JP2006317620A - Carrier powder for electrophotographic development and developer - Google Patents

Carrier powder for electrophotographic development and developer Download PDF

Info

Publication number
JP2006317620A
JP2006317620A JP2005138678A JP2005138678A JP2006317620A JP 2006317620 A JP2006317620 A JP 2006317620A JP 2005138678 A JP2005138678 A JP 2005138678A JP 2005138678 A JP2005138678 A JP 2005138678A JP 2006317620 A JP2006317620 A JP 2006317620A
Authority
JP
Japan
Prior art keywords
core material
carrier powder
powder
dimples
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005138678A
Other languages
Japanese (ja)
Other versions
JP4534061B2 (en
Inventor
Takashi Kawachi
岳志 河内
Ryusuke Nakao
竜介 中尾
Takashi Goto
崇 後藤
Yukihiro Matsuda
行弘 松田
Takashi Fujiwara
隆志 藤原
Tomokazu Mori
友和 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Dowa IP Creation Co Ltd
Original Assignee
Dowa IP Creation Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa IP Creation Co Ltd, Dowa Mining Co Ltd filed Critical Dowa IP Creation Co Ltd
Priority to JP2005138678A priority Critical patent/JP4534061B2/en
Publication of JP2006317620A publication Critical patent/JP2006317620A/en
Application granted granted Critical
Publication of JP4534061B2 publication Critical patent/JP4534061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carrier powder for electrophotographic development which is free from Mn, so that it is not harmful to the environment, and which excels in peeling resistance (durability) and charge maintaining property of a resin coating layer and excels also in image properties. <P>SOLUTION: The carrier powder for electrophotographic development has ferrite particles, as a core material, obtained as follows; a mixed slurry whose composition is regulated so that Fe and Mg contents satisfy the formula (1): (MgO)<SB>X</SB>(Fe<SB>2</SB>O<SB>3</SB>)<SB>100-X</SB>(where X is 5-35 (mol%)) is prepared using Fe<SB>2</SB>O<SB>3</SB>as an Fe source and an Mg(OH)<SB>2</SB>-containing material as an Mg source, and a dried material of the slurry is calcined and size-controlled. The core material preferably has dimples having an average of shape ratio A of 0.03-0.09 formed on the surface thereof, wherein the shape ratio A is defined by the formula (2): shape ratio A=(dimple depth)/(dimple diameter). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子写真の乾式現像法において用いられる電子写真現像用キャリア粉、およびそれを用いた現像剤に関する。   The present invention relates to a carrier powder for electrophotographic development used in an electrophotographic dry development method, and a developer using the carrier powder.

電子写真の乾式現像法は、現像剤である粉体のトナーを感光体上の静電潜像に付着させ、当該付着したトナーを所定の紙等へ転写して現像する方法である。ここで、現像剤としては、トナーと電子写真現像剤用キャリア粉(以下単に「キャリア粉」という)とを含む2成分系現像剤を用いる2成分系現像法と、トナーのみを含む1成分系現像剤を用いる1成分系現像法とに分けられる。そして、近年はトナーの荷電制御が容易で安定した高画質が得ることができ、高速現像が可能であることから、ほとんどの場合、2成分系現像法が用いられている。   The electrophotographic dry development method is a method in which powder toner as a developer is attached to an electrostatic latent image on a photosensitive member, and the attached toner is transferred to a predetermined paper or the like for development. Here, as the developer, a two-component development method using a two-component developer containing toner and a carrier powder for electrophotographic developer (hereinafter simply referred to as “carrier powder”), and a one-component system containing only toner. It is divided into a one-component development method using a developer. In recent years, toner charge control is easy, stable image quality can be obtained, and high-speed development is possible. In most cases, a two-component development method is used.

近年、2成分系現像法において高画質画像を得るために、ソフトフェライト、例えばNi−Znフェライト、Cu−ZnフェライトあるいはCu−Zn−Mgフェライト等を用いたキャリアが使用されている。これらのソフトフェライトキャリアは従来から用いられている鉄粉キャリアに比べ高画質画像を得るのに有利な特質を多く持っている。しかし、最近では環境規制が厳しくなり、Ni、Cu、Znなどの金属の使用が敬遠されるようになってきた。また、環境への配慮から特許文献1、2に開示されるようなMn−Mg系フェライトも提案されているが、近年、MnがPRTR物質に指定されたため、Mnの使用を控える動きにあり、Mnフリーのフェライト粉が望まれるようになってきた。   In recent years, carriers using soft ferrites such as Ni—Zn ferrite, Cu—Zn ferrite, or Cu—Zn—Mg ferrite have been used to obtain high quality images in a two-component development method. These soft ferrite carriers have many advantageous properties for obtaining high-quality images as compared with conventionally used iron powder carriers. However, recently, environmental regulations have become stricter, and the use of metals such as Ni, Cu, and Zn has been avoided. In addition, Mn-Mg based ferrite as disclosed in Patent Documents 1 and 2 has also been proposed in consideration of the environment, but in recent years, since Mn has been designated as a PRTR material, there is a movement to refrain from using Mn. Mn-free ferrite powder has been desired.

