JP2009086340A - Carrier core material for electrophotographic developer and manufacturing method therefor, carrier for electrophotographic developer, and electrophotographic developer - Google Patents

Carrier core material for electrophotographic developer and manufacturing method therefor, carrier for electrophotographic developer, and electrophotographic developer Download PDF

Info

Publication number
JP2009086340A
JP2009086340A JP2007256670A JP2007256670A JP2009086340A JP 2009086340 A JP2009086340 A JP 2009086340A JP 2007256670 A JP2007256670 A JP 2007256670A JP 2007256670 A JP2007256670 A JP 2007256670A JP 2009086340 A JP2009086340 A JP 2009086340A
Authority
JP
Japan
Prior art keywords
core material
carrier core
carrier
electrophotographic developer
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007256670A
Other languages
Japanese (ja)
Other versions
JP5288759B2 (en
Inventor
Tomoya Yamada
智也 山田
Toshiya Kitamura
利哉 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd, Dowa IP Creation Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2007256670A priority Critical patent/JP5288759B2/en
Publication of JP2009086340A publication Critical patent/JP2009086340A/en
Application granted granted Critical
Publication of JP5288759B2 publication Critical patent/JP5288759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carrier core material for a two components type electrophotographic developer excellent also in mechanical strength, while having sufficient surface irregularity enough to obtain high adhesiveness when coating resin. <P>SOLUTION: This carrier core material uses, as a core material, a magnetic particle having 8.0 or more to 30.0 or less of value of BET specific surface area/true-sphere equivalent specific surface area, 0.050 μm or less of surface coarseness Ra value measured by reflection electron image analysis in a scanning electron microscope, and 2.40 g/cc or more of apparent density, by precipitating fine structure on a particle surface. The carrier core material is obtained by heat-treating rollingly the magnetic particle in a temperature range within 600°C-1000°C under a high reducing atmosphere. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電子写真用現像剤用のキャリア芯材、キャリア、および、電子写真現像剤に関するものである。   The present invention relates to a carrier core material for an electrophotographic developer, a carrier, and an electrophotographic developer.

二成分系電子写真現像法における電子写真現像剤用のキャリアの役割は、現像器装置内でトナーと共に混合攪拌されることにより当該トナーへ電荷を付与することと、担持体として当該トナーを感光体上に搬送することである。トナー搬送後のキャリアは、マグネットロール上に残留し、現像器装置内で再びトナーと混合される。このため、キャリアには、所望の電荷をトナーに付与する帯電特性と、繰り返し使用に耐える耐久性とが要求される。   The role of the carrier for the electrophotographic developer in the two-component electrophotographic development method is to provide charge to the toner by mixing and stirring with the toner in the developing device, and to use the toner as a carrier. It is to be transported up. The carrier after the toner conveyance remains on the magnet roll and is mixed with the toner again in the developing device. For this reason, the carrier is required to have charging characteristics that impart a desired charge to the toner and durability that can withstand repeated use.

一般的に、二成分系電子写真現像剤用のキャリア(本発明において、単に「キャリア」と記載する場合がある。)は、上述した帯電特性や耐久性を確保するために、マグネタイトなどの磁性粒子の芯材(本発明において、「キャリア芯材」と記載する場合がある。)を樹脂でコートした形態で使用される。しかしながら、電子写真現像剤の長期間の使用において、現像器装置内でキャリア同士の接触が繰り返し起こるため、当該キャリアにコートされた樹脂の磨耗や剥離が発生する。この磨耗や剥離の結果、キャリアの帯電付与能力が低下するため、現像された電子写真の画質が悪化したり、長期間にわたり安定した現像特性を得ることが困難であるという問題があった。   In general, a carrier for a two-component electrophotographic developer (which may be simply referred to as “carrier” in the present invention) is a magnetic material such as magnetite in order to ensure the above-described charging characteristics and durability. It is used in the form of a particle core material (in the present invention, sometimes described as “carrier core material”) coated with a resin. However, when the electrophotographic developer is used for a long period of time, the carriers are repeatedly contacted in the developing device, so that the resin coated on the carrier is worn or peeled off. As a result of this wear and peeling, there is a problem that the charge imparting ability of the carrier is lowered, so that the image quality of the developed electrophotography is deteriorated and it is difficult to obtain stable development characteristics over a long period of time.

この問題に対し、表面に適度な凹凸を有する粒子をキャリア芯材として用い、コートされた樹脂をキャリア芯材の凹部に染み込ませることで、当該キャリア芯材と樹脂との密着性を向上し、耐久性が向上することが提案されている。たとえば、特許文献1には、芯材の比表面積と芯材の真球相当比表面積の比が1.6から4.0であるキャリア芯材が記載されている。   For this problem, particles having moderate irregularities on the surface are used as the carrier core material, and the coated resin is soaked into the concave portion of the carrier core material, thereby improving the adhesion between the carrier core material and the resin, It has been proposed to improve durability. For example, Patent Document 1 describes a carrier core material in which the ratio of the specific surface area of the core material to the true sphere equivalent specific surface area of the core material is 1.6 to 4.0.

特開2002−207323号公報JP 2002-207323 A

しかしながら本発明者らの検討の結果によれば、特許文献1をはじめとする、従来の技術に係る樹脂がコートされたキャリアの耐久性は不十分であり、長期間の使用により帯電特性が悪化することが確認された。そこで、本発明者らは当該耐久性の向上の為、キャリア芯材の表面積をさらに大きくすることを考えた。ここで、キャリア芯材となる磁性粒子は、一般的に焼成法により製造されている為、当該キャリア芯材の表面積を大きくする為には、焼成温度を低下させることが考えられる。ところが、キャリア芯材の表面積を大きくする為に焼成温度を低下させると、今度は、焼結の進行が不十分となり、キャリア芯材の粒子内部や表面に多数の空孔が残留してしまう。そして、このような内部や表面に多数の空孔が残留した多孔質のキャリア芯材では、衝撃により発生したクラックが空孔を伝播することを見出した。即ち、現像器装置内でのキャリア攪拌中に、割れ、欠けが発生し、機械的強度に問題がある。   However, according to the results of the study by the present inventors, the durability of the carrier coated with the resin according to the prior art including Patent Document 1 is insufficient, and the charging characteristics deteriorate due to long-term use. Confirmed to do. Therefore, the present inventors considered to further increase the surface area of the carrier core material in order to improve the durability. Here, since the magnetic particles used as the carrier core material are generally manufactured by a firing method, it is conceivable to lower the firing temperature in order to increase the surface area of the carrier core material. However, if the firing temperature is lowered in order to increase the surface area of the carrier core material, the progress of the sintering becomes insufficient, and a large number of pores remain inside and on the surface of the carrier core material particles. And in such a porous carrier core material in which a large number of pores remain inside and on the surface, it has been found that cracks generated by impact propagate through the pores. That is, cracking and chipping occur during carrier stirring in the developing device, and there is a problem in mechanical strength.

本発明は、上述の状況の下でなされたものであり、粒子強度の低下を招く空孔が存在しないにも拘わらず、樹脂との密着性が高いキャリア芯材、当該キャリア芯材を用いたキャリア、電子写真現像剤を提供することである。   The present invention has been made under the above-described circumstances, and uses a carrier core material having high adhesion to a resin despite the absence of pores that cause a decrease in particle strength, and the carrier core material. It is to provide a carrier and an electrophotographic developer.

本発明者らは上述の課題を解決する為、研究を行った結果、焼結の進行を十分に行って見掛密度を上げながらも、キャリア芯材の表面に極めて微細な構造を形成する手法を知見し、本発明を完成した。   In order to solve the above-mentioned problems, the present inventors have conducted research, and a method of forming an extremely fine structure on the surface of the carrier core material while sufficiently increasing the apparent density by sufficiently proceeding with the sintering. As a result, the present invention was completed.

