JPH05248603A - Reheater outlet steam temperature adjusting device - Google Patents

Reheater outlet steam temperature adjusting device

Info

Publication number
JPH05248603A
JPH05248603A JP5081892A JP5081892A JPH05248603A JP H05248603 A JPH05248603 A JP H05248603A JP 5081892 A JP5081892 A JP 5081892A JP 5081892 A JP5081892 A JP 5081892A JP H05248603 A JPH05248603 A JP H05248603A
Authority
JP
Japan
Prior art keywords
reheater
flow passage
steam
boiler
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5081892A
Other languages
Japanese (ja)
Inventor
Manabu Orimoto
学 折本
Masahiko Hirano
正彦 平野
Shigeru Morioka
茂 森岡
Tetsuji Nishi
哲治 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP5081892A priority Critical patent/JPH05248603A/en
Publication of JPH05248603A publication Critical patent/JPH05248603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To facilitate adjustment of temperature of steam got out of a reheater and enable a high efficient operation of a plant to be carried out by a method wherein a secondary super heater and the reheater are arranged at a rear part of a furnace of a boiler and a flow passage bank for adjusting temperature of steam at an outlet port of the heater. CONSTITUTION:At a boiler in a thermoelectric power plant, main steam outputted from its secondary super heater is sent to high pressure turbine, steam of which work has been completed is returned back again to the boiler, reheated at the reheater 6 and 7, thereafter the steam is supplied to an intermediate pressure turbine and a low pressure turbine. In this case, the pipe arrangements of the reheater 6 and 7 are made such that a partition plate and a caster 53 are arranged in a main gas flow passage 51 and a bypassing flow passage 52 at about 25 to 50% height of the gas flow passage and then a cassette type buffle plate 54 acting as a flow passage bank which can be removably arranged is installed in the bypassing flow passage 52. In the case that some scales out of the pipes are dropped, a thermal collection of the secondary super heater is increased and then thermal collection at the reheater 6 and 7 is decreased, the fixing of the buffle plate 54 causes the coefficient of overall heat transmission of the reheater 6 and 7 to be increased and the temperature of steam at the outlet is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ボイラの火炉後部に設
けられ再熱器の出口蒸気温度を調節する再熱器出口蒸気
温度調節装置に係り、特に毎日運転の起動停止をくりか
えすことによって過熱器の外側表面のスラグが脱落し、
熱吸収量が変化することによって再熱蒸気温度が所定値
にならないとき、蒸気温度を回復するのに好適な再熱器
出口蒸気温度調節装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reheater outlet steam temperature adjusting device which is provided at a rear part of a furnace of a boiler and adjusts an outlet steam temperature of a reheater. The slag on the outer surface of the vessel fell off,
The present invention relates to a reheater outlet steam temperature control device suitable for recovering the steam temperature when the reheat steam temperature does not reach a predetermined value due to a change in heat absorption amount.

【0002】[0002]

【従来の技術】近年、原子力発電所による電力の安定供
給と電力需要との関係から、火力発電所は、建設時に大
容量のベース負荷火力として建設されたものの、最近は
毎日運転の起動停止をくりかえすディリー・スタート・
ストップ(DSS)運用を余儀なくされているユニット
が多数存在している。
2. Description of the Related Art In recent years, a thermal power plant was constructed as a large-capacity base load thermal power at the time of construction because of the relationship between the stable supply of electric power from a nuclear power plant and the demand for electric power. Repeat Daily Start
There are many units that are forced to operate Stop (DSS).

【0003】図3に火力発電所のボイラの構成例を示
す。図3に示すように、ボイラ1の二次過熱器2により
所定の温度まで加熱された主蒸気は、主蒸気管3を経由
して高圧タービン4に送られる。主蒸気は高圧タービン
4で回転エネルギとして消費され減圧減温された後、低
温再熱蒸気管5を通って再びボイラ1に戻される。そし
て再熱器6,7で再熱された後、高温再熱蒸気管8を通
って中圧タービン9及び低圧タービン10に送られ、タ
ービン9,10を回転する。このように熱回収すること
によりプラントの効率向上を図っている。
FIG. 3 shows a structural example of a boiler of a thermal power plant. As shown in FIG. 3, the main steam heated to a predetermined temperature by the secondary superheater 2 of the boiler 1 is sent to the high-pressure turbine 4 via the main steam pipe 3. The main steam is consumed as rotational energy in the high-pressure turbine 4, decompressed and cooled, and then returned to the boiler 1 through the low-temperature reheat steam pipe 5. Then, after being reheated by the reheaters 6 and 7, it is sent to the intermediate pressure turbine 9 and the low pressure turbine 10 through the high temperature reheat steam pipe 8 to rotate the turbines 9 and 10. By recovering the heat in this way, the efficiency of the plant is improved.