特許文献3には環境に優しいMnフリーのフェライト粉を使用したキャリアとして、鉄、酸素、マグネシウムを主要構成成分とするものが開示されている。しかし、キャリア表面を被覆する絶縁性樹脂との密着性や帯電維持性については特に配慮されておらず、更なる改善が望まれるところである。   Patent Document 3 discloses a carrier containing iron, oxygen, and magnesium as main constituents as a carrier using environment-friendly Mn-free ferrite powder. However, no particular consideration is given to the adhesion to the insulating resin covering the carrier surface and the charge retention, and further improvements are desired.

一方、特許文献4には表面にディンプルを形成したコア材(芯材)を用いたキャリア粉が開示されている。ディンプルを形成した芯材は樹脂被覆層の耐摩耗性、耐久性が良好で、帯電特性や抵抗値特性の経時変化が少ないと言われている。しかしながら、このようなディンプルを有するものでも、Mnフリーとした場合には樹脂との密着性、耐久性、帯電維持性の低下が見られた。   On the other hand, Patent Document 4 discloses a carrier powder using a core material (core material) having dimples formed on the surface thereof. It is said that the core material on which dimples are formed has good wear resistance and durability of the resin coating layer, and little changes with time in charging characteristics and resistance value characteristics. However, even those having such dimples exhibited a decrease in adhesion to the resin, durability, and charge retention when Mn-free.

特開昭58−123552号公報JP 58-123552 A 特開昭59−111159号公報JP 59-111159 A 特開2001−154416号公報JP 2001-154416 A 特許第2933780号公報Japanese Patent No. 2933780

本発明は、環境に優しいMnフリーのキャリア粉において、樹脂被覆層の耐剥離性(耐久性)および帯電維持性に優れ、かつ画像特性にも優れたものを開発し提供しようというものである。   The present invention intends to develop and provide an environment-friendly Mn-free carrier powder that is excellent in peeling resistance (durability) and charge maintenance of a resin coating layer and excellent in image characteristics.

上記目的は、Mgフェライトの略球形粒子を芯材にもつキャリア粉であって、特に、Fe源としてFe23を用い、Mg源としてMg(OH)2含有物質を用いて、FeおよびMgの含有量が下記(1)式を満たすように組成調整された混合スラリーを作り、そのスラリーの乾燥物を焼成したのち、粒度調整して得られるフェライト粒子を芯材にもつ電子写真現像用キャリア粉によって達成される。
(MgO)X(Fe23)100-X、ただし、Xは5〜35(mol%) ……(1)
The above object is a carrier powder having substantially spherical particles of Mg ferrite in the core, and in particular, Fe 2 O 3 is used as the Fe source, and Mg (OH) 2 containing material is used as the Mg source. An electrophotographic developer carrier having a ferrite particle obtained by adjusting the particle size after making a mixed slurry whose composition is adjusted so that the content of the composition satisfies the following formula (1), firing a dried product of the slurry, and adjusting the particle size Achieved with powder.
(MgO) X (Fe 2 O 3 ) 100-X where X is 5 to 35 (mol%) (1)

ここで、Mg(OH)2含有物質としては、水酸化マグネシウムMg(OH)2の他、マグネシウム水和物、例えば3MgCO3・Mg(OH)2・3H2Oが挙げられる。また、これらの混合物、あるいはさらに酸化マグネシウムを混合したものが挙げられる。混合スラリーは、焼結性を調整するためのC含有物質が添加されたものが好適な対象となる。粒度調整は1次粒子の状態にするための粉砕(すなわち解砕)と、篩分または分級によって実施できる。 Here, examples of the Mg (OH) 2 -containing material include magnesium hydroxide Mg (OH) 2 and magnesium hydrate, such as 3MgCO 3 .Mg (OH) 2 .3H 2 O. In addition, a mixture of these or a mixture of magnesium oxide may be mentioned. A mixed slurry to which a C-containing material for adjusting sinterability is added is a suitable target. The particle size can be adjusted by pulverization (that is, pulverization) to obtain primary particles, and sieving or classification.