すなわち、上述の課題を解決するための第1の発明は、
電子写真現像剤用のキャリア芯材であって、
BET法により測定された当該キャリア芯材の比表面積をBET比表面積とし、当該キャリア芯材を真球と仮定したときの比表面積を真球相当比表面積としたとき、[BET比表面積]/[真球相当比表面積]の値が、8.0以上、30.0以下であり、
走査電子顕微鏡での反射電子像解析により測定した表面粗さRaの値が、0.050μm以下であり、
見掛密度が、2.40g/cc以上である、ことを特徴とする電子写真現像剤用のキャリア芯材である。
That is, the first invention for solving the above-described problem is:
A carrier core material for an electrophotographic developer,
When the specific surface area of the carrier core material measured by the BET method is the BET specific surface area, and the specific surface area when the carrier core material is assumed to be a true sphere is the true sphere equivalent specific surface area, [BET specific surface area] / [ True spherical equivalent surface area] is 8.0 or more and 30.0 or less,
The value of the surface roughness Ra measured by reflection electron image analysis with a scanning electron microscope is 0.050 μm or less,
It is a carrier core material for an electrophotographic developer characterized by having an apparent density of 2.40 g / cc or more.

第2の発明は、
外部磁場1000Oeにおける磁化率であるσ1000の値が、20emu/g以上、75emu/g以下である、ことを特徴とする第1の発明に記載の電子写真現像剤用のキャリア芯材である。
The second invention is
The carrier core material for an electrophotographic developer according to the first invention, wherein a value of σ1000, which is a magnetic susceptibility in an external magnetic field of 1000 Oe, is 20 emu / g or more and 75 emu / g or less.

第3の発明は、
主成分がマグネタイトまたはマンガンフェライトである、ことを特徴とする第1または第2の発明に記載の電子写真現像剤用のキャリア芯材である。
The third invention is
The carrier core material for an electrophotographic developer according to the first or second invention, wherein the main component is magnetite or manganese ferrite.

第4の発明は、
平均粒径が15μm以上80μm以下である、ことを特徴とする第1から第3の発明のいずれか1項に記載の電子写真現像剤用のキャリア芯材である。
The fourth invention is:
The carrier core material for an electrophotographic developer according to any one of the first to third inventions, wherein the average particle size is 15 μm or more and 80 μm or less.

第5の発明は、
24時間攪拌後の帯電量の低下率が、初期帯電量の10%以下である、ことを特徴とす
る第1から第4の発明のいずれか1項に記載の電子写真現像剤用のキャリア芯材である。
The fifth invention is:
The carrier core for an electrophotographic developer according to any one of the first to fourth inventions, wherein the rate of decrease in the charge amount after stirring for 24 hours is 10% or less of the initial charge amount. It is a material.

第6の発明は、
磁性粉末を酸素分圧10−10MPa以下の雰囲気下にて600℃から1000℃の温度範囲で転動させながら熱処理する、ことを特徴とする磁性粉末の表面処理方法である。
The sixth invention is:
A surface treatment method for a magnetic powder, characterized in that the magnetic powder is heat-treated in an atmosphere having an oxygen partial pressure of 10 −10 MPa or less while rolling in a temperature range of 600 ° C. to 1000 ° C.

第7の発明は、
第1から第5の発明のいずれか1項に記載のキャリア芯材を樹脂で被覆してなる、ことを特徴とする電子写真現像剤用のキャリアである。
The seventh invention
A carrier for an electrophotographic developer, wherein the carrier core material according to any one of the first to fifth inventions is coated with a resin.

第8の発明は、
第7の発明に記載の電子写真現像剤用のキャリアと、トナーとを含む、ことを特徴とする電子写真現像剤。
The eighth invention
An electrophotographic developer comprising the carrier for an electrophotographic developer according to the seventh invention and a toner.

本発明に係るキャリア芯材を用いた電子写真現像剤用のキャリアは、キャリア芯材と樹脂との密着性が高く、さらにキャリア芯材の粒子強度が高い為、長期間にわたる電子写真現像の繰り返しにおいて耐久性を発揮する。   The carrier for an electrophotographic developer using the carrier core material according to the present invention has high adhesion between the carrier core material and the resin, and the carrier core material has high particle strength, so that repeated electrophotographic development over a long period of time. Demonstrate durability.

本発明に係るキャリア芯材は、BET法により測定された当該キャリア芯材の比表面積をBET比表面積とし、当該キャリア芯材を真球と仮定したときの比表面積を真球相当比表面積としたとき、[BET比表面積]/[真球相当比表面積]の値が、8.0以上、30.0以下である。即ち、本発明に係るキャリア芯材は、その真球相当表面積の8倍〜30倍に相当する極めて広い比表面積を有している。つまり、本発明に係るキャリア芯材は、表面に多数の凹凸構造が存在する。   The carrier core material according to the present invention has the specific surface area of the carrier core material measured by the BET method as the BET specific surface area, and the specific surface area when the carrier core material is assumed to be a true sphere is the true sphere equivalent specific surface area. In this case, the value of [BET specific surface area] / [true spherical equivalent surface area] is 8.0 or more and 30.0 or less. That is, the carrier core material according to the present invention has an extremely wide specific surface area corresponding to 8 to 30 times the true sphere equivalent surface area. That is, the carrier core material according to the present invention has a large number of uneven structures on the surface.

本発明に係るキャリア芯材は、その真球相当表面積の8倍〜30倍に相当する極めて広い比表面積を有しているにもかかわらず、走査電子顕微鏡での反射電子像解析により測定した表面粗さRaの値は、0.050μm以下である。即ち、本発明に係るキャリア芯材の表面には、大きな凹凸がない。尚、走査電子顕微鏡の反射電子像解析による表面粗さRaの測定方法は、後述する。   Although the carrier core material according to the present invention has a very wide specific surface area corresponding to 8 to 30 times its true sphere equivalent surface area, the surface was measured by reflection electron image analysis with a scanning electron microscope. The value of roughness Ra is 0.050 μm or less. That is, there is no large unevenness on the surface of the carrier core material according to the present invention. A method for measuring the surface roughness Ra by reflection electron image analysis of a scanning electron microscope will be described later.

BET法の測定結果から得られた、表面に多数の凹凸構造が存在するという評価結果と、走査電子顕微鏡の測定結果から得られた、表面には大きな凹凸がないという評価結果とから、本発明に係るキャリア芯材の表面には、ミクロ的に見れば極めて微細な凹凸構造が、キャリア芯材全体として、マクロ的に見れば平坦な形状を有しているのだと考えられる。
そして、本発明に係るキャリア芯材は、当該極めて微細な凹凸構造により樹脂との密着性を向上させる為、本発明に係るキャリアや電子写真現像剤は高い耐久性を発揮することが出来るのだと考えられる。一方、本発明に係るキャリア芯材は、全体として見れば平坦な構造を有しているため、現像器装置内でのキャリア同士の衝突の際、粒子の割れ、欠けの発生原因となり易い部分が存在せず、高い画像特性を維持出来るのだと考えられる。
さらに、本発明に係るキャリア芯材の見掛密度は、2.40g/cc以上である。つまり、当該キャリア芯材は、粒子内部および表面にほとんど空孔が存在しない。従って、当該観点からも機械的強度が強く、現像器装置内でのキャリア同士の衝突の際、粒子の割れ、欠けが発生し難く、高い画像特性を維持出来るのだと考えられる。
From the evaluation result obtained from the measurement result of the BET method that there are many uneven structures on the surface and the evaluation result obtained from the measurement result of the scanning electron microscope that there is no large unevenness on the surface, the present invention It is considered that the surface of the carrier core material according to the present invention has an extremely fine uneven structure when viewed microscopically and has a flat shape when viewed macroscopically as the entire carrier core material.
And since the carrier core material according to the present invention improves the adhesion with the resin by the extremely fine uneven structure, the carrier and the electrophotographic developer according to the present invention can exhibit high durability. it is conceivable that. On the other hand, since the carrier core material according to the present invention has a flat structure as a whole, there is a portion that is likely to cause cracking and chipping of particles when carriers collide with each other in the developing device. It does not exist, and it is thought that high image characteristics can be maintained.
Furthermore, the apparent density of the carrier core material according to the present invention is 2.40 g / cc or more. That is, the carrier core material has almost no pores inside and on the surface of the particles. Therefore, from this point of view, it is considered that the mechanical strength is strong, and when the carriers collide with each other in the developing device, cracking and chipping of the particles hardly occur and high image characteristics can be maintained.