【0004】再熱器6,7の出口における蒸気温度は、
再熱器6,7を形成している金属材料の強度や、高圧タ
ービン4側とのバランスにより、予め所定の温度、例え
ば550〜570℃近傍に制御されている。そしてこの
温度が高くならないように、低温再熱蒸気管5に設けら
れた再熱蒸気温度低減器(減温器)11へスプレー弁1
2を経由し、スプレー水を注入して制御している。温度
が低い場合は再熱器6,7で対流伝熱により熱吸収され
るため、節炭器13の出口から排出される排ガスを、排
ガス再循環ファン14によりボイラ1内へ再循環させ
る。すなわち対流伝熱部の流速を高めて熱交換量を増加
させることが一般的に行なわれている。
The steam temperature at the outlets of the reheaters 6, 7 is
Depending on the strength of the metal material forming the reheaters 6 and 7 and the balance with the high-pressure turbine 4 side, the temperature is controlled in advance to a predetermined temperature, for example, around 550 to 570 ° C. Then, in order to prevent the temperature from rising, the reheat steam temperature reducer (reducer) 11 provided in the low temperature reheat steam pipe 5 is connected to the spray valve 1
It is controlled by injecting spray water via 2 When the temperature is low, heat is absorbed by the convection heat transfer in the reheaters 6 and 7. Therefore, the exhaust gas discharged from the outlet of the economizer 13 is recirculated into the boiler 1 by the exhaust gas recirculation fan 14. That is, it is common practice to increase the flow rate of the convection heat transfer section to increase the amount of heat exchange.

【0005】この場合、蒸気温度を制御するスプレー水
量が多すぎてもプラント効率が低下し、また蒸気温度が
所定値に達しない場合でもプラント効率が低下する。す
なわち再熱器6,7の出口における蒸気温度は、プラン
トの運用効率に大きく影響する。このためプラント効率
を高く維持できるように、従来から節炭器13からの排
ガス管路15にダンパ16を設けて、排ガス循環流量の
調節を行ない、定格負荷だけでなく部分負荷運転まで制
御していた。
In this case, the plant efficiency is lowered even if the amount of spray water for controlling the steam temperature is too large, and the plant efficiency is lowered even if the steam temperature does not reach a predetermined value. That is, the steam temperature at the outlets of the reheaters 6 and 7 greatly affects the operation efficiency of the plant. Therefore, in order to maintain high plant efficiency, a damper 16 has been conventionally provided in the exhaust gas pipe 15 from the economizer 13 to adjust the exhaust gas circulation flow rate and control not only the rated load but also the partial load operation. It was

【0006】一方、このような化石燃料を使用したボイ
ラ1における伝熱面積の決定に当っては、伝熱管の外表
面には燃料中の不純物、例えば重油中の灰分、バナジウ
ム、ナトリウム、SO4などが径時的にある厚さ分付着
して、熱交換率を阻害することを前提に決定されてお
り、その係数は経験的に求めた値が採用されている。そ
してこの径時変化を総称してシーズニングとも別称され
ており、一般的に油焚きユニットでは早いもので6ヶ
月、遅いものでも1.5年で計画値に達している。
On the other hand, in determining the heat transfer area in the boiler 1 using such a fossil fuel, impurities in the fuel such as ash, vanadium, sodium, SO 4 in the heavy oil are formed on the outer surface of the heat transfer tube. Is determined on the assumption that the heat exchange rate will be adhered to a certain thickness over time and the heat exchange rate will be hindered, and the coefficient is a value obtained empirically. This change over time is also collectively referred to as seasoning. In general, the oil-fired unit reaches the planned value in 6 months at the earliest and 1.5 years in the late unit.

