JP7036622B2 - Utilization of existing boiler High steam condition boiler plant - Google Patents

Utilization of existing boiler High steam condition boiler plant Download PDF

Info

Publication number
JP7036622B2
JP7036622B2 JP2018033631A JP2018033631A JP7036622B2 JP 7036622 B2 JP7036622 B2 JP 7036622B2 JP 2018033631 A JP2018033631 A JP 2018033631A JP 2018033631 A JP2018033631 A JP 2018033631A JP 7036622 B2 JP7036622 B2 JP 7036622B2
Authority
JP
Japan
Prior art keywords
boiler
superheated steam
steam
superheater
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018033631A
Other languages
Japanese (ja)
Other versions
JP2019148377A (en
Inventor
正志 菱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2018033631A priority Critical patent/JP7036622B2/en
Publication of JP2019148377A publication Critical patent/JP2019148377A/en
Application granted granted Critical
Publication of JP7036622B2 publication Critical patent/JP7036622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、既設ボイラ設備を活かした高蒸気条件ボイラプラントに関する。 The present invention relates to a high steam condition boiler plant utilizing existing boiler equipment.

近年、発電プラントの技術分野においては、発電効率の更なる向上を図るため、先進超々臨界圧火力発電(A-USC:Advanced-Ultra Super Critical)に向けた開発が進められている。 In recent years, in the technical field of power plants, development for advanced-ultra-supercritical thermal power generation (A-USC: Advanced-Ultra Super Critical) has been promoted in order to further improve power generation efficiency.

例えば、特許文献1には、主蒸気温度が600℃程度であるUSCプラントよりも高い主蒸気温度、再熱蒸気温度を目標としたA-USCプラントが記載されている。 For example, Patent Document 1 describes an A-USC plant whose target is a main steam temperature and a reheated steam temperature higher than those of a USC plant having a main steam temperature of about 600 ° C.

特開2013-130370号公報Japanese Unexamined Patent Publication No. 2013-13370

しかしながら、特許文献1に記載の発明は、A-USCプラントを経済的に建設する点について考慮されておらず、この点に改善の余地がある。即ち、A-USCを実現するためには、蒸気タービンに供給される過熱蒸気の温度を現状よりも高める必要があり、従来の蒸気温度のボイラプラントに比較してより多くの伝熱面と、より高い温度に対応した高温材料が必要となるが、同時に総合経済性の観点から建設費の低減が求められる。高蒸気条件プラントの建設は、新たに建設する場合の他に、火炉、低温伝熱面、燃焼装置、鉄骨、ダクト、補機など、流用可能な部分が多いことから既設ボイラプラントを流用する場合が考えられるが、蒸気条件向上分の伝熱面を既設ボイラへ追加することは、スペースの節約や全体の熱吸収バランスの調整に制約があるために困難な場合が多く、いずれの場合にも建設費が経済性を圧迫し成立しがたい。 However, the invention described in Patent Document 1 does not consider the economical construction of the A-USC plant, and there is room for improvement in this respect. That is, in order to realize A-USC, it is necessary to raise the temperature of the superheated steam supplied to the steam turbine higher than the current temperature, and it has more heat transfer surface and more heat transfer surface than the conventional steam temperature boiler plant. High-temperature materials that can handle higher temperatures are required, but at the same time, reduction of construction costs is required from the viewpoint of overall economic efficiency. When constructing a high steam condition plant, in addition to the case of new construction, when the existing boiler plant is diverted because there are many parts that can be diverted, such as the furnace, low temperature heat transfer surface, combustion device, steel frame, duct, auxiliary equipment, etc. However, it is often difficult to add a heat transfer surface for improved steam conditions to the existing boiler due to space saving and restrictions on adjusting the overall heat absorption balance. Construction costs put pressure on economic efficiency and are difficult to establish.

そこで、本発明は、既設のボイラ設備を活用してA-USCプラントを経済的に建設可能な既設ボイラ活用高蒸気条件ボイラプラントを提供することを目的とする。 Therefore, an object of the present invention is to provide an existing boiler utilization high steam condition boiler plant capable of economically constructing an A-USC plant by utilizing the existing boiler equipment.

上記目的を達成するために、本発明は、既設ボイラの設備を極力流用しつつ蒸気条件の高温化を図る手段として、既設ボイラに別置きの独立過熱器を蒸気系統上で組み合わせ、過熱蒸気を相互交換するシステムとする。即ち、既設ボイラの低温蒸気の一部又は全量を抜き出し、独立過熱器の蒸気冷却壁を構成した後、既設ボイラへ戻す。更に、既設ボイラの最終過熱器もしくは最終再熱器の出口蒸気を、既設主配管材を流用して別置きの独立過熱機内の伝熱面に導入し、加熱高温化を図る。 In order to achieve the above object, the present invention combines an existing boiler with an independent superheater separately placed on the steam system as a means for increasing the temperature of steam conditions while diverting the equipment of the existing boiler as much as possible to generate superheated steam. The system should be exchanged with each other. That is, a part or all of the low temperature steam of the existing boiler is extracted, a steam cooling wall of the independent superheater is constructed, and then the steam is returned to the existing boiler. Further, the outlet steam of the final superheater or the final reheater of the existing boiler is introduced into the heat transfer surface in the separately installed independent superheater by diverting the existing main piping material to increase the heating temperature.

