流れるガス流量を増やすよう、ガス分配ダンパを操作する(1次過熱器側のガス流量は減る)。所定の値より高い場合には、1次再熱器側のガス流量を減らす。   In the main steam system, the temperature of steam sent to the high-pressure turbine is controlled by spraying low temperature water onto the main steam pipe (not shown in the figure). On the other hand, in the reheat system, the gas distribution damper 30 is used to control the temperature of the steam sent to the intermediate pressure turbine. A partition is installed between the primary reheater and the primary superheater, and the gas flows separately in the respective flow paths. The gas distribution damper has a function of changing the distribution ratio of the gas flowing through the two gas flow paths. When the reheat steam temperature is lower than a predetermined value, the gas distribution damper is operated to increase the gas flow rate flowing through the gas flow path on the primary reheater side (the gas flow rate on the primary superheater side is reduced). . If it is higher than the predetermined value, the gas flow rate on the primary reheater side is reduced.

現行ボイラの各バンクでは、図3(a)に示す材料が使用される。使用する材料の種類は、蒸気温度によって決定される。節炭器(ECO)、水壁(WW)は炭素鋼、1次過熱器(1SH)、2次過熱器(2SH)、1次再熱器(1RH)はCr(クロム)鋼、3次過熱器(3SH)、4次過熱器(4SH)、2次再熱器(2RH)は一般SUS材(ステンレス)を使用する。使用可能温度が高い材料ほど、コストも高くなる。   The material shown in FIG. 3A is used in each bank of the current boiler. The type of material used is determined by the steam temperature. Carbon economizer (ECO), water wall (WW) is carbon steel, primary superheater (1SH), secondary superheater (2SH), primary reheater (1RH) is Cr (chromium) steel, tertiary superheater A general SUS material (stainless steel) is used for the heater (3SH), the fourth superheater (4SH), and the second reheater (2RH). The higher the usable temperature, the higher the cost.

現行のボイラに対して高温化を図った場合、各バンクで使用する材料は、図3(b)に示すようになる。2次〜4次過熱器、及び2次再熱器は、より高温に耐えられる超耐熱材料を使用する必要がある。前述したように、超耐熱材料のコストは、一般SUS材の約10倍である。また、1次過熱器、1次再熱器は従来のCr鋼から一般SUS材に変える必要があり、また、水壁は炭素鋼からCr鋼に変える必要がある。   When the temperature is increased with respect to the current boiler, the material used in each bank is as shown in FIG. The secondary to quaternary superheater and the secondary reheater need to use super heat resistant materials that can withstand higher temperatures. As described above, the cost of the super heat resistant material is about 10 times that of a general SUS material. Further, the primary superheater and the primary reheater need to be changed from conventional Cr steel to a general SUS material, and the water wall needs to be changed from carbon steel to Cr steel.

以上のように、蒸気高温化を図ると、最終過熱器(4次過熱器)のみならず、ボイラの上流から下流までの全てのバンクの蒸気温度が上昇し、1ランク上の高級な材料を使用することになる。全てのバンクの蒸気温度が上昇するのは、高効率化による蒸気流量の減少、及び、ボイラへの給水温度の上昇によるものである。   As described above, when the steam temperature is increased, not only the final superheater (fourth superheater), but also the steam temperature of all banks from the upstream to the downstream of the boiler rises, and high-grade materials that are one rank higher Will be used. The increase in steam temperature in all banks is due to a decrease in steam flow due to higher efficiency and an increase in feed water temperature to the boiler.

次に、本発明の一実施例である石炭火力発電プラントの構成について図面を参照して以下に説明する。   Next, the configuration of a coal-fired power plant that is an embodiment of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施例である石炭火力発電プラントの構成を示す概略図である。図1に示す石炭火力発電プラントでは、比較例のボイラに設置されていた節炭器がなく、ボイラへの給水は水壁11に取り込まれる。水壁11から1次過熱器12、2次過熱器13、3次過熱器14、4次過熱器15の順に流れ、超高圧タービン2に送られる。次いで、超高圧タービン2の排気は、高圧タービン3に送られる。超高圧タービンは、蒸気を高温化する際に新設したタービンである。超高圧タービンは高温の蒸気に耐えられるように、超耐熱材料を使用する。超高圧タービンの排気は、比較例のボイラの主蒸気温度である600℃程度まで低下しているため、後段にある高圧タービンは現行プラントと同材料で設計できる。   FIG. 1 is a schematic diagram showing the configuration of a coal-fired power plant that is an embodiment of the present invention. In the coal-fired power plant shown in FIG. 1, there is no economizer installed in the boiler of the comparative example, and water supply to the boiler is taken into the water wall 11. From the water wall 11, the primary superheater 12, the secondary superheater 13, the tertiary superheater 14, and the fourth superheater 15 flow in this order and are sent to the ultrahigh pressure turbine 2. Next, the exhaust from the ultrahigh pressure turbine 2 is sent to the high pressure turbine 3. The ultra-high pressure turbine is a turbine newly established when the temperature of steam is increased. Ultra high pressure turbines use super heat resistant materials to withstand high temperature steam. Since the exhaust pressure of the ultra high pressure turbine has decreased to about 600 ° C., which is the main steam temperature of the boiler of the comparative example, the high pressure turbine in the subsequent stage can be designed with the same material as the current plant.

