JP6810378B2 - Garbage power generation system - Google Patents

Garbage power generation system Download PDF

Info

Publication number
JP6810378B2
JP6810378B2 JP2016037457A JP2016037457A JP6810378B2 JP 6810378 B2 JP6810378 B2 JP 6810378B2 JP 2016037457 A JP2016037457 A JP 2016037457A JP 2016037457 A JP2016037457 A JP 2016037457A JP 6810378 B2 JP6810378 B2 JP 6810378B2
Authority
JP
Japan
Prior art keywords
steam
pressure turbine
boiler
power generation
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016037457A
Other languages
Japanese (ja)
Other versions
JP2017155613A (en
Inventor
秀雄 菅原
秀雄 菅原
加藤 政一
政一 加藤
瑛佑 近藤
瑛佑 近藤
小山 俊彦
俊彦 小山
州央 片山
州央 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Tokyo Denki University
Original Assignee
Tokyo Gas Co Ltd
Tokyo Denki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Tokyo Denki University filed Critical Tokyo Gas Co Ltd
Priority to JP2016037457A priority Critical patent/JP6810378B2/en
Publication of JP2017155613A publication Critical patent/JP2017155613A/en
Application granted granted Critical
Publication of JP6810378B2 publication Critical patent/JP6810378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、ごみ発電システムに関し、詳しくは、ごみ焼却の燃焼エネルギーを利用した蒸気タービン発電システムに関するものである。 The present invention relates to a waste power generation system, and more particularly to a steam turbine power generation system using combustion energy of waste incineration.

清掃工場などに併設されるごみ発電システムとしては、ごみ焼却炉の廃熱ボイラに対して、蒸気タービン発電装置を連結したシステムが一般に知られている。このようなごみ発電システムの高効率化は、主に蒸気条件の高温高圧化によってなされており、ボイラからの蒸気を高温に過熱する過熱器を設置したシステムが知られている(下記特許文献1参照)。過熱器としては、廃熱ボイラ内に設ける方式や、ガスタービンを併設して、ガスタービンの廃熱を利用する方式などがある。 As a waste power generation system installed in a cleaning factory or the like, a system in which a steam turbine power generation device is connected to a waste heat boiler of a waste incinerator is generally known. The efficiency of such a waste power generation system is improved mainly by increasing the temperature and pressure of steam conditions, and a system equipped with a superheater that superheats steam from a boiler to a high temperature is known (see Patent Document 1 below). ). As the superheater, there are a method of installing it in a waste heat boiler and a method of using the waste heat of the gas turbine by installing a gas turbine.

特開平9−4420号公報Japanese Unexamined Patent Publication No. 9-4420

過熱器を用いたごみ発電システムの高効率化は、蒸気条件を3〜4MPa・g,300〜400℃の高温高圧にすることで、発電端効率を向上させるものであるが、蒸気の高温化は、発電端効率を向上させる利点はあるものの、ボイラ(過熱管など)の高温腐食リスクを高める問題がある。ごみ発電の燃料であるごみは、塩素(Cl)分を含む特質を有している。この塩素分が燃焼過程で塩化水素(HCl)になるが、蒸気温度が300℃以上の領域では、塩化水素がボイラ管や過熱管に対して激しい高温腐食を起こすことが知られている。この高温腐食は、塩素分が少ない場合にも生起する。 To improve the efficiency of the waste power generation system using a superheater, the steam conditions are set to high temperature and high pressure of 3 to 4 MPa · g and 300 to 400 ° C to improve the power generation end efficiency, but the steam temperature is increased. Has the advantage of improving power generation end efficiency, but has the problem of increasing the risk of high temperature corrosion of boilers (superheater tubes, etc.). Garbage, which is the fuel for power generation, has the property of containing chlorine (Cl). This chlorine content becomes hydrogen chloride (HCl) in the combustion process, and it is known that hydrogen chloride causes severe high-temperature corrosion on boiler tubes and superheated tubes in the region where the steam temperature is 300 ° C. or higher. This high temperature corrosion also occurs when the chlorine content is low.