芯材となる上記フェライト粒子は、例えば、上記(1)式を満たす組成を有し、下記(2)式で定義される形状比Aの平均が0.03〜0.09となるようなディンプルを表面にもつ構造のものである。
形状比A=ディンプル深さ/ディンプル径 ……(2)
The ferrite particles as the core material have, for example, a composition satisfying the above formula (1), and dimples having an average shape ratio A defined by the following formula (2) of 0.03 to 0.09. It has a structure with a surface.
Shape ratio A = Dimple depth / Dimple diameter (2)

ここで、(2)式の「ディンプル径」はディンプルの長径であり、「ディンプル深さ」はディンプルの長径軸と粒子の中心(均質であると仮定した場合の重心)とを含む断面を想定したとき、その断面に現れるディンプル形状において最も深い位置の深さとする。形状比Aの平均は、個々のディンプルについて測定したAの値の平均値であるが、実際には顕微鏡観察において、ある粒子について視野に現れているディンプルをランダムに10個以上選んでA値の平均値を求める、という作業をランダムに選んだ10個以上の粒子について行い、トータルの平均値を算出して求めた値で代表させることができる。組成が(1)式を満たすかどうかは、原子%で表されたFeとMgの比においてXが(1)式規定の範囲に入るかどうかで判定することができる。ただし、X線回折等により、当該粒子が(MgO)X(Fe23)100-Xで表される組成のフェライト構造であることの裏付けが必要である。通常、組成分析には測定誤差が含まれるので、Fe、MgおよびOの3者の分析値(原子比)が厳格に(1)式を満たすことは希であるため、このような判定方法が採用される。 Here, the “dimple diameter” in equation (2) is the long diameter of the dimple, and the “dimple depth” is a cross section including the long axis of the dimple and the center of the particle (the center of gravity when it is assumed to be homogeneous). In this case, the depth is the deepest position in the dimple shape appearing in the cross section. The average of the shape ratio A is an average value of A values measured for individual dimples. Actually, in microscope observation, 10 or more dimples appearing in the field of view for a certain particle are selected at random, and the A value is calculated. The operation of obtaining an average value can be performed on 10 or more randomly selected particles, and the total average value can be calculated and represented by the obtained value. Whether the composition satisfies the formula (1) can be determined by whether X falls within the range defined by the formula (1) in the ratio of Fe to Mg expressed in atomic%. However, it is necessary to support that the particles have a ferrite structure having a composition represented by (MgO) X (Fe 2 O 3 ) 100-X by X-ray diffraction or the like. In general, since composition analysis includes measurement errors, it is rare that the analysis values (atomic ratio) of the three of Fe, Mg, and O strictly satisfy the formula (1). Adopted.

芯材の表面に樹脂被覆層を形成することによって電子写真現像用キャリア粉が構築される。そして、トナーとこのキャリア粉からなる2成分系電子写真現像剤が提供される。   A carrier powder for electrophotographic development is constructed by forming a resin coating layer on the surface of the core material. Then, a two-component electrophotographic developer comprising a toner and this carrier powder is provided.

本発明によれば、Ni、Cu、Zn、さらにMnといった環境規制の対象となる物質を含まない単純組成のMgフェライトを芯材にもつ環境にやさしいキャリア粉において、その芯材表面に形成された微細なディンプルにより、従来未解決であった耐久性および帯電維持性を顕著に改善したものが提供された。すなわち、粒子表面に被覆された樹脂は、機械的ストレスを受けても芯材から剥離しにくく、長期間の反復使用において優れた特性を維持し得るものである。このキャリア粉は画像特性の面でも優れている。さらに、芯材表面のディンプルは主として焼成過程で形成されるので、焼成後に特別に条件コントロールされた粉砕処理や表面改質処理を行う必要がなく、製造性にも優れる。したがって本発明は、環境保護の強化が厳しくなりつつある昨今のキャリア粉ニーズに応えるものである。   According to the present invention, an environmentally friendly carrier powder having a simple composition Mg ferrite not containing substances subject to environmental regulations such as Ni, Cu, Zn, and Mn is formed on the surface of the core material. Fine dimples have provided significantly improved durability and charge retention, which have not been solved in the past. That is, the resin coated on the particle surface is difficult to peel off from the core material even when subjected to mechanical stress, and can maintain excellent properties in repeated use over a long period of time. This carrier powder is also excellent in terms of image characteristics. Further, since the dimples on the surface of the core material are mainly formed in the firing process, it is not necessary to perform a pulverization process or a surface modification process under special conditions control after the firing, and the productivity is excellent. Therefore, the present invention responds to the recent needs for carrier powders that are becoming increasingly strict in environmental protection.

前述のように、キャリア粉の芯材表面にディンプルが形成されていると、一般に樹脂被覆層の耐久性や帯電維持性が向上すると考えられている。特許文献4では、芯材表面にディンプルを形成する手段として、物理的処理と化学的処理を挙げている(段落0009、0010)。物理的処理はボールミルその他による機械的な圧縮、剪断、衝撃、摩擦を利用するものである。化学的処理は粉体生成プロセスまたは表面改質処理により、焼結、凝集、浸漬