本実施例では、ボイラの水壁から4次過熱器、及び超高圧タービン2までの蒸気の流れを高圧主蒸気系と呼ぶ。高圧タービン3の排気は再度ボイラの高圧1次再熱器18に戻る。次いで、高圧2次再熱器19に流れ、中圧タービン4に送られる。本実施例では、ボイラの高圧1次再熱器と高圧2次再熱器、及び中圧タービンまでの蒸気の流れを高圧再熱蒸気系と呼ぶ。次に、中圧タービンの排気が再度ボイラの低圧再熱器20に戻る。低圧再熱器20で過熱された蒸気は低圧タービンに送られる。本実施例では、低圧再熱器、及び低圧タービンまでの蒸気の流れを低圧再熱蒸気系と呼ぶ。また、ガス分配ダンパ30は、中圧タービン4の入口蒸気温度が所定の値になるように、高圧1次再熱器18と1次過熱器12の燃焼排ガスの分配比率を調整する。   In this embodiment, the flow of steam from the water wall of the boiler to the quaternary superheater and the ultrahigh pressure turbine 2 is called a high-pressure main steam system. The exhaust from the high-pressure turbine 3 returns to the high-pressure primary reheater 18 of the boiler again. Subsequently, it flows into the high pressure secondary reheater 19 and is sent to the intermediate pressure turbine 4. In this embodiment, the steam flow to the high pressure primary reheater, the high pressure secondary reheater, and the intermediate pressure turbine of the boiler is referred to as a high pressure reheat steam system. Next, the exhaust of the intermediate pressure turbine returns to the low pressure reheater 20 of the boiler again. The steam superheated by the low pressure reheater 20 is sent to the low pressure turbine. In this embodiment, the flow of steam to the low pressure reheater and the low pressure turbine is called a low pressure reheat steam system. Further, the gas distribution damper 30 adjusts the distribution ratio of the combustion exhaust gas between the high pressure primary reheater 18 and the primary superheater 12 so that the inlet steam temperature of the intermediate pressure turbine 4 becomes a predetermined value.

低圧再熱器は、現行ボイラにおける節炭器の代わりに設置された熱交換器であり、ボイラ出口の前段に設置される。ボイラ出口のガス温度は約370℃であるため、低圧再熱器に取り込まれる蒸気温度は、これより低くなる必要がある。現行ボイラの中圧タービンに対し、本実施例になるボイラでは、中圧タービンの段数を増やし、排気温度を約300℃まで低下させる。   The low-pressure reheater is a heat exchanger installed in place of the economizer in the current boiler, and is installed in front of the boiler outlet. Since the gas temperature at the boiler outlet is about 370 ° C., the temperature of the steam taken into the low-pressure reheater needs to be lower than this. In the boiler according to this embodiment, the number of stages of the intermediate pressure turbine is increased and the exhaust temperature is lowered to about 300 ° C. with respect to the intermediate pressure turbine of the current boiler.

図3(c)に、本実施例のボイラにおける各バンクの出口蒸気温度と使用材料の対応関係を示した。本実施例のボイラでは、節炭器(ECO)を削除したことにより、1次過熱器(1SH)及び2次過熱器(2SH)の出口温度が低下するため、1ランク低級の材料を選定できる。特に、1次過熱器は物量が大きいので、トータルコストに与える影響が大きい。また、本実施例のボイラで節炭器の代わりに設置した低圧再熱器については、蒸気の温度域が低いので、低級の材料を選定できる。   FIG. 3C shows the correspondence between the outlet steam temperature of each bank and the materials used in the boiler of this example. In the boiler of the present embodiment, since the outlet temperature of the primary superheater (1SH) and the secondary superheater (2SH) is reduced by deleting the economizer (ECO), a material that is one rank lower can be selected. . In particular, since the primary superheater has a large amount of material, it greatly affects the total cost. Moreover, about the low-pressure reheater installed in place of the economizer in the boiler of the present embodiment, a low temperature material can be selected because the temperature range of the steam is low.

図3(c)に示したように、本実施例のボイラの場合、再熱蒸気系によって、低圧タービンに入る蒸気温度を増加させている。低圧再熱器の熱量を利用して、蒸気を加熱できる。そのため、ボイラで蒸気が得るトータルの収熱量は、現行のボイラと本実施例のボイラではほぼ同じである。つまり、本実施例のボイラは、比較例のボイラに比べて蒸気流量が若干少ない状態でバランスし、効率を向上させる。   As shown in FIG.3 (c), in the case of the boiler of a present Example, the steam temperature which enters into a low pressure turbine is increased by the reheat steam system. Steam can be heated using the heat of the low-pressure reheater. Therefore, the total amount of heat collected by the steam in the boiler is almost the same for the current boiler and the boiler of this embodiment. That is, the boiler of the present embodiment balances the steam flow rate slightly lower than the boiler of the comparative example, and improves the efficiency.

