JP2002147701A - Exhaust heat recovery steam generating device - Google Patents

Exhaust heat recovery steam generating device

Info

Publication number
JP2002147701A
JP2002147701A JP2000340790A JP2000340790A JP2002147701A JP 2002147701 A JP2002147701 A JP 2002147701A JP 2000340790 A JP2000340790 A JP 2000340790A JP 2000340790 A JP2000340790 A JP 2000340790A JP 2002147701 A JP2002147701 A JP 2002147701A
Authority
JP
Japan
Prior art keywords
exhaust gas
superheater
steam
economizer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000340790A
Other languages
Japanese (ja)
Inventor
Tomomasa Usui
奉賢 碓井
Hiroshi Kawazoe
博 川添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2000340790A priority Critical patent/JP2002147701A/en
Publication of JP2002147701A publication Critical patent/JP2002147701A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust heat recovery steam generating device which enables control of generated steam amount and steam temperature at the side of an exhaust heat recovery boiler without relying on the loaded condition of an exhaust gas generation source. SOLUTION: Exhaust gas bypaths 7, 10, 13 are provided to the region adjacent to a heat exchanger set-up region in an exhaust gas channel, for at least one of superheater 5, an evaporator 8, a reheater (not shown) and an economizer 11, and further, exhaust gas flow rate distributors 6, 9, 12 are disposed at the upstream side of the heat exchanger set-up region and the adjacent region. For instance, when the required temperature of the steam at the exit of the superheater is lowered, the distributor 6 at the upstream of the superheater is controlled to increase the flow rate of the combustion exhaust gas that passes through the bypath 7, so that the flow rate of the exhaust gas that passes through the superheater 5 is reduced. As a result, the heat exchange rate at the superheater 5 is lowered, making it possible to lower the steam temperature at the exit of the superheater.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排熱回収蒸気発生
装置に関し、特に、蒸気発生量と蒸気温度を制御できる
排熱回収蒸気発生装置(排熱回収ボイラ)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat recovery steam generator, and more particularly to an exhaust heat recovery steam generator (exhaust heat recovery boiler) capable of controlling the amount of generated steam and the steam temperature.

【0002】[0002]

【従来の技術】排熱回収ボイラの一例として、従来の単
圧式排熱回収ボイラのシステムを図3に示す。排ガス発
生源1から排出された燃焼排ガス2は入口ダクト3を通
過して排熱回収ボイラ4内に流入する。排熱回収ボイラ
4には、過熱器5’、蒸発器8’、節炭器11’(又は
図示していない再熱器が配置されることもある)の各バ
ンクが設置されている。節炭器11’に供給され、順次
前記各バンク内を通過するボイラ給水と燃焼排ガス2と
が熱交換することによって、ボイラ給水15は過熱蒸気
まで過熱される。また、排熱回収ボイラ4内に流入して
熱交換されて温度低下した排ガスは煙突14から排出さ
れる。
2. Description of the Related Art As an example of an exhaust heat recovery boiler, FIG. 3 shows a system of a conventional single-pressure type exhaust heat recovery boiler. The combustion exhaust gas 2 discharged from the exhaust gas generation source 1 passes through the inlet duct 3 and flows into the exhaust heat recovery boiler 4. Each bank of the superheater 5 ', the evaporator 8', and the economizer 11 '(or a reheater (not shown) may be arranged) is installed in the exhaust heat recovery boiler 4. The boiler feedwater 15 is superheated to superheated steam by the heat exchange between the boiler feedwater and the flue gas 2 which are supplied to the economizer 11 'and sequentially pass through the respective banks. Further, the exhaust gas which has flowed into the exhaust heat recovery boiler 4 and has been subjected to heat exchange to lower the temperature is discharged from the chimney 14.

【0003】ボイラ給水15は給水ポンプ16から節炭
器11’に供給され加熱された後、一旦汽水分離ドラム
17に貯められた後、蒸発器8’に供給されて加熱さ
れ、汽水混合物となり再び汽水分離器17に戻され、こ
こで分離された蒸気が過熱器5’に供給されて、過熱蒸
気18’となり、該過熱蒸気18’が蒸気機関等に送ら
れる。このとき過熱蒸気18’の温度調節が減温器22
で行われる。
[0003] The boiler feed water 15 is supplied from a feed pump 16 to a economizer 11 'and heated, then temporarily stored in a steam separator drum 17, and then supplied to an evaporator 8' and heated to form a brackish water mixture again. The steam is returned to the steam separator 17, and the separated steam is supplied to a superheater 5 'to become a superheated steam 18', which is sent to a steam engine or the like. At this time, the temperature of the superheated steam 18 'is adjusted by the cooler 22.
Done in