【0007】伝熱面積及び収熱は、特に二次過熱器2と
再熱器6,7とが相互に干渉し合って熱バランスをとっ
た形で決定されている。例えば計画に比べ二次過熱器2
における収熱がよいと、二次過熱器2の出口における排
ガス温度が低下して再熱器6,7における収熱が低下す
る。この結果、出口蒸気温度が計画値に達しなかった
り、オーバーするために再熱器入口のスプレー水量が過
多になったりする。すなわち相互に干渉される関係にあ
る。
The heat transfer area and the heat collection are determined in such a manner that the secondary superheater 2 and the reheaters 6 and 7 interfere with each other to balance the heat. For example, the secondary superheater 2 compared to the plan
If the heat collection is high, the exhaust gas temperature at the outlet of the secondary superheater 2 decreases, and the heat collection in the reheaters 6 and 7 decreases. As a result, the outlet steam temperature does not reach the planned value, and the amount of spray water at the inlet of the reheater becomes excessive because it exceeds the planned value. That is, there is a mutual interference relationship.

【0008】さらに近年は環境保全、特に排ガス中の窒
素酸化物の低減を図るため、元来、再熱器6,7の出口
における蒸気温度制御のために設けられた排ガス管路1
5中の再循環ガスを、窒素酸化物低減のため燃焼用空気
中に混入して、バーナ1に設けられた風箱17へ供給し
ている。このように窒素酸化物低減を優先して運用する
ようになってきているため、排ガス循環流量の制御幅は
従来に比べて大幅に縮小した形で計画されている。
Further, in recent years, in order to protect the environment, particularly to reduce nitrogen oxides in exhaust gas, the exhaust gas pipe 1 originally provided for controlling the steam temperature at the outlets of the reheaters 6 and 7.
The recirculated gas in No. 5 is mixed in the combustion air to reduce nitrogen oxides and supplied to the wind box 17 provided in the burner 1. Since the priority is given to reducing the amount of nitrogen oxides in this way, the control range of the exhaust gas circulation flow rate is planned to be significantly reduced compared to the conventional one.

【0009】このように構成されたボイラにおいては、
従来は基準負荷で運用するために、計画値に近い形でシ
ーズニングが進行していたため、再熱蒸気温度が計画値
に達しないという問題はなかった。
In the boiler constructed as described above,
Conventionally, since the operation was performed at the standard load, seasoning proceeded in a manner close to the planned value, so there was no problem that the reheat steam temperature did not reach the planned value.

【0010】なお図3に示すように、低圧タービン10
に接続された復水器18と節炭器13とを結ぶ給水管1
9には、低圧復水ポンプ20、脱塩装置21、低圧給水
加熱器22、脱気器23、脱気器ストレージタンク2
4、給水ポンプ25、高圧給水加熱器26、給水流量計
27が順次設けられている。
As shown in FIG. 3, the low-pressure turbine 10
Water pipe 1 connecting the condenser 18 and the economizer 13 connected to the
Reference numeral 9 indicates a low-pressure condensate pump 20, a desalting device 21, a low-pressure feed water heater 22, a deaerator 23, and a deaerator storage tank 2
4, a water supply pump 25, a high-pressure water supply heater 26, and a water supply flow meter 27 are sequentially provided.

【0011】[0011]

【発明が解決しようとする課題】しかしながら近年、原
子力発電の普及と稼働率の上昇、さらには電力需給の変
動幅の拡大によって、従来はベース火力発電所として建
設されてきた中型〜大型の油焚き、石炭焚きの火力発電
所ですら、DSS運転が行なわれるようになってきた。
この結果、ボイラの起動停止に伴なって伝熱管の温度が
高頻度で高温低温をくりかえし、このため伝熱管外面に
は付着成長したスケールの温度に対する伸び率と、伝熱
管の伸び率との差によりスケールが剥離し脱落する。そ
して熱貫流率が変化して収熱バランスがくずれ、例えば
二次加熱器2の収熱が過大となる一方で、再熱器6、7
の収熱量が低下して、熱効率が低下するという問題があ
った。さらに原子力発電所の稼働が不安定なときなど
は、ベース火力的運用へ逆戻りすることもあり、高圧タ
ービンからの低温再熱蒸気量による制御が困難になると
いう問題もあった。
However, in recent years, due to the spread of nuclear power generation, the increase in operating rate, and the expansion of fluctuation range of electric power supply and demand, medium to large-sized oil-fired plants which have been conventionally constructed as base thermal power plants. Even in coal-fired thermal power plants, DSS operation has been started.
As a result, the temperature of the heat transfer tube frequently repeats high temperature and low temperature as the boiler starts and stops.Therefore, the difference between the elongation rate of the scale adhered and grown on the outer surface of the heat transfer tube and the elongation rate of the heat transfer tube is high. The scale peels off and falls off. Then, the heat transmission coefficient changes and the heat collection balance is lost, and, for example, the heat collection of the secondary heater 2 becomes excessive, while the reheaters 6, 7
However, there was a problem that the heat collection amount was reduced and the thermal efficiency was reduced. Further, when the operation of the nuclear power plant is unstable, it may return to the base thermal power operation, which makes it difficult to control the low temperature reheat steam from the high pressure turbine.