上述した本実施例によれば、蒸気温度を高温化したボイラを有する石炭火力発電プラントにおいて、各バンク出口蒸気温度の上昇を限定することができる。このため、バンクによっては、低級な材料を選定することができ、材料費を低減できる。これによって、低コストのボイラが実現できる。   According to the present embodiment described above, in the coal-fired power plant having a boiler whose steam temperature is increased, the rise in the steam temperature at each bank can be limited. For this reason, depending on the bank, a lower material can be selected, and the material cost can be reduced. Thereby, a low-cost boiler can be realized.

次に、本発明になる石炭火力発電プラントの第二の実施例を説明する。   Next, a second embodiment of the coal-fired power plant according to the present invention will be described.

第一の実施例では、節炭器の代わりに設置した熱交換器をタービン排気を再加熱するための再熱器として用いた。これに対し、本実施例では、給水ポンプ駆動タービン用の蒸気を生成するための熱交換器として用いる。   In the first embodiment, a heat exchanger installed in place of the economizer is used as a reheater for reheating the turbine exhaust. On the other hand, in a present Example, it uses as a heat exchanger for producing | generating the vapor | steam for feedwater pump drive turbines.

図4は、本発明の第二実施例である石炭火力発電プラントの構成を示す概略図である。図1に示した第一実施例と異なる点のみを説明する。図1では省略したが、ボイラ1への給水は、図4に示すように、その前段で低圧給水加熱器31、及び高圧給水加熱器32で加熱される。給水加熱器の熱源は、蒸気タービンから抽気した蒸気である。ただし、図4では、抽気蒸気の配管は省略している。低圧給水加熱器31と高圧給水加熱器32の間には、ボイラ1に給水を押込むための給水ポンプ33がある。給水ポンプ33の駆動源は蒸気タービン34である。通常の発電プラントでは、給水ポンプ駆動用の蒸気タービン34は、発電用の蒸気タービン2〜5から抽気した蒸気を利用する。これに対し、本実施例の装置では、低圧給水加熱器31の後段から給水の一部を分岐し、これを節炭器の代わりに設置した熱交換器23に送る。この熱交換器23では給水を加熱して蒸気にすると共に、さらに蒸気を過熱した後、給水ポンプ駆動用の蒸気タービン34に送る。したがって、熱交換器23は、ドラムを備えた蒸発器と、蒸気を過熱して高温にする過熱器で構成される。蒸気タービン34から排気された蒸気は、復水器へ送られる。   FIG. 4 is a schematic diagram showing the configuration of a coal-fired power plant that is a second embodiment of the present invention. Only differences from the first embodiment shown in FIG. 1 will be described. Although omitted in FIG. 1, the feed water to the boiler 1 is heated by a low-pressure feed water heater 31 and a high-pressure feed water heater 32 in the preceding stage, as shown in FIG. 4. The heat source of the feed water heater is steam extracted from the steam turbine. However, in FIG. 4, the piping of the extraction steam is omitted. Between the low-pressure feed water heater 31 and the high-pressure feed water heater 32, there is a feed water pump 33 for pushing feed water into the boiler 1. The drive source of the feed water pump 33 is a steam turbine 34. In a normal power plant, the steam turbine 34 for driving the feed water pump uses steam extracted from the steam turbines 2 to 5 for power generation. On the other hand, in the apparatus of the present embodiment, a part of the water supply is branched from the subsequent stage of the low-pressure water heater 31 and sent to the heat exchanger 23 installed instead of the economizer. In this heat exchanger 23, the feed water is heated to steam, and the steam is further heated and then sent to the steam turbine 34 for driving the feed water pump. Therefore, the heat exchanger 23 is comprised with the evaporator provided with the drum, and the superheater which superheats a vapor | steam and makes it high temperature. The steam exhausted from the steam turbine 34 is sent to the condenser.

以上に説明した機器構成の場合でも、第一実施例になる装置と同様の効果が得られる。1次過熱器12と2次過熱器13の出口蒸気温度が低下し、低級の材料を選定できるので、材料費が削減できる。また、ボイラによる収熱を有効利用できる。   Even in the case of the device configuration described above, the same effects as those of the apparatus according to the first embodiment can be obtained. Since the outlet steam temperature of the primary superheater 12 and the secondary superheater 13 decreases and a lower material can be selected, the material cost can be reduced. Moreover, the heat collection by a boiler can be used effectively.

次に、本発明になる石炭火力発電プラントの第三の実施例を説明する。   Next, a third embodiment of the coal-fired power plant according to the present invention will be described.

第三の実施例では、CO2吸収装置を備えた石炭火力発電プラントを対象とする。CO2吸収は、地球温暖化を回避するために、ボイラから排出される排ガス中のCO2を回収し、地中に貯留することを目的として行われる。 The third embodiment is directed to a coal-fired power plant equipped with a CO 2 absorber. The CO 2 absorption is performed for the purpose of collecting CO 2 in the exhaust gas discharged from the boiler and storing it in the ground in order to avoid global warming.