【0004】図4には、図3に示すボイラ4の排ガス側
及び蒸気−給水側の温度分布線図を示す。排ガス発生源
1から排出された燃焼排ガス2は入口ダクト3を通過
後、過熱器5’に流入する。過熱器5’に流入した燃焼
排ガス2は過熱器5’で蒸気と熱交換して温度が低下
し、蒸発器8’の前流部では燃焼排ガス23’となる。
次に排ガス23’は蒸発器8’に流入し、蒸発器8’内
の蒸気と熱交換することで温度が低下して節炭器前流部
では燃焼排ガス24’となる。次に排ガス24’は節炭
器11’に流入して給水15と熱交換して、排ガス温度
が低下し、燃焼排ガス25’となり、煙突14から排出
する。
FIG. 4 shows a temperature distribution diagram on the exhaust gas side and the steam-water supply side of the boiler 4 shown in FIG. The combustion exhaust gas 2 discharged from the exhaust gas generation source 1 flows into the superheater 5 'after passing through the inlet duct 3. The flue gas 2 flowing into the superheater 5 'exchanges heat with steam in the superheater 5' to lower the temperature, and becomes a flue gas 23 'at the upstream of the evaporator 8'.
Next, the exhaust gas 23 'flows into the evaporator 8' and exchanges heat with the steam in the evaporator 8 ', whereby the temperature is reduced and becomes exhaust gas 24' in the upstream part of the economizer. Next, the exhaust gas 24 ′ flows into the economizer 11 ′ and exchanges heat with the feedwater 15, so that the temperature of the exhaust gas is reduced to become a combustion exhaust gas 25 ′ and discharged from the chimney 14.

【0005】図4に示すように排ガス発生源1から排出
された燃焼排ガス2は過熱器5’、蒸発器8’、節炭器
11’を通過する毎に温度低下するが、当然ながら、排
ガス温度は各バンクを通過して連続的に低下する。
As shown in FIG. 4, the temperature of the combustion exhaust gas 2 discharged from the exhaust gas generation source 1 decreases every time it passes through the superheater 5 ', the evaporator 8', and the economizer 11 '. The temperature decreases continuously through each bank.

【0006】一方、ボイラ給水ポンプ16にて加圧され
た給水15は節炭器11’で加熱されて温度上昇した
後、汽水分離ドラム17中に送られて汽水混合状態で定
温となる。汽水分離器17から蒸発器8’に送られた給
水は過熱器5’で過熱されて過熱器出口の過熱蒸気1
8’が得られる。過熱器出口蒸気18’は、減温器22
によりスプレー水を注入して蒸気温度を要求温度まで低
下された後、需要設備に送気される。
On the other hand, the feed water 15 pressurized by the boiler feed pump 16 is heated by the economizer 11 ′ and rises in temperature, and then sent into the brackish water separating drum 17 to be kept at a constant temperature in a brackish water mixed state. The feedwater sent from the steam separator 17 to the evaporator 8 'is superheated by the superheater 5' and the superheated steam 1 at the superheater outlet is discharged.
8 'is obtained. The superheater outlet steam 18 ′ is supplied to the desuperheater 22.
After the spray water is injected to lower the steam temperature to the required temperature, the steam is sent to the demand equipment.

【0007】上記図3、図4に示す排熱回収ボイラシス
テムには追い焚き設備が設置されていないため、過熱蒸
気18’の発生量および温度は排ガス発生源1の運転状
態に依存し、排熱回収ボイラ4側で発生する蒸気量、蒸
気温度を調整することはできなかった。
Since the exhaust heat recovery boiler system shown in FIGS. 3 and 4 is not provided with a reheating unit, the amount and temperature of the superheated steam 18 ′ depend on the operating state of the exhaust gas generating source 1. The amount and temperature of steam generated on the heat recovery boiler 4 side could not be adjusted.

【0008】[0008]

【発明が解決しようとする課題】図3に示す従来の追い
焚き設備のない排熱回収ボイラシステムでは、ガスター
ビン等の排ガス発生源1と伝熱面積が一定の排熱回収ボ
イラ4が排ガスダクトを通じて直接接続されている。従
って、ボイラの伝熱面積が一定である排熱回収ボイラ4
で発生する蒸気量及び蒸気温度は、ボイラ内を通過する
排ガス量、すなわち排ガス発生源1の負荷状態に依存
し、発生蒸気量すなわち各バンクの伝熱管における熱吸
収量を排熱回収ボイラ4側において制御することは不可
能であった。
In the conventional exhaust heat recovery boiler system without reheating equipment shown in FIG. 3, an exhaust gas generation source 1 such as a gas turbine and an exhaust heat recovery boiler 4 having a constant heat transfer area are connected to an exhaust gas duct. Directly connected through. Therefore, the waste heat recovery boiler 4 in which the heat transfer area of the boiler is constant
The amount and temperature of steam generated in the boiler depends on the amount of exhaust gas passing through the boiler, that is, the load state of the exhaust gas generation source 1, and the amount of generated steam, that is, the amount of heat absorbed in the heat transfer tubes of each bank is determined on the side of the exhaust heat recovery boiler 4. Was impossible to control.

