JP2016148343A - Subcritical pressure high temperature thermal power generation plant and subcritical pressure high temperature variable pressure operation once-through boiler - Google Patents

Subcritical pressure high temperature thermal power generation plant and subcritical pressure high temperature variable pressure operation once-through boiler Download PDF

Info

Publication number
JP2016148343A
JP2016148343A JP2016029728A JP2016029728A JP2016148343A JP 2016148343 A JP2016148343 A JP 2016148343A JP 2016029728 A JP2016029728 A JP 2016029728A JP 2016029728 A JP2016029728 A JP 2016029728A JP 2016148343 A JP2016148343 A JP 2016148343A
Authority
JP
Japan
Prior art keywords
steam
pressure
temperature
boiler
thermal power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016029728A
Other languages
Japanese (ja)
Inventor
芳樹 野口
Yoshiki Noguchi
芳樹 野口
俊彦 佐々木
Toshihiko Sasaki
俊彦 佐々木
純 小泉
Jun Koizumi
純 小泉
一彦 斉藤
Kazuhiko Saito
一彦 斉藤
雄一 吉田
Yuichi Yoshida
雄一 吉田
昇 篠塚
Noboru Shinozuka
昇 篠塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2016029728A priority Critical patent/JP2016148343A/en
Publication of JP2016148343A publication Critical patent/JP2016148343A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Combustion Of Fluid Fuel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal power generation plant which can attempt efficiency improvement effectively and of which the power output is small-middle scale capacity (power output of one power generator is 100,000-400,000 KW grade) and a boiler therefor.SOLUTION: A steam condition generated in a boiler and fed to a steam turbine is subcritical pressure and high temperature (higher than a turbine entry port temperature 593°C). For example, a subcritical pressure high temperature thermal power generation plant consists of combustion boiler facilities, steam turbine generator facilities and steam condensate water supply facilities, the boiler facilities consist of a coal pulverizer, a burner, a furnace, a spiral waterwall tube, a fuel economizer, a high temperature superheater, a high temperature reheater, and a steam separator, and the pitch angle of the spiral waterwall tube is set to 10-20 degrees.SELECTED DRAWING: Figure 1

Description

本発明は、亜臨界圧高温火力発電プラント及び亜臨界圧高温変圧運転貫流ボイラに係り、特に、発電出力が中小容量の亜臨界圧高温火力発電プラント及び亜臨界圧高温変圧運転貫流ボイラに関する。   The present invention relates to a subcritical pressure high temperature thermal power plant and a subcritical pressure high temperature transformer operation once-through boiler, and more particularly to a subcritical pressure high temperature thermal power plant and a subcritical pressure high temperature transformer operation once-through boiler with a small and medium power output.

ボイラおよび蒸気タービンで構成される火力発電プラントから排出されるCO2の削減のために、蒸気条件の高圧化及び高温化による火力発電プラントの効率向上が進められている。現在、国内では、60万から100万KW級の石炭焚き火力発電プラントを中心に、主蒸気圧力24.1〜25.0MPa(超臨界圧)、主蒸気温度593〜600℃、再熱蒸気温度593〜620℃が商用機に採用されている(例えば、非特許文献1)。一般に、圧力24.1MPa(3500psi)以上、温度593℃(1,100°F)以上の蒸気条件を超々臨界圧(USC)と呼んでいる。このような超々臨界圧の蒸気条件(蒸気温度593℃以上)の実用化は、ボイラ管や弁、タービンに用いられる高温強度と耐食性に優れた高温材料の実用化が大きく寄与している。   In order to reduce CO2 emitted from a thermal power plant composed of a boiler and a steam turbine, the efficiency of the thermal power plant has been improved by increasing the steam pressure and increasing the temperature. Currently, mainly in coal-fired thermal power plants of 600,000 to 1 million KW class, main steam pressure 24.1-25.0MPa (supercritical pressure), main steam temperature 593-600 ° C, reheat steam temperature 593-620 ° C is adopted for commercial machines (for example, Non-Patent Document 1). In general, the vapor condition at a pressure of 24.1 MPa (3500 psi) or higher and a temperature of 593 ° C. (1,100 ° F.) or higher is called ultra-supercritical pressure (USC). The practical application of such super-supercritical steam conditions (steam temperature of 593 ° C. or higher) greatly contributes to the practical application of high-temperature materials with excellent high-temperature strength and corrosion resistance used in boiler tubes, valves, and turbines.

一方、単機の発電出力が40万kW級以下の中小容量火力発電プラントでは、これまで、主蒸気の圧力が亜臨界圧のままで、タービン入り口蒸気温度も最高でも566℃までの蒸気条件が採用されている。   On the other hand, for small and medium-capacity thermal power plants with a single unit power generation output of 400,000 kW or less, steam conditions of up to 566 ° C have been adopted so far, with the main steam pressure remaining at the subcritical pressure and the turbine inlet steam temperature at the maximum. Has been.

「日立評論」、Vol.80,No.2、1998年2月発行、61〜66頁“Hitachi review”, Vol. 80, no. 2, Issued February 1998, pages 61-66

中小容量の火力発電プラントには運転年数の長い石炭焚き火力発電プラントが数多く存在し、既設のリプレースやリノベーションによる建設が多く想定される。これらの既設火力発電プラントのリプレースやリノベーションにおいては、CO2削減の観点から特に効率向上が望まれる。もちろん、中小容量の火力発電プラントを新設する場合も効率向上が望まれる。   Many small- and medium-capacity thermal power plants have many years of coal-fired thermal power plants and many are expected to be replaced or renovated. In the replacement and renovation of these existing thermal power plants, efficiency improvement is particularly desired from the viewpoint of CO2 reduction. Of course, improvement in efficiency is also desired when a small-to-medium capacity thermal power plant is newly established.

超臨界圧石炭焚き火力発電は、亜臨界圧石炭焚き火力発電に比べ効率が良く、環境負荷も低い。上述したように、高温材料の実用化により593℃以上の超臨界圧の蒸気条件で運転される大容量の火力発電プラントが実用化されてきたもので、このような593℃以上の超臨界圧の蒸気条件を中小容量の火力発電プラントに適用すれば効率向上が期待できると考えられる。   Supercritical pressure coal-fired thermal power generation is more efficient and has a lower environmental impact than subcritical pressure coal-fired thermal power generation. As mentioned above, high-temperature materials have been put into practical use for large-capacity thermal power plants that operate under supercritical pressure steam conditions of 593 ° C or higher. If this steam condition is applied to a small- and medium-capacity thermal power plant, it can be expected to improve efficiency.

しかし、本発明者等の検討によれば、中小容量の火力発電プラントにおいて、超臨界圧の蒸気条件を採用しても想定した効率向上が期待できないことが見出された。即ち、中小容量機で主蒸気圧力を超臨界圧以上まで高めると、理想気体の熱力学法則でもある(圧力)×(容積)÷(温度)=一定の法則に近似して、圧力上昇により比容積が小さくなり、結果として高圧タービン初段翼列の高さや形状の制約で大容量機並みの高効率設計が難しくなる。例えば、蒸気体積減少により高圧タービン初段翼列を短翼化せざるを得ず、これによりタービン内部損失が増加し、超臨界圧化のコストに見合う効率向上が望めない。   However, according to the study by the present inventors, it has been found that in a small and medium-capacity thermal power plant, the assumed efficiency improvement cannot be expected even if the supercritical pressure steam condition is adopted. In other words, when the main steam pressure is raised above the supercritical pressure with a small and medium capacity machine, it approximates to the law of thermodynamics of ideal gas (pressure) × (volume) ÷ (temperature) = constant law, and the ratio increases with pressure rise. As a result, the high-efficiency design of a large-capacity machine becomes difficult due to the restrictions on the height and shape of the first stage cascade of the high-pressure turbine. For example, the first-stage cascade of the high-pressure turbine must be shortened due to the reduction in the steam volume, which increases the internal loss of the turbine and cannot be expected to improve the efficiency corresponding to the cost of supercritical pressure.

本発明の目的は、効率向上を効果的に図ることが可能な、発電出力が中小容量の火力発電プラント及びそれに用いるボイラを提供することにある。   An object of the present invention is to provide a thermal power plant with a small and small power generation output capable of effectively improving efficiency and a boiler used therefor.