図5に、CO2吸収装置の概略を示す。CO2吸収装置は、主に吸収塔41と再生塔42から構成されている。吸収塔41では、アミンなどのCO2を吸収する性質をもつ吸収液を排ガスと接触させ、排ガス中からCO2のみを回収する。CO2を吸収した吸収液は、再生塔42に送られる。再生塔では吸収液が100℃前後に維持され、CO2を放出する。吸収液は、40℃程度でCO2を吸収し、100℃程度に加熱することによってCO2を放出する性質をもつ。したがって、熱交換器43によって、吸収塔41に入るときの吸収液の温度は約40℃に、再生塔42に入るときの温度は約100℃になるよう調整される。吸収液は、吸収塔41と再生塔42との間を循環しながら、CO2の吸収と放出を行う。 FIG. 5 shows an outline of the CO 2 absorber. The CO 2 absorber is mainly composed of an absorption tower 41 and a regeneration tower 42. In the absorption tower 41, an absorbing liquid having a property of absorbing CO 2 such as amine is brought into contact with exhaust gas, and only CO 2 is recovered from the exhaust gas. The absorbing solution that has absorbed CO 2 is sent to the regeneration tower 42. In the regeneration tower, the absorbing liquid is maintained at around 100 ° C., and CO 2 is released. The absorbing solution has a property of absorbing CO 2 at about 40 ° C. and releasing CO 2 by heating to about 100 ° C. Accordingly, the heat exchanger 43 adjusts the temperature of the absorbing liquid when entering the absorption tower 41 to about 40 ° C. and the temperature when entering the regeneration tower 42 to about 100 ° C. The absorption liquid absorbs and releases CO 2 while circulating between the absorption tower 41 and the regeneration tower 42.

ここで、再生塔42における吸収液のCO2放出は吸熱反応である。したがって、再生塔42の吸収液をCO2放出に最適な100℃前後に維持するため、リボイラ44で吸収液を加熱している。リボイラ44の熱源は蒸気である。 Here, the CO 2 release of the absorbent in the regeneration tower 42 is an endothermic reaction. Therefore, in order to maintain the absorption liquid in the regeneration tower 42 at around 100 ° C. optimal for CO 2 emission, the absorption liquid is heated by the reboiler 44. The heat source of the reboiler 44 is steam.

本実施例では、ボイラ1に節炭器の代わりに設置した熱交換器を、前述のリボイラ44に送る蒸気を過熱するための過熱器として用いる。図6は、本発明の第三実施例である石炭火力発電プラントの構成を示す概略図である。第一・第二実施例と異なる点のみを説明する。   In this embodiment, a heat exchanger installed in the boiler 1 instead of the economizer is used as a superheater for superheating the steam sent to the reboiler 44 described above. FIG. 6 is a schematic diagram showing the configuration of a coal-fired power plant that is a third embodiment of the present invention. Only differences from the first and second embodiments will be described.

CO2吸収装置のリボイラに送る蒸気は、図6の中圧タービン4の排気を分岐して得る。分岐された蒸気は、最初にスプレイ52を用いて温度を下げる。本実施例では、スプレイ水を低圧給水加熱器31の前段から取り込んでいる。スプレイによって蒸気温度を下げるのは、ボイラ1に設置した熱交換器24での加熱に適した温度にするためである。熱交換器24で加熱された蒸気は、減圧器51で減圧され、次いで、スプレイ53を用いて温度を下げる。これらの処理によって、後段にあるリボイラ44に適した蒸気圧力及び温度にする。前述したように、リボイラは再生塔にある吸収液(アミン)を100℃前後に維持するように加熱する役割をもつ。このとき、吸収液を加熱しすぎると、変質してしまうため、リボイラ44に送る蒸気は約150℃程度が好ましい。さらに、リボイラ44では、主に蒸気が凝縮するときの潜熱によって吸収液が加熱され、飽和水が排出される。このため、リボイラ44に送る蒸気の圧力は、リボイラ内の温度が130〜140℃になる飽和蒸気圧力である約0.3MPa程度が好ましい。減圧器51及びスプレイ53は、リボイラ44へ送る蒸気が前述の温度及び圧力となるように制御する。リボイラ44で吸収液を加熱した後の排出水は給水ラインに戻される。 The steam sent to the reboiler of the CO 2 absorber is obtained by branching the exhaust of the intermediate pressure turbine 4 in FIG. The branched steam first lowers the temperature using the spray 52. In this embodiment, the spray water is taken from the front stage of the low-pressure feed water heater 31. The reason why the steam temperature is lowered by spraying is to make the temperature suitable for heating in the heat exchanger 24 installed in the boiler 1. The steam heated by the heat exchanger 24 is decompressed by the decompressor 51, and then the temperature is lowered using the spray 53. By these treatments, steam pressure and temperature suitable for the reboiler 44 in the subsequent stage are obtained. As described above, the reboiler has a role of heating so that the absorbing solution (amine) in the regeneration tower is maintained at around 100 ° C. At this time, if the absorption liquid is heated too much, it will be altered, and therefore the steam sent to the reboiler 44 is preferably about 150 ° C. Further, in the reboiler 44, the absorption liquid is heated mainly by the latent heat when the steam condenses, and the saturated water is discharged. For this reason, the pressure of the steam sent to the reboiler 44 is preferably about 0.3 MPa, which is a saturated steam pressure at which the temperature in the reboiler becomes 130 to 140 ° C. The decompressor 51 and the spray 53 are controlled so that the steam sent to the reboiler 44 has the aforementioned temperature and pressure. The discharged water after heating the absorbent with the reboiler 44 is returned to the water supply line.