具体的には、燃焼ガス通路内に複数段のボイラ側過熱蒸気系熱交換器が備えられたボイラと、前記ボイラから導入された第1の過熱蒸気により冷却される蒸気冷却壁で構成された火炉及び煙道、前記蒸気冷却壁に設けられて前記火炉内に燃料を噴射して燃焼するバーナ、並びに前記ボイラから導入されて前記第1の過熱蒸気よりも高温の第2の過熱蒸気を前記火炉及び前記煙道内の燃焼ガスと熱交換して更に過熱する独立過熱器側過熱蒸気系熱交換器を備えた独立過熱器と、前記独立過熱器から導出される過熱蒸気によって駆動される蒸気タービンと、を備え、前記複数段のボイラ側過熱蒸気系熱交換器から選択される第1の過熱蒸気系熱交換器の過熱蒸気出口と前記蒸気冷却壁の過熱蒸気入口とを配管で接続すると共に、前記蒸気冷却壁の過熱蒸気出口と前記第1の過熱蒸気系熱交換器よりも蒸気温度が高い第2の過熱蒸気系熱交換器の過熱蒸気入口とを配管で接続し、更には、前記第2の過熱蒸気系熱交換器の過熱蒸気出口と前記独立過熱器側過熱蒸気系熱交換器の過熱蒸気入口とを配管で接続したことを特徴とする。 Specifically, it was composed of a boiler equipped with multiple stages of boiler-side superheated steam heat exchangers in the combustion gas passage, and a steam cooling wall cooled by the first superheated steam introduced from the boiler. The furnace and flue, a burner provided in the steam cooling wall to inject fuel into the furnace and burn, and a second superheated steam introduced from the boiler and having a temperature higher than that of the first superheated steam. An independent superheater equipped with an independent superheater-side superheated steam system heat exchanger that exchanges heat with the combustion gas in the furnace and the flue to further heat, and a steam turbine driven by superheated steam derived from the independent superheater. And, the superheated steam outlet of the first superheated steam heat exchanger selected from the multi-stage boiler side superheated steam heat exchanger and the superheated steam inlet of the steam cooling wall are connected by a pipe. , The superheated steam outlet of the steam cooling wall and the superheated steam inlet of the second superheated steam heat exchanger whose steam temperature is higher than that of the first superheated steam heat exchanger are connected by a pipe, and further, the above It is characterized in that the superheated steam outlet of the second superheated steam heat exchanger and the superheated steam inlet of the independent superheater side superheated steam heat exchanger are connected by a pipe.

本発明によれば、既設ボイラ設備を最大限生かし比較的簡単な構成で経済的にA-USCを実現できる。また、高温化した蒸気を高圧蒸気タービンへ導く高温主配管は、高温強度の高い特殊な材料を使うので、経済性に大きく影響する。独立過熱器の設置位置は自由度が高く、高圧蒸気タービンとの間の超高温配管を最適に最短配置することができ、経済性改善に効果が大きい。更に、配管長の最短化により蒸気圧力損失を最小化できることから、発電効率向上にも有効である。なお、上記した以外の課題、構成及び効果は、以下に記載する実施形態の説明により明らかにされる。 According to the present invention, A-USC can be economically realized with a relatively simple configuration by making the best use of the existing boiler equipment. In addition, the high-temperature main piping that guides the heated steam to the high-pressure steam turbine uses a special material with high high-temperature strength, which greatly affects economic efficiency. The installation position of the independent superheater has a high degree of freedom, and the ultra-high temperature piping to and from the high-pressure steam turbine can be optimally and shortestly arranged, which is highly effective in improving economic efficiency. Further, since the steam pressure loss can be minimized by minimizing the pipe length, it is also effective in improving the power generation efficiency. Issues, configurations and effects other than those described above will be clarified by the description of the embodiments described below.

第1実施例に係る発電プラントの構成図である。It is a block diagram of the power plant which concerns on 1st Example. 第2実施例に係る発電プラントの構成図である。It is a block diagram of the power plant which concerns on 2nd Example.

以下、本発明の実施形態について、実施例毎に図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings for each example.

[第1実施例]
図1に、第1実施例に係る発電プラント1Aの構成を示す。この図から明らかなように、第1実施例に係る発電プラント1Aは、ボイラ1と、独立過熱器2と、独立過熱器2から供給される過熱蒸気により駆動される高圧蒸気タービン3と、高圧蒸気タービン3により駆動される発電機4と、を備えている。
[First Example]
FIG. 1 shows the configuration of the power plant 1A according to the first embodiment. As is clear from this figure, the power generation plant 1A according to the first embodiment has a boiler 1, an independent superheater 2, a high-pressure steam turbine 3 driven by superheated steam supplied from the independent superheater 2, and a high pressure. It includes a generator 4 driven by a steam turbine 3.