このため、ごみ焼却ボイラにおいては、一般に蒸気温度の制限が設けられている。しかしながら、近年、過熱管に高価な耐食性材料を使用するなどして、蒸気条件を4MPa・g,400℃程度にすることで、高効率発電を目指す事例が増加している。このような場合、高価な耐食性材料を使用したとしても、高温腐食そのものをなくすることはできないので、長期の安定した継続運転を実現するには、過熱管の定期的な交換が避けられず、多大な補修費が必要になる問題がある。 For this reason, in the waste incineration boiler, the steam temperature is generally limited. However, in recent years, there have been an increasing number of cases in which high-efficiency power generation is aimed at by setting the steam conditions to about 4 MPa / g and 400 ° C. by using an expensive corrosion-resistant material for the superheat tube. In such a case, even if an expensive corrosion-resistant material is used, the high-temperature corrosion itself cannot be eliminated. Therefore, in order to realize stable continuous operation for a long period of time, it is inevitable to replace the superheat tube regularly. There is a problem that a large amount of repair costs are required.

本発明は、このような問題に対処することを課題とするものである。すなわち、ごみ発電システムの高効率化を実現するに際して、ボイラの高温腐食リスクをなくすこと、多大な補修費を要すること無く、高効率で安定したごみ発電システムの継続運転を可能にすること、などが本発明の課題である。 An object of the present invention is to deal with such a problem. In other words, when achieving high efficiency of the waste power generation system, it is possible to eliminate the risk of high temperature corrosion of the boiler, enable continuous operation of the highly efficient and stable waste power generation system without requiring a large repair cost, etc. Is the subject of the present invention.

このような課題を解決するために、本発明によるごみ発電システムは、以下の構成を具備するものである。 In order to solve such a problem, the waste power generation system according to the present invention has the following configurations.

ごみ焼却の廃熱によって加熱されるボイラと、前記ボイラからの蒸気で駆動される蒸気タービン発電装置とを備え、前記蒸気タービン発電装置は、前記ボイラから高温腐食を生じない温度である270℃程度以下の蒸気が供給される高圧タービンと、前記高圧タービンの排気が供給される中低圧タービンと、前記中低圧タービンの排気を復水して前記ボイラに供給する給水経路を備え、 前記高圧タービンの排気は除湿器を介して前記中低圧タービンに供給され、 前記給水経路には、前記中低圧タービンから抽気した蒸気が供給される給水加熱器が設けられており、前記ボイラには過熱器が設けられておらず、かつ、前記ボイラと前記高圧タービンの入口は、過熱器を有さない蒸気経路で接続されており、前記ボイラからの蒸気の一部が、前記高圧タービンの排気の再熱利用の熱源として用いられていることを特徴とするごみ発電システム。
A boiler heated by waste heat from waste incineration and a steam turbine power generation device driven by steam from the boiler are provided, and the steam turbine power generation device has a temperature of about 270 ° C., which is a temperature at which high-temperature corrosion does not occur from the boiler. A high-pressure turbine to which the following steam is supplied, a medium-low pressure turbine to which the exhaust of the high-pressure turbine is supplied, and a water supply path for returning the exhaust of the medium-low pressure turbine to the boiler are provided. Exhaust is supplied to the medium-low pressure turbine via a dehumidifier, and the water supply path is provided with a water supply heater to which steam extracted from the medium-low pressure turbine is supplied, and the boiler is provided with a superheater. The boiler and the inlet of the high-pressure turbine are connected by a steam path that does not have a superheater, and a part of the steam from the boiler reheats the exhaust of the high-pressure turbine. A waste power generation system characterized by being used as a heat source for boilers.

このような特徴を有するごみ発電システムは、ボイラから高温腐食を生じない温度の蒸気が高圧タービンに供給されるので、ボイラの高温腐食リスクをなくすことができ、また、高圧タービンの排気が除湿器を介して中低圧タービンに供給され、且つ、中低圧タービンから抽気した蒸気によって給水加熱が行われるので、蒸気温度を高温にすることなく高効率の発電を行うことができる。 In the waste power generation system having such characteristics, steam at a temperature that does not cause high temperature corrosion is supplied from the boiler to the high pressure turbine, so that the risk of high temperature corrosion of the boiler can be eliminated, and the exhaust of the high pressure turbine is a dehumidifier. Since the water supply is heated by the steam extracted from the medium-low pressure turbine and supplied to the medium-low pressure turbine via the above, high-efficiency power generation can be performed without raising the steam temperature to a high temperature.

本発明の実施形態に係るごみ発電システムの要部を示した説明図である。It is explanatory drawing which showed the main part of the waste power generation system which concerns on embodiment of this invention. 本発明の実施形態に係るごみ発電システムが併設される清掃工場フローシートを示した説明図である。It is explanatory drawing which showed the flow sheet of the cleaning plant to which the waste power generation system which concerns on embodiment of this invention is attached. 本発明の実施形態に係るごみ発電システムにおける蒸気スチーム発電装置のシステム構成例を示した説明図である。It is explanatory drawing which showed the system configuration example of the steam steam power generation apparatus in the waste power generation system which concerns on embodiment of this invention.