本発明に係るキャリア芯材となる磁性粒子は、外部磁場1000Oeにおける磁化率であるσ1000の値が、20emu/g以上、75emu/g以下である。磁化率が20emu/g以上あることで、磁気ブラシを形成する磁気的引力が確保出来るのでキャリアの飛散現象が発生しない。
一方、磁化率が75mu/g以下であることにより、マグネットロール上に形成される磁気ブラシが、感光体を傷つける危険性を招くことを回避できる。
The magnetic particles serving as the carrier core material according to the present invention have a value of σ1000, which is a magnetic susceptibility in an external magnetic field of 1000 Oe, of 20 emu / g or more and 75 emu / g or less. When the magnetic susceptibility is 20 emu / g or more, the magnetic attractive force for forming the magnetic brush can be secured, so that the carrier scattering phenomenon does not occur.
On the other hand, when the magnetic susceptibility is 75 mu / g or less, it can be avoided that the magnetic brush formed on the magnet roll poses a risk of damaging the photoreceptor.

磁性粒子の組成としては、上記の磁化率を満足するものであれば良いが、マグネタイトまたはマンガンフェライトが特に好適である。これらの物質は適度な磁化率をもち、残留磁化も小さいため好ましい。   The composition of the magnetic particles is not particularly limited as long as the magnetic susceptibility is satisfied, but magnetite or manganese ferrite is particularly preferable. These materials are preferable because they have an appropriate magnetic susceptibility and a small residual magnetization.

本発明に係るキャリア芯材の粒径は、15μm以上、80μm以下が好ましい。粒径が15μm以上あれば一粒子あたりの磁化がキャリア飛散を抑止することが出来、粒径が80μm以下であれば画像特性の低下を回避出来るからである。   The particle diameter of the carrier core material according to the present invention is preferably 15 μm or more and 80 μm or less. This is because if the particle size is 15 μm or more, the magnetization per particle can suppress carrier scattering, and if the particle size is 80 μm or less, deterioration of image characteristics can be avoided.

本発明に係るキャリア芯材は、24時間攪拌後の帯電量の低下率が初期帯電量の10%以下である。一般的にキャリアは現像機内で長時間の攪拌を受けることにより、後述の樹脂コートの剥離が生じ、帯電量の低下が生じる。このような帯電量の劣化は、現像画質の変化を引き起こすため、長期間にわたり安定した画質を得ることが困難となる。この点に関し、本発明に係るキャリア芯材は、上述のように表面に極めて微細な凹凸を多数有するため、芯材と樹脂との密着性を向上させることが可能である。この芯材と樹脂との密着性
を向上の為、24時間攪拌後の帯電量の低下率が、初期帯電量の10%以下に抑制できたものと考えられる。
In the carrier core material according to the present invention, the reduction rate of the charge amount after stirring for 24 hours is 10% or less of the initial charge amount. In general, the carrier is agitated for a long time in the developing machine, whereby the resin coat described later is peeled off and the charge amount is lowered. Such deterioration of the charge amount causes a change in the developed image quality, so that it is difficult to obtain a stable image quality over a long period of time. In this regard, since the carrier core material according to the present invention has a large number of extremely fine irregularities on the surface as described above, it is possible to improve the adhesion between the core material and the resin. In order to improve the adhesion between the core material and the resin, it is considered that the reduction rate of the charge amount after stirring for 24 hours can be suppressed to 10% or less of the initial charge amount.

また、本発明に係るキャリア芯材は、帯電性の付与および耐久性の向上のためシリコーン系樹脂等を被覆し、電子写真現像用のキャリアとして使用することが好ましい。被覆方法に関しては、公知の手法により行えば良い。   In addition, the carrier core material according to the present invention is preferably used as a carrier for electrophotographic development by coating a silicone resin or the like for imparting chargeability and improving durability. The coating method may be performed by a known method.

以降より、本発明に係るキャリア芯材の製造方法について説明する。本発明に係るキャリア芯材の製造方法を、1.前駆体となる粒子の造粒工程、2.磁性相を得る焼成工程、3.表面に微細な凹凸発生させる表面処理工程、4.本発明に係るキャリア芯材の調製、5.本発明に係るキャリア、電子写真現像剤の調製、各工程に分けて説明する。   Hereinafter, the manufacturing method of the carrier core material according to the present invention will be described. A method for producing a carrier core material according to the present invention is as follows. 1. Granulation step of precursor particles. 2. a firing step for obtaining a magnetic phase; 3. Surface treatment process for generating fine irregularities on the surface. 4. Preparation of carrier core material according to the present invention; The carrier according to the present invention, the preparation of an electrophotographic developer, and each step will be described separately.

1.前駆体となる粒子の造粒工程
本発明に係るキャリア芯材の前駆体となる粒子を得るには、公知の造粒方法を用いればよいが、特に噴霧乾燥法が好適に用いられる。噴霧乾燥により造粒を行う場合には、水中に原料粉末を混合、分散させスラリーとした後、乾燥風中に噴霧することにより、所望の粒度分布を持った前駆体粒子を得ることができる。
1. Granulation Step of Precursor Particles A known granulation method may be used to obtain particles serving as a precursor of the carrier core material according to the present invention, but a spray drying method is particularly preferably used. When granulation is performed by spray drying, precursor particles having a desired particle size distribution can be obtained by mixing and dispersing raw material powder in water to form a slurry, and then spraying the slurry in dry air.

具体的には、スラリーの固形分濃度を50%〜90%の間で調整することが好ましい。造粒物の粒子形状を維持するためには、媒体液である水に、適宜なバインダーを添加することが有効である。当該バインダーとしては、例えばポリビニルアルコールが好適に使用でき、その媒体液中濃度は0.5〜2.0質量%程度とすればよい。さらに、スラリーには、分散剤が添加されるのが一般的である。当該分散剤としては、例えばポリカルボン酸アンモニウム系のものが好適に使用でき、その媒体液中濃度は0.5〜2.0質量%程度とすればよい。さらに、潤滑剤や、当該スラリーへ、焼結促進剤としてリンやホウ酸等を添加することが出来る。   Specifically, it is preferable to adjust the solid content concentration of the slurry between 50% and 90%. In order to maintain the particle shape of the granulated product, it is effective to add an appropriate binder to water as the medium liquid. As the binder, for example, polyvinyl alcohol can be preferably used, and the concentration in the medium liquid may be about 0.5 to 2.0% by mass. Further, a dispersant is generally added to the slurry. As the dispersant, for example, an ammonium polycarboxylate-based one can be preferably used, and the concentration in the medium liquid may be about 0.5 to 2.0% by mass. Furthermore, phosphorus, boric acid or the like can be added as a sintering accelerator to the lubricant or the slurry.

原料粉末としては、例えば、マグネタイトの製造の場合には金属Fe、Fe、Feなどが好適に用いられる。マンガンフェライトの場合には、Fe源である金属Fe、Fe、Feと、Mn源である金属Mn、MnO、Mn、MnやMnCOとを所定の割合になるよう計量し、混合するのが良い。 As the raw material powder, for example, in the production of magnetite, metal Fe, Fe 3 O 4 , Fe 2 O 3 and the like are preferably used. In the case of manganese ferrite, the metals Fe, Fe 3 O 4 and Fe 2 O 3 as Fe sources and the metals Mn, MnO 2 , Mn 2 O 3 , Mn 3 O 4 and MnCO 3 as Mn sources are predetermined. It is better to weigh and mix so that

2.磁性相を得る焼成工程
次に、造粒により得られた前駆体粒子を、焼成することで磁性相とする。焼成は、造粒粉を加熱した炉に投入し、所定の時間加熱することで行われる。焼成温度は目的となる磁性相が生成する温度範囲に設定すれば良いが、たとえばマグネタイトやソフトフェライトを製造する場合には1000〜1300℃の温度範囲で焼成することが一般的である。当該焼成炉は電気炉などの一般的な加熱炉を用いれば良い。
2. Firing step for obtaining a magnetic phase Next, the precursor particles obtained by granulation are fired to obtain a magnetic phase. Firing is performed by putting the granulated powder into a heated furnace and heating it for a predetermined time. The firing temperature may be set to a temperature range in which the target magnetic phase is generated. For example, when producing magnetite or soft ferrite, firing is generally performed in a temperature range of 1000 to 1300 ° C. As the firing furnace, a general heating furnace such as an electric furnace may be used.