【0009】本発明の課題は、排ガス発生源の負荷状態
に依存せず、排熱回収ボイラ側で発生蒸気量および発生
蒸気温度の制御を行うことができる排熱回収蒸気発生装
置を提供することである。
An object of the present invention is to provide an exhaust heat recovery steam generator capable of controlling the amount of generated steam and the generated steam temperature on the exhaust heat recovery boiler side without depending on the load state of the exhaust gas generation source. It is.

【0010】[0010]

【課題を解決するための手段】本発明の上記課題は、高
温ガスを導入して、ケーシング内部に配置された蒸気発
生用熱交換器である過熱器、蒸発器、再熱器及び節炭器
の中で少なくとも過熱器、蒸発器及び節炭器を備えた排
熱回収蒸気発生装置において、前記過熱器、蒸発器、再
熱器及び節炭器の中で少なくともいずれか熱交換器設置
領域の隣接領域に排ガスバイパス路を設け、当該熱交換
器設置領域とその隣接領域の排ガスバイパス路の前流側
に排ガス流量分配装置を備えた排熱回収蒸気発生装置に
より解決される。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a superheater, an evaporator, a reheater and a economizer, which are heat exchangers for generating steam disposed inside a casing by introducing a high-temperature gas. In the exhaust heat recovery steam generator provided with at least a superheater, an evaporator and a economizer, at least one of the superheater, the evaporator, the reheater and the economizer has a heat exchanger installation area. The problem is solved by an exhaust heat recovery steam generator provided with an exhaust gas bypass passage in an adjacent region, and an exhaust gas flow distribution device provided upstream of the heat exchanger installation region and the exhaust gas bypass passage in the adjacent region.

【0011】[0011]

【作用】本発明によれば、例えば過熱器出口蒸気温度の
要求温度が低下した場合、過熱器前流の排ガス流量分配
装置を調整して過熱器バイパス路を通過する燃焼排ガス
量を増加させて、過熱器を通過する排ガス流量を低減さ
せる。これに伴い、過熱器での熱交換量が低下して、過
熱器出口での蒸気温度を低下させることが可能になる。
According to the present invention, for example, when the required steam temperature at the superheater outlet decreases, the exhaust gas flow distribution device upstream of the superheater is adjusted to increase the amount of combustion exhaust gas passing through the superheater bypass. Reduce the flow rate of exhaust gas passing through the superheater. Along with this, the amount of heat exchange at the superheater decreases, and the steam temperature at the superheater outlet can be reduced.

【0012】また、蒸気要求量又は再熱蒸気要求量が低
下した場合、蒸発器又は再熱器前流の排ガス流量分配装
置を調整して、蒸発器又は再熱器バイパス路を通過する
燃焼排ガス量を増加させて、蒸発器又は再熱器を通過す
る排ガス流量を低減させる。これに伴い、蒸発器又は再
熱器での熱交換量が低下して、発生蒸気量を低下させる
ことが可能になる。
When the required steam amount or the required reheat steam amount is reduced, the exhaust gas flow distribution device upstream of the evaporator or the reheater is adjusted to adjust the flue gas passing through the evaporator or the reheater bypass passage. The volume is increased to reduce the exhaust gas flow through the evaporator or reheater. Accordingly, the amount of heat exchange in the evaporator or the reheater decreases, and the amount of generated steam can be reduced.

【0013】同様に、節炭器出口給水温度がボイラドラ
ム飽和温度に近づき節炭器内部にてスチーミングが発生
した場合、節炭器前流の排ガス流量分配装置を調整して
節炭器バイパス路を通過する燃焼排ガス量を増加させ
て、節炭器を通過する排ガス流量を低減させる。これに
伴い、節炭器での熱交換量が低下し、節炭器出口給水温
度を低下させることが可能になる。
[0013] Similarly, when the temperature of the feed water at the outlet of the economizer approaches the saturation temperature of the boiler drum and steaming occurs inside the economizer, the exhaust gas flow distribution device upstream of the economizer is adjusted to control the economizer bypass. By increasing the amount of flue gas passing through the road, the flow rate of flue gas passing through the economizer is reduced. Along with this, the amount of heat exchange in the economizer is reduced, and the outlet water temperature at the economizer can be reduced.