以下、図面を参照して本発明の実施形態を説明する。図1は、本発明の実施形態に係るごみ発電システムの要部を示している。ごみ発電システム1は、ボイラ10と、ボイラ10からの蒸気で駆動される蒸気タービン発電装置2とを備えている。ボイラ10は、図示省略したごみ焼却炉の廃熱によって加熱され、高温腐食を起こさない程度の温度(300℃未満)の蒸気を発生させるものである。蒸気タービン発電装置2は、ボイラ10からの蒸気で駆動する蒸気タービン2Aと、蒸気タービン2Aにより駆動される発電機2Bを備えている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a main part of a waste power generation system according to an embodiment of the present invention. The waste power generation system 1 includes a boiler 10 and a steam turbine power generation device 2 driven by steam from the boiler 10. The boiler 10 is heated by the waste heat of a waste incinerator (not shown) and generates steam at a temperature (less than 300 ° C.) that does not cause high-temperature corrosion. The steam turbine power generation device 2 includes a steam turbine 2A driven by steam from the boiler 10 and a generator 2B driven by the steam turbine 2A.

蒸気タービン2Aは、高圧タービン11と中低圧タービン12とを備え、これらと発電機2Bが同軸に接続されている。ボイラ10と高圧タービン11の入口とは、過熱器を有さない蒸気経路S1で接続されており、高圧タービン11の出口と中低圧タービン12の入口とは、除湿器13を介した蒸気経路S2で接続されている。また、中低圧タービン12の出口は復水器14に接続され、復水器14からの給水経路W1がボイラ10に接続されている。そして、中低圧タービン12から抽気された蒸気経路S3が給水経路に設けられる給水加熱器15に接続されている。 The steam turbine 2A includes a high-pressure turbine 11 and a medium-low-pressure turbine 12, and the generator 2B is coaxially connected to these. The boiler 10 and the inlet of the high-pressure turbine 11 are connected by a steam path S1 having no superheater, and the outlet of the high-pressure turbine 11 and the inlet of the medium-low pressure turbine 12 are connected to the steam path S2 via the dehumidifier 13. It is connected with. Further, the outlet of the medium-low pressure turbine 12 is connected to the condenser 14, and the water supply path W1 from the condenser 14 is connected to the boiler 10. Then, the steam path S3 extracted from the medium-low pressure turbine 12 is connected to the feed water heater 15 provided in the feed water supply path.

このようなごみ発電システム1の蒸気タービン発電装置2では、ボイラ10から高温腐食を生じない温度の蒸気が高圧タービン11に供給され、高圧タービン11の排気が中低圧タービン12に供給され、中低圧タービン12の排気が復水器14にて復水されて、給水経路W1を経由してボイラ10に供給される。ここで、高圧タービン11の排気は除湿器13を介して除湿されることで、乾き度が高く比エンタルピーが上昇した飽和蒸気となって中低圧タービン12に供給される。また、給水経路W1を経由してボイラ10に戻る水は、中低圧タービン12から抽気した蒸気が供給される給水加熱器15によって加熱される。 In the steam turbine power generation device 2 of such a waste power generation system 1, steam at a temperature that does not cause high temperature corrosion is supplied from the boiler 10 to the high pressure turbine 11, and the exhaust of the high pressure turbine 11 is supplied to the medium and low pressure turbine 12, and the medium and low pressure turbines. The exhaust of 12 is restored by the condenser 14, and is supplied to the boiler 10 via the water supply path W1. Here, the exhaust of the high-pressure turbine 11 is dehumidified via the dehumidifier 13 to become saturated steam having a high degree of dryness and an increased specific enthalpy, and is supplied to the medium- and low-pressure turbine 12. Further, the water returning to the boiler 10 via the water supply path W1 is heated by the feed water heater 15 to which the steam extracted from the medium-low pressure turbine 12 is supplied.