3.表面に微細な凹凸発生させる表面処理工程
本発明に関するキャリア粒子の表面形状を得るためには、上述の焼成工程に続けて、得られた焼成物を強い還元雰囲気、好ましくは酸素分圧10−10atm以下に調整した炉内で600℃〜1000℃の温度範囲にて転動させることで熱処理を行う。
従って、加熱炉としては、得られた焼成物を転動出来る回転炉等を用いる。これによって、後述するキャリア粒子の表面に微細な凹凸発生させる表面処理を実施することが出来る。具体的には、0.5rpm〜10rpm程度の回転が可能で、焼成時の雰囲気を制御できるロータリーキルンが好ましい。
当該強い還元雰囲気の調製は、一酸化炭素や水素などの還元性ガス、またはそれらの還元性ガスと窒素やアルゴンなどの不活性ガスとの混合ガスを炉内にフローすることにより実施される。または、カーボンなどの還元剤を、表面処理工程実施時に炉内へ投入しても
良い。
本発明者らの検討の結果、表面処理工程実施時の炉内温度が600℃以上あれば、本発明の特徴である微細な構造を持つ表面形状が得られ、炉内温度が1000℃以下であれば粒子同士の焼結や炉壁への付着が起こらない。
また、加熱炉を転動させながら熱処理を行うことで、粒子の微細な表面構造を均一に形成させることが可能となり、処理ばらつきを低減出来る。
3. Surface treatment step for generating fine irregularities on the surface In order to obtain the surface shape of the carrier particles according to the present invention, the obtained fired product is subjected to a strong reducing atmosphere, preferably an oxygen partial pressure of 10 −10 , following the above-described firing step. Heat treatment is performed by rolling in a temperature range of 600 ° C. to 1000 ° C. in a furnace adjusted to atm or lower.
Therefore, as the heating furnace, a rotary furnace capable of rolling the obtained fired product is used. As a result, a surface treatment for generating fine irregularities on the surface of carrier particles described later can be performed. Specifically, a rotary kiln capable of rotating at about 0.5 rpm to 10 rpm and controlling the atmosphere during firing is preferable.
The strong reducing atmosphere is prepared by flowing a reducing gas such as carbon monoxide or hydrogen, or a mixed gas of the reducing gas and an inert gas such as nitrogen or argon into the furnace. Alternatively, a reducing agent such as carbon may be introduced into the furnace during the surface treatment process.
As a result of the study by the present inventors, if the furnace temperature at the time of the surface treatment process is 600 ° C. or more, a surface shape having a fine structure, which is a feature of the present invention, is obtained, and the furnace temperature is 1000 ° C. or less. If there is, sintering between particles and adhesion to the furnace wall do not occur.
Further, by performing the heat treatment while rolling the heating furnace, it is possible to uniformly form a fine surface structure of particles, and to reduce processing variations.

4.本発明に係るキャリア芯材の調製
表面処理工程を終えた粒子を篩により分級することにより、所望の粒度分布を持った本発明に係るキャリア芯材を得ることができる。
4). Preparation of carrier core material according to the present invention The carrier core material according to the present invention having a desired particle size distribution can be obtained by classifying the particles after the surface treatment step with a sieve.

5.本発明に係るキャリア、電子写真現像剤の調製
本発明に係るキャリア芯材へ樹脂をコートすることにより、帯電性の付与および耐久性の向上を行う。コートの樹脂としては、シリコーン系樹脂などが用いられる。被覆方法に関しては、公知の手法により行えば良い。この結果、本発明に係るキャリアを得ることができる。
さらに、本発明に係るキャリアと、適宜なトナーとを混合することで本発明に係る電子写真現像剤を得ることができる。
5. Preparation of carrier and electrophotographic developer according to the present invention Coating the carrier core material according to the present invention with a resin imparts chargeability and improves durability. A silicone resin or the like is used as the coating resin. The coating method may be performed by a known method. As a result, the carrier according to the present invention can be obtained.
Furthermore, the electrophotographic developer according to the present invention can be obtained by mixing the carrier according to the present invention and an appropriate toner.

《測定方法》
以下、本実施例および比較例において行った各特性値の測定方法を示す。
<粒度分布>
キャリア芯材の粒度分布は、マイクロトラック(日機装(株)製、Model:9320−X100)を用いて測定した。尚、本発明においては、体積率50%までの積算粒径であるD50の値を粉末の平均粒径として記載した。
"Measuring method"
Hereafter, the measuring method of each characteristic value performed in a present Example and the comparative example is shown.
<Particle size distribution>
The particle size distribution of the carrier core material was measured using a microtrack (manufactured by Nikkiso Co., Ltd., Model: 9320-X100). In the present invention, the value of D50, which is the cumulative particle diameter up to a volume ratio of 50%, is described as the average particle diameter of the powder.

<磁気特性>
キャリア芯材の磁気特性は、VSM(東英工業株式会社製、VSM−P7)を用いて磁化率の測定を行い、外部磁場1000Oeにおける磁化率σ1000(emu/g)を測定した。
<Magnetic properties>
The magnetic properties of the carrier core material were measured by measuring the magnetic susceptibility using VSM (manufactured by Toei Industry Co., Ltd., VSM-P7) and measuring the magnetic susceptibility σ1000 (emu / g) in an external magnetic field of 1000 Oe.

<見掛密度>
キャリア芯材の見掛密度は、JIS−Z2504:2000により測定した。
<Apparent density>
The apparent density of the carrier core material was measured according to JIS-Z2504: 2000.

<比表面積>
キャリア芯材の比表面積は、マウンテック社製 Macsorb(model−1201)を用い、200℃で15分間脱気した試料に対して測定をおこなった。吸着ガスとし
ては窒素を使用した。
<Specific surface area>
The specific surface area of the carrier core material was measured on a sample deaerated at 200 ° C. for 15 minutes using a Macsorb (model-1201) manufactured by Mountec. Nitrogen was used as the adsorption gas.

<表面粗さ>
粒子の表面凹凸の測定は、電界放出型走査電子顕微鏡(FE−SEM:日立製S−4700)と、それに付属する三次元形状測定装置(日立株式会社製、RD−500w)とを用い、反射電子検出器により観測された反射電子像を解析することにより、算術表面粗さRaの値を算出した。
尚、表面粗さRaの値は、50個のキャリア芯材粒子表面粗さの平均値である。
表面状態を反映する特性値は、粗度パラメータにより構成されたsurface factorとした。但し、W60とした。
測定条件は、加速電圧3kV、電流20μA、W.D.12mm、対物絞り2、Cond Lens1:5、測定倍率5000倍とした。
<Surface roughness>
The surface irregularities of the particles are measured using a field emission scanning electron microscope (FE-SEM: S-4700 manufactured by Hitachi) and a three-dimensional shape measuring apparatus attached thereto (RD-500w manufactured by Hitachi, Ltd.). The value of arithmetic surface roughness Ra was calculated by analyzing the backscattered electron image observed by the electron detector.
The value of the surface roughness Ra is an average value of the surface roughness of 50 carrier core particles.
The characteristic value reflecting the surface state was a surface factor constituted by a roughness parameter. However, it was set to W60.
The measurement conditions were an acceleration voltage of 3 kV, a current of 20 μA, and a W.V. D. 12 mm, objective aperture 2, Cond Lens 1: 5, and measurement magnification of 5000 times.