【0014】[0014]

【発明の実施の形態】本発明の実施の形態を図面と共に
説明する。図1には本発明の実施の形態である単圧式排
熱回収ボイラ4の概略構成図を示す。図1に示す単圧式
排熱回収ボイラ4は排ガス発生源1から排出された燃焼
排ガス2が通る入口ダクト3に接続されており、排熱回
収ボイラ4の下流部には煙突14が配置されている。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a single-pressure type exhaust heat recovery boiler 4 according to an embodiment of the present invention. The single-pressure type exhaust heat recovery boiler 4 shown in FIG. 1 is connected to an inlet duct 3 through which the combustion exhaust gas 2 discharged from the exhaust gas generation source 1 passes, and a chimney 14 is disposed downstream of the exhaust heat recovery boiler 4. I have.

【0015】排熱回収ボイラ4は排ガス流れの上流側か
ら過熱器5、蒸発器8及び節炭器11からなる熱交換器
(再熱器が配置されることもある)が配置されている。
本実施の形態の特徴は各熱交換器の隣接位置に排ガスバ
イパス路が設けられており、またその排ガスバイパス路
及び各熱交換器入口部には排ガス流量分配装置が設置さ
れていることである。すなわち 図1の排熱回収ボイラ
4は過熱器排ガス流量分配装置6、過熱器バイパス路
7、過熱器5、蒸発器排ガス流量分配装置9、蒸発器バ
イパス路10、蒸発器8、節炭器排ガス流量分配装置1
2、節炭器バイパス路13、節炭器11を備えている。
The exhaust heat recovery boiler 4 is provided with a heat exchanger (a reheater is sometimes provided) composed of a superheater 5, an evaporator 8, and a economizer 11 from the upstream side of the exhaust gas flow.
A feature of the present embodiment is that an exhaust gas bypass is provided at a position adjacent to each heat exchanger, and an exhaust gas flow distribution device is provided at the exhaust gas bypass and at the inlet of each heat exchanger. . That is, the exhaust heat recovery boiler 4 in FIG. 1 includes a superheater exhaust gas flow distribution device 6, a superheater bypass passage 7, a superheater 5, an evaporator exhaust gas flow distribution device 9, an evaporator bypass passage 10, an evaporator 8, an economizer exhaust gas. Flow distribution device 1
2. It has a economizer bypass 13 and an economizer 11.

【0016】ボイラ給水15は給水ポンプ16から節炭
器11に供給されて加熱された後、一旦汽水分離ドラム
17に貯めら、その後、蒸発器8に供給されて加熱さ
れ、汽水混合物となり再び汽水分離ドラム17に戻さ
れ、ここで分離された蒸気が過熱器5に供給されて、過
熱蒸気18が得られる。得られた過熱蒸気18は蒸気機
関等に送られる。このとき過熱蒸気の温度調節が減温器
22で行われる。
The boiler feed water 15 is supplied from the feed water pump 16 to the economizer 11 and heated, then temporarily stored in the steam separator drum 17, and then supplied to the evaporator 8 and heated to form a brackish water mixture again to form brackish water. The steam is returned to the separation drum 17, and the separated steam is supplied to the superheater 5, and the superheated steam 18 is obtained. The obtained superheated steam 18 is sent to a steam engine or the like. At this time, the temperature of the superheated steam is adjusted by the desuperheater 22.

【0017】図2には、図1に示すボイラ4の排ガス側
及び蒸気−給水側の温度分布線図を示す。排ガス発生源
1から排出された燃焼排ガス2は入口ダクト3を通過
後、過熱器排ガス流量分配装置6において、排ガスの一
部が過熱器バイパス路7に分配されると同時に、残りの
排ガスは過熱器5に流入する。過熱器5に流入した燃焼
排ガス2は過熱器5で蒸気と熱交換して温度が低下し、
過熱器バイパス路7を通過した排ガスと混合し、その温
度が蒸発器8の前流部では燃焼排ガス23となる。次に
蒸発器排ガス流量分配装置9において、排ガスの一部が
蒸発器排ガスバイパス路10に分配されると同時に、残
りの排ガスは蒸発器8に流入し、蒸発器8内の蒸気と熱
交換することで温度が低下して節炭器11の前流部では
蒸発器バイパス路10を通過した排ガスと混合し、その
温度が燃焼排ガス24となる。
FIG. 2 shows a temperature distribution diagram on the exhaust gas side and the steam-water supply side of the boiler 4 shown in FIG. After the combustion exhaust gas 2 discharged from the exhaust gas generation source 1 passes through the inlet duct 3, in the superheater exhaust gas flow distribution device 6, part of the exhaust gas is distributed to the superheater bypass 7, and the remaining exhaust gas is superheated. It flows into the vessel 5. The combustion exhaust gas 2 flowing into the superheater 5 exchanges heat with steam in the superheater 5 to lower the temperature,
It mixes with the exhaust gas that has passed through the superheater bypass passage 7, and its temperature becomes a combustion exhaust gas 23 in the upstream part of the evaporator 8. Next, in the evaporator exhaust gas flow distribution device 9, a part of the exhaust gas is distributed to the evaporator exhaust gas bypass passage 10, and at the same time, the remaining exhaust gas flows into the evaporator 8 and exchanges heat with the vapor in the evaporator 8. As a result, the temperature decreases, and the gas is mixed with the exhaust gas that has passed through the evaporator bypass 10 in the upstream part of the economizer 11, and the temperature becomes the combustion exhaust gas 24.