ボイラ1は、石炭焚きボイラ、油焚きボイラ、ガス焚きボイラ等のいわゆるコンベンショナルボイラであり、バーナ11を備えた火炉12と、火炉12に続く排ガス通路13とを有している。排ガス通路13内には、節炭器14、1次過熱器15、2次過熱器16、3次過熱器17、1次再熱器18、2次再熱器19及び3次再熱器20が所定の配列で配置されている。なお、本明細書においては、ボイラ1に備えられた1次過熱器15、2次過熱器16、3次過熱器17、1次再熱器18、2次再熱器19及び3次再熱器20を総称して、「ボイラ側過熱蒸気系熱交換器」という。 The boiler 1 is a so-called conventional boiler such as a coal-fired boiler, an oil-fired boiler, and a gas-fired boiler, and has a furnace 12 provided with a burner 11 and an exhaust gas passage 13 leading to the furnace 12. In the exhaust gas passage 13, the economizer 14, the primary superheater 15, the secondary superheater 16, the tertiary superheater 17, the primary reheater 18, the secondary reheater 19 and the tertiary reheater 20 Are arranged in a predetermined arrangement. In the present specification, the primary superheater 15, the secondary superheater 16, the tertiary superheater 17, the primary reheater 18, the secondary reheater 19, and the tertiary reheater 1 provided in the boiler 1 are used. The vessels 20 are collectively referred to as "boiler-side superheated steam heat exchangers".

ボイラ1としては、既設のボイラが利用される。ボイラ1は、バーナ11から噴射される石炭、油(重油又は軽油)、ガス等を火炉12内で燃焼する。 As the boiler 1, an existing boiler is used. The boiler 1 burns coal, oil (heavy oil or light oil), gas, etc. injected from the burner 11 in the furnace 12.

火炉12内に生じた燃焼ガスは、排ガス通路13内に導かれ、2次過熱器16、3次過熱器17、1次再熱器18、2次再熱器19、1次過熱器15及び節炭器14内の過熱蒸気又は給水と熱交換した後、図示しない排煙処理設備に入って飛灰等が除去される。飛灰等が除去された排ガスは、図示しない煙突等を通って大気に放出される。 The combustion gas generated in the furnace 12 is guided into the exhaust gas passage 13, the secondary superheater 16, the tertiary superheater 17, the primary reheater 18, the secondary reheater 19, the primary superheater 15, and the primary superheater 15. After exchanging heat with superheated steam or water supply in the economizer 14, flying ash and the like are removed by entering a smoke exhaust treatment facility (not shown). Exhaust gas from which fly ash and the like have been removed is released into the atmosphere through a chimney and the like (not shown).

独立過熱器2は、ボイラ1から導入される第1の過熱蒸気により冷却される蒸気冷却壁21で構成される火炉及び煙道と、火炉内に燃料を噴射して燃焼するバーナ22と、煙道内に配置され、ボイラ1から導入された第2の過熱蒸気を煙道内の燃焼ガスと熱交換して更に過熱する独立過熱器側過熱蒸気系熱交換器23と、蒸気冷却壁21内の熱を回収する熱回収部24と、を備えている。第1実施例においては、独立過熱器側過熱蒸気系熱交換器23として、過熱器が備えられている。以下の説明においては、独立過熱器側過熱蒸気系熱交換器23を「独立過熱器側過熱器23」という。 The independent superheater 2 includes a furnace and a flue composed of a steam cooling wall 21 cooled by the first superheated steam introduced from the boiler 1, a burner 22 that injects fuel into the furnace and burns, and smoke. The heat in the steam cooling wall 21 and the independent superheater side superheated steam heat exchanger 23, which is arranged in the path and exchanges heat with the combustion gas in the flue to further heat the second superheated steam introduced from the boiler 1. It is provided with a heat recovery unit 24 for recovering the above. In the first embodiment, a superheater is provided as the superheated steam system heat exchanger 23 on the independent superheater side. In the following description, the independent superheater side superheated steam heat exchanger 23 is referred to as "independent superheater side superheater 23".

図1に示すように、第1実施例においては、ボイラ1に備えられた1次過熱器15の過熱蒸気出口15aと、独立過熱器2を構成する蒸気冷却壁21の過熱蒸気入口21bと、が配管31で接続され、蒸気冷却壁21の過熱蒸気出口21aと、ボイラ1に備えられた2次過熱器16の過熱蒸気入口16bと、が配管32で接続されている。また、ボイラ1に備えられた3次過熱器17の過熱蒸気出口17aと、独立過熱器2に備えられた独立過熱器側過熱器23の過熱蒸気入口23bと、が配管33で接続され、独立過熱器側過熱器23の過熱蒸気出口23aと、高圧蒸気タービン3の過熱蒸気入口3bと、が配管34で接続されている。さらに、節炭器14に給水を供給する給水管35と、独立過熱器2に備えられた熱回収部24の給水入口24bと、が配管36で接続され、熱回収部24の給水出口24aと、節炭器14の出口配管37と、が配管38で接続されている。従って、独立過熱器側過熱器23には、蒸気冷却壁21に導入される第1の過熱蒸気よりも高温の第2の過熱蒸気が導入される。 As shown in FIG. 1, in the first embodiment, the superheated steam outlet 15a of the primary superheater 15 provided in the boiler 1 and the superheated steam inlet 21b of the steam cooling wall 21 constituting the independent superheater 2 are used. Is connected by a pipe 31, and the superheated steam outlet 21a of the steam cooling wall 21 and the superheated steam inlet 16b of the secondary superheater 16 provided in the boiler 1 are connected by a pipe 32. Further, the superheated steam outlet 17a of the tertiary superheater 17 provided in the boiler 1 and the superheated steam inlet 23b of the independent superheater side superheater 23 provided in the independent superheater 2 are connected by a pipe 33 and become independent. The superheated steam outlet 23a of the superheater side superheater 23 and the superheated steam inlet 3b of the high-pressure steam turbine 3 are connected by a pipe 34. Further, the water supply pipe 35 that supplies water to the economizer 14 and the water supply inlet 24b of the heat recovery unit 24 provided in the independent superheater 2 are connected by a pipe 36 to the water supply outlet 24a of the heat recovery unit 24. , The outlet pipe 37 of the economizer 14 and the outlet pipe 37 are connected by a pipe 38. Therefore, a second superheated steam having a temperature higher than that of the first superheated steam introduced into the steam cooling wall 21 is introduced into the independent superheater side superheater 23.