本発明は、ボイラで発生させ蒸気タービンに供給する過熱蒸気の蒸気条件を、亜臨界圧・高温(タービン入り口温度593℃以上)としたことを特徴とする。より具体的には、蒸気条件が亜臨界圧593℃以上の過熱蒸気は、蒸気圧力が16.6Mpa以上の過熱蒸気であることを特徴とする。 The present invention is characterized in that the superheated steam generated by the boiler and supplied to the steam turbine has a subcritical pressure / high temperature (turbine inlet temperature of 593 ° C. or higher). More specifically, the superheated steam with a subcritical pressure of 593 ° C. or higher is a superheated steam with a steam pressure of 16.6 Mpa or higher.

本発明によれば、発電出力が中小容量の火力発電プラントの効率を効果的に向上することができる。   ADVANTAGE OF THE INVENTION According to this invention, the efficiency of a thermal power plant with a small and small capacity | capacitance power generation output can be improved effectively.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の実施例1の亜臨界圧高温火力発電プラントのシステム構成を示す概略系統図。1 is a schematic system diagram showing a system configuration of a subcritical pressure high-temperature thermal power plant according to a first embodiment of the present invention. 本発明の実施例のボイラ構造の概略を示す断面図。Sectional drawing which shows the outline of the boiler structure of the Example of this invention. 本発明の実施例の特性を示す圧力エンタルピー曲線図。The pressure enthalpy curve figure which shows the characteristic of the Example of this invention. 本発明の実施例における効率向上量の効果を示す図。The figure which shows the effect of the efficiency improvement amount in the Example of this invention. 本発明の実施例における蒸気温度制御の効果を示す図。The figure which shows the effect of the steam temperature control in the Example of this invention. 本発明の実施例における蒸気圧力制御の一例を示す図。The figure which shows an example of the steam pressure control in the Example of this invention. 本発明の実施例2の亜臨界圧高温火力発電プラントのシステム構成を示す概略系統図。The schematic system diagram which shows the system configuration | structure of the subcritical pressure high temperature thermal power plant of Example 2 of this invention.

以下、図面を用いて本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

超臨界圧火力発電は、亜臨界圧火力発電に比べ効率が良く、環境負荷も低いが、本発明は、上述したように、本発明が対象とする発電出力が中小容量の火力発電プラントでは、蒸気条件(定格蒸気条件)を超々臨界圧化しても想定した効率向上が望めないことを見出し、蒸気条件(定格蒸気条件)を、敢えて超臨界圧化することを止めて、亜臨界圧のままとし、高温化(タービン入り口温度593℃以上)して効果的に効率向上するようにしたものである。   Supercritical pressure thermal power generation is more efficient and has a lower environmental impact than subcritical pressure thermal power generation.However, as described above, the present invention is a thermal power plant with a medium-to-small capacity power generation output targeted by the present invention. We found that even if the steam conditions (rated steam conditions) were changed to ultra-supercritical pressure, we could not expect the improvement in efficiency, and we decided to stop the supercritical pressure of the steam conditions (rated steam conditions) and keep the subcritical pressure. The temperature is increased (the turbine inlet temperature is 593 ° C. or higher) so that the efficiency is effectively improved.

本発明では、蒸気条件が亜臨界圧・高温(タービン入り口温度593℃以上)の蒸気を蒸気タービンに供給して発電することから、この蒸気条件の蒸気を用いた火力発電プラントを亜臨界圧高温火力発電プラントと称し、また、この蒸気条件の蒸気を発生するボイラを亜臨界圧高温変圧運転貫流ボイラと称する。また、本発明が適用される発電出力が中小容量の火力発電プラントは、具体的には、単機の発電装置(発電装置の1基)の発電出力(定格出力)が10万KW級〜40万KW級の火力発電プラントである。40万KW級を超える場合には、蒸気条件を593℃以上且つ超臨界圧化して効率向上を効果的に図ることが期待でき、蒸気条件を敢えて亜臨界圧化する必要性が小さいからである。また、10万KW級未満では、後述の火炉での熱吸収量の割合が大きくなりすぎ、蒸気温度の高温化を実現するためのボイラ構成が複雑化・高コスト化する等のためである。   In the present invention, steam with subcritical pressure and high temperature (turbine inlet temperature of 593 ° C or higher) is supplied to the steam turbine for power generation. It is called a thermal power plant, and a boiler that generates steam under this steam condition is called a subcritical pressure high-temperature transformer operation once-through boiler. In addition, in a thermal power plant with a small-to-medium capacity power generation output to which the present invention is applied, specifically, the power generation output (rated output) of a single power generation device (one of the power generation devices) is 100,000 kW class to 400,000 It is a KW-class thermal power plant. If it exceeds 400,000 KW class, it can be expected that the steam condition will be over 593 ° C and supercritical pressure to effectively improve the efficiency, and there is little need to dare to make the steam condition subcritical pressure. . Moreover, if it is less than 100,000 KW class, the ratio of the amount of heat absorption in the furnace described later becomes too large, and the boiler configuration for realizing a high steam temperature becomes complicated and expensive.

図1に本発明の一実施例である亜臨界圧高温火力発電プラントのシステム構成の概略図を示す。亜臨界圧高温火力発電プラントは、燃焼ボイラ設備10、蒸気タービン発電機設備20、および復水給水設備30などから構成される。なお、本実施例では、1基の発電装置で火力発電プラントが構成されている。   FIG. 1 shows a schematic diagram of a system configuration of a subcritical pressure high-temperature thermal power plant that is one embodiment of the present invention. The subcritical pressure high-temperature thermal power plant includes a combustion boiler facility 10, a steam turbine generator facility 20, a condensate water supply facility 30, and the like. In the present embodiment, a thermal power plant is constituted by one power generator.

燃焼ボイラ設備10は、微粉炭機11、バーナ12、火炉13、スパイラル水壁管14、節炭器15、高温過熱器16、高温再熱器17、気水分離器18などから構成される。ボイラ設備の詳細な構成については後述する。   The combustion boiler facility 10 includes a pulverized coal machine 11, a burner 12, a furnace 13, a spiral water wall tube 14, a economizer 15, a high-temperature superheater 16, a high-temperature reheater 17, a steam-water separator 18, and the like. The detailed configuration of the boiler equipment will be described later.

蒸気タービン発電機設備20は、高温高圧タービン21、高温再熱中圧タービン22、低圧タービン23、発電機24などから構成される。なお、符号25,26はそれぞれ主蒸気止弁,蒸気加減弁を示す。   The steam turbine generator facility 20 includes a high-temperature high-pressure turbine 21, a high-temperature reheat intermediate-pressure turbine 22, a low-pressure turbine 23, a generator 24, and the like. Reference numerals 25 and 26 denote a main steam stop valve and a steam control valve, respectively.

復水給水設備30では、復水器31、復水ポンプ32、低圧給水加熱器33、脱気器34、給水ポンプ35、高圧給水加熱器36などから構成される。   The condensate water supply facility 30 includes a condenser 31, a condensate pump 32, a low pressure feed water heater 33, a deaerator 34, a feed water pump 35, a high pressure feed water heater 36, and the like.

燃料の石炭は、微粉炭機11で微粉炭に粉砕されたのち、火炉13に配列されたバーナ12に供給され、空気中の酸素とともに燃焼して熱を発生する。バーナ12の設置と配列は、火炉13内の温度分布やスパイラル水壁管14のメタル温度などの差を極力減らすように行う。例えば、対応した微粉炭機11毎にバーナ12を対向配置し、また、火炉13の両側にバーナ12を同列に配列して燃料の微粉炭を燃焼する。   The fuel coal is pulverized into pulverized coal by a pulverized coal machine 11, and then supplied to a burner 12 arranged in a furnace 13, and burns with oxygen in the air to generate heat. The burners 12 are installed and arranged so as to reduce differences in temperature distribution in the furnace 13 and metal temperature of the spiral water wall pipe 14 as much as possible. For example, the burners 12 are arranged opposite to each corresponding pulverized coal machine 11, and the burners 12 are arranged in the same row on both sides of the furnace 13 to burn the pulverized coal as fuel.

燃料は主として石炭が用いられるが、油、バイオマス、製鉄副生ガスなどを火炉13で混焼することが可能なように仕様計画することも可能である。例えば、バイオマスを利用する場合、バイオマスは微粉炭機11に供給され、石炭と共にバーナ12に供給される。副生ガスを用いる場合には、副生ガス用のバーナが別途設置される。また、火炉13には、起動用の油焚バーナが設置されている(図示省略)。   Coal is mainly used as the fuel, but it is also possible to plan the specifications so that oil, biomass, by-product gas, etc. can be co-fired in the furnace 13. For example, when using biomass, the biomass is supplied to the pulverized coal machine 11 and supplied to the burner 12 together with the coal. When using by-product gas, a burner for by-product gas is installed separately. The furnace 13 is provided with a starting oil tank burner (not shown).