【0018】次に節炭器排ガス流量分配装置12におい
て、排ガスの一部が節炭器バイパス路13に分配される
と同時に、残りの排ガスは節炭器11に流入して給水側
と熱交換が行われ、排ガス温度が低下し、節炭器バイパ
ス路13を通過した排ガスと混合し、温度低下した燃焼
排ガス25となり、煙突14から排出する。
Next, in the economizer waste gas flow distribution device 12, a part of the exhaust gas is distributed to the economizer bypass passage 13, and the remaining exhaust gas flows into the economizer 11 and exchanges heat with the water supply side. Is performed, the exhaust gas temperature is reduced, and the exhaust gas is mixed with the exhaust gas that has passed through the economizer bypass passage 13 to become the combustion exhaust gas 25 whose temperature has been reduced, and is discharged from the chimney 14.

【0019】従来のバイパス路を設けていない排熱回収
ボイラシステムでは図4に示すように排ガス発生源1か
ら排出された燃焼排ガス2は過熱器5’、蒸発器8’、
節炭器11’を通過する毎に温度低下するが、当然なが
ら、排ガス温度は各バンク5’、8’、11’を通過し
て連続的に低下するが、本発明の実施の形態の排熱回収
ボイラシステムでは図2に示すように排ガス発生源1か
ら排出された燃焼排ガス2は各バンク5、8、11を通
った排ガス23,24、25は各バンク5、8、11に
隣接して設けられたバイパス路7,10,13を経由し
て比較的温度低下していない排ガスと混合され得るため
に温度低下の程度が小さくなる。
In a conventional exhaust heat recovery boiler system not provided with a bypass, a combustion exhaust gas 2 discharged from an exhaust gas generation source 1 as shown in FIG.
Although the temperature decreases each time the gas passes through the economizer 11 ', the temperature of the exhaust gas naturally decreases continuously after passing through the banks 5', 8 ', and 11'. In the heat recovery boiler system, as shown in FIG. 2, the flue gas 2 discharged from the flue gas generation source 1 passes through the banks 5, 8, 11 and the flue gas 23, 24, 25 is adjacent to the banks 5, 8, 11 respectively. Since the exhaust gas can be mixed with the exhaust gas whose temperature has not relatively decreased through the bypass passages 7, 10, 13 provided, the degree of the temperature decrease is small.

【0020】一方、ボイラ給水ポンプ16にて加圧され
た給水15は節炭器11で加熱されて温度上昇した後、
汽水分離ドラム17中に送られて汽水混合状態で定温と
なる。汽水分離ドラム17から蒸発器8に送られた給水
は過熱器5で過熱されて過熱器出口の過熱蒸気18が得
られる。過熱器出口蒸気18は、減温器22によりスプ
レー水を注入して蒸気温度を要求温度まで低下された
後、需要設備に送気される。
On the other hand, the feedwater 15 pressurized by the boiler feedwater pump 16 is heated by the economizer 11 and rises in temperature.
It is sent into the brackish water separation drum 17 and becomes constant temperature in the brackish water mixed state. The feedwater sent from the steam separation drum 17 to the evaporator 8 is superheated by the superheater 5 to obtain superheated steam 18 at the outlet of the superheater. The superheater outlet steam 18 is supplied to the demand equipment after the spray water is injected by the desuperheater 22 to lower the steam temperature to the required temperature.