独立過熱器2内に生じた燃焼ガスは、独立過熱器側過熱器23内の過熱蒸気及び熱回収部24内の給水と熱交換した後に、当該独立過熱器専用もしくはボイラ1に付設された図示しない排煙処理設備に入って飛灰等が除去され、飛灰等が除去された排ガスは、当該独立過熱器専用もしくはボイラ1に付設された図示しない煙突等を通って大気に放出される。なお、ボイラ1及び独立過熱器2は、排煙処理設備を共有化してもよい。 The combustion gas generated in the independent superheater 2 exchanges heat with the superheated steam in the superheater 23 on the independent superheater side and the water supply in the heat recovery unit 24, and then is shown exclusively for the independent superheater or attached to the boiler 1. No flying ash or the like is removed by entering the smoke exhaust treatment facility, and the exhaust gas from which the flying ash or the like is removed is discharged to the atmosphere through a chimney or the like (not shown) dedicated to the independent superheater or attached to the boiler 1. The boiler 1 and the independent superheater 2 may share the flue gas treatment equipment.

バーナ22は、石炭、ガス又は油を燃料として燃焼する。この場合、ボイラ1及び独立過熱器2に備えられる燃料供給系の構成を簡素化するため、ボイラ1の燃料と独立過熱器2の燃料を共通化することが望ましい。即ち、ボイラ1が石炭焚きボイラである場合には、バーナ22で石炭を燃焼し、ボイラ1がガス焚きボイラである場合には、バーナ22でガスを燃焼し、ボイラ1が油焚きボイラである場合には、バーナ22で油を燃焼する。燃料としてガスを用いた場合には、温度制御が容易となり、かつ高温腐食の問題も生じない。 The burner 22 burns using coal, gas or oil as fuel. In this case, in order to simplify the configuration of the fuel supply system provided in the boiler 1 and the independent superheater 2, it is desirable to share the fuel of the boiler 1 and the fuel of the independent superheater 2. That is, when the boiler 1 is a coal-fired boiler, the burner 22 burns coal, and when the boiler 1 is a gas-fired boiler, the burner 22 burns gas, and the boiler 1 is an oil-fired boiler. In some cases, the burner 22 burns the oil. When gas is used as the fuel, temperature control becomes easy and the problem of high temperature corrosion does not occur.

独立過熱器側過熱器23は、ボイラ1の3次過熱器17から抜き出した第2の過熱蒸気を蒸気冷却壁21内の燃焼ガスと熱交換してさらに過熱し、高圧蒸気タービン3に供給する。独立過熱器2は、ボイラ1とは独立した機器であるので、独立過熱器2の設置位置は自由度が高く、高圧蒸気タービン3との間の超高温配管を最適に最短配置することができる。よって、ボイラ1から導出された過熱蒸気を高圧蒸気タービン3に直接供給する場合に比べて、高価な材料を用いて製造される配管34の配管長を最短化できて、既設ボイラ活用高蒸気条件ボイラプラントの経済性改善に大きく貢献する。また、配管長の最短化により蒸気圧力損失を最小化できることから、発電効率向上にも有効である。 The independent superheater side superheater 23 exchanges heat with the combustion gas in the steam cooling wall 21 for the second superheated steam extracted from the tertiary superheater 17 of the boiler 1, further superheats it, and supplies it to the high-pressure steam turbine 3. .. Since the independent superheater 2 is a device independent of the boiler 1, the installation position of the independent superheater 2 has a high degree of freedom, and the ultra-high temperature piping between the independent superheater 2 and the high-pressure steam turbine 3 can be optimally arranged in the shortest time. .. Therefore, compared to the case where the superheated steam derived from the boiler 1 is directly supplied to the high-pressure steam turbine 3, the pipe length of the pipe 34 manufactured by using an expensive material can be minimized, and the existing boiler utilization high steam condition can be achieved. It greatly contributes to improving the economic efficiency of boiler plants. It is also effective in improving power generation efficiency because steam pressure loss can be minimized by minimizing the pipe length.

熱回収部24は、独立過熱器側過熱器23を過熱した後の蒸気冷却壁21内の予熱を回収し、節炭器14から火炉12に供給される給水を加熱する。 The heat recovery unit 24 recovers the preheat in the steam cooling wall 21 after superheating the independent superheater side superheater 23, and heats the water supply supplied from the economizer 14 to the furnace 12.