以上に説明した機器構成の場合でも、第一・第二実施例になる装置と同様の効果が得られる。1次過熱器12と2次過熱器13の出口蒸気温度が低下し、低級の材料を選定できるので、材料費が削減できる。また、ボイラの熱交換器24で加熱した蒸気を利用することで、ボイラによる収熱を有効利用できる。   Even in the case of the device configuration described above, the same effects as those of the apparatuses according to the first and second embodiments can be obtained. Since the outlet steam temperature of the primary superheater 12 and the secondary superheater 13 decreases and a lower material can be selected, the material cost can be reduced. Further, by using the steam heated by the heat exchanger 24 of the boiler, the heat collected by the boiler can be effectively used.

次に、本発明になる石炭火力発電プラントの第四の実施例を説明する。   Next, a fourth embodiment of the coal-fired power plant according to the present invention will be described.

第一の実施例では、節炭器の代わりに設置した低圧再熱器の出口蒸気温度を制御していない。これに対し、本実施例では、低圧再熱器の出口蒸気温度が所定の値に制御できるような構成にする。   In the first embodiment, the outlet steam temperature of the low-pressure reheater installed instead of the economizer is not controlled. On the other hand, in this embodiment, the configuration is such that the outlet steam temperature of the low-pressure reheater can be controlled to a predetermined value.

図7は第四の実施例である石炭火力発電プラントの構成を示す概略図である。第四の実施例では、高圧1次再熱器18、1次過熱器12、低圧再熱器20が並列に配置されている。また、低圧再熱器については、1次再熱器と1次過熱器の後段にも配置されている。蒸気の流れる順序は、第一の実施例と同様である。   FIG. 7 is a schematic diagram showing the configuration of a coal-fired power plant according to the fourth embodiment. In the fourth embodiment, the high-pressure primary reheater 18, the primary superheater 12, and the low-pressure reheater 20 are arranged in parallel. Moreover, about a low pressure reheater, it is arrange | positioned also in the back | latter stage of a primary reheater and a primary superheater. The order in which the steam flows is the same as in the first embodiment.

ガス分配ダンパ30は、高圧1次再熱器18、1次過熱器12、低圧再熱器20を流れる燃焼排ガスの分配比率を調整できるように、それぞれのガス流路の出口位置に設置する。ガス分配ダンパは、ガスの分配比率を調整することにより、中圧タービン4、及び、低圧タービン5の入口蒸気温度を所定の値に制御する。中圧タービン4の入口蒸気温度を上昇させるには、高圧1次再熱器18を流れるガスの流量を増やすよう調整する。これにより、高圧1次再熱器18の収熱量が増え、出口蒸気温度が上昇し、その後段にある高圧2次再熱器19の出口蒸気温度も上昇する。また、低圧タービン5の入口蒸気温度を上昇させるには、低圧再熱器20を流れるガスの流量を増やして、収熱量を増加させる。   The gas distribution damper 30 is installed at the outlet position of each gas flow path so that the distribution ratio of the combustion exhaust gas flowing through the high pressure primary reheater 18, the primary superheater 12, and the low pressure reheater 20 can be adjusted. The gas distribution damper controls the inlet steam temperature of the intermediate pressure turbine 4 and the low pressure turbine 5 to a predetermined value by adjusting the gas distribution ratio. In order to increase the inlet steam temperature of the intermediate pressure turbine 4, the flow rate of the gas flowing through the high pressure primary reheater 18 is adjusted to be increased. As a result, the amount of heat collected by the high-pressure primary reheater 18 increases, the outlet steam temperature rises, and the outlet steam temperature of the high-pressure secondary reheater 19 in the subsequent stage also rises. Moreover, in order to raise the inlet steam temperature of the low pressure turbine 5, the flow rate of the gas flowing through the low pressure reheater 20 is increased to increase the amount of heat collected.

以上に説明した機器構成の場合でも、第一〜第三の実施例になる装置と同様の効果が得られる。1次過熱器12と2次過熱器13の出口蒸気温度が低下し、現行ボイラに比べて、低級の材料を選定できるので、材料費が削減できる。さらに、第一の実施例と異なり、低圧タービン5の入口蒸気温度を制御できるので、安定した運転が実現できる。   Even in the case of the device configuration described above, the same effects as those of the apparatuses according to the first to third embodiments can be obtained. The outlet steam temperature of the primary superheater 12 and the secondary superheater 13 decreases, and a lower material can be selected as compared with the current boiler, so that the material cost can be reduced. Furthermore, unlike the first embodiment, the inlet steam temperature of the low-pressure turbine 5 can be controlled, so that stable operation can be realized.

本発明は、蒸気温度を高温化させたボイラにおいて、耐熱性の高い高級材料を使用する範囲を限定できるので、材料費が削減できる。これまでは、高級材料を大量に使用するため、高コストになる問題があったが、本発明によって、これを解決することができる。   Since the present invention can limit the range in which a high-temperature-resistant high-grade material is used in a boiler whose steam temperature is increased, the material cost can be reduced. Up to now, there has been a problem of high costs due to the use of a large amount of high-grade materials, but this can be solved by the present invention.