燃焼による輻射熱および対流熱は、火炉13の水壁を構成するスパイラル水壁管14の管内の加圧水の加熱(蒸発・過熱)に利用される。スパイラル水壁管14からの蒸気(火炉出口の蒸気)は気水分離器18を経て過熱蒸気として高温過熱器16へ導かれる。   Radiation heat and convection heat due to combustion are used for heating (evaporation / overheating) of pressurized water in the spiral water wall pipe 14 constituting the water wall of the furnace 13. The steam (steam at the furnace outlet) from the spiral water wall pipe 14 is led to the high-temperature superheater 16 through the steam separator 18 as superheated steam.

高温過熱器16は、蒸気温度(高温高圧タービン入口温度)が593℃以上の過熱蒸気(亜臨界圧の過熱蒸気)を、高温高圧タービン21に供給する。亜臨界圧・593℃以上の高温過熱蒸気は、高温高圧タービン21を駆動する。高温高圧タービン21で仕事をして圧力・温度の低下した高圧タービン排気蒸気は、高温再熱器17に導かれ、593℃以上に再加熱される。再加熱された593℃以上の高温蒸気(亜臨界圧の過熱蒸気)は高温再熱中圧タービン22へ導かれ、高温再熱中圧タービン22を駆動する。高温再熱中圧タービン22で仕事をした後の排気蒸気は低圧タービン23に導かれ、低圧タービン23を駆動する。高温高圧タービン21、高温再熱中圧タービン22、低圧タービン23の動力で発電機24を駆動し電気出力を得る。   The high temperature superheater 16 supplies superheated steam (subcritical pressure superheated steam) having a steam temperature (high temperature high pressure turbine inlet temperature) of 593 ° C. or higher to the high temperature high pressure turbine 21. High-temperature superheated steam having a subcritical pressure of 593 ° C. or higher drives the high-temperature and high-pressure turbine 21. The high-pressure turbine exhaust steam whose pressure and temperature are reduced by working in the high-temperature high-pressure turbine 21 is guided to the high-temperature reheater 17 and reheated to 593 ° C. or higher. The reheated high-temperature steam of 593 ° C. or higher (subcritical pressure superheated steam) is guided to the high-temperature reheat / intermediate pressure turbine 22 to drive the high-temperature reheat / intermediate pressure turbine 22. The exhaust steam after working in the high-temperature reheat intermediate pressure turbine 22 is guided to the low-pressure turbine 23 to drive the low-pressure turbine 23. The generator 24 is driven by the power of the high-temperature high-pressure turbine 21, the high-temperature reheat intermediate-pressure turbine 22, and the low-pressure turbine 23 to obtain an electrical output.

低圧タービン23の排気蒸気は復水給水設備30に導かれる。復水給水設備30は、低圧タービン23の排気蒸気を復水器31にて冷却し蒸気潜熱を冷却回収して復水に戻す。復水は、復水ポンプ32で加圧され、低圧給水加熱器33で加熱され脱気器34にて脱気され給水となる。給水は給水ポンプ35で加圧され、高圧給水加熱器36で加熱されたのち、節炭器15に高温の加圧水として供給される。節炭器15では、ボイラ排ガスによりスパイラル水壁管14に入る前の給水をあらかじめ予熱する。   The exhaust steam from the low-pressure turbine 23 is guided to the condensate water supply facility 30. The condensate water supply system 30 cools the exhaust steam of the low-pressure turbine 23 by the condenser 31, cools and recovers the latent heat of steam, and returns it to the condensate. The condensate is pressurized by the condensate pump 32, heated by the low-pressure feed water heater 33, deaerated by the deaerator 34, and becomes feed water. The feed water is pressurized by the feed water pump 35, heated by the high pressure feed water heater 36, and then supplied to the economizer 15 as hot pressurized water. In the economizer 15, the water supply before entering the spiral water wall pipe 14 is preheated in advance by the boiler exhaust gas.

なお、上述したように、超臨界圧の蒸気条件(タービン入り口温度593℃以上)の実用化は、ボイラ管や弁、タービン材料等の高温材料実用化によりなされてきたものである。従って、蒸気条件が亜臨界圧の発電出力が中小容量(10万〜40万kW級)火力発電プラントにおいて蒸気温度を高温化(タービン入り口温度593℃以上)することは、超臨界圧の高温材料の技術を適用することにより容易に実現できる。   As described above, the practical use of supercritical pressure steam conditions (turbine inlet temperature of 593 ° C. or higher) has been achieved by the practical use of high-temperature materials such as boiler tubes, valves, and turbine materials. Therefore, increasing the steam temperature (turbine inlet temperature of 593 ° C or higher) in a medium- and small-capacity (100,000-400,000kW class) thermal power plant with subcritical pressure steam conditions is a high-temperature material with supercritical pressure. This can be easily realized by applying the above technique.

また、ガスタービン排ガスを用いた排熱回収ボイラで蒸気を発生し、ガスタービンと蒸気タービンの両方で発電をするコンバインドサイクル方式において、排熱回収ボイラの亜臨界圧の高圧主蒸気部を貫流ベンソン方式で蒸気条件を600℃とすることが知られている。しかし、これは、ガスタービン駆動後の排ガスで熱交換器を加熱して蒸気を生成する排熱回収方式の蒸気生成であり、石炭など燃焼ボイラとは別の技術である。即ち、排熱回収方式では排ガスの温度や熱量から見てもともと超臨界圧化を前提とする技術ではなく、敢えて亜臨界圧のままとしたものではないからである。   In a combined cycle system where steam is generated by an exhaust heat recovery boiler using gas turbine exhaust gas and power is generated by both the gas turbine and the steam turbine, the high pressure main steam part of the subcritical pressure of the exhaust heat recovery boiler flows through Benson. It is known that the steam condition is 600 ° C. However, this is steam generation by an exhaust heat recovery system in which steam is generated by heating a heat exchanger with exhaust gas after driving a gas turbine, and is a technology different from a combustion boiler such as coal. In other words, the exhaust heat recovery system is not a technology that presupposes a supercritical pressure from the viewpoint of the temperature and heat quantity of the exhaust gas, and does not intentionally maintain the subcritical pressure.

次に本発明の亜臨界圧高温火力発電プラントに用いられるボイラについて詳細に説明する。   Next, the boiler used for the subcritical pressure high temperature thermal power plant of the present invention will be described in detail.

従来、中小容量の亜臨界圧の火力発電プラントでは、一般的に、ドラムボイラが用いられている。しかし、蒸発管とドラムで飽和蒸気を生成し、過熱器で過熱蒸気を生成するドラムボイラでは、ドラム出口の蒸気温度はドラム運転圧力の飽和蒸気温度に一義的に決まってしまい、593℃級蒸気への高温化は過熱器伝熱面積の増加か過熱器入り口ガス温度の高温化に依存することになり、特に、石炭焚きの燃焼ボイラでは設計的に困難な課題が多く、これまで実用化されていない。即ち、従来の亜臨界圧火力発電プラントで採用されているドラムボイラでは、過熱器/再熱器後の蒸気タービン入り口温度は566℃/566℃が最高であった。   2. Description of the Related Art Conventionally, drum boilers are generally used in small and medium capacity sub-critical pressure thermal power plants. However, in a drum boiler that generates saturated steam with an evaporation pipe and a drum and generates superheated steam with a superheater, the steam temperature at the drum outlet is uniquely determined by the saturated steam temperature of the drum operating pressure, and 593 ° C class steam Higher temperature depends on the increase in the heat transfer area of the superheater or the higher temperature of the gas at the inlet of the superheater, and in particular, there are many difficult design issues in the case of coal-fired combustion boilers. Not. That is, in the drum boiler adopted in the conventional subcritical pressure thermal power plant, the steam turbine inlet temperature after the superheater / reheater was highest at 566 ° C / 566 ° C.