第1実施例に係る発電プラント1Aは、上記のように構成されているので、1次過熱器15を通過した過熱蒸気は、配管31を通って蒸気冷却壁21に導入される。また、蒸気冷却壁21を通過した過熱蒸気は、配管32を通ってボイラ1の2次過熱器16に導入され、2次過熱器16及び3次過熱器17で、排ガス通路13内の排ガスと熱交換されて過熱される。さらに、ボイラ1の3次過熱器17を通過した過熱蒸気は、配管33を通って独立過熱器側過熱器23に導入され、独立過熱器2内の燃焼ガスと熱交換されて更に過熱される。一方、節炭器14に給水を供給する給水管35内の給水は、その一部が配管36を通って独立過熱器2の熱回収部24内に導入され、独立過熱器2内の燃焼ガスと熱交換されて加熱される。熱回収部24を通過した給水は、配管38を通って節炭器14の出口配管37に導入される。 Since the power plant 1A according to the first embodiment is configured as described above, the superheated steam that has passed through the primary superheater 15 is introduced into the steam cooling wall 21 through the pipe 31. Further, the superheated steam that has passed through the steam cooling wall 21 is introduced into the secondary superheater 16 of the boiler 1 through the pipe 32, and is combined with the exhaust gas in the exhaust gas passage 13 in the secondary superheater 16 and the tertiary superheater 17. It is heat exchanged and overheated. Further, the superheated steam that has passed through the tertiary superheater 17 of the boiler 1 is introduced into the independent superheater side superheater 23 through the pipe 33, and is further heated by exchanging heat with the combustion gas in the independent superheater 2. .. On the other hand, a part of the water supply in the water supply pipe 35 that supplies water to the economizer 14 is introduced into the heat recovery unit 24 of the independent superheater 2 through the pipe 36, and the combustion gas in the independent superheater 2 is introduced. It is heated by heat exchange with. The water supply that has passed through the heat recovery unit 24 is introduced into the outlet pipe 37 of the economizer 14 through the pipe 38.

このように、第1実施例に係る発電プラント1Aは、蒸気冷却壁21を備えた独立過熱器2をボイラ1に付設し、ボイラ1の1次過熱器15から抜き出した過熱蒸気を、独立過熱器2の蒸気冷却壁21、ボイラ1の2次過熱器、ボイラ1の3次過熱器、独立過熱器2の独立過熱器側過熱器23に順次導入して過熱するので、従来のボイラ装置に比べて、高圧蒸気タービン3に供給する過熱蒸気の蒸気温度を高めることができる。よって、第1実施例に係る発電プラント1Aは、従来のボイラ装置を備えた発電プラントに比べて、発電効率を向上できる。 As described above, in the power generation plant 1A according to the first embodiment, the independent superheater 2 provided with the steam cooling wall 21 is attached to the boiler 1, and the superheated steam extracted from the primary superheater 15 of the boiler 1 is independently superheated. Since it is sequentially introduced into the steam cooling wall 21 of the vessel 2, the secondary superheater of the boiler 1, the tertiary superheater of the boiler 1, and the superheater 23 on the independent superheater side of the independent superheater 2, it is superheated. In comparison, the steam temperature of the superheated steam supplied to the high-pressure steam turbine 3 can be increased. Therefore, the power generation plant 1A according to the first embodiment can improve the power generation efficiency as compared with the power generation plant provided with the conventional boiler device.

第1実施例に係る発電プラント1Aによれば、既設のボイラ1を活かしたまま独立過熱器2を新設することによって、既設の発電プラントを活用したA-USCを建設できる。従って、第1実施例に係る発電プラント1Aは、既設のボイラ1を解体してA-USCボイラを新設する場合に比べて、資源の有効利用が図れ、発電効率が高い発電プラントを低コストに構築できる。 According to the power plant 1A according to the first embodiment, by newly installing an independent superheater 2 while utilizing the existing boiler 1, it is possible to construct an A-USC utilizing the existing power plant. Therefore, the power generation plant 1A according to the first embodiment can make effective use of resources and reduce the cost of the power generation plant having high power generation efficiency, as compared with the case where the existing boiler 1 is dismantled and the A-USC boiler is newly installed. Can be built.

[第2実施例]
図2に、第2実施例に係る発電プラント1Bの構成を示す。この図から明らかなように、第2実施例に係る発電プラント1Bは、独立過熱器2内に、独立過熱器側過熱器23に代えて、再熱器51が備えられると共に、高圧蒸気タービン3に代えて、低圧蒸気タービン52が備えられている。第2実施例においては、独立過熱器2内に備えられた再熱器を「独立過熱器側再熱器51」という。
[Second Example]
FIG. 2 shows the configuration of the power plant 1B according to the second embodiment. As is clear from this figure, in the power plant 1B according to the second embodiment, a reheater 51 is provided in the independent superheater 2 instead of the independent superheater side superheater 23, and the high-pressure steam turbine 3 is provided. Instead, a low pressure steam turbine 52 is provided. In the second embodiment, the reheater provided in the independent superheater 2 is referred to as "independent superheater side reheater 51".