1 ボイラ
2 超高圧タービン
3 高圧タービン
4 中圧タービン
5 低圧タービン
10 節炭器(ECO)
11 水壁(WW)
12 1次過熱器(1SH)
13 2次過熱器(2SH)
14 3次過熱器(3SH)
15 4次過熱器(4SH)
16 1次再熱器(1RH)
17 2次再熱器(2RH)
18 高圧1次再熱器(高圧1RH)
19 高圧2次再熱器(高圧2RH)
20 低圧再熱器(低圧RH)
21 低圧1次再熱器(低圧1RH)
22 低圧2次再熱器(低圧2RH)
23、24、43 熱交換器
31 低圧給水加熱器
32 高圧給水加熱器
33 給水ポンプ
34 蒸気タービン
41 吸収塔
42 再生塔
44 リボイラ
51 減圧器
52〜53 スプレイ
DESCRIPTION OF SYMBOLS 1 Boiler 2 Super-high pressure turbine 3 High-pressure turbine 4 Medium-pressure turbine 5 Low-pressure turbine 10 Eco-saving device (ECO)
11 Water wall (WW)
12 Primary superheater (1SH)
13 Secondary superheater (2SH)
14 Third superheater (3SH)
15 4th superheater (4SH)
16 Primary reheater (1RH)
17 Secondary reheater (2RH)
18 High pressure primary reheater (High pressure 1RH)
19 High pressure secondary reheater (High pressure 2RH)
20 Low pressure reheater (Low pressure RH)
21 Low pressure primary reheater (Low pressure 1RH)
22 Low pressure secondary reheater (Low pressure 2RH)
23, 24, 43 Heat exchanger 31 Low pressure feed water heater 32 High pressure feed water heater 33 Feed water pump 34 Steam turbine 41 Absorption tower 42 Regeneration tower 44 Reboiler 51 Depressurizer 52-53 Spray

Claims (5)