一方、超臨界圧火力発電プラントで採用されている貫流ボイラ(変圧運転貫流ボイラ)は、高負荷運転域の超臨界圧の状態では給水は沸騰現象を経ずに連続的に過熱蒸気になり、変圧運転による部分負荷運転域の亜臨界圧の状態では蒸発管内での核沸騰現象を有効に活用することにより、圧力ドラムを使用せずに飽和・過熱蒸気を生成することができる(起動停止の過渡的な対応のために気水分離器を設けてはいる)。   On the other hand, once-through boilers (transformer-operated once-through boilers) used in supercritical pressure thermal power plants are continuously superheated steam without boiling phenomenon in the supercritical pressure state of high-load operation area, Saturated and superheated steam can be generated without the use of a pressure drum by effectively utilizing the nucleate boiling phenomenon in the evaporator tube in the subcritical pressure state of the partial load operation region due to transformer operation (start-stop operation) A steam separator is provided for the transitional response).

そこで、本発明では、亜臨界圧で、過熱器/再熱器後の蒸気タービン入り口温度593℃/593℃以上の高温蒸気条件を実現するために、ドラムボイラに代えて貫流ボイラを用いる。   Therefore, in the present invention, a once-through boiler is used in place of the drum boiler in order to realize a high-temperature steam condition with a subcritical pressure and a steam turbine inlet temperature of 593 ° C./593° C. or higher after the superheater / reheater.

中小容量の変圧運転貫流ボイラ(特に石炭焚きの変圧運転貫流ボイラ)の採用に当たっての課題は、プラント出力が小さくなるにつれて火炉の熱吸収量の割合が大きくなることである。火炉の熱吸収量が増加することにより、以下の課題が生じる。
(1)火炉出口のガス温度が低下傾向になり、過熱器の熱吸収量を増加させる対策が必要となる。
(2)火炉熱吸収量増加に伴う火炉メタル温度上昇を許容値内にする必要がある。
(3)火炉の熱吸収量が増加するため、過熱器での温度上昇を有利にする反面、気水分離器での過熱度が上昇し、過大になる可能性がある。
(4)プラントの全負荷運転領域で亜臨界圧貫流運転を行うため常に核沸騰状態を維持して膜沸騰を防止する必要がある。
The challenge in adopting small- and medium-capacity transformer-operated once-through boilers (particularly coal-fired transformer-operated once-through boilers) is that the rate of heat absorption of the furnace increases as the plant output decreases. The following problems arise when the heat absorption amount of the furnace increases.
(1) The gas temperature at the furnace outlet tends to decrease, and it is necessary to take measures to increase the heat absorption amount of the superheater.
(2) It is necessary to keep the furnace metal temperature rise accompanying the increase in the furnace heat absorption amount within an allowable value.
(3) Since the amount of heat absorbed by the furnace increases, the temperature rise in the superheater is advantageous, but the degree of superheat in the steam / water separator increases and may become excessive.
(4) In order to perform sub-critical pressure once-through operation in the full load operation region of the plant, it is necessary to always maintain the nucleate boiling state to prevent film boiling.

例えば、火炉出口ガス温度の低下に対して、火炉出口ガス温度を高めるための特別な配慮や、過熱器伝熱面積の増加が必要となると考えられるが、この場合、ボイラプラントの伝熱面積、容積、重量等の大幅な増加とそれに伴うコストの上昇を招かないような配慮が必要である。特に、既設の中小容量の火力発電プラント(ドラムボイラ)のリプレースやリノベーションによるプラント建設の場合には、配置スペースや重量などが既設のドラムボイラと同規模以内で計画可能なことが望まれる。   For example, it is considered that special consideration for increasing the furnace outlet gas temperature and an increase in the heat transfer area of the superheater are necessary for the decrease in the furnace outlet gas temperature. In this case, the heat transfer area of the boiler plant, Care must be taken not to cause a significant increase in volume, weight, etc. and an associated increase in cost. In particular, in the case of plant construction by replacement or renovation of an existing small and medium-capacity thermal power plant (drum boiler), it is desirable that the arrangement space and weight can be planned within the same scale as the existing drum boiler.

そこで、本発明では、超臨界圧変圧運転貫流ボイラでも採用されているスパイラル方式の貫流ボイラを用いる。スパイラル方式の貫流ボイラは、火炉の水壁管としてスパイラル水壁管を用いるものである。大容量の超臨界火力発電プラントでは、変圧運転により部分負荷運転を行うが、部分負荷の際に蒸気圧が亜臨界圧となり、核沸騰状態が膜沸騰状態になるのを防止するために、スパイラル水壁管が用いられている。一般的に、スパイラル水壁管の傾き(スパイラル水壁管の水平方向から見た傾斜角度。スパイラル角度。)は25度程度である。   Therefore, in the present invention, a spiral-type once-through boiler that is also used in a supercritical pressure transformer operation once-through boiler is used. A spiral once-through boiler uses a spiral water wall tube as a water wall tube of a furnace. In a large-capacity supercritical thermal power plant, partial load operation is performed by transformation operation, but in order to prevent the vapor pressure from becoming a subcritical pressure during partial load and the nucleate boiling state from becoming a film boiling state, a spiral is used. A water wall pipe is used. In general, the inclination of the spiral water wall pipe (inclination angle of the spiral water wall pipe viewed from the horizontal direction, spiral angle) is about 25 degrees.

本発明では、プラントの全負荷運転領域で亜臨界圧貫流運転を行うため常に核沸騰状態を維持して膜沸騰を防止する必要がある。即ち、プラントの全負荷運転領域で核沸騰状態を確保し膜沸騰を防止するのに必要な管内最低流速以上を確保し安定な蒸発制御が可能となるようする必要がある。また、本発明では、これに加えて、ボイラが小容量になるに従い、火炉水壁を構成する水管の割合が増加するため、管内流速の低下に対応する必要がある。このようなことから、本発明者等の検討によれば、中小容量の亜臨界圧・高温のスパイラル方式の貫流ボイラでは、スパイラル水壁管の傾きを、超臨界圧火力発電プラントの貫流ボイラのスパイラル水壁管の傾きより小さくする必要がある(パイラル水壁管の傾き角度を小さく調整することにより、火炉水壁を構成する管を減らし、スパイラル水壁管内の流速が高められる。)。 In the present invention, it is necessary to always maintain a nucleate boiling state to prevent film boiling in order to perform subcritical pressure once-through operation in the full load operation region of the plant. That is, it is necessary to ensure a nucleate boiling state in the full load operation region of the plant and to ensure a value equal to or higher than the minimum flow velocity in the pipe necessary for preventing film boiling so that stable evaporation control is possible. In addition, in the present invention, in addition to this, as the capacity of the boiler becomes smaller, the ratio of the water pipes constituting the furnace water wall increases, so it is necessary to cope with a decrease in the pipe flow velocity. For this reason, according to the study by the present inventors, in the sub-critical pressure / high temperature spiral-type once-through boiler having a small and medium capacity, the inclination of the spiral water wall pipe is changed to that of the once-through boiler of the supercritical pressure thermal power plant. must be smaller than the inclination of the spiral water wall tubes (by reducing adjusting the inclination angle of the scan Pairaru waterwall tubes, reducing the tubes constituting the furnace waterwall, the flow velocity of the spiral water wall tubes is increased.).

しかしながら、スパイラル水壁管の傾きを小さくした場合、垂直方向の応力が増加傾向にあることから、スパイラル管水壁強度の観点からは、傾きを小さくすることが難しいと考えられる。この点について本発明者等は、蒸気圧が亜臨界圧であることに着目し、種々検討した結果、スパイラル水壁管の傾きを小さくしても、軽量化(例えば、亜臨界圧のため超臨界圧に比べて管肉厚を薄くできる)とスパイラル水壁管内圧低下により、十分な強度を確保できることを見出した。   However, when the inclination of the spiral water wall pipe is reduced, the stress in the vertical direction tends to increase, so it is considered difficult to reduce the inclination from the viewpoint of the spiral pipe water wall strength. In this regard, the present inventors paid attention to the fact that the vapor pressure is a subcritical pressure, and as a result of various studies, the present inventors have reduced the weight even if the inclination of the spiral water wall pipe is reduced (for example, the supercritical pressure is exceeded. It was found that sufficient strength can be ensured by reducing the pipe wall thickness compared to the critical pressure) and lowering the spiral water wall pipe internal pressure.