そして、第2実施例に係る発電プラント1Bにおいては、蒸気冷却壁21の過熱蒸気出口21aと、ボイラ1に備えられた1次再熱器18の過熱蒸気入口18bと、が配管32で接続されている。また、ボイラ1に備えられた3次再熱器20の過熱蒸気出口20aと、独立過熱器側再熱器51の過熱蒸気入口51bと、が配管53で接続されると共に、独立過熱器側再熱器51の過熱蒸気出口51aと、低圧蒸気タービン52の過熱蒸気入口52bと、が配管54で接続されている。その他の構成については、第1実施例に係る発電プラント1Aと同じであるので、対応する部分に同一の符号を付して、説明を省略する。 In the power generation plant 1B according to the second embodiment, the superheated steam outlet 21a of the steam cooling wall 21 and the superheated steam inlet 18b of the primary reheater 18 provided in the boiler 1 are connected by a pipe 32. ing. Further, the superheated steam outlet 20a of the tertiary reheater 20 provided in the boiler 1 and the superheated steam inlet 51b of the independent superheater side reheater 51 are connected by a pipe 53 and reheated on the independent superheater side. The superheated steam outlet 51a of the heater 51 and the superheated steam inlet 52b of the low-pressure steam turbine 52 are connected by a pipe 54. Since other configurations are the same as those of the power plant 1A according to the first embodiment, the same reference numerals are given to the corresponding portions, and the description thereof will be omitted.

第2実施例に係る発電プラント1Bは、このように構成されているので、低圧蒸気タービン52に供給される過熱蒸気の温度を独立過熱器側再熱器51によって高めることができ、発電効率の向上を図ることができる。 Since the power plant 1B according to the second embodiment is configured in this way, the temperature of the superheated steam supplied to the low-pressure steam turbine 52 can be raised by the independent superheater side reheater 51, and the power generation efficiency can be increased. It can be improved.

なお、本発明の範囲は、実施例1、2に記載の範囲に限定されるものではなく、本発明の趣旨を逸脱しない範囲で実施例1、2に記載した発明の構成要素に変更を加えたもの、実施例1、2に記載した発明の構成要素を周知の構成要素に置き換えたもの、及び実施例1、2を適宜組み合わせたものも含まれる。 The scope of the present invention is not limited to the scope described in Examples 1 and 2, and the constituent elements of the invention described in Examples 1 and 2 are modified without departing from the spirit of the present invention. Also included are those in which the components of the invention described in Examples 1 and 2 are replaced with well-known components, and those in which Examples 1 and 2 are appropriately combined.

例えば、実施例1においては、独立過熱器側過熱蒸気系熱交換器として独立過熱器側過熱器23を備え、実施例2においては、独立過熱器側過熱蒸気系熱交換器として独立過熱器側再熱器51を備えたが、蒸気冷却壁21内に独立過熱器側過熱器23及び独立過熱器側再熱器51の双方を備える構成とすることもできる。また、実施例1、2においては、ボイラ1に、1次過熱器15、2次過熱器16及び3次過熱器17と、1次再熱器18及び2次再熱器19を備えたが、ボイラ1に備えられる過熱器及び再熱器の数についてはこれに限定されるものではなく、適宜変更することができる。 For example, in the first embodiment, the independent superheater side superheater 23 is provided as the independent superheater side superheater steam system heat exchanger, and in the second embodiment, the independent superheater side superheater steam system heat exchanger is provided. Although the reheater 51 is provided, both the independent superheater side superheater 23 and the independent superheater side reheater 51 may be provided in the steam cooling wall 21. Further, in Examples 1 and 2, the boiler 1 is provided with a primary superheater 15, a secondary superheater 16 and a tertiary superheater 17, and a primary reheater 18 and a secondary reheater 19. The number of superheaters and reheaters provided in the boiler 1 is not limited to this, and can be changed as appropriate.

1A、1B…発電プラント、1…ボイラ、2…独立過熱器、3…高圧蒸気タービン、4…発電機、11…バーナ、12…火炉、13…排ガス通路、14…節炭器、15…1次過熱器、16…2次過熱器、17…3次過熱器、18…1次再熱器、19…2次再熱器、20…3次再熱器、21…蒸気冷却壁、22…バーナ、23…独立過熱器側過熱蒸気系熱交換器、24…熱回収部、31、32、33、34、36、38…配管、35…給水管、37…節炭器の出口配管、41…配管、42…流量制御弁、51…独立過熱器側再熱器、52…低圧蒸気タービン、53、54…配管、61…配管、62…流量制御弁 1A, 1B ... Power plant, 1 ... Boiler, 2 ... Independent superheater, 3 ... High-pressure steam turbine, 4 ... Generator, 11 ... Burner, 12 ... Fire furnace, 13 ... Exhaust passage, 14 ... Economizer, 15 ... 1 Secondary superheater, 16 ... secondary superheater, 17 ... tertiary superheater, 18 ... primary reheater, 19 ... secondary reheater, 20 ... tertiary reheater, 21 ... steam cooling wall, 22 ... Burner, 23 ... Independent superheater side superheated steam heat exchanger, 24 ... Heat recovery unit, 31, 32, 33, 34, 36, 38 ... Piping, 35 ... Water supply pipe, 37 ... Economizer outlet piping, 41 ... piping, 42 ... flow control valve, 51 ... independent superheater side reheater, 52 ... low pressure steam turbine, 53, 54 ... piping, 61 ... piping, 62 ... flow control valve