このようなごみ発電システム1によると、ボイラ10からの蒸気を過熱することなく高圧タービン11に供給するので、従来問題となっていたごみ中の塩素分に起因するボイラ10の高温腐食を避けることができる。これにより、長期間に亘りボイラ水管などの交換が不要になり、メンテナンスコストを抑えながら安心安全な運転を長期間行うことができる。また、高温腐食リスクをなくすことで、ボイラ各部には、高価な耐食性材料を用いる必要が無く、初期の設備費用を抑えることもできる。 According to such a waste power generation system 1, since the steam from the boiler 10 is supplied to the high-pressure turbine 11 without overheating, it is possible to avoid high-temperature corrosion of the boiler 10 due to chlorine content in the waste, which has been a problem in the past. it can. As a result, it is not necessary to replace the boiler water pipe or the like for a long period of time, and safe and secure operation can be performed for a long period of time while suppressing maintenance costs. Further, by eliminating the risk of high temperature corrosion, it is not necessary to use an expensive corrosion-resistant material for each part of the boiler, and the initial equipment cost can be suppressed.

更に、ボイラ10には過熱器を設けないので、ボイラ10の構造が単純になり、ボイラ10の製造・組み立てが容易になる。また、熱貫流率は、一般に過熱器に比べてボイラ本体部の方が高くとれるため、過熱器を無くすことで、同一交換熱量であれば、ボイラ10の伝熱面積を小さくできる。よって、ボイラ10全体の構造が簡単になりコンパクト化が可能になる。 Further, since the boiler 10 is not provided with a superheater, the structure of the boiler 10 is simplified, and the boiler 10 can be easily manufactured and assembled. Further, since the thermal transmission rate of the boiler main body is generally higher than that of the superheater, the heat transfer area of the boiler 10 can be reduced by eliminating the superheater if the amount of heat exchanged is the same. Therefore, the structure of the entire boiler 10 becomes simple and compact.

そして、高圧タービン11の排気を除湿器13で除湿することで比エンタルピーを上昇させて中低圧タービン12に供給し、中低圧タービン12の排気を復水してボイラ10に戻す給水経路W1に、中低圧タービン12の抽気よって過熱される給水加熱器15を設けたので、熱効率の高い蒸気タービンサイクルを実現することができ、ごみ発電システム1の高効率化が可能になる。 Then, the exhaust of the high-pressure turbine 11 is dehumidified by the dehumidifier 13, so that the specific enthalpy is increased and supplied to the medium-low pressure turbine 12, and the exhaust of the medium-low pressure turbine 12 is restored to the boiler 10 in the feed water path W1. Since the feed water heater 15 that is overheated by the extraction air of the medium-low pressure turbine 12 is provided, a steam turbine cycle with high thermal efficiency can be realized, and the efficiency of the waste power generation system 1 can be improved.

図2は、本発明の実施形態に係るごみ発電システムが設けられる清掃工場の一例を示している。ごみReが投入されるごみ焼却炉20は、1次空気が供給されるストーカ炉21と燃焼ガスが供給される1次燃焼炉と2次空気が供給される2次燃焼炉23などを備えており、ごみ焼却炉20に併設してボイラ10が設置されている。ボイラ10は、ボイラ本体10Pと、ごみ焼却炉20の排ガスの余熱を利用して給水の予熱を行うエコノマイザ(ECO)10Aと、ドラム10Bを備えており、エコノマイザ10Aで予熱された給水がごみ焼却炉20の廃熱で加熱されるドラム10Bに送られ、ドラム10Bで高圧タービン11に供給される蒸気を発生させる。ここで発生する蒸気は、300℃未満の温度に抑えられた高温腐食リスクのない蒸気である。 FIG. 2 shows an example of a cleaning plant provided with a waste power generation system according to an embodiment of the present invention. The waste incinerator 20 into which the waste Re is charged includes a stoker furnace 21 to which the primary air is supplied, a primary combustion furnace to which the combustion gas is supplied, a secondary combustion furnace 23 to which the secondary air is supplied, and the like. A boiler 10 is installed next to the waste incinerator 20. The boiler 10 includes an economizer (ECO) 10A that preheats water supply by using the residual heat of the boiler main body 10P, the exhaust gas of the waste incinerator 20, and a drum 10B, and the water supply preheated by the economizer 10A incinerates waste. It is sent to the drum 10B heated by the waste heat of the furnace 20, and the drum 10B generates steam to be supplied to the high-pressure turbine 11. The steam generated here is steam that is suppressed to a temperature of less than 300 ° C. and has no risk of high temperature corrosion.