そこで、本発明では、スパイラル水壁管の傾きを、超臨界圧火力発電プラントの変圧運転貫流ボイラのスパイラル水壁管の傾き(25度程度)よりも小さくするようにしている。具体的には、スパイラル水壁管の角度を水平方向から見て、10〜20度の範囲内とする。このようなスパイラル水壁管の傾きは、上述したような本発明者等の知見がなければ導き出せないものである。本発明者等の検討によれば、プラント出力が150MW級から250MW級の石炭専焼のスパイラル方式の変圧運転貫流ボイラの試算例では、スパイラル水壁管の角度を水平方向から見て、10〜20度の範囲内とすることで、膜沸騰防止し流動安定性が得られることが確かめられた。また、水壁メタルの信頼性を高める効果も確かめられた。また、この傾きの範囲内で、水壁構造強度も確保できることが確かめられた。   Therefore, in the present invention, the inclination of the spiral water wall pipe is made smaller than the inclination (about 25 degrees) of the spiral water wall pipe of the transformer operation once-through boiler of the supercritical pressure thermal power plant. Specifically, the angle of the spiral water wall tube is set within a range of 10 to 20 degrees when viewed from the horizontal direction. Such an inclination of the spiral water wall tube cannot be derived without the knowledge of the present inventors as described above. According to the study by the present inventors, in a trial calculation example of a spiral-type transformer operation once-through boiler of a coal-fired coal whose plant output is 150 MW class to 250 MW class, the angle of the spiral water wall tube is 10 to 20 when viewed from the horizontal direction. It was confirmed that the flow stability was obtained by preventing the film from boiling by setting the temperature within the range. In addition, the effect of improving the reliability of the water wall metal was also confirmed. It was also confirmed that the water wall structure strength could be secured within the range of this inclination.

図2に本発明の実施例のボイラ構造の概略を示す。ボイラ火炉13においてスパイラル水壁管14の採用範囲の概略が示されている。火炉13下部のバーナ12部も含めて斜線で図示した範囲がスパイラル水壁管を用いた火炉を構成している。火炉13の水壁を構成するスパイラル水壁管14は、亜臨界圧(水の臨界圧は約22.0MPa)の蒸気を安定に生成するため、スパイラル水壁管14内で膜沸騰の発生を防止し、高い流速を確保して安定な運転を行うため、上述した傾斜角で設置されている。   FIG. 2 shows an outline of the boiler structure of the embodiment of the present invention. An outline of the range of adoption of the spiral water wall pipe 14 in the boiler furnace 13 is shown. The hatched area including the burner 12 at the lower part of the furnace 13 constitutes a furnace using a spiral water wall pipe. The spiral water wall tube 14 that forms the water wall of the furnace 13 stably generates steam at a subcritical pressure (water critical pressure is approximately 22.0 MPa), thus preventing film boiling in the spiral water wall tube 14 However, in order to ensure a high flow rate and perform a stable operation, it is installed at the above-described inclination angle.

本実施例では、ガス再循環なしのパラレルダンパ方式の蒸気温度制御方式のボイラとしている。高温過熱器16は、一次過熱器16a、二次過熱器16b、三次過熱器16cから構成されており、高温再熱器17は、1次再熱器17a、二次再熱器17bから構成されている。1次過熱器16aと1次再熱器17aは、パラレルダンパに設置され、二次過熱器16b、三次過熱器16cと二次再熱器17は、火炉13出口の燃焼排ガスの高温部に配置されている。これらの配置は従来のボイラ設計やレイアウト上も自然な配置であるが、一例であり、これに本発明が限定されるものではない。高温過熱器16における二次過熱器16b、三次過熱器16cでは、火炉出口の高温の燃焼排ガスにより蒸気を加熱し、亜臨界圧で593℃以上の蒸気を生成する。また、高温再熱器17における二次再熱器17bでは、火炉出口の高温の燃焼排ガスにより蒸気を加熱し、亜臨界圧で593℃以上の蒸気を生成する。 In this embodiment, the steam temperature control boiler of the parallel damper system without gas recirculation is used. The high temperature superheater 16 includes a primary superheater 16a, a secondary superheater 16b, and a tertiary superheater 16c. The high temperature reheater 17 includes a primary reheater 17a and a secondary reheater 17b. ing. Primary superheater 16a and a primary reheater 17a is installed in parallel damper, secondary superheater 16b, tertiary superheater 16c and the secondary reheater 17 b is a high-temperature portion of the combustion exhaust gas of the furnace 13 outlet Has been placed. These arrangements are natural arrangements in terms of conventional boiler design and layout, but are merely examples, and the present invention is not limited thereto. In the secondary superheater 16b and the tertiary superheater 16c in the high-temperature superheater 16, steam is heated by high-temperature combustion exhaust gas at the furnace outlet, and steam with a subcritical pressure of 593 ° C. or higher is generated. Further, in the secondary reheater 17b in the high-temperature reheater 17, the steam is heated by the high-temperature combustion exhaust gas at the furnace outlet, and steam having a subcritical pressure of 593 ° C. or higher is generated.

なお、パラレルダンパ方式の蒸気温度制御では、ガス分配ダンパ19を開閉して、例えば、パラレルダンパの一次再熱器17a側の通過ガス流量を増加(減少)させ、一次過熱器16a、節炭器15側の通過ガス量を減少(増加)させることにより、一次再熱器17a側の熱吸収を増加(減少)させ、再熱蒸気温度を上昇(低下)させる。   In the steam temperature control of the parallel damper system, the gas distribution damper 19 is opened and closed, for example, the passage gas flow rate on the primary reheater 17a side of the parallel damper is increased (decreased), the primary superheater 16a, the economizer By decreasing (increasing) the passing gas amount on the 15th side, heat absorption on the primary reheater 17a side is increased (decreased), and the reheat steam temperature is increased (decreased).

図3に本発明の実施例における亜臨界圧高温蒸気の生成のようすを示す。本図は、本発明の実施例における亜臨界圧高温火力発電プラントの変圧運転貫流ボイラによる亜臨界圧高温蒸気の生成をより視覚的に説明するための圧力−エンタルピー線図である。本図では、例えば主蒸気圧力16.6MPa、主蒸気温度593℃の定格条件のときの節炭器15入り口の給水A点から高温過熱器16出口の593℃までの線図を示している。   FIG. 3 shows how subcritical pressure high temperature steam is generated in an embodiment of the present invention. This figure is a pressure-enthalpy diagram for more visually explaining the production of subcritical high temperature steam by the transformer operation once-through boiler of the subcritical high temperature thermal power plant in the embodiment of the present invention. In this figure, for example, a diagram is shown from the feed water point A at the entrance of the economizer 15 to 593 ° C. at the outlet of the high-temperature superheater 16 under the rated conditions of the main steam pressure 16.6 MPa and the main steam temperature 593 ° C.

節炭器15ではスチーミングを起こさない範囲での加熱を行った後、ボイラの火炉13を囲むスパイラル水壁管14にて加熱(蒸発・過熱)を行い、火炉13(スパイラル水壁管14)を出た後の気水分離器18の出口ではC点の温度になる。従来のドラムボイラではドラム圧力の飽和温度B点にドラム出口の温度が押さえられるため、B点からD点までの温度差を高温過熱器16で加熱する必要があるが、技術的・経済的な観点から566℃までが上限とされている。本実施例では、高温過熱器16ではC点からD点の593℃まで加熱であり、高温熱器16の伝熱面積を大幅に増加することなく容易にD点の593℃まで加熱することができる。 In the economizer 15, heating is performed in a range that does not cause steaming, and then heating (evaporation / overheating) is performed in the spiral water wall pipe 14 surrounding the boiler furnace 13, and the furnace 13 (spiral water wall pipe 14). At the outlet of the steam / water separator 18 after exiting, the temperature of the point C is reached. In conventional drum boilers, the temperature at the drum outlet is suppressed to the saturation point B of the drum pressure, so it is necessary to heat the temperature difference from point B to point D with the high-temperature superheater 16, but this is technically and economically From the viewpoint, the upper limit is 566 ° C. In this embodiment, a heated from point C in the high temperature superheater 16 to 593 ° C. at the point D, easily be heated up to 593 ° C. at the point D without significantly increasing the heat transfer area of the high temperature overheating 16 Can do.