Claims (8)

燃焼ガス通路内に複数段のボイラ側過熱蒸気系熱交換器が備えられた既設ボイラと、
前記既設ボイラから燃焼ガス系統が独立し、前記既設ボイラから導入された第1の過熱蒸気により冷却される蒸気冷却壁で構成された火炉及び煙道、前記蒸気冷却壁に設けられて前記火炉内に燃料を噴射して燃焼するバーナ、並びに前記既設ボイラから導入されて前記第1の過熱蒸気よりも高温の第2の過熱蒸気を前記火炉及び前記煙道内の燃焼ガスと熱交換して更に過熱する独立過熱器側過熱蒸気系熱交換器を備えた独立過熱器と、
前記独立過熱器から導出される過熱蒸気によって駆動される蒸気タービンと、
を備え、
前記複数段のボイラ側過熱蒸気系熱交換器から選択される第1の過熱蒸気系熱交換器の過熱蒸気出口と前記蒸気冷却壁の過熱蒸気入口とを配管で接続すると共に、
前記蒸気冷却壁の過熱蒸気出口と前記第1の過熱蒸気系熱交換器よりも蒸気温度が高い第2の過熱蒸気系熱交換器の過熱蒸気入口とを配管で接続し、
更には、前記第2の過熱蒸気系熱交換器の過熱蒸気出口と前記独立過熱器側過熱蒸気系熱交換器の過熱蒸気入口とを配管で接続したことを特徴とする既設ボイラ活用高蒸気条件ボイラプラント。
An existing boiler equipped with multiple stages of superheated steam heat exchangers on the boiler side in the combustion gas passage,
A furnace and flue composed of a steam cooling wall in which the combustion gas system is independent from the existing boiler and cooled by the first superheated steam introduced from the existing boiler, and the inside of the furnace provided in the steam cooling wall. A burner that injects fuel into the boiler and burns, and a second superheated steam introduced from the existing boiler and having a temperature higher than that of the first superheated steam are exchanged with the combustion gas in the furnace and the flue to further overheat. Independent boiler with an independent superheater equipped with a superheated steam heat exchanger on the side
A steam turbine driven by superheated steam derived from the independent superheater, and
Equipped with
The superheated steam outlet of the first superheated steam heat exchanger selected from the multi-stage boiler-side superheated steam heat exchanger and the superheated steam inlet of the steam cooling wall are connected by a pipe and at the same time.
The superheated steam outlet of the steam cooling wall and the superheated steam inlet of the second superheated steam heat exchanger whose steam temperature is higher than that of the first superheated steam heat exchanger are connected by a pipe.
Further, the existing boiler utilization high steam condition is characterized in that the superheated steam outlet of the second superheated steam heat exchanger and the superheated steam inlet of the independent superheater side superheated steam heat exchanger are connected by a pipe. Boiler plant.
前記第1の過熱蒸気系熱交換器は1次過熱器であり、前記第2の過熱蒸気系熱交換器は前記1次過熱器よりも蒸気温度が高い他の過熱器であることを特徴とする請求項1に記載の既設ボイラ活用高蒸気条件ボイラプラント。 The first superheated steam heat exchanger is a primary superheater, and the second superheated steam heat exchanger is another superheater having a higher steam temperature than the primary superheater. The existing boiler utilization high steam condition boiler plant according to claim 1. 前記第1の過熱蒸気系熱交換器は1次熱器であり、前記第2の過熱蒸気系熱交換器は前記1次熱器よりも蒸気温度が高い再熱器であることを特徴とする請求項1に記載の既設ボイラ活用高蒸気条件ボイラプラント。 The first superheated steam heat exchanger is a primary superheater , and the second superheated steam heat exchanger is a reheater having a higher steam temperature than the primary superheater . The existing boiler utilization high steam condition boiler plant according to claim 1, which is characterized. 前記燃料は、石炭であることを特徴とする請求項1に記載の既設ボイラ活用高蒸気条件ボイラプラント。 The high steam condition boiler plant utilizing an existing boiler according to claim 1, wherein the fuel is coal. 前記燃料は、ガスであることを特徴とする請求項1に記載の既設ボイラ活用高蒸気条件ボイラプラント。 The high steam condition boiler plant utilizing an existing boiler according to claim 1, wherein the fuel is a gas. 前記燃料は、油であることを特徴とする請求項1に記載の既設ボイラ活用高蒸気条件ボイラプラント。 The high steam condition boiler plant utilizing an existing boiler according to claim 1, wherein the fuel is oil. 前記既設ボイラの近傍に前記独立過熱器を新設して、前記既設ボイラと新設した前記独立過熱器とを必要な配管で接続したことを特徴とする請求項1に記載の既設ボイラ活用高蒸気条件ボイラプラント。 The high steam condition for utilizing an existing boiler according to claim 1, wherein the independent superheater is newly installed in the vicinity of the existing boiler, and the existing boiler and the newly installed independent superheater are connected by necessary piping. Boiler plant. 前記独立過熱器側過熱蒸気系熱交換器の出口蒸気温度は、650℃以上であることを特徴とする請求項1に記載の既設ボイラ活用高蒸気条件ボイラプラント。
The high steam condition boiler plant utilizing an existing boiler according to claim 1, wherein the outlet steam temperature of the superheated steam system heat exchanger on the independent superheater side is 650 ° C. or higher.
JP2018033631A 2018-02-27 2018-02-27 Utilization of existing boiler High steam condition boiler plant Active JP7036622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018033631A JP7036622B2 (en) 2018-02-27 2018-02-27 Utilization of existing boiler High steam condition boiler plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018033631A JP7036622B2 (en) 2018-02-27 2018-02-27 Utilization of existing boiler High steam condition boiler plant