<帯電量測定>
帯電量の測定は、ガラス瓶中にキャリアとトナーとを入れ、これを振とう器により30分間攪拌した。当該攪拌後、400メッシュの篩網上において、吸引圧8.0kPaで1分間吸引することによりトナーを除去し、残ったキャリアの電荷量(Q)を測定し、重量あたりの帯電量
帯電量(μC/g)=Q(μC)/M(g)
を算出した。但し、Mはキャリアの重量である。
<Charge amount measurement>
For the measurement of the charge amount, a carrier and toner were put in a glass bottle, and this was stirred for 30 minutes by a shaker. After the stirring, the toner is removed by sucking on a 400-mesh sieve screen at a suction pressure of 8.0 kPa for 1 minute, and the charge amount (Q) of the remaining carrier is measured. The charge amount per weight Charge amount ( μC / g) = Q (μC) / M (g)
Was calculated. Where M is the weight of the carrier.

<耐久性評価>
キャリアの耐久性は、振とう器による攪拌を24時間実施し対外は、上記帯電量測定と同様の操作を行い、攪拌後のキャリアの帯電量を測定し、初期の帯電量との比較を行うことにより評価した。
<Durability evaluation>
As for the durability of the carrier, stirring with a shaker is carried out for 24 hours, and externally, the same operation as the charge amount measurement is performed, the charge amount of the carrier after stirring is measured, and compared with the initial charge amount. It was evaluated by.

《実施例1》
Fe(平均粒径:0.6μm)7.2kg、Mn(平均粒径:0.9μm)2.8kgを純水3.0kg中に分散し、湿式ボールミル(メディア径2mm)により粉砕処理を行い、FeとMnの混合スラリーを得た。尚、純水には分散剤として、ポリカルボン酸アンモニウム系分散剤を60g添加した。この混合スラリーをスプレードライヤーにて約130℃の熱風中に噴霧し、粒径10〜100μmの乾燥造粒物を得た。
この乾燥造粒物を電気炉に投入し、1150℃で3時間焼成して焼成物を得た。得られた焼成物を粉砕後に篩を用いて分級し、平均粒径36μmとなるフェライト粉末を得た。
さらに、このフェライト粉末にカーボン粉末を1.0wt.%加え、ロータリーキルンに投入して、窒素ガスフロー雰囲気下で転動させながら800℃で1時間熱処理を行い、実施例1に係るキャリア芯材を得た。
次に、キャリア芯材の樹脂との密着性を評価するため、実施例1に係るキャリア芯材に対して樹脂コートを行い、実施例1に係るキャリアを製造した。
前記キャリア芯材と樹脂溶液とを質量比でキャリア芯材:樹脂溶液=95:5の割合で撹拌機に導入し、樹脂溶液にキャリア芯材を3時間浸漬しながら150〜250℃の範囲で加熱撹拌した。樹脂溶液はシリコーン系樹脂(信越化学製、KR251)をトルエンに溶解させた。これにより、キャリア芯材100質量部に対し樹脂が0.5質量部の割合でコーティングを行った。この樹脂被覆されたキャリア芯材を熱風循環式加熱装置にて250℃で5時間加熱することにより、樹脂被覆層を硬化させて、実施例1に係る磁性キャリアを得た。
Example 1
Fe 2 O 3 (average particle size: 0.6 μm) 7.2 kg, Mn 3 O 4 (average particle size: 0.9 μm) 2.8 kg was dispersed in 3.0 kg of pure water, and wet ball mill (media diameter 2 mm) ) To obtain a mixed slurry of Fe 2 O 3 and Mn 3 O 4 . Note that 60 g of ammonium polycarboxylate dispersant was added to the pure water as a dispersant. This mixed slurry was sprayed into hot air at about 130 ° C. with a spray dryer to obtain a dry granulated product having a particle size of 10 to 100 μm.
The dried granulated product was put into an electric furnace and fired at 1150 ° C. for 3 hours to obtain a fired product. The obtained fired product was pulverized and classified using a sieve to obtain a ferrite powder having an average particle size of 36 μm.
Furthermore, 1.0 wt. % Was added to a rotary kiln and heat-treated at 800 ° C. for 1 hour while rolling in a nitrogen gas flow atmosphere to obtain a carrier core material according to Example 1.
Next, in order to evaluate the adhesiveness of the carrier core material to the resin, the carrier core material according to Example 1 was coated with a resin to produce the carrier according to Example 1.
The carrier core material and the resin solution are introduced into a stirrer at a mass ratio of carrier core material: resin solution = 95: 5, and the carrier core material is immersed in the resin solution for 3 hours in a range of 150 to 250 ° C. Stir with heating. As the resin solution, a silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., KR251) was dissolved in toluene. Thereby, the coating was performed at a ratio of 0.5 part by mass of resin to 100 parts by mass of the carrier core material. The resin-coated carrier core material was heated at 250 ° C. for 5 hours with a hot-air circulating heating device to cure the resin coating layer, whereby the magnetic carrier according to Example 1 was obtained.

実施例1に係るキャリア芯材の平均粒径は27.2μm、見掛け密度は2.44g/cc、BET比表面積は1.03m/g、真球相当比表面積0.044m/g、従って[BET比表面積]/[真球相当比表面積]は23.4、Raは0.042μm、σ1000は61.0emu/gであった。
さらに、実施例1に係るキャリアの初期の帯電量は28.3μC/g、24時間後の帯電量は26.9μC/g、24時間後での帯電量低下率は4.9%であった。
The carrier core material according to Example 1 has an average particle diameter of 27.2 μm, an apparent density of 2.44 g / cc, a BET specific surface area of 1.03 m 2 / g, and a true spherical equivalent specific surface area of 0.044 m 2 / g. [BET specific surface area] / [true sphere equivalent specific surface area] was 23.4, Ra was 0.042 μm, and σ1000 was 61.0 emu / g.
Furthermore, the initial charge amount of the carrier according to Example 1 was 28.3 μC / g, the charge amount after 24 hours was 26.9 μC / g, and the rate of decrease in charge amount after 24 hours was 4.9%. .

《実施例2》
焼成後のフェライト粉末に対し、900℃で熱処理を行うこと以外は実施例1と同様の操作を行い、実施例2に係るキャリア芯材とキャリアとを得た。
実施例2に係るキャリア芯材の平均粒径は28.4μm、見掛け密度は2.42g/cc、BET比表面積は0.68m/g、真球相当比表面積0.042m/g、従って[BET比表面積]/[真球相当比表面積]は16.2、Raは0.027μm、σ1000は52.7emu/g、であった。
さらに、実施例2に係るキャリアの初期の帯電量は27.6μC/g、24時間後の帯電量は25.9μC/g、従って24時間後での帯電量低下率は6.2%であった。
Example 2
The same operations as in Example 1 were performed on the sintered ferrite powder except that heat treatment was performed at 900 ° C., and the carrier core material and carrier according to Example 2 were obtained.
The carrier core material according to Example 2 has an average particle diameter of 28.4 μm, an apparent density of 2.42 g / cc, a BET specific surface area of 0.68 m 2 / g, and a true spherical equivalent specific surface area of 0.042 m 2 / g. [BET specific surface area] / [true sphere equivalent specific surface area] was 16.2, Ra was 0.027 μm, and σ1000 was 52.7 emu / g.
Furthermore, the initial charge amount of the carrier according to Example 2 was 27.6 μC / g, the charge amount after 24 hours was 25.9 μC / g, and thus the rate of decrease in charge amount after 24 hours was 6.2%. It was.