図4に本発明の実施例における効率向上量の効果の一例を示す。本図は、定格出力における運転でのプラント効率の試算結果である。また、臨界圧(約22.0MPa)未満の亜臨界圧の石炭焚き火力発電プラントの蒸気圧力たとえば16.6MPaにおいて、主蒸気/再熱蒸気温度が538/538℃のE点をベースの1.00としたときの、発電効率の相対的な向上量の試算結果である。   FIG. 4 shows an example of the effect of the efficiency improvement amount in the embodiment of the present invention. This figure shows the results of trial calculation of plant efficiency during operation at the rated output. Also, when the steam pressure of a coal-fired thermal power plant with subcritical pressure less than the critical pressure (about 22.0MPa), for example 16.6MPa, the main steam / reheat steam temperature is 538/538 ℃ based on E point 1.00. This is a trial calculation result of the relative improvement in power generation efficiency.

本実施例(蒸気圧力を同じ亜臨界圧のままで、蒸気温度だけ600/600℃としたF点)では、相対値で約3%の向上が期待できる。また、本実施例(F点)の効率向上量は、超臨界圧たとえば25.0MPaで同じ蒸気温度538/538℃のG点よりも高い効率が期待できる。言い換えれば、蒸気温度を538℃のままで、圧力だけを例えば16.6MPaの亜臨界圧から例えば25.0MPaの超臨界圧まで高めた場合よりも、蒸気圧力を同じ亜臨界圧のままで、蒸気温度だけ600/600℃まで高めた場合の方が、発電プラント効率向上の効果が大きい。なお、圧力と温度の両方を高めた超臨界圧たとえば25.0MPaで蒸気温度600/600℃の条件の場合の効率向上は図のH点に示される。しかし、中小容量の火力発電プラントにこの蒸気条件を適用しても上述したようにタービン側の内部損失により想定した効率向上は望めない。なお、蒸気温度は600℃の場合で検討しているが、593℃以上の条件であればほぼ温度差に比例した効果が期待できる。   In this example (F point where the vapor pressure is the same subcritical pressure and the vapor temperature is 600/600 ° C.), an improvement of about 3% in relative value can be expected. Moreover, the efficiency improvement amount of the present embodiment (point F) can be expected to be higher than that of the point G at the same vapor temperature 538/538 ° C. at a supercritical pressure, for example, 25.0 MPa. In other words, while maintaining the steam temperature at 538 ° C and increasing only the pressure from a subcritical pressure of 16.6 MPa to a supercritical pressure of 25.0 MPa, for example, the steam temperature remains at the same subcritical pressure. When the temperature is increased only to 600/600 ° C, the effect of improving the power plant efficiency is greater. The improvement in efficiency in the case of a supercritical pressure with an increased pressure and temperature, for example, 25.0 MPa and a steam temperature of 600/600 ° C. is shown at point H in the figure. However, even if this steam condition is applied to a small- and medium-capacity thermal power plant, as described above, it is not possible to expect an improvement in efficiency due to the internal loss on the turbine side. Note that the steam temperature is 600 ° C, but if the temperature is 593 ° C or higher, an effect almost proportional to the temperature difference can be expected.

図5に本発明の実施例における蒸気温度制御の効果を示す。本図は、本発明の一実施例である亜臨界圧高温火力発電プラント(亜臨界圧変圧運転貫流ボイラ)と従来のドラムボイラ火力発電プラント(ドラムボイラ)の場合とのプラント部分負荷運転域における主蒸気および再熱蒸気温度の制御特性を示したものである。   FIG. 5 shows the effect of steam temperature control in the embodiment of the present invention. This figure shows a plant partial load operation region in the case of a subcritical pressure high temperature thermal power plant (subcritical pressure transformer operation once-through boiler) and a conventional drum boiler thermal power plant (drum boiler) according to an embodiment of the present invention. The control characteristics of main steam and reheat steam temperature are shown.

本実施例では、ドラムボイラよりも蒸気温度の保持範囲が広くなり、プラントの同一部分負荷での効率が向上する。即ち、本実施例では、100〜50%負荷までは、主蒸気/再熱蒸気温度の制御特性を一定にすることができ、ドラムボイラにおける再熱温度の低下傾向を改善し、部分負荷時のプラント発電効率の効果が期待できる。   In this embodiment, the steam temperature holding range is wider than that of the drum boiler, and the efficiency at the same partial load of the plant is improved. That is, in this embodiment, the control characteristic of the main steam / reheat steam temperature can be made constant up to 100 to 50% load, improving the tendency of the reheat temperature to decrease in the drum boiler, and at the time of partial load The effect of plant power generation efficiency can be expected.

図6に本発明の実施例における蒸気圧力制御の一例を示す。本図は、本発明の実施例の亜臨界圧高温火力発電プラントの部分負荷運転時の主蒸気圧力の変化特性を示したものである。この例では、プラント高負荷帯から最低貫流負荷J点までの範囲は、図1に示す蒸気加減弁26「開(実質的に全開)」で貫流ボイラの変圧運転を行い、最低貫流負荷J点以下の負荷帯では蒸気加減弁26で蒸気定圧絞り運転を行う。なお、ノズルガバニング方式と称される加減弁制御により、高負荷域で定格蒸気圧力を保持する他の変圧運転方式による部分負荷運転域における主蒸気圧力の変化特性についても適用が可能である。   FIG. 6 shows an example of steam pressure control in the embodiment of the present invention. This figure shows the change characteristic of the main steam pressure at the time of partial load operation of the subcritical pressure high-temperature thermal power plant according to the embodiment of the present invention. In this example, the range from the high load zone of the plant to the minimum through-flow load J point is that the steam control valve 26 “open (substantially fully open)” shown in FIG. In the following load zone, the steam control valve 26 performs constant steam pressure throttle operation. In addition, by the control valve control called the nozzle governing method, the change characteristic of the main steam pressure in the partial load operation region by another transformation operation method that maintains the rated steam pressure in the high load region can be applied.

また、本発明の実施例では、火炉水壁やケージ壁の水壁の重量は、水壁管の小径化によりスパイラル構造にもかかわらずドラムボイラと比較して同等の重量に収まる。過熱器、再熱器の伝熱管の重量は、変圧運転貫流ボイラの採用により火炉出口の気水分離器出口の蒸気温度がドラムボイラに比べて高温の過熱蒸気とすることが可能となることで、593℃以上の高温化にもかかわらず重量はドラムボイラ並みに収めることが可能となる。ドラムボイラの重量物であるドラムが省略され、起動時に必要となる気水分離器の追加分を差し引いた重量分が軽減されることになり、ボイラ本体耐圧部の重量は同じプラント出力で比較すると約10%弱の軽減効果が期待できる。   Moreover, in the Example of this invention, the weight of the water wall of a furnace water wall or a cage wall is settled in the same weight compared with a drum boiler irrespective of a spiral structure by diameter reduction of a water wall pipe. The weight of the heat transfer tubes of the superheater and reheater is that the steam temperature at the outlet of the steam separator at the furnace outlet can be higher than that of the drum boiler by adopting a transformer once-through boiler. Despite the high temperature of 593 ° C. or higher, the weight can be kept at the same level as a drum boiler. The drum, which is a heavy weight of the drum boiler, is omitted, and the weight minus the additional steam / water separator required at start-up is reduced. A reduction effect of about 10% can be expected.

また、変圧運転貫流ボイラの適用による火炉で十分な過熱蒸気を得ることで、中小容量の石炭火力発電プラントで蒸気温度制御の手段の一つであるガス再循環装置等を設置することを省くことができる。このことは、再循環ガスが無くなるため、燃焼ガス量を減少させることとなり、ボイラの重量や容積を既存のドラムボイラよりも軽減することが可能となる。   In addition, by obtaining sufficient superheated steam in the furnace through the application of a once-through boiler for transformer operation, it is possible to eliminate the installation of a gas recirculation device, etc., which is one of the means of steam temperature control in a small and medium capacity coal-fired power plant. Can do. This eliminates the recirculation gas, thereby reducing the amount of combustion gas, making it possible to reduce the weight and volume of the boiler as compared to the existing drum boiler.

また、既設の亜臨界圧ドラムボイラの中小容量火力発電プラントのリプレース等においては、設置面積やボイラ重量など工事上の制約事項があるが、本発明の実施例によれば、上述したように既設プラントよりも小さくできるので、リプレース等を問題なく行うことができる。   In addition, in the replacement of an existing subcritical pressure drum boiler medium- and small-capacity thermal power plant, there are construction restrictions such as installation area and boiler weight, but according to the embodiment of the present invention, as described above, Since it can be made smaller than the plant, replacement or the like can be performed without any problem.

図7に本発明の他の実施例である亜臨界圧高温火力発電プラントのシステム構成の概略図を示す。   FIG. 7 shows a schematic diagram of a system configuration of a subcritical pressure high-temperature thermal power plant according to another embodiment of the present invention.