石炭ボイラを有する石炭火力発電プラントにおいて、
石炭ボイラ、高圧タービン、中圧タービン、低圧タービンを有し、
前記石炭ボイラには給水が供給される火炉水壁を備え、
前記火炉水壁にて過熱された蒸気が供給される高圧タービンと、
該高圧タービンからの排気が供給される前記石炭ボイラの高圧再熱蒸気系と、
該高圧再熱蒸気系で過熱された蒸気が送られる中圧タービンと、
該中圧タービンの排気が送られる前記石炭ボイラの出口前段に設置された低圧再熱器と、
該低圧再熱器で加熱された蒸気が送られる低圧タービンを備えることを特徴とする石炭火力発電プラント。
In a coal-fired power plant with a coal boiler,
Having a coal boiler, high pressure turbine, medium pressure turbine, low pressure turbine,
The coal boiler includes a furnace water wall to which water is supplied,
A high-pressure turbine to which steam heated by the furnace water wall is supplied;
A high pressure reheat steam system of the coal boiler to which the exhaust from the high pressure turbine is supplied;
An intermediate pressure turbine to which steam superheated in the high pressure reheat steam system is sent;
A low pressure reheater installed upstream of the outlet of the coal boiler to which the exhaust of the intermediate pressure turbine is sent;
A coal-fired power plant comprising a low-pressure turbine to which steam heated by the low-pressure reheater is sent.
石炭ボイラを有する石炭火力発電プラントにおいて、
石炭ボイラ、超高圧タービン、高圧タービン、中圧タービン、低圧タービンを有し、
前記石炭ボイラには給水が供給される火炉水壁を備え、
前記石炭ボイラにて過熱された蒸気が供給される超高圧タービンと、
該超高圧タービンからの排気が送られる高圧タービンと、
該高圧タービンからの排気が供給される前記石炭ボイラの高圧再熱蒸気系と、
該高圧再熱蒸気系で過熱された蒸気が送られる中圧タービンと、
該中圧タービンの排気が送られる前記石炭ボイラの出口前段に設置された低圧再熱器と、
該低圧再熱器で加熱された蒸気が送られる低圧タービンを備えることを特徴とする石炭火力発電プラント。
In a coal-fired power plant with a coal boiler,
It has a coal boiler, super high pressure turbine, high pressure turbine, medium pressure turbine, low pressure turbine,
The coal boiler includes a furnace water wall to which water is supplied,
An ultra-high pressure turbine supplied with steam superheated in the coal boiler;
A high pressure turbine to which the exhaust from the ultra high pressure turbine is sent;
A high pressure reheat steam system of the coal boiler to which the exhaust from the high pressure turbine is supplied;
An intermediate pressure turbine to which steam superheated in the high pressure reheat steam system is sent;
A low pressure reheater installed upstream of the outlet of the coal boiler to which the exhaust of the intermediate pressure turbine is sent;
A coal-fired power plant comprising a low-pressure turbine to which steam heated by the low-pressure reheater is sent.
石炭ボイラを有する石炭火力発電プラントにおいて、
石炭ボイラ、超高圧タービン、高圧タービン、中圧タービン、低圧タービンを有し、
前記石炭ボイラには給水が供給される火炉水壁を備え、
前記石炭ボイラにて過熱された蒸気が供給される超高圧タービンと、
該超高圧タービンからの排気が送られる高圧タービンと、
該高圧タービンからの排気が供給される前記石炭ボイラの高圧再熱蒸気系と、
該高圧再熱蒸気系で過熱された蒸気が送られる中圧タービンと、
該中圧タービンの排気が送られる低圧タービンを備え、
前記石炭ボイラへの給水を加熱するための給水加熱器から分岐した給水の一部は、該石炭ボイラの出口前段に設置した熱交換器に送られ、該熱交換器で蒸発・過熱して生成した蒸気は給水ポンプ駆動用の蒸気タービンに送られることを特徴とする石炭火力発電プラント。
In a coal-fired power plant with a coal boiler,
It has a coal boiler, super high pressure turbine, high pressure turbine, medium pressure turbine, low pressure turbine,
The coal boiler includes a furnace water wall to which water is supplied,
An ultra-high pressure turbine supplied with steam superheated in the coal boiler;
A high pressure turbine to which the exhaust from the ultra high pressure turbine is sent;
A high pressure reheat steam system of the coal boiler to which the exhaust from the high pressure turbine is supplied;
An intermediate pressure turbine to which steam superheated in the high pressure reheat steam system is sent;
A low-pressure turbine to which exhaust of the intermediate-pressure turbine is sent,
A part of the feed water branched from the feed water heater for heating the feed water to the coal boiler is sent to a heat exchanger installed in the upstream stage of the coal boiler, and is generated by evaporation and overheating in the heat exchanger. The coal-fired power plant, wherein the steam is sent to a steam turbine for driving a feed water pump.
石炭ボイラを有する石炭火力発電プラントにおいて、
石炭ボイラ、超高圧タービン、高圧タービン、中圧タービン、低圧タービンを有し、
前記石炭ボイラには給水が供給される火炉水壁を備え、
前記石炭ボイラにて過熱された蒸気が供給される超高圧タービンと、
該超高圧タービンからの排気が送られる高圧タービンと、
該高圧タービンからの排気が供給される前記石炭ボイラの高圧再熱蒸気系と、
該高圧再熱蒸気系で過熱された蒸気が送られる中圧タービンと、
該中圧タービンの排気が送られる低圧タービンを備え、
前記中圧タービンの排気の一部は、該石炭ボイラの出口前段に設置した熱交換器に送られ、熱交換器で加熱された蒸気は、排ガス中の二酸化炭素を吸収する吸収液を加熱するためのリボイラに送られることを特徴とする石炭火力発電プラント。
In a coal-fired power plant with a coal boiler,
It has a coal boiler, super high pressure turbine, high pressure turbine, medium pressure turbine, low pressure turbine,
The coal boiler includes a furnace water wall to which water is supplied,
An ultra-high pressure turbine supplied with steam superheated in the coal boiler;
A high pressure turbine to which the exhaust from the ultra high pressure turbine is sent;
A high pressure reheat steam system of the coal boiler to which the exhaust from the high pressure turbine is supplied;
An intermediate pressure turbine to which steam superheated in the high pressure reheat steam system is sent;
A low-pressure turbine to which exhaust of the intermediate-pressure turbine is sent,
A part of the exhaust of the intermediate pressure turbine is sent to a heat exchanger installed in an upstream stage of the coal boiler, and the steam heated by the heat exchanger heats an absorption liquid that absorbs carbon dioxide in the exhaust gas. A coal-fired power plant characterized by being sent to a reboiler.
請求項1に記載の石炭火力発電プラントは、高圧主蒸気を過熱する過熱器、及び、高圧タービンの排気である再熱蒸気を再熱する再熱器が配置された2つのガス流路のガス流量配分を調整するガス分配ダンパを有し、該ガス分配ダンパによって、中圧タービンの入口温度を所定の値に制御することを特徴とする石炭火力発電プラント。   The coal-fired power plant according to claim 1 is a gas in two gas flow paths in which a superheater that superheats high-pressure main steam and a reheater that reheats reheat steam that is exhaust of a high-pressure turbine are arranged. A coal-fired power plant comprising a gas distribution damper for adjusting a flow distribution, and controlling an inlet temperature of an intermediate pressure turbine to a predetermined value by the gas distribution damper.
JP2012052472A 2012-03-09 2012-03-09 Coal-fired power generation plant Pending JP2013185524A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012052472A JP2013185524A (en) 2012-03-09 2012-03-09 Coal-fired power generation plant
PCT/JP2013/053822 WO2013132994A1 (en) 2012-03-09 2013-02-18 Coal-fired thermal power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012052472A JP2013185524A (en) 2012-03-09 2012-03-09 Coal-fired power generation plant

Publications (1)

Publication Number Publication Date
JP2013185524A true JP2013185524A (en) 2013-09-19

Family

ID=49116478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012052472A Pending JP2013185524A (en) 2012-03-09 2012-03-09 Coal-fired power generation plant

Country Status (2)