《比較例1》
焼成後のフェライト粉末に対し、熱処理を行わないこと以外は実施例1と同様の操作を行い、比較例1に係るキャリア芯材とキャリアとを得た。
比較例1に係るキャリア芯材の平均粒径は27.4μm、見掛け密度は2.32g/cc、BET比表面積は0.06m/g、真球相当比表面積0.044m/g、従って[BET比表面積]/[真球相当比表面積]は1.36、Raは0.017μm、σ1000は71.3emu/gであった。
さらに、比較例1に係るキャリアの初期の帯電量は27.9μC/g、24時間後の帯電量は22.4μC/g、従って24時間後での帯電量低下率は19.7%であった。
<< Comparative Example 1 >>
The sintered core powder was subjected to the same operation as in Example 1 except that no heat treatment was performed, and the carrier core material and carrier according to Comparative Example 1 were obtained.
The carrier core material according to Comparative Example 1 has an average particle diameter of 27.4 μm, an apparent density of 2.32 g / cc, a BET specific surface area of 0.06 m 2 / g, and a true sphere equivalent specific surface area of 0.044 m 2 / g. [BET specific surface area] / [true sphere equivalent specific surface area] was 1.36, Ra was 0.017 μm, and σ1000 was 71.3 emu / g.
Further, the initial charge amount of the carrier according to Comparative Example 1 was 27.9 μC / g, the charge amount after 24 hours was 22.4 μC / g, and thus the rate of decrease in charge amount after 24 hours was 19.7%. It was.

《比較例2》
焼成時の温度を950℃で行うこと以外は比較例1と同様の操作を行い、比較例2に係るキャリア芯材とキャリアとを得た。
比較例2に係るキャリア芯材の平均粒径は27.4μm、見掛け密度は2.18g/cc、BET比表面積は0.58m/g、真球相当比表面積0.044m/g、従って[BET比表面積]/[真球相当比表面積]は13.2、Raは0.025μm、σ1000は55.0emu/gであった。
さらに、比較例2に係るキャリアの初期の帯電量は27.8μC/g、24時間後の帯電量は14.5μC/g、従って24時間後での帯電量低下率は47.8%であった。
<< Comparative Example 2 >>
A carrier core material and a carrier according to Comparative Example 2 were obtained by performing the same operation as in Comparative Example 1 except that the firing temperature was 950 ° C.
The carrier core material according to Comparative Example 2 has an average particle diameter of 27.4 μm, an apparent density of 2.18 g / cc, a BET specific surface area of 0.58 m 2 / g, and a true sphere equivalent specific surface area of 0.044 m 2 / g. [BET specific surface area] / [true sphere equivalent specific surface area] was 13.2, Ra was 0.025 μm, and σ1000 was 55.0 emu / g.
Furthermore, the initial charge amount of the carrier according to Comparative Example 2 was 27.8 μC / g, the charge amount after 24 hours was 14.5 μC / g, and thus the rate of decrease in charge amount after 24 hours was 47.8%. It was.

《実施例3》
Fe(平均粒径:0.6μm)10.0kgを純水3.0kg中に分散し、湿式ボールミル(メディア径2mm)により粉砕処理を行い、Feのスラリーを得た。尚、純水には分散剤として、ポリカルボン酸アンモニウム系分散剤を60g添加した。このスラリーをスプレードライヤーにて約130℃の熱風中に噴霧し、粒径10〜100μmの乾燥造粒物を得た。
この乾燥造粒物を、電気炉に投入し1180℃で3時間焼成して焼成物を得た。得られた焼成物を粉砕後に篩を用いて分級し、平均粒径35μmとなるマグネタイト粉末を得た。
さらに、このマグネタイト粉末にカーボン粉末を1.0wt.%加え、ロータリーキルンに投入して、窒素ガスフロー雰囲気下で転動させながら800℃で1時間熱処理を行うことにより、実施例3に係るキャリア芯材とキャリアとを得た。
実施例3に係るキャリア芯材の平均粒径は30.2μm、見掛け密度は2.45g/cc、BET比表面積は0.98m/g、真球相当比表面積0.038m/g、従って[BET比表面積]/[真球相当比表面積]は25.8、Raは0.044μm、σ1000は55.2emu/gであった。
さらに、実施例3に係るキャリアの初期の帯電量は29.0μC/g、24時間後の帯
電量は27.4μC/g、従って24時間後での帯電量低下率は5.5%であった。
Example 3
10.0 kg of Fe 2 O 3 (average particle size: 0.6 μm) was dispersed in 3.0 kg of pure water and pulverized by a wet ball mill (media diameter: 2 mm) to obtain a slurry of Fe 2 O 3 . Note that 60 g of ammonium polycarboxylate dispersant was added to the pure water as a dispersant. This slurry was sprayed into hot air at about 130 ° C. with a spray dryer to obtain a dry granulated product having a particle size of 10 to 100 μm.
This dried granulated product was put into an electric furnace and fired at 1180 ° C. for 3 hours to obtain a fired product. The fired product obtained was pulverized and classified using a sieve to obtain a magnetite powder having an average particle size of 35 μm.
Furthermore, 1.0 wt. The carrier core material and carrier according to Example 3 were obtained by adding to the rotary kiln and performing heat treatment at 800 ° C. for 1 hour while rolling in a nitrogen gas flow atmosphere.
The average particle size of the carrier core material according to the third embodiment 30.2Myuemu, apparent density 2.45 g / cc, BET specific surface area of 0.98 m 2 / g, sphericity equivalent specific surface area of 0.038 m 2 / g, therefore [BET specific surface area] / [true sphere equivalent specific surface area] was 25.8, Ra was 0.044 μm, and σ1000 was 55.2 emu / g.
Furthermore, the initial charge amount of the carrier according to Example 3 was 29.0 μC / g, the charge amount after 24 hours was 27.4 μC / g, and thus the rate of decrease in charge amount after 24 hours was 5.5%. It was.

《まとめ》
図1に実施例1、図2に実施例2、図3に実施例3、図4に比較例1、そして、図5に比較例2に係るキャリア芯材のSEM写真(倍率1000倍)をそれぞれ示し、図6に実施例1に係るキャリア芯材のFE―SEM写真(倍率5000倍)を示す。
従来の技術に係る一般的なキャリア芯材は、図4に示されるような、いくつかのグレインが集合した粒子形状となっており、グレイン部分は比較的平滑となっている。これに対し、本発明に関するキャリア芯材は、図1から3、6に見られるように、粒子表面に微細な析出物を有し、表面凹凸が非常に大きい形状となり、後述するように比表面積が大きく
なっている。
一方、図5に示す比較例2に係るキャリア芯材は、従来技術に係る製造方法である「焼成温度の低下」によって、本発明に係るキャリア芯材と同等の比表面積を持つキャリア芯材を製造したものである。しかし、比較例2に係るキャリア芯材は、焼結が十分進行しておらず、多孔質形状の粒子となっていることが解る。
尚、本発明者は、図6等から実施例1のRa値を測定した。以降の実施例、比較例でも同様である。
<Summary>
Example 1 in FIG. 1, Example 2 in FIG. 2, Example 3 in FIG. 3, Comparative Example 1 in FIG. 4, and FIG. 5 shows an SEM photograph (1000 × magnification) of the carrier core material according to Comparative Example 2. FIG. 6 shows an FE-SEM photograph (5000 times magnification) of the carrier core material according to Example 1. FIG.
A general carrier core material according to the prior art has a particle shape in which several grains are aggregated as shown in FIG. 4, and the grain portion is relatively smooth. On the other hand, the carrier core material according to the present invention has a fine precipitate on the particle surface and a very large surface irregularity as seen in FIGS. 1 to 3 and 6, and has a specific surface area as described later. Is getting bigger.
On the other hand, the carrier core material according to Comparative Example 2 shown in FIG. 5 is a carrier core material having a specific surface area equivalent to that of the carrier core material according to the present invention by the “reduction in firing temperature” which is a manufacturing method according to the prior art. It is manufactured. However, it can be seen that the carrier core material according to Comparative Example 2 is not sufficiently sintered and is in the form of porous particles.
In addition, this inventor measured Ra value of Example 1 from FIG. The same applies to the following examples and comparative examples.