基本的な構成は、図1に示す亜臨界圧高温火力発電プラントと同様であるので、重複する部分の説明は省略する。本実施例では、微粉炭機11から供給される燃料の微粉炭を火炉13にて燃焼するバーナ12の設置と配列に特徴がある。火炉13の両側に同列に配列したバーナ12に同じ微粉炭機11から燃料を供給するようにしている。尚、図では省略しているが、微粉炭機の台数を2台または3台設けられている。各微粉炭機からの燃料供給が2列2段対向または3列3段対向のバーナ燃焼とし、微粉炭機各1台からか各バーナ段の前後バーナへ振り分ける構成となっている。このように構成することによって、火炉13内の温度分布や貫流スパイラル水壁管15のメタル温度などの差を効果的に減らすように燃料の微粉炭を燃焼させることができる。   The basic configuration is the same as that of the subcritical pressure high-temperature thermal power plant shown in FIG. This embodiment is characterized by the installation and arrangement of the burners 12 for burning the pulverized coal of fuel supplied from the pulverized coal machine 11 in the furnace 13. Fuel is supplied from the same pulverized coal machine 11 to the burners 12 arranged in the same row on both sides of the furnace 13. Although not shown in the figure, two or three pulverized coal machines are provided. The fuel supply from each pulverized coal machine is burner combustion facing two rows and two stages or three rows and three stages, and the fuel is distributed from one pulverized coal machine to the front and rear burners of each burner stage. By configuring in this way, the pulverized coal of fuel can be burned so as to effectively reduce the difference in temperature distribution in the furnace 13, the metal temperature of the once-through spiral water wall tube 15, and the like.

本発明は、石炭や重油などの化石燃料やバイオマス、製鉄所内の副生ガスなどを燃料とする、発電出力が中小容量(10万〜40万kW級)の亜臨界圧高温火力発電プラントに適用可能である。特に、既設の石炭焚き火力発電プラントのリプレースやリノベーションにおいて適用可能であり、効果が大きい。中小容量の石炭焚き火力発電プラントは、産業用の自家発電設備やIPP(独立系発電事業/卸電力事業)に用いられており、これらの発電プラントの設備更新により効率向上とCO2削減に貢献できる。例えば、運転40年以上を経過したドラム型中小容量の旧式石炭火力発電プラントのリプレースやリノベーションに適用することにより、蒸気条件の高温化と蒸気タービン本体の最新技術による効率改善を加算することで、効率向上によるCO2削減は相対3〜5%期待できる。   The present invention is applied to a subcritical pressure high-temperature thermal power plant with medium to small capacity (100,000 to 400,000 kW class) using fossil fuels such as coal and heavy oil, biomass, and by-product gas in steelworks. Is possible. In particular, it can be applied to the replacement and renovation of an existing coal-fired thermal power plant, and the effect is great. Small- and medium-capacity coal-fired thermal power plants are used for industrial private power generation facilities and IPP (independent power generation / wholesale power business), and renewal of these power plants can contribute to efficiency improvement and CO2 reduction. . For example, by applying to the replacement and renovation of old coal-fired power plants with drum-type small and medium capacity that have been operating for more than 40 years, by adding higher temperature of steam conditions and efficiency improvement by the latest technology of the steam turbine body, A relative 3-5% reduction in CO2 due to improved efficiency can be expected.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加,削除,置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

10…燃焼ボイラ設備、11…微粉炭機、12…バーナ、13…火炉、14…スパイラル水壁管、15…節炭器、16…高温過熱器、16a…1次過熱器、16b…2次過熱器、16c…3次過熱器、17…高温再熱器、17a…1次再熱器、17b…2次再熱器、18…気水分離器、19…ガス分配ダンパ、20…蒸気タービン発電機設備、21…高温高圧タービン、22…高温再熱中圧タービン、23…低圧タービン、24…発電機、30…復水給水設備、31…復水器、32…復水ポンプ、33…低圧給水加熱器、34…脱気器、35…給水ポンプ、36…高圧給水加熱器、A…節炭器入口給水、B…ドラム出口蒸気、C…気水分離器出口蒸気、D…高温過熱器出口蒸気、E…538/538℃、F…600/600℃、G…538/538℃、H…600/600℃、J…最低貫流負荷。   10 ... combustion boiler equipment, 11 ... pulverized coal machine, 12 ... burner, 13 ... furnace, 14 ... spiral water wall pipe, 15 ... carbonizer, 16 ... high temperature superheater, 16a ... primary superheater, 16b ... secondary Superheater, 16c ... 3rd superheater, 17 ... High temperature reheater, 17a ... 1st reheater, 17b ... 2nd reheater, 18 ... Air / water separator, 19 ... Gas distribution damper, 20 ... Steam turbine Generator equipment, 21 ... High temperature high pressure turbine, 22 ... High temperature reheat medium pressure turbine, 23 ... Low pressure turbine, 24 ... Generator, 30 ... Condensate water supply equipment, 31 ... Condenser, 32 ... Condensate pump, 33 ... Low pressure Feed water heater, 34 ... Deaerator, 35 ... Feed water pump, 36 ... High pressure feed water heater, A ... Water saver inlet water, B ... Drum outlet steam, C ... Steam separator outlet steam, D ... High temperature superheater Outlet steam, E ... 538/538 ℃, F ... 600/600 ℃, G ... 538/538 ℃, H ... 600/600 ℃, J ... Minimum once-through load.

Claims (7)