Country Link
JP (1) JP2013185524A (en)
WO (1) WO2013132994A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104832227A (en) * 2015-02-05 2015-08-12 东方电气股份有限公司 Coal-fired unit efficient subcritical system
KR20190067772A (en) 2016-10-11 2019-06-17 스미도모쥬기가이고교 가부시키가이샤 Boiler system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108592008B (en) * 2018-05-23 2023-05-02 清华大学 Secondary reheating power generation system and operation method thereof
CN110056402B (en) * 2019-03-26 2023-11-28 华电电力科学研究院有限公司 Steam complementary energy utilization coupling steam extraction heat supply system and adjusting method
CN111255534B (en) * 2020-03-31 2024-06-11 西安西热节能技术有限公司 Steam storage peak regulation system and method applied to industrial steam supply system of coal-fired unit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB793048A (en) * 1954-03-08 1958-04-09 Combustion Eng An improved method of and apparatus for controlling steam temperatures in a reheat steam generator
US2844004A (en) * 1953-08-31 1958-07-22 Sulzer Ag System for starting forced flow steam generators including a plurality of resuperheaters
US2966896A (en) * 1958-03-12 1961-01-03 Sulzer Ag Method and apparatus for controlling the outlet temperatures of superheaters and reheaters of a steam generating plant
US3035556A (en) * 1958-03-12 1962-05-22 Sulzer Ag Multistage steam reheating
US3155077A (en) * 1962-12-28 1964-11-03 Combustion Eng Power plant organization and method of operation
JPS6035104A (en) * 1983-08-08 1985-02-22 Hitachi Ltd Super high-temperatue, high-pressure steam turbine plant
JP2007263505A (en) * 2006-03-29 2007-10-11 Tokyo Electric Power Co Inc:The Controller of coal burning boiler
JP2010085078A (en) * 2008-09-04 2010-04-15 Toshiba Corp Carbon-dioxide-recovery-type steam power generation system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2844004A (en) * 1953-08-31 1958-07-22 Sulzer Ag System for starting forced flow steam generators including a plurality of resuperheaters
GB793048A (en) * 1954-03-08 1958-04-09 Combustion Eng An improved method of and apparatus for controlling steam temperatures in a reheat steam generator
US2966896A (en) * 1958-03-12 1961-01-03 Sulzer Ag Method and apparatus for controlling the outlet temperatures of superheaters and reheaters of a steam generating plant
US3035556A (en) * 1958-03-12 1962-05-22 Sulzer Ag Multistage steam reheating
US3155077A (en) * 1962-12-28 1964-11-03 Combustion Eng Power plant organization and method of operation
JPS6035104A (en) * 1983-08-08 1985-02-22 Hitachi Ltd Super high-temperatue, high-pressure steam turbine plant
JP2007263505A (en) * 2006-03-29 2007-10-11 Tokyo Electric Power Co Inc:The Controller of coal burning boiler
JP2010085078A (en) * 2008-09-04 2010-04-15 Toshiba Corp Carbon-dioxide-recovery-type steam power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104832227A (en) * 2015-02-05 2015-08-12 东方电气股份有限公司 Coal-fired unit efficient subcritical system
KR20190067772A (en) 2016-10-11 2019-06-17 스미도모쥬기가이고교 가부시키가이샤 Boiler system

Also Published As

Publication number Publication date
WO2013132994A1 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
US11193395B2 (en) Method and facility for recovering thermal energy on a furnace with tubular side members and for converting same into electricity by means of a turbine producing the electricity by implementing a rankine cycle
JP4854422B2 (en) Control method for once-through exhaust heat recovery boiler
CN102889570A (en) Tower-type boiler with primary reheater and secondary reheater
WO2013132994A1 (en) Coal-fired thermal power plant
CA2829297C (en) Steam power plant with steam turbine extraction control
US9784137B2 (en) Subcritical pressure high-temperature steam power plant and subcritical pressure high-temperature variable pressure operation once-through boiler
Del Rio et al. On the retrofitting and repowering of coal power plants with post-combustion carbon capture: An advanced integration option with a gas turbine windbox
CN114909193B (en) Thermal power generating unit flexible operation system based on fused salt heat storage
US7861527B2 (en) Reheater temperature control
WO2016125300A1 (en) Steam turbine plant, combined cycle plant provided with same, and method of operating steam turbine plant
JP6516993B2 (en) Combined cycle plant and boiler steam cooling method
RU2547828C1 (en) Steam-gas unit of two-circuit nuclear power plant
JP7183130B2 (en) HOT WATER STORAGE GENERATION SYSTEM AND HOT WATER STORAGE GENERATION SYSTEM OPERATION METHOD
JP2016148343A (en) Subcritical pressure high temperature thermal power generation plant and subcritical pressure high temperature variable pressure operation once-through boiler
JP6101604B2 (en) Steam turbine plant, combined cycle plant equipped with the same, and method of operating a steam turbine plant
Hennessey Superheaters and reheaters
JP2012167859A (en) Marine boiler
CN110207081A (en) A kind of subcritical superhigh temperature reheat boiler therrmodynamic system of dry coke quenching
CN209569705U (en) A kind of subcritical superhigh temperature reheat boiler thermal device of dry coke quenching
JP2001193901A (en) Exhaust heat recovery boiler
JP6745971B2 (en) Vertical heat recovery steam generator
JP2020143634A (en) Gas turbine exhaust heat recovery plant
JP2019148377A (en) Existing boiler utilization high steam condition boiler plant
WO2013136407A1 (en) Combined cycle power generation system
Bezgreshnov et al. Methods for maintaining reheat steam temperature at a TPP-110 boiler at lowered loads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140909