【0012】本発明は、再熱器から排出される蒸気温度
を容易に調節できる再熱器出口蒸気温度調節装置を提供
することを目的とする。
An object of the present invention is to provide a reheater outlet steam temperature adjusting device which can easily adjust the steam temperature discharged from the reheater.

【0013】[0013]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る再熱器出口蒸気温度調節装置は、燃料
を燃焼させて蒸気を発生するボイラの火炉後部に二次過
熱器と、二次過熱器の下流側に再熱器とが配設され、再
熱器の下流部に、再熱器出口の蒸気温度を調節する流路
せきを設けてなる構成とする。
In order to achieve the above-mentioned object, a reheater outlet steam temperature control apparatus according to the present invention comprises a secondary superheater at the rear of a furnace of a boiler that burns fuel to generate steam. A reheater is arranged on the downstream side of the secondary superheater, and a flow channel for adjusting the steam temperature at the reheater outlet is provided on the downstream side of the reheater.

【0014】また流路せきを、耐熱鋼板で着脱可能に形
成した構成でもよい。
Further, the flow passageway may be detachably formed of a heat resistant steel plate.

【0015】さらに流路せきを、手動により開度設定可
能な羽根ダンパに形成した構成でもよい。
Further, the flow passageway may be formed in a blade damper whose opening can be manually set.

【0016】[0016]

【作用】上記の構成によると、再熱器下流部のガス流路
に設けられた流路せきを取り外すことにより、ガス流路
の通過面積が広くなり、伝熱管外面を通過するガス流速
は遅くなる。反対に流路せきを取り付けることにより通
過面積が狭くなり、ガス流速は速くなる。また流路せき
を開度設定可能なダンパ構造とすることにより、ガス流
速を任意に変化させることができる。このように再熱器
管外のガス流速を変化させることにより熱貫流率を変え
ることができ、二次過熱器の収熱に支配されない再熱器
の収熱を形成することができる。この結果再熱蒸気温度
の調整が可能となる。
According to the above construction, by removing the flow channel weir provided in the gas flow channel in the downstream portion of the reheater, the passage area of the gas flow channel becomes wide, and the flow velocity of the gas passing through the outer surface of the heat transfer tube becomes slow. Become. On the contrary, the passage area is narrowed by attaching the flow channel, and the gas flow velocity is increased. Further, by using a damper structure in which the opening of the flow channel can be set, the gas flow velocity can be arbitrarily changed. As described above, the heat transmission coefficient can be changed by changing the gas flow rate outside the reheater tube, and the heat collection of the reheater which is not controlled by the heat collection of the secondary superheater can be formed. As a result, the reheat steam temperature can be adjusted.

【0017】[0017]

【実施例】本発明の一実施例を図面を参照しながら説明
する。図1及び図2にそれぞれ本発明の第1及び第2の
実施例の構成を示す。これらの図において、図3に示す
従来例の部分と対応する部分には同一の符号を付してあ
り、その説明は適宜省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. 1 and 2 show the configurations of the first and second embodiments of the present invention, respectively. In these figures, parts corresponding to those of the conventional example shown in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.