【0021】上記排熱回収ボイラシステムでは排熱回収
ボイラ4より発生する過熱蒸気の要求量および温度が異
なった場合、排熱回収ボイラ4側において、熱吸収量の
調整を次のように行う。 (1)過熱器出口蒸気18の要求温度が低下した場合
は、過熱器排ガス流量分配装置6を調整して過熱器バイ
パス路7を通過する燃焼排ガス量を増加させて、過熱器
5を通過する排ガス流量を低減させる。これに伴い、過
熱器5での熱交換量が低下して、過熱器出口での過熱蒸
気18を要求温度まで低下させることが可能になる。 (2)蒸気要求量が低下した場合、蒸発器8の前流の排
ガス流量分配装置9を調整して蒸発器バイパス路10を
通過する燃焼排ガス量を増加させて、蒸発器8を通過す
る排ガス流量を低減させる。これに伴い、蒸発器8での
熱交換量が低下して、発生蒸気量を低下させることが可
能になる。 (3)図示していないが再熱器と再熱器バイパスダクト
路とこれらの前流側に排ガス流量分配装置を設置してい
る場合には 再熱器出口蒸気温度の要求温度が低下する
と、再熱器前流の排ガス流量分配装置を調整して再熱器
バイパス路ダクトを通過する燃焼排ガス量を増加させ
て、再熱器を通過する排ガス流量を低減させる。これに
伴い、再熱器での熱交換量が低下し、再熱器出口での再
熱蒸気温度を低下させることが可能になる。 (4)排ガス発生源1の運転状態に伴って、節炭器11
の出口給水温度がボイラドラム飽和温度に近づき節炭器
11の内部にてスチーミングが発生した場合、節炭器1
1の排ガス流量分配装置12を調整して節炭器バイパス
路13を通過する燃焼排ガス量を増加させて、節炭器1
1を通過する排ガス流量を低減させる。これに伴い、節
炭器11での熱交換量が低下し、節炭器11の出口給水
温度を低下させることが可能になる。
In the above exhaust heat recovery boiler system, when the required amount and the temperature of the superheated steam generated from the exhaust heat recovery boiler 4 are different, the heat absorption amount is adjusted on the side of the exhaust heat recovery boiler 4 as follows. (1) When the required temperature of the superheater outlet steam 18 decreases, the superheater exhaust gas flow distribution device 6 is adjusted to increase the amount of combustion exhaust gas passing through the superheater bypass passage 7 and pass through the superheater 5. Reduce exhaust gas flow. Accordingly, the amount of heat exchange in the superheater 5 decreases, and the superheated steam 18 at the superheater outlet can be reduced to the required temperature. (2) When the required steam amount decreases, the exhaust gas flow distribution device 9 upstream of the evaporator 8 is adjusted to increase the amount of combustion exhaust gas passing through the evaporator bypass passage 10, and the exhaust gas passing through the evaporator 8 is increased. Reduce flow rate. Accordingly, the amount of heat exchange in the evaporator 8 decreases, and the amount of generated steam can be reduced. (3) Although not shown, when the reheater, the reheater bypass duct, and the exhaust gas flow distribution device are installed on the upstream side thereof, if the required temperature of the reheater outlet steam temperature decreases, The exhaust gas flow distribution device upstream of the reheater is adjusted to increase the amount of combustion exhaust gas passing through the reheater bypass duct and reduce the exhaust gas flow passing through the reheater. Along with this, the amount of heat exchange at the reheater decreases, and it becomes possible to lower the reheat steam temperature at the outlet of the reheater. (4) According to the operation state of the exhaust gas generation source 1, the economizer 11
When the outlet feed water temperature approaches the boiler drum saturation temperature and steaming occurs inside the economizer 11, the economizer 1
1 by adjusting the exhaust gas flow distribution device 12 to increase the amount of combustion exhaust gas passing through the economizer bypass 13.
1 to reduce the flow rate of exhaust gas. Accordingly, the amount of heat exchange in the economizer 11 is reduced, and the outlet feedwater temperature of the economizer 11 can be reduced.

【0022】上記排熱回収ボイラシステムでは過熱器
5、蒸発器8、節炭器11にそれぞれ並列して排ガスバ
イパス路7、10、13と排ガス流量分配装置6、9、
12を設けた例を示したが、本発明ではこれに限らず前
記過熱器5、蒸発器8、再熱器(図示せず)及び節炭器
11の中の少なくとも一つの熱交換器(伝熱管群)に並
列して排ガスバイパス路7、10、13と排ガス流量分
配装置6、9、12を設けた構成を用いることができ
る。
In the above exhaust heat recovery boiler system, the exhaust gas bypass passages 7, 10, 13 and the exhaust gas flow distribution devices 6, 9, in parallel with the superheater 5, the evaporator 8, and the economizer 11, respectively.
Although an example in which the 12 is provided is shown, the present invention is not limited to this, and at least one heat exchanger (transfer) among the superheater 5, the evaporator 8, the reheater (not shown), and the economizer 11 is provided. A configuration in which the exhaust gas bypass passages 7, 10, 13 and the exhaust gas flow distribution devices 6, 9, 12 are provided in parallel with the heat pipe group) can be used.