ボイラ10(エコノマイザ10A)を通過したごみ焼却炉20の排ガスは、誘引通風機26で誘引されて排気筒27から放散されるが、誘引通風機26に至る前に、Na系薬剤が投入されるバッグフィルタ24を通過することでフライアッシュが除かれ、NOx還元触媒25を通過することでNOxが除去される。 The exhaust gas from the waste incinerator 20 that has passed through the boiler 10 (economizer 10A) is attracted by the attracting ventilator 26 and dissipated from the exhaust stack 27, but Na-based chemicals are introduced before reaching the attracting ventilator 26. Fly ash is removed by passing through the bag filter 24, and NOx is removed by passing through the NOx reduction catalyst 25.

図3は、本発明の実施形態における蒸気タービン発電装置のシステム構成例を示している。前述した説明と重複する部位には同一符号を付して重複説明を省略する。図3において、実線が蒸気流通ラインであり、一点破線が水流通ラインである。蒸気流通ラインには、圧力制御弁V1又は常時閉弁V2が適宜設けられ、水流通ラインには、レベル制御弁V3が適宜設けられる。 FIG. 3 shows a system configuration example of the steam turbine power generation device according to the embodiment of the present invention. The same reference numerals are given to parts that overlap with the above description, and duplicate description will be omitted. In FIG. 3, the solid line is the steam distribution line, and the dashed line is the water distribution line. A pressure control valve V1 or a normally closed valve V2 is appropriately provided in the steam flow line, and a level control valve V3 is appropriately provided in the water flow line.

図示の例において、ボイラ10で発生した蒸気は、圧力制御弁V1と調速弁Vsを介して、高圧タービン11の入口に供給される。また、ボイラ10からの蒸気の一部は、蒸気再熱用の熱源として用いられ、後述する再熱器16に供給される。 In the illustrated example, the steam generated in the boiler 10 is supplied to the inlet of the high-pressure turbine 11 via the pressure control valve V1 and the speed control valve Vs. Further, a part of the steam from the boiler 10 is used as a heat source for steam reheating and is supplied to the reheater 16 described later.

高圧タービン11の出口から排気された蒸気は、その一部がプロセスPの脱気器17用加熱蒸気及び施設の場内の熱として利用され、その余の蒸気は、除湿器13に導かれる。除湿器13で発生するドレンは脱気器17に導かれる。 A part of the steam exhausted from the outlet of the high-pressure turbine 11 is used as the heating steam for the dehumidifier 17 of the process P and the heat in the facility, and the remaining steam is guided to the dehumidifier 13. The drain generated in the dehumidifier 13 is guided to the dehumidifier 17.

ここで、ボイラ(エコノマイザ付き自然循環式廃熱ボイラ)10の運転圧力は、例えば、5.4MPa・gの飽和蒸気であり、その温度は、高温腐食のリスクがない270℃程度とする。このボイラ10には過熱器は設けない。そして、高圧タービン11の排気は、例えば、圧力0.9MPa・g、温度180℃、乾き度88%程度の飽和蒸気になるが、一部の蒸気の熱利用と除湿器13による除湿によって、乾き度99%以上の飽和蒸気となる。 Here, the operating pressure of the boiler (natural circulation type waste heat boiler with economizer) 10 is, for example, saturated steam of 5.4 MPa · g, and the temperature thereof is about 270 ° C. where there is no risk of high temperature corrosion. No superheater is provided in the boiler 10. The exhaust of the high-pressure turbine 11 becomes saturated steam having a pressure of 0.9 MPa · g, a temperature of 180 ° C., and a dryness of about 88%, but it dries by using the heat of some steam and dehumidifying with the dehumidifier 13. It becomes saturated steam with a degree of 99% or more.

そして、除湿器13出口の乾き飽和蒸気は、さらに再熱器16に導かれ、圧力0.8MPa・g、温度220℃程度の過熱蒸気となって、調速弁Vsを介して中低圧タービン12の入口に供給される。再熱器16の熱源は、前述したように、ボイラ10の発生蒸気を利用している。再熱器16の加熱後のドレン水は、再熱器用フラッシュタンク18に送ることでフラッシュさせ、フラッシュ蒸気を再熱器16の入口部で回収し、残余のドレン水はレベル制御弁V3を介して脱気器17に送られる。 Then, the dry saturated steam at the outlet of the dehumidifier 13 is further guided to the reheater 16 to become superheated steam having a pressure of 0.8 MPa · g and a temperature of about 220 ° C., and the medium-low pressure turbine 12 via the speed governor Vs. It is supplied to the entrance of. As described above, the heat source of the reheater 16 utilizes the steam generated by the boiler 10. The drain water after heating of the reheater 16 is flushed by sending it to the flash tank 18 for the reheater, the flash steam is collected at the inlet of the reheater 16, and the remaining drain water is passed through the level control valve V3. Is sent to the deaerator 17.