【0018】図1に示すように、再熱器6、7の管配置
をガス流路の高さ方向25〜50%の位置において、主
ガス流路51とバイパス流路52に仕切板及びキャスタ
53を設けて、分割仕切りを構成する。またバイパス流
路52中に容易に着脱可能な流路せきとして耐熱鋼板で
高さ200〜500mmのカセット型バッフル板54を
設ける。そして同一負荷条件下で主ガス流路51を通過
する排ガスの流速を変化させ、再熱器7の管外熱伝導率
を高め、再熱器7における収熱量を調節する。この場合
カセット型バッフル板54によってバイパス流路52を
閉止することもできる。
As shown in FIG. 1, the pipes of the reheaters 6 and 7 are arranged in the main gas flow passage 51 and the bypass flow passage 52 at a position of 25 to 50% in the height direction of the gas flow passage, with partition plates and casters. 53 is provided to configure the dividing partition. In addition, a cassette type baffle plate 54 having a height of 200 to 500 mm is provided in the bypass flow passage 52 as a flow passage which can be easily attached and detached by using a heat resistant steel plate. Then, under the same load condition, the flow velocity of the exhaust gas passing through the main gas flow path 51 is changed, the external heat conductivity of the reheater 7 is increased, and the heat collection amount in the reheater 7 is adjusted. In this case, the bypass channel 52 can be closed by the cassette type baffle plate 54.

【0019】本実施例によれば、DSS運転によって伝
熱管の金属温度が頻繁に高温・低温をくり返す結果、管
外スケールが脱落し、二次過熱器の収熱が増加し、再熱
器の収熱が低下して、再熱器出口蒸気温度が基準値より
下ったとき、バイパス流路52にカセット型バッフル板
54を取り付けることで、再熱器の熱貫流係数を上げ、
二次過熱器の収熱が変らなくても再熱器の出口蒸気温度
を高めることができる。
According to the present embodiment, as a result of the DSS operation, the metal temperature of the heat transfer tube frequently repeats high temperature and low temperature, and as a result, the scale outside the tube drops off, the heat collection of the secondary superheater increases, and the reheater Of the reheater outlet steam temperature is lower than the reference value, the cassette type baffle plate 54 is attached to the bypass flow passage 52 to increase the heat transmission coefficient of the reheater.
Even if the heat collection of the secondary superheater does not change, the outlet steam temperature of the reheater can be increased.

【0020】図2に示す第2の実施例では、第1の実施
例における仕切板及びキャスタ53の代りにカセット型
仕切板55を設け、Uボルト及びナット56によって伝
熱管に固定して取り付けた。またカセット型バッフル板
54の代りに手動開度設定型のダンパ構造として一対の
ダンパ羽根57を設け、ダンパ羽根57の開度により主
ガス流路51を通過する排ガスの流量を変化させるよう
にした。ダンパ羽根57はダンパ仕切板58に取り付け
られている。
In the second embodiment shown in FIG. 2, a cassette type partition plate 55 is provided in place of the partition plate and the caster 53 in the first embodiment, and is fixedly attached to the heat transfer tube by U bolts and nuts 56. .. Further, instead of the cassette type baffle plate 54, a pair of damper blades 57 are provided as a damper structure of a manual opening setting type, and the flow rate of the exhaust gas passing through the main gas passage 51 is changed depending on the opening of the damper blades 57. .. The damper blade 57 is attached to the damper partition plate 58.

【0021】本実施例によっても第1の実施例と同様の
効果が得られる。
According to this embodiment, the same effect as that of the first embodiment can be obtained.

【0022】[0022]

【発明の効果】本発明によれば、再熱器管外のガス流速
を可変としたため、DSS運用や基準負荷運用時に、運
用変化や燃料の変化によって再熱蒸気温度が基準値に達
しないことを防止または最小限にすることができ、プラ
ントの高効率運用が可能となる。
According to the present invention, since the gas flow velocity outside the reheater tube is variable, the reheated steam temperature does not reach the reference value due to operation change or fuel change during DSS operation or reference load operation. Can be prevented or minimized, and highly efficient operation of the plant becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す構成図である。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す構成図である。FIG. 2 is a configuration diagram showing a second embodiment of the present invention.

【図3】火力発電所のボイラの構成例を示すブロック図
である。
FIG. 3 is a block diagram showing a configuration example of a boiler of a thermal power plant.