【0023】上記排熱回収蒸気発生装置は排ガスが鉛直
方向に流れる竪型蒸気発生装置であるが、本発明は排ガ
スが水平方向に流れる水平型蒸気発生装置にも適用でき
る。
The above-mentioned exhaust heat recovery steam generator is a vertical steam generator in which exhaust gas flows vertically, but the present invention can also be applied to a horizontal steam generator in which exhaust gas flows horizontally.

【0024】[0024]

【発明の効果】本発明によれば、過熱器出口蒸気温度又
は再熱器出口蒸気温度の要求温度と蒸気要求量の変化に
対応でき、さらに節炭器内部でのスチーミング発生を防
止することができる。
According to the present invention, it is possible to cope with a change in the required temperature of the superheater outlet steam temperature or the reheater outlet steam temperature and the required steam amount, and to further prevent the occurrence of steaming inside the economizer. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態の単圧式排熱回収装置に
過熱器、蒸発器、節炭器とそれぞれ平行に排ガスバイパ
ス路及びそれらの前流に排ガス流量分配装置を設置した
場合の全体構成図を示す。
FIG. 1 shows a case where an exhaust gas bypass passage and an exhaust gas flow distribution device are installed in front of them in a single-pressure exhaust heat recovery device according to an embodiment of the present invention in parallel with a superheater, an evaporator, and a economizer. FIG.

【図2】 図1の単圧式排熱回収装置の熱平衡線図を示
す。
FIG. 2 shows a thermal equilibrium diagram of the single-pressure type exhaust heat recovery apparatus of FIG.

【図3】 従来の単圧式排熱回収装置の全体構成図を示
す。
FIG. 3 shows an overall configuration diagram of a conventional single-pressure exhaust heat recovery device.

【図4】 図3の単圧式排熱回収装置の熱平衡線図を示
す。
FIG. 4 is a thermal equilibrium diagram of the single-pressure exhaust heat recovery apparatus of FIG.

【符号の説明】[Explanation of symbols]

1 排ガス発生源 2 燃焼排ガス 3 入口ダクト 4 排熱回収ボイ
ラ(単圧式) 5 過熱器 6 過熱器排ガス
流量分配装置 7 過熱器バイパス路 8 蒸発器 9 蒸発器排ガス流量分配装置 10 蒸発器バイ
パス路 11 節炭器 12 節炭器排ガ
ス流量分配装置 13 節炭器バイパス路 14 出口ダクト
・煙突 15 ボイラ給水 16 ボイラ給水
ポンプ 17 ドラム 18 過熱蒸気 22 減温器 23 燃焼排ガス
(蒸発器前流) 24 燃焼排ガス(節炭器前流) 25 燃焼排ガス
(煙突出口)
DESCRIPTION OF SYMBOLS 1 Exhaust gas generation source 2 Combustion exhaust gas 3 Inlet duct 4 Exhaust heat recovery boiler (single pressure type) 5 Superheater 6 Superheater exhaust gas flow distribution device 7 Superheater bypass passage 8 Evaporator 9 Evaporator exhaust gas flow distribution device 10 Evaporator bypass passage 11 Energy saving device 12 Energy saving device exhaust gas flow distribution device 13 Energy saving device bypass passage 14 Outlet duct / chimney 15 Boiler feedwater 16 Boiler feedwater pump 17 Drum 18 Superheated steam 22 Desuperheater 23 Combustion exhaust gas (front of evaporator) 24 Combustion exhaust gas (The upstream of the economizer) 25 Combustion exhaust gas (smoke outlet)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高温ガスを導入して、ケーシング内部に
配置された蒸気発生用熱交換器である過熱器、蒸発器、
再熱器及び節炭器の中で少なくとも過熱器、蒸発器及び
節炭器を備えた排熱回収蒸気発生装置において、 前記過熱器、蒸発器、再熱器及び節炭器の中で少なくと
もいずれか熱交換器設置領域の隣接領域に排ガスバイパ
ス路を設け、当該熱交換器設置領域とその隣接領域の排
ガスバイパス路の前流側に排ガス流量分配装置を備えた
ことを特徴とする排熱回収蒸気発生装置。
1. A superheater, an evaporator, which is a steam generating heat exchanger disposed inside a casing by introducing a high-temperature gas.
An exhaust heat recovery steam generator provided with at least a superheater, an evaporator, and a economizer among the reheater and the economizer, wherein at least any one of the superheater, the evaporator, the reheater, and the economizer is used. An exhaust gas bypass passage is provided in an area adjacent to the heat exchanger installation area, and an exhaust gas flow distribution device is provided upstream of the exhaust gas bypass path in the heat exchanger installation area and the adjacent area. Steam generator.
JP2000340790A 2000-11-08 2000-11-08 Exhaust heat recovery steam generating device Pending JP2002147701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000340790A JP2002147701A (en) 2000-11-08 2000-11-08 Exhaust heat recovery steam generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000340790A JP2002147701A (en) 2000-11-08 2000-11-08 Exhaust heat recovery steam generating device