中低圧タービン12に供給された蒸気は、中低圧タービン12の途中段で抽気され、圧力制御弁V1を介して給水加熱器15に送られてボイラ給水の加熱を行う。中低圧タービン12に供給された蒸気の残余は、中低圧タービン12の出口から排気され、全て空冷式の復水器14に導かれ、凝縮して復水としてタンク14Aに溜められる。中低圧タービン12の排気は、例えば、排気圧力が外気温度20℃で10.1kPa・a,温度46℃程度の飽和蒸気、外気温度32℃で18.8kPa・a,温度58℃程度の飽和蒸気となる。 The steam supplied to the medium-low pressure turbine 12 is extracted in the middle stage of the medium-low pressure turbine 12 and sent to the feed water heater 15 via the pressure control valve V1 to heat the boiler feed water. The residual steam supplied to the medium- and low-pressure turbine 12 is exhausted from the outlet of the medium- and low-pressure turbine 12, and all of it is guided to the air-cooled condenser 14, condensed and stored in the tank 14A as condensate. The exhaust of the medium-low pressure turbine 12 is, for example, saturated steam having an exhaust pressure of about 10.1 kPa · a and a temperature of about 46 ° C. at an outside air temperature of 20 ° C., and saturated steam having an outside air temperature of about 18.8 kPa · a and a temperature of about 58 ° C. It becomes.

中低圧タービン12で抽気した蒸気は、給水加熱器15を経由した後、フラッシュタンク19に送られ、フラッシュ蒸気は復水されてタンク14Aに送られ、フラッシュタンク19における残余のドレン水は、レベル制御弁V3を介してタンク14Aに送られる。 The steam extracted by the medium-low pressure turbine 12 is sent to the flush tank 19 after passing through the feed water heater 15, the flush steam is restored and sent to the tank 14A, and the residual drain water in the flush tank 19 is leveled. It is sent to the tank 14A via the control valve V3.

タンク14に溜められた復水は、復水ポンプ28によって給水経路W1を通って一端脱気器17に送られ、脱気器17から給水ポンプ29によって給水経路W2を通ってボイラ10に供給される(給水経路W1,W2には必要に応じてレベル制御弁V3が設けられる。)。 The condensate stored in the tank 14 is once sent to the deaerator 17 through the water supply path W1 by the condensate pump 28, and is supplied from the deaerator 17 to the boiler 10 through the water supply path W2 by the water supply pump 29. (A level control valve V3 is provided in the water supply paths W1 and W2 as needed).

このような蒸気タービン発電装置2は、蒸気タービン2Aを駆動する蒸気サイクルにおいて、高圧タービン11の入口と中低圧タービン12の出口との間の熱落差は、過熱器を採用した高温高圧方式のものと比べて減少することになるが、ボイラ10の出口エンタルピーが高温高圧方式のものよりも低いのでボイラ10の発生蒸気量が増加する。また、除湿器13と再熱器16の採用によって増加するエンタルピーによって前述した熱落差をカバーすることになり、中低圧タービン12の出口エンタルピーが高温高圧方式のものより低くなる。これにより、発電端効率を実質的に高温高圧方式のものよりも向上させることが可能になる。なお、図3に示した構成例では、高圧タービン11の入口蒸気の比容積(m3/kg)を高温高圧方式のものに比べて小さくすることができるので、高効率化を実現しながらタービンの小型化が可能になる。 In such a steam turbine power generation device 2, in the steam cycle for driving the steam turbine 2A, the heat drop between the inlet of the high pressure turbine 11 and the outlet of the medium and low pressure turbine 12 is a high temperature and high pressure system using a superheater. However, since the outlet enthalpy of the boiler 10 is lower than that of the high-temperature and high-pressure system, the amount of steam generated by the boiler 10 increases. Further, the above-mentioned heat drop is covered by the enthalpy increased by the adoption of the dehumidifier 13 and the reheater 16, and the outlet enthalpy of the medium-low pressure turbine 12 is lower than that of the high-temperature and high-pressure system. This makes it possible to substantially improve the power generation end efficiency as compared with the high temperature and high pressure method. In the configuration example shown in FIG. 3, the specific volume (m 3 / kg) of the inlet steam of the high-pressure turbine 11 can be made smaller than that of the high-temperature and high-pressure system, so that the turbine can be made highly efficient. Can be miniaturized.