燃焼ボイラ設備、蒸気タービン発電機設備、復水給水設備で構成された亜臨界圧高温火力発電プラントであって、
前記燃焼ボイラ設備は、蒸気条件が亜臨界圧593℃以上の過熱蒸気であって、蒸気圧力が16.6Mpa以上の過熱蒸気を供給する高温過熱器と、蒸気条件が593℃以上の再熱蒸気を供給する高温再熱器とを備え、
前記蒸気タービン発電機設備は、蒸気条件が亜臨界圧593℃以上の過熱蒸気であって、蒸気圧力が16.6Mpa以上の過熱蒸気で駆動される高圧蒸気タービンと、蒸気条件が593℃以上の再熱蒸気で駆動される再熱中圧蒸気タービンを備え、
前記亜臨界圧高温火力発電プラントの定格出力が10万kWから40万kWの範囲内であることを特徴とする亜臨界圧高温火力発電プラント。
A subcritical high-temperature thermal power plant composed of combustion boiler equipment, steam turbine generator equipment, and condensate water supply equipment,
The combustion boiler equipment includes superheated steam having a steam condition of subcritical pressure 593 ° C or higher, a superheater that supplies superheated steam having a steam pressure of 16.6 MPa or higher, and reheat steam having a steam condition of 593 ° C or higher. A high temperature reheater to supply,
The steam turbine generator facility includes a high-pressure steam turbine driven by superheated steam having a steam condition of sub-critical pressure of 593 ° C or higher and a steam pressure of 16.6 MPa or higher, and a regenerator having a steam condition of 593 ° C or higher. A reheat medium pressure steam turbine driven by thermal steam,
The subcritical pressure high temperature thermal power plant has a rated output in the range of 100,000 kW to 400,000 kW.
請求項1において、前記燃焼ボイラ設備は、石炭を主たる燃料とする微粉炭燃焼ボイラであり、かつ、ボイラ火炉水壁部を貫流スパイラル方式とした変圧運転貫流ボイラであることを特徴とする亜臨界圧高温火力発電プラント。   2. The subcriticality according to claim 1, wherein the combustion boiler equipment is a pulverized coal combustion boiler using coal as a main fuel, and a transformer operation once-through boiler using a boiler furnace water wall portion as a once-through spiral system. High pressure thermal power plant. 請求項2において、前記燃焼ボイラ設備は、前記燃料として、バイオマスや製鉄副生ガスを混焼することを特徴とする亜臨界圧高温火力発電プラント。   3. The subcritical pressure high-temperature thermal power plant according to claim 2, wherein the combustion boiler facility co-fires biomass and iron-produced by-product gas as the fuel. 請求項2において、複数段に配列され、各段において対向配置された複数の燃焼バーナと、前記各段に対応して設けられ、各段において対向配置された前記燃焼バーナに燃料を振り分けるようにした複数の微粉炭機を有することを特徴とする亜臨界圧高温火力発電プラント。   3. The combustion burner according to claim 2, wherein the combustion burners are arranged in a plurality of stages and are arranged to face each other, and the fuel is distributed to the combustion burners provided corresponding to each of the stages and arranged to face each other. Subcritical pressure high-temperature thermal power plant characterized by having a plurality of pulverized coal machines. 請求項2において、前記火炉水壁部を構成するスパイラル水壁管の傾きを水平方向から10〜20°とすることを特徴とする亜臨界圧高温火力発電プラント。   The subcritical pressure high-temperature thermal power plant according to claim 2, wherein an inclination of the spiral water wall pipe constituting the furnace water wall portion is set to 10 to 20 ° from a horizontal direction. 高圧蒸気タービンと再熱中圧蒸気タービンを備え、単機の発電装置の定格出力が10万kWから40万kWの範囲内の火力発電プラントに用いられる亜臨界圧高温変圧運転貫流ボイラであって、
微粉炭機、バーナ、火炉、火炉水壁管、節炭器、高温過熱器、高温再熱器、気水分離器を備え、
前記火炉水壁管は貫流スパイラル方式であり、
前記高温過熱器は、蒸気条件が亜臨界圧593℃以上の過熱蒸気であって、蒸気圧力が16.6Mpa以上の過熱蒸気を発生し、前記高温再熱器は、蒸気条件が593℃以上の再熱蒸気を発生するようにしたことを特徴とする亜臨界圧高温変圧運転貫流ボイラ。
A sub-critical pressure high-temperature transformer operation once-through boiler used in a thermal power plant with a high-pressure steam turbine and a reheated intermediate-pressure steam turbine and a rated output of a single power generator in the range of 100,000 kW to 400,000 kW,
Equipped with pulverized coal machine, burner, furnace, furnace water wall pipe, economizer, high temperature superheater, high temperature reheater, steam separator,
The furnace water wall pipe is a once-through spiral system,
The high-temperature superheater generates superheated steam having a steam condition of a subcritical pressure of 593 ° C. or higher and a steam pressure of 16.6 Mpa or higher. A sub-critical pressure high-temperature transformer operation once-through boiler characterized by generating hot steam.
請求項6において、前記火炉水壁管のスパイラル水壁管の傾きを水平方向から10〜20°とすることを特徴とする亜臨界圧高温変圧運転貫流ボイラ。   The subcritical pressure high-temperature transformer operation once-through boiler according to claim 6, wherein an inclination of the spiral water wall pipe of the furnace water wall pipe is set to 10 to 20 ° from a horizontal direction.
JP2016029728A 2016-02-19 2016-02-19 Subcritical pressure high temperature thermal power generation plant and subcritical pressure high temperature variable pressure operation once-through boiler Pending JP2016148343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016029728A JP2016148343A (en) 2016-02-19 2016-02-19 Subcritical pressure high temperature thermal power generation plant and subcritical pressure high temperature variable pressure operation once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016029728A JP2016148343A (en) 2016-02-19 2016-02-19 Subcritical pressure high temperature thermal power generation plant and subcritical pressure high temperature variable pressure operation once-through boiler

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012235471A Division JP5931693B2 (en) 2012-10-25 2012-10-25 Method for replacement or renovation of small and medium capacity thermal power plant and method for replacement or renovation of boiler for small and medium capacity thermal power plant

Publications (1)

Publication Number Publication Date
JP2016148343A true JP2016148343A (en) 2016-08-18

Family

ID=56691623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016029728A Pending JP2016148343A (en) 2016-02-19 2016-02-19 Subcritical pressure high temperature thermal power generation plant and subcritical pressure high temperature variable pressure operation once-through boiler

Country Status (1)

Country Link
JP (1) JP2016148343A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108266239A (en) * 2018-03-06 2018-07-10 上海发电设备成套设计研究院有限责任公司 A kind of Turbo-generator Set and its method of work with direct-burning heating
CN110526314A (en) * 2018-05-23 2019-12-03 吴启帆 Micro- subcritical seawater of energy consumption, which is seized, evaporates desalination method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0842805A (en) * 1994-05-25 1996-02-16 Babcock & Wilcox Co:The Usage to once-through boiler for variable pressure operationof pipe material with single and plurality of advancing rib
JPH10231708A (en) * 1997-02-19 1998-09-02 Nippon Steel Corp Combustion control method in coal-fired thermal power generating plant
JP2008151471A (en) * 2006-12-20 2008-07-03 Babcock Hitachi Kk Pulverized coal burning boiler
JP2012117680A (en) * 2010-11-29 2012-06-21 Sumitomo Heavy Ind Ltd Power generation system
JP2012154322A (en) * 2011-01-21 2012-08-16 General Electric Co <Ge> Welded rotor, steam turbine having welded rotor, and method for producing welded rotor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0842805A (en) * 1994-05-25 1996-02-16 Babcock & Wilcox Co:The Usage to once-through boiler for variable pressure operationof pipe material with single and plurality of advancing rib
JPH10231708A (en) * 1997-02-19 1998-09-02 Nippon Steel Corp Combustion control method in coal-fired thermal power generating plant
JP2008151471A (en) * 2006-12-20 2008-07-03 Babcock Hitachi Kk Pulverized coal burning boiler
JP2012117680A (en) * 2010-11-29 2012-06-21 Sumitomo Heavy Ind Ltd Power generation system
JP2012154322A (en) * 2011-01-21 2012-08-16 General Electric Co <Ge> Welded rotor, steam turbine having welded rotor, and method for producing welded rotor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"I. 概説", 火力原子力発電 THE THERMAL AND NUCLEAR POWER, vol. 56, no. 4, JPN6017025759, pages 各頁の下部記載の頁数において第64-71頁 *
VIVEK ASTHANA、外1名: ""PERFORMANCE OF POWER PLANTS WITH HIGH TEMPERATURE CONDITIONS AT SUB-CRITICAL PRESSURES"", PROCEEDINGS 5TH EUROPEAN THERMAL-SCIENCES CONFERENCE, JPN7015001999, May 2008 (2008-05-01), NL *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108266239A (en) * 2018-03-06 2018-07-10 上海发电设备成套设计研究院有限责任公司 A kind of Turbo-generator Set and its method of work with direct-burning heating
CN110526314A (en) * 2018-05-23 2019-12-03 吴启帆 Micro- subcritical seawater of energy consumption, which is seized, evaporates desalination method

Similar Documents

Publication Publication Date Title
JP5931693B2 (en) Method for replacement or renovation of small and medium capacity thermal power plant and method for replacement or renovation of boiler for small and medium capacity thermal power plant
CA2771839C (en) Hybrid power plant
Martelli et al. Design criteria and optimization of heat recovery steam cycles for integrated reforming combined cycles with CO2 capture
JP5624646B1 (en) Thermal power plant and operation method of thermal power plant.
US11326471B2 (en) System and method to improve boiler and steam turbine start-up times
US9739478B2 (en) System and method for heat recovery steam generators
CN103711532B (en) Steam power plant with steam turbine extraction control
JP6400779B1 (en) Power plant and operation method thereof
JP2016148343A (en) Subcritical pressure high temperature thermal power generation plant and subcritical pressure high temperature variable pressure operation once-through boiler
WO2013132994A1 (en) Coal-fired thermal power plant
Sidorkin et al. Assessment of combustion of oil shale refinery by-products in a TP-101 boiler
JP6057803B2 (en) Gas turbine plant and method of operating gas turbine plant
WO2015083253A1 (en) Boiler
JP2009197693A (en) Coal gasification combined power generation facility
KR20230124936A (en) Systems and methods for improving start-up time in fossil fuel power generation systems
WO2009148649A9 (en) Hybrid power plant
Kumar et al. Effect of Parameters in Once-Through Boiler for Controlling Reheat Steam Temperature in Supercritical Power Plants
JP7036622B2 (en) Utilization of existing boiler High steam condition boiler plant
KR102222427B1 (en) Combustion device and power generation system able to internal flue gas recirculation
Srivastava et al. Implementation of Supercritical Technology in Power Plant (An Analysis)
Wu et al. Investigation on thermal safety of high-temperature heating surfaces under 650-700° C USC condition
Eriksen et al. Other/unique HRSGs
CN114278405A (en) Power plant combining coal-fired steam boiler and air turbine
JPWO2019163991A1 (en) Fuel cell system and power generation system using it
JP2015048796A (en) Steam turbine plant, combined cycle plant including the same, and method of operating steam turbine plant

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180327