Publications (1)

Publication Number Publication Date
JP2002147701A true JP2002147701A (en) 2002-05-22

Family

ID=18815649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000340790A Pending JP2002147701A (en) 2000-11-08 2000-11-08 Exhaust heat recovery steam generating device

Country Status (1)

Country Link
JP (1) JP2002147701A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298244A (en) * 2006-05-02 2007-11-15 Babcock Hitachi Kk Exhaust heat recovery boiler
WO2009050918A1 (en) * 2007-10-17 2009-04-23 Mitsubishi Heavy Industries, Ltd. Boiler and steam temperature regulation method of boiler
CN102032549A (en) * 2010-12-31 2011-04-27 西安交通大学 Starting and operating protection system of solar cavity type heat absorber
CN102109164A (en) * 2011-01-13 2011-06-29 西安交通大学 Cavity-type solar direct current steam boiler
CN102797521A (en) * 2011-05-24 2012-11-28 何秀锦 Waste heat power generation system
WO2014108980A1 (en) * 2013-01-10 2014-07-17 パナソニック株式会社 Rankine cycle device and cogeneration system
JP2016153715A (en) * 2015-02-20 2016-08-25 三菱重工業株式会社 Economizer, composite boiler and their methods of application
CN106838923A (en) * 2016-12-27 2017-06-13 安徽海螺川崎工程有限公司 Waste incineration afterheat utilizing system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298244A (en) * 2006-05-02 2007-11-15 Babcock Hitachi Kk Exhaust heat recovery boiler
WO2009050918A1 (en) * 2007-10-17 2009-04-23 Mitsubishi Heavy Industries, Ltd. Boiler and steam temperature regulation method of boiler
CN102032549A (en) * 2010-12-31 2011-04-27 西安交通大学 Starting and operating protection system of solar cavity type heat absorber
CN102109164A (en) * 2011-01-13 2011-06-29 西安交通大学 Cavity-type solar direct current steam boiler
CN102797521A (en) * 2011-05-24 2012-11-28 何秀锦 Waste heat power generation system
WO2014108980A1 (en) * 2013-01-10 2014-07-17 パナソニック株式会社 Rankine cycle device and cogeneration system
US9638066B2 (en) 2013-01-10 2017-05-02 Panasonic Intellectual Property Management Co., Ltd. Rankine cycle apparatus and combined heat and power system
JP2016153715A (en) * 2015-02-20 2016-08-25 三菱重工業株式会社 Economizer, composite boiler and their methods of application
CN106838923A (en) * 2016-12-27 2017-06-13 安徽海螺川崎工程有限公司 Waste incineration afterheat utilizing system

Similar Documents

Publication Publication Date Title
US5293842A (en) Method for operating a system for steam generation, and steam generator system
JP4540719B2 (en) Waste heat boiler
US8286595B2 (en) Integrated split stream water coil air heater and economizer (IWE)
US3789806A (en) Furnace circuit for variable pressure once-through generator
CN102840575A (en) Composite cycle power generation system improved in efficiency
JPH06229209A (en) Gas-steam turbine composite equipment and operating method thereof
US5419285A (en) Boiler economizer and control system
PL189524B1 (en) Boiler
US20160273406A1 (en) Combined cycle system
JP2002147701A (en) Exhaust heat recovery steam generating device
US5605118A (en) Method and system for reheat temperature control
JPH03221702A (en) Duplex type heat exchanger for waste heat recovery
EP0191415B1 (en) Exhaust gas heat recovery boiler
JPH0417324B2 (en)
JPH0233501A (en) Reheating type exhaust gas boiler
JP4842007B2 (en) Waste heat recovery boiler
CN1853072A (en) Continuous steam generator and method for operating said continuous steam generator
US3913330A (en) Vapor generator heat recovery system
JP2007504431A (en) Horizontal once-through boiler and its operation method
CA2696649C (en) Integrated split stream water coil air heater and economizer (iwe)
JP4842071B2 (en) Operation method of once-through exhaust heat recovery boiler and operation method of power generation equipment
JPH10232002A (en) Boiler
JPH03117801A (en) Exhaust heat recovery boiler
US3579990A (en) Vapor generator
US3364904A (en) Vapour generator for ship propulsion unit