以上説明したように、本発明の実施形態に係るごみ発電システム1は、ボイラ10の発生蒸気を高温高圧にすることなく、高効率化が可能になる。これによって、ボイラ10の高温腐食リスクをなくしながら、ごみ発電システム1の高効率化を行うことができる。このため、ボイラ部品に高価な耐食性材料を用いる必要が無く、初期コストとメンテナンスコストを抑えながら、高効率で安定したごみ発電システムの継続運転を行うことができる。 As described above, the waste power generation system 1 according to the embodiment of the present invention can be made highly efficient without making the steam generated by the boiler 10 high temperature and high pressure. As a result, the efficiency of the waste power generation system 1 can be improved while eliminating the risk of high-temperature corrosion of the boiler 10. Therefore, it is not necessary to use an expensive corrosion-resistant material for the boiler parts, and it is possible to continuously operate the waste power generation system with high efficiency and stability while suppressing the initial cost and the maintenance cost.

以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and the design changes, etc. within the range not deviating from the gist of the present invention, etc. Even if there is, it is included in the present invention. Further, each of the above-described embodiments can be combined by diverting the technologies of each other as long as there is no particular contradiction or problem in the purpose and configuration thereof.

1:ごみ発電システム,2:蒸気タービン発電装置,
2A:蒸気タービン,2B:発電機,
10:ボイラ, 10A:エコノマイザ,10B:ドラム,
11:高圧タービン,12:中低圧タービン,13:除湿器,
14:復水器,15:給水加熱器,16:再熱器,17:脱気器,
18:再熱器用フラッシュタンク,19:フラッシュタンク,
20:ごみ焼却炉,21:ストーカ炉,22:一次燃焼炉,23:2次燃焼炉,
24:バッグフィルタ,25:NOx還元触媒,26:誘引通風機,
27:排気筒,28:復水ポンプ,29:給水ポンプ,
S1,S2,S3:蒸気経路,W1,W2:給水経路,
V1:圧力制御弁,V2:常時閉弁,V3:レベル制御弁,Vs:調速弁
1: Garbage power generation system, 2: Steam turbine power generation equipment,
2A: Steam turbine, 2B: Generator,
10: Boiler, 10A: Economizer, 10B: Drum,
11: High pressure turbine, 12: Medium and low pressure turbine, 13: Dehumidifier,
14: Condenser, 15: Feed water heater, 16: Reheater, 17: Deaerator,
18: Flash tank for reheater, 19: Flash tank,
20: Waste incinerator, 21: Stalker furnace, 22: Primary combustion furnace, 23: Secondary combustion furnace,
24: Bag filter, 25: NOx reduction catalyst, 26: Ventilator,
27: Exhaust pipe, 28: Condensate pump, 29: Water supply pump,
S1, S2, S3: steam path, W1, W2: water supply path,
V1: Pressure control valve, V2: Always closed valve, V3: Level control valve, Vs: Speed control valve

Claims (4)

ごみ焼却の廃熱によって加熱されるボイラと、前記ボイラからの蒸気で駆動される蒸気タービン発電装置とを備え、
前記蒸気タービン発電装置は、
前記ボイラから高温腐食を生じない温度である270℃程度以下の蒸気が供給される高圧タービンと、前記高圧タービンの排気が供給される中低圧タービンと、前記中低圧タービンの排気を復水して前記ボイラに供給する給水経路を備え、
前記高圧タービンの排気は除湿器を介して前記中低圧タービンに供給され、
前記給水経路には、前記中低圧タービンから抽気した蒸気が供給される給水加熱器が設けられており、
前記ボイラには過熱器が設けられておらず、かつ、前記ボイラと前記高圧タービンの入口は、過熱器を有さない蒸気経路で接続されており、
前記ボイラからの蒸気の一部が、前記高圧タービンの排気の再熱利用の熱源として用いられていることを特徴とするごみ発電システム。
It is equipped with a boiler that is heated by the waste heat of waste incineration and a steam turbine power generator driven by steam from the boiler.
The steam turbine power generator
The high-pressure turbine to which steam of about 270 ° C. or lower , which is a temperature at which high-temperature corrosion does not occur, is supplied from the boiler, the medium-low-pressure turbine to which the exhaust of the high-pressure turbine is supplied, and the exhaust of the medium-low-pressure turbine are condensed. Equipped with a water supply route to supply the boiler
The exhaust gas of the high pressure turbine is supplied to the medium and low pressure turbine via a dehumidifier.
A feed water heater for supplying steam extracted from the medium-low pressure turbine is provided in the feed water supply path.
The boiler is not provided with a superheater, and the boiler and the inlet of the high-pressure turbine are connected by a steam path having no superheater.
A waste power generation system characterized in that a part of steam from the boiler is used as a heat source for reheating the exhaust gas of the high-pressure turbine.
記除湿器を介した蒸気は、前記蒸気経路からの蒸気が供給され前記ボイラの外に設置された再熱器によって再熱されて、前記中低圧タービンに供給されることを特徴とする請求項1記載のごみ発電システム。 Steam through the pre-Symbol dehumidifier claims steam from the steam path is reheated by the reheater which is supplied located outside of the boiler, characterized in that it is supplied in said low pressure turbine Item 1 The waste power generation system. 前記蒸気タービン発電装置の発電器は、前記高圧タービン及び前記中低圧タービンと同時に設置されることを特徴とする請求項1又は2記載のごみ発電システム。 The waste power generation system according to claim 1 or 2, wherein the generator of the steam turbine power generation device is installed at the same time as the high-pressure turbine and the medium-low pressure turbine. 前記高圧タービンの排気は、一部が前記給水経路に設けられる脱気器の加熱に用いられることを特徴とする請求項1〜3のいずれか1項記載のごみ発電システム。
The waste power generation system according to any one of claims 1 to 3, wherein a part of the exhaust gas of the high-pressure turbine is used for heating a deaerator provided in the water supply path.
JP2016037457A 2016-02-29 2016-02-29 Garbage power generation system Active JP6810378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016037457A JP6810378B2 (en) 2016-02-29 2016-02-29 Garbage power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016037457A JP6810378B2 (en) 2016-02-29 2016-02-29 Garbage power generation system