【符号の説明】[Explanation of symbols]

1 ボイラ 2 二次過熱器 6、7 再熱器 54 カセット型バッフル板(流路せき) 57 ダンパ羽根(流路せき) 1 Boiler 2 Secondary superheater 6, 7 Reheater 54 Cassette type baffle plate (flow passage) 57 Damper blade (flow passage)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西 哲治 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuji Nishi 6-9 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Ltd. Kure Factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 燃料を燃焼させて蒸気を発生するボイラ
の火炉後部に二次過熱器と、該二次過熱器の下流側に再
熱器とが配設され、該再熱器の下流部に、再熱器出口の
蒸気温度を調節する流路せきを設けてなることを特徴と
する再熱器出口蒸気温度調節装置。
1. A secondary superheater is provided at a rear portion of a furnace of a boiler that burns fuel to generate steam, and a reheater is provided downstream of the secondary superheater, and a downstream portion of the reheater is provided. A reheater outlet steam temperature adjusting device, characterized in that a flow channel is provided to adjust the steam temperature at the reheater outlet.
【請求項2】 流路せきを、耐熱鋼板で着脱可能に形成
したことを特徴とする請求項1記載の再熱器出口蒸気温
度調節装置。
2. The reheater outlet steam temperature adjusting device according to claim 1, wherein the flow passage is made of a heat-resistant steel plate so as to be detachable.
【請求項3】 流路せきを、手動により開度設定可能な
ダンパ羽根に形成したことを特徴とする請求項1または
2記載の再熱器出口蒸気温度調節装置。
3. The reheater outlet steam temperature adjusting device according to claim 1, wherein the flow passage is formed in a damper blade whose opening can be manually set.
JP5081892A 1992-03-09 1992-03-09 Reheater outlet steam temperature adjusting device Pending JPH05248603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5081892A JPH05248603A (en) 1992-03-09 1992-03-09 Reheater outlet steam temperature adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5081892A JPH05248603A (en) 1992-03-09 1992-03-09 Reheater outlet steam temperature adjusting device

Publications (1)

Publication Number Publication Date
JPH05248603A true JPH05248603A (en) 1993-09-24

Family

ID=12869346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5081892A Pending JPH05248603A (en) 1992-03-09 1992-03-09 Reheater outlet steam temperature adjusting device

Country Status (1)

Country Link
JP (1) JPH05248603A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009050918A1 (en) * 2007-10-17 2009-04-23 Mitsubishi Heavy Industries, Ltd. Boiler and steam temperature regulation method of boiler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009050918A1 (en) * 2007-10-17 2009-04-23 Mitsubishi Heavy Industries, Ltd. Boiler and steam temperature regulation method of boiler

Similar Documents

Publication Publication Date Title
JP3890104B2 (en) Combined cycle power plant and steam supply method for cooling the same
WO2020181676A1 (en) Auxiliary system for denitration in all working conditions and operation method
JP4854422B2 (en) Control method for once-through exhaust heat recovery boiler
JPH0429923B2 (en)
JP2003214182A (en) Gas turbine combined plant and its operating method
PL189524B1 (en) Boiler
US5605118A (en) Method and system for reheat temperature control
JP2003161164A (en) Combined-cycle power generation plant
JP4842007B2 (en) Waste heat recovery boiler
JPH0417324B2 (en)
JPH05248603A (en) Reheater outlet steam temperature adjusting device
JP3285946B2 (en) Steam temperature controller for variable-pressure once-through boiler
JPH0828808A (en) Waste heat-recovering boiler device and its controlling method
JPS61108814A (en) Gas-steam turbine composite facility
JPH10232002A (en) Boiler
JP2889271B2 (en) Waste heat recovery boiler device
JPH08145301A (en) Waste heat recovering boiler
JP2866224B2 (en) Heat exchanger
CN117663101A (en) Boiler arrangement structure and temperature adjusting method thereof
JPS6375406A (en) Pressurized fluidized combustion method
JPH09170405A (en) Pressurized fluidized bed compound power generation facility
JPH1114007A (en) Reheat steam temperature controller of boiler
Dechamps et al. Once-through heat recovery steam generators working with sub-and supercritical steam conditions for combined cycles
JP2708406B2 (en) Startup control method for thermal power plant
JP3722928B2 (en) Waste heat recovery boiler unit