Publications (2)

Publication Number Publication Date
JP2019148377A JP2019148377A (en) 2019-09-05
JP7036622B2 true JP7036622B2 (en) 2022-03-15

Family

ID=67849651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018033631A Active JP7036622B2 (en) 2018-02-27 2018-02-27 Utilization of existing boiler High steam condition boiler plant

Country Status (1)

Country Link
JP (1) JP7036622B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165401A (en) 1999-12-09 2001-06-22 Ishikawajima Harima Heavy Ind Co Ltd Steam generating facility
JP2001173923A (en) 1999-12-15 2001-06-29 Ishikawajima Harima Heavy Ind Co Ltd Boiler incorporated generator plant
JP2004116993A (en) 2003-11-18 2004-04-15 Chiyoda Corp Suppression method of generation rate of carbon monoxide generated from rotary heat-storage type burner device
WO2010057279A1 (en) 2008-11-24 2010-05-27 Ribeiro Sergio Vieira Guerreir High efficiency waste to energy power plants combining municipal solid waste and natural gas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238805A (en) * 1994-02-28 1995-09-12 Hitachi Zosen Corp Refuse incinerator power generating equipment
JP3276283B2 (en) * 1996-01-05 2002-04-22 株式会社タクマ Waste heat power generation system in incinerator
JPH10160110A (en) * 1996-11-27 1998-06-19 Mitsubishi Heavy Ind Ltd Power generation plant combined with refuse incineration
JPH10267218A (en) * 1997-03-28 1998-10-09 Kubota Corp External combustion superheater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165401A (en) 1999-12-09 2001-06-22 Ishikawajima Harima Heavy Ind Co Ltd Steam generating facility
JP2001173923A (en) 1999-12-15 2001-06-29 Ishikawajima Harima Heavy Ind Co Ltd Boiler incorporated generator plant
JP2004116993A (en) 2003-11-18 2004-04-15 Chiyoda Corp Suppression method of generation rate of carbon monoxide generated from rotary heat-storage type burner device
WO2010057279A1 (en) 2008-11-24 2010-05-27 Ribeiro Sergio Vieira Guerreir High efficiency waste to energy power plants combining municipal solid waste and natural gas

Also Published As

Publication number Publication date
JP2019148377A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
JP5707546B2 (en) Solar thermal boiler system
CN1328485C (en) Waste heat steam generator
CN103344124A (en) Lime kiln waste gas waste heat electricity generating system with by-product coal gas afterburning function
EP2716881B1 (en) Steam power plant with steam turbine extraction control
JP5931693B2 (en) Method for replacement or renovation of small and medium capacity thermal power plant and method for replacement or renovation of boiler for small and medium capacity thermal power plant
EP2604821B1 (en) System and method for thermal control in a gas turbine engine
EP2136038B1 (en) Reheater temperature control
CN105401987A (en) Steam-extraction superheat utilization system for double-reheat stream turbine for heating boiler secondary air
CN110397481A (en) Promote the waste incineration and generating electricity device of main steam condition
CN108843414B (en) Working method for coupling and decoupling nuclear energy and conventional energy with reheating power generation system
CN105953216A (en) Temperature lowering structure for waste incineration boiler reheater
JP2007187352A (en) Starting method of boiler
JP7036622B2 (en) Utilization of existing boiler High steam condition boiler plant
CN116336450A (en) Flexible high-efficiency novel coal-fired generator set
JP2023554687A (en) System and method for improving start-up time of fossil fuel power generation system
WO2019198756A1 (en) Combined power plant
JP2016148343A (en) Subcritical pressure high temperature thermal power generation plant and subcritical pressure high temperature variable pressure operation once-through boiler
JP6810378B2 (en) Garbage power generation system
CN110207081A (en) A kind of subcritical superhigh temperature reheat boiler therrmodynamic system of dry coke quenching
JPS5820914A (en) Power generating plant using blast furnace gas as fuel
KR102222427B1 (en) Combustion device and power generation system able to internal flue gas recirculation
JP2020528535A (en) Method of preheating combustion gas in fluidized bed boiler equipment and fluidized bed boiler equipment
CN218409878U (en) Subcritical gas power generation system
US11015801B2 (en) Boiler and modifying method thereof
JP2019120476A (en) Marine boiler

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20210222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220113

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220303

R150 Certificate of patent or registration of utility model

Ref document number: 7036622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150