Publications (2)

Publication Number Publication Date
JP2017155613A JP2017155613A (en) 2017-09-07
JP6810378B2 true JP6810378B2 (en) 2021-01-06

Family

ID=59809474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016037457A Active JP6810378B2 (en) 2016-02-29 2016-02-29 Garbage power generation system

Country Status (1)

Country Link
JP (1) JP6810378B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7373801B2 (en) * 2019-06-17 2023-11-06 株式会社タクマ Waste power generation system and its operation method
CN112228172B (en) * 2020-10-27 2024-05-31 国电环境保护研究院有限公司 Regeneration heat source system of flue gas desulfurization and denitrification device by coal-based catalysis method of coal-fired power plant

Also Published As

Publication number Publication date
JP2017155613A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP3783195B2 (en) Current generation in a combined power plant with gas and steam turbines.
CN102016411B (en) High efficiency feedwater heater
JP6034154B2 (en) Waste heat recovery equipment, waste heat recovery method and waste treatment furnace
JP5624646B1 (en) Thermal power plant and operation method of thermal power plant.
JP6224858B1 (en) Power plant and operation method thereof
CN110397481A (en) Promote the waste incineration and generating electricity device of main steam condition
JP6810378B2 (en) Garbage power generation system
KR20160093030A (en) Combined cycle system
JP2014084820A (en) Subcritical pressure high temperature caloric power-generating plant and subcritical pressure high temperature transformation operation once-through boiler
US10287922B2 (en) Steam turbine plant, combined cycle plant provided with same, and method of operating steam turbine plant
CN105953216A (en) Temperature lowering structure for waste incineration boiler reheater
KR101690384B1 (en) Waste heat recovery apparatus for combustion furnace and method thereof
JP2017133500A (en) Method for operating steam power generation plant and steam power generation plant for conducting the method
JP6516993B2 (en) Combined cycle plant and boiler steam cooling method
JP2016148343A (en) Subcritical pressure high temperature thermal power generation plant and subcritical pressure high temperature variable pressure operation once-through boiler
JP6057803B2 (en) Gas turbine plant and method of operating gas turbine plant
CN206281365U (en) A kind of high-temp waste gas afterheat utilizing system
JP5766527B2 (en) Method and apparatus for controlling once-through boiler
JP6891090B2 (en) Power plant and its operation method
JP7373801B2 (en) Waste power generation system and its operation method
JP2020029977A (en) Temporary piping system for blowing-out of boiler and method for blowing out boiler
CN218409878U (en) Subcritical gas power generation system
JPH07243305A (en) Waste heat recovery combined plant for garbage burning incinerator
JP7036622B2 (en) Utilization of existing boiler High steam condition boiler plant
JP5690954B1 (en) Conventional thermal power plant and conventional thermal power generation method

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201124

R150 Certificate of patent or registration of utility model

Ref document number: 6810378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250