表1は、実施例1から3、および、比較例1、2に係るキャリア芯材の各特性値の一覧表である。
ここで、実施例1、2および比較例1に係るキャリア芯材は、磁性相であるマンガンフェライトを得る焼成工程までは同一であるが、その後の熱処理による表面改質の条件、有無の点で異なっている。熱処理による表面改質処理を実施しなかった比較例1に係るキャリア芯材と比較して、当該処理を行った実施例1、2に係るキャリア芯材は、10〜15倍の比表面積を有しており、SEM像に見られる粒子形状の差を反映したものとなっている。
また、実施例3は、磁性相がマグネタイトであるキャリア芯材の結果である。当該結果より、本発明に係る熱処理を行うことにより、磁性相がマグネタイトであっても、実施例1、2と同様に粒子表面に微細な析出物を発生させ表面凹凸が非常に大きい形状とし、比表面積を大きく出来ることを示している。
Table 1 is a list of characteristic values of the carrier core materials according to Examples 1 to 3 and Comparative Examples 1 and 2.
Here, the carrier core materials according to Examples 1 and 2 and Comparative Example 1 are the same up to the firing step for obtaining manganese ferrite as a magnetic phase, but in terms of the condition and the presence or absence of surface modification by the subsequent heat treatment Is different. Compared with the carrier core material according to Comparative Example 1 in which the surface modification treatment by heat treatment was not performed, the carrier core materials according to Examples 1 and 2 that were subjected to the treatment had a specific surface area 10 to 15 times. Thus, the difference in particle shape seen in the SEM image is reflected.
Moreover, Example 3 is a result of the carrier core material whose magnetic phase is magnetite. From the results, by performing the heat treatment according to the present invention, even if the magnetic phase is magnetite, a fine precipitate is generated on the particle surface in the same manner as in Examples 1 and 2, and the surface unevenness is very large, It shows that the specific surface area can be increased.

一方、比較例2に係るキャリア芯材は、本発明に係る熱処理を行うことなく、本発明に係るキャリア芯材と同程度の比表面積を有してはいるものの、見掛密度が低い。このことは、比較例2に係るキャリア芯材の粒子内には、多数の空孔が存在していることを示している。   On the other hand, although the carrier core material according to Comparative Example 2 has the same specific surface area as the carrier core material according to the present invention without performing the heat treatment according to the present invention, the apparent density is low. This indicates that a large number of pores exist in the particles of the carrier core material according to Comparative Example 2.

実施例1から3および比較例1、2のキャリア芯材に係るキャリアに対して、初期の帯電量測定、および24時間攪拌後の帯電量測定の結果を、キャリア芯材特性と併せて表1に記載した。
表1の結果から明らかなように、実施例1から3に係るキャリア粒子は、24時間攪拌後の帯電量の低下は小さく、形状観察の結果粒子の割れ、欠けもほとんど見られなかった。
この結果から、実施例1から3に係るキャリア粒子は、キャリア芯材が表面に微細な構造を持つため樹脂との密着性が極めて大きく、加えて見掛密度が高く空孔がほとんど存在しないため機械的高度にも優れていることを裏付けていると考えられる。
Table 1 shows the results of the initial charge amount measurement and the charge amount measurement after stirring for 24 hours for the carriers according to the carrier core materials of Examples 1 to 3 and Comparative Examples 1 and 2, together with the carrier core characteristics. It was described in.
As is clear from the results in Table 1, the carrier particles according to Examples 1 to 3 showed little decrease in the charge amount after stirring for 24 hours, and as a result of shape observation, almost no cracking or chipping of the particles was observed.
From these results, the carrier particles according to Examples 1 to 3 have extremely fine adhesion on the surface because the carrier core material has a fine structure on the surface, and in addition, the apparent density is high and there are almost no pores. This is thought to support the superior mechanical altitude.

上記の実施例の結果に対し、比較例1に係るキャリアは、24時間攪拌後の帯電量が初期と比べて大きく低下している。また、攪拌後のキャリアの表面観察から、コート樹脂の磨耗、剥離が原因と考えられる芯材部分の露出が見られた。このことから比較例1に係るキャリアは、キャリア芯材の表面積が小さく表面凹凸が少ない為、樹脂とキャリア芯材との密着性が低いのだと考えられる。   In contrast to the results of the above examples, the carrier according to Comparative Example 1 has a greatly reduced charge amount after stirring for 24 hours compared to the initial value. Further, from the observation of the surface of the carrier after stirring, exposure of the core material portion, which is considered to be caused by wear and peeling of the coating resin, was observed. From this, it is considered that the carrier according to Comparative Example 1 has low adhesion between the resin and the carrier core material because the surface area of the carrier core material is small and the surface unevenness is small.

また、焼成温度を下げることにより表面凹凸を大きくした比較例2に係るキャリアでは、24時間攪拌後の帯電量の低下が著しく、耐久性が悪化したことを示している。このようなキャリアの耐久性悪化は、画像特性の著しい毀損原因になると考えられるため、好ましくない状態である。   Further, in the carrier according to Comparative Example 2 in which the surface unevenness was increased by lowering the firing temperature, the charge amount after 24 hours of stirring was significantly reduced, indicating that the durability was deteriorated. Such a deterioration in the durability of the carrier is considered to be a cause of significant damage to the image characteristics, which is not preferable.

実施例1に係るキャリア芯材のSEM写真である。2 is an SEM photograph of a carrier core material according to Example 1. 実施例2に係るキャリア芯材のSEM写真である。4 is a SEM photograph of a carrier core material according to Example 2. 実施例3に係るキャリア芯材のSEM写真である。4 is a SEM photograph of a carrier core material according to Example 3. 比較例1に係るキャリア芯材のSEM写真である。4 is a SEM photograph of a carrier core material according to Comparative Example 1. 比較例2に係るキャリア芯材のSEM写真である。4 is a SEM photograph of a carrier core material according to Comparative Example 2. 実施例1に係るキャリア芯材のFE−SEM写真である。2 is an FE-SEM photograph of a carrier core material according to Example 1.

Claims (8)

電子写真現像剤用のキャリア芯材であって、
BET法により測定された当該キャリア芯材の比表面積をBET比表面積とし、当該キャリア芯材を真球と仮定したときの比表面積を真球相当比表面積としたとき、[BET比表面積]/[真球相当比表面積]の値が、8.0以上、30.0以下であり、
走査電子顕微鏡での反射電子像解析により測定した表面粗さRaの値が、0.050μm以下であり、
見掛密度が、2.40g/cc以上である、ことを特徴とする電子写真現像剤用のキャリア芯材。
A carrier core material for an electrophotographic developer,
When the specific surface area of the carrier core material measured by the BET method is the BET specific surface area, and the specific surface area when the carrier core material is assumed to be a true sphere is the true sphere equivalent specific surface area, [BET specific surface area] / [ True spherical equivalent surface area] is 8.0 or more and 30.0 or less,
The value of the surface roughness Ra measured by reflection electron image analysis with a scanning electron microscope is 0.050 μm or less,
A carrier core material for an electrophotographic developer, which has an apparent density of 2.40 g / cc or more.
外部磁場1000Oeにおける磁化率であるσ1000の値が、20emu/g以上、75emu/g以下である、ことを特徴とする請求項1に記載の電子写真現像剤用のキャリア芯材。   2. The carrier core material for an electrophotographic developer according to claim 1, wherein a value of σ1000 which is a magnetic susceptibility in an external magnetic field of 1000 Oe is 20 emu / g or more and 75 emu / g or less. 主成分がマグネタイトまたはマンガンフェライトである、ことを特徴とする請求項1または2に記載の電子写真現像剤用のキャリア芯材。   The carrier core material for an electrophotographic developer according to claim 1 or 2, wherein the main component is magnetite or manganese ferrite. 平均粒径が、15μm以上、80μm以下である、ことを特徴とする請求項1から3のいずれか1項に記載の電子写真現像剤用のキャリア芯材。   The carrier core material for an electrophotographic developer according to any one of claims 1 to 3, wherein the average particle size is 15 µm or more and 80 µm or less. 24時間攪拌後の帯電量の低下率が、初期帯電量の10%以下である、ことを特徴とする請求項1から4のいずれか1項に記載の電子写真現像剤用のキャリア芯材。   The carrier core material for an electrophotographic developer according to any one of claims 1 to 4, wherein the rate of decrease in the charge amount after stirring for 24 hours is 10% or less of the initial charge amount. 磁性粉末を酸素分圧10−10MPa以下の雰囲気下にて600℃から1000℃の温度範囲で転動させながら熱処理する、ことを特徴とする磁性粉末の表面処理方法。 A surface treatment method of a magnetic powder, characterized in that the magnetic powder is heat-treated in an atmosphere having an oxygen partial pressure of 10 −10 MPa or less while rolling in a temperature range of 600 ° C. to 1000 ° C. 請求項1から5のいずれか1項に記載の芯材を樹脂で被覆してなる、ことを特徴とする電子写真現像剤用のキャリア。   A carrier for an electrophotographic developer, wherein the core material according to any one of claims 1 to 5 is coated with a resin. 請求項7に記載の電子写真現像剤用キャリアと、トナーとを含む、ことを特徴とする電子写真現像剤。   An electrophotographic developer comprising the carrier for an electrophotographic developer according to claim 7 and a toner.
JP2007256670A 2007-09-28 2007-09-28 Method for producing carrier core material for electrophotographic developer Active JP5288759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007256670A JP5288759B2 (en) 2007-09-28 2007-09-28 Method for producing carrier core material for electrophotographic developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007256670A JP5288759B2 (en) 2007-09-28 2007-09-28 Method for producing carrier core material for electrophotographic developer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012254607A Division JP5373958B2 (en) 2012-11-20 2012-11-20 Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer

Publications (2)

Publication Number Publication Date
JP2009086340A true JP2009086340A (en) 2009-04-23
JP5288759B2 JP5288759B2 (en) 2013-09-11

Family

ID=40659841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007256670A Active JP5288759B2 (en) 2007-09-28 2007-09-28 Method for producing carrier core material for electrophotographic developer

Country Status (1)

Country Link
JP (1) JP5288759B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149464A (en) * 2013-02-02 2014-08-21 Dowa Electronics Materials Co Ltd Carrier particle
JP2016200669A (en) * 2015-04-08 2016-12-01 Dowaエレクトロニクス株式会社 Carrier core material and method for forming the material
US9557676B2 (en) 2014-03-24 2017-01-31 Fuji Xerox Co., Ltd. Electrostatic charge image developing carrier, electrostatic charge image developer, and developer cartridge
CN112955983A (en) * 2019-07-29 2021-06-11 韩国铸造,安全印刷与Id卡操作公司 Magnetic particles for forgery-preventing ink and forgery-preventing ink containing same
EP4060412A1 (en) 2021-03-19 2022-09-21 Fujifilm Business Innovation Corp. Electrostatic charge image developing carrier, electrostatic charge image developer, process cartridge, image forming apparatus and image forming method
EP4060411A1 (en) 2021-03-17 2022-09-21 Fujifilm Business Innovation Corp. Electrostatic charge image developing carrier, electrostatic charge image developer, process cartridge, image forming apparatus and image forming method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229271A (en) * 1990-02-02 1991-10-11 Paudaa Tec Kk Carrier for electrophotographic developer and developer using this carrier
JPH10104884A (en) * 1996-08-06 1998-04-24 Hitachi Metals Ltd Ferrite carrier for electrophotographic development
JP2006038961A (en) * 2004-07-22 2006-02-09 Fuji Xerox Co Ltd Electrostatic charge image developing carrier, electrostatic charge image developer, method for manufacturing electrostatic charge image developing carrier, and image forming apparatus
JP2008249855A (en) * 2007-03-29 2008-10-16 Powdertech Co Ltd Resin-coated ferrite carrier for electrophotographic developer and electrophotographic developer using the resin-coated ferrite carrier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229271A (en) * 1990-02-02 1991-10-11 Paudaa Tec Kk Carrier for electrophotographic developer and developer using this carrier
JPH10104884A (en) * 1996-08-06 1998-04-24 Hitachi Metals Ltd Ferrite carrier for electrophotographic development
JP2006038961A (en) * 2004-07-22 2006-02-09 Fuji Xerox Co Ltd Electrostatic charge image developing carrier, electrostatic charge image developer, method for manufacturing electrostatic charge image developing carrier, and image forming apparatus
JP2008249855A (en) * 2007-03-29 2008-10-16 Powdertech Co Ltd Resin-coated ferrite carrier for electrophotographic developer and electrophotographic developer using the resin-coated ferrite carrier

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149464A (en) * 2013-02-02 2014-08-21 Dowa Electronics Materials Co Ltd Carrier particle
US9557676B2 (en) 2014-03-24 2017-01-31 Fuji Xerox Co., Ltd. Electrostatic charge image developing carrier, electrostatic charge image developer, and developer cartridge
JP2016200669A (en) * 2015-04-08 2016-12-01 Dowaエレクトロニクス株式会社 Carrier core material and method for forming the material
CN112955983A (en) * 2019-07-29 2021-06-11 韩国铸造,安全印刷与Id卡操作公司 Magnetic particles for forgery-preventing ink and forgery-preventing ink containing same
EP4060411A1 (en) 2021-03-17 2022-09-21 Fujifilm Business Innovation Corp. Electrostatic charge image developing carrier, electrostatic charge image developer, process cartridge, image forming apparatus and image forming method
US11982975B2 (en) 2021-03-17 2024-05-14 Fujifilm Business Innovation Corp. Electrostatic charge image developing carrier, electrostatic charge image developer, process cartridge, image forming apparatus and image forming method
EP4060412A1 (en) 2021-03-19 2022-09-21 Fujifilm Business Innovation Corp. Electrostatic charge image developing carrier, electrostatic charge image developer, process cartridge, image forming apparatus and image forming method
US12019395B2 (en) 2021-03-19 2024-06-25 Fujifilm Business Innovation Corp. Electrostatic charge image developing carrier, electrostatic charge image developer, process cartridge, image forming apparatus and image forming method

Also Published As

Publication number Publication date
JP5288759B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5288759B2 (en) Method for producing carrier core material for electrophotographic developer
JP5825670B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP2018141864A (en) Carrier core material
JP5921801B2 (en) Carrier core material for electrophotographic developer and method for producing the same
JP5373958B2 (en) Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP6154993B2 (en) Method for producing carrier core material for electrophotographic developer
JP2009237155A (en) Carrier core material for electrophotographic developer and its manufacturing method, carrier for electrophotographic developer, and electrophotographic developer
JP2009003026A (en) Carrier for electrophotographic developer and electrophotographic developer
JP2006317620A (en) Carrier powder for electrophotographic development and developer
JP5111062B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP5352614B2 (en) Method for producing carrier core material for electrophotographic developer, carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP2019061188A (en) Carrier core material, carrier for developing electrophotography using the same, and developer for electrophotography
EP2891925B1 (en) Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP5608335B2 (en) Carrier core material for electrophotographic developer, method for producing the same, carrier, and developer for electrophotography
JP5431820B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP6061423B2 (en) Carrier core material, carrier for electrophotographic development using the same and developer for electrophotography
JP5943465B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP2009086545A (en) Carrier core material for electrophotographic developer and manufacturing method therefor, and carrier for electrophotographic developer
JP5748258B2 (en) Carrier core material for electrophotographic developer and method for producing the same
JP7426166B2 (en) Ferrite particles, carrier for electrophotographic developer, method for producing electrophotographic developer and ferrite particles
JP5735779B2 (en) Sintered particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing sintered particles
JP5300075B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP2009244788A (en) Carrier core material for electrophotographic developer and method of manufacturing the same, carrier for electrophotographic developer, and electrophotographic developer
JP5689988B2 (en) Carrier core material for electrophotographic developer and method for producing the same
JP5248899B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130604

R150 Certificate of patent or registration of utility model

Ref document number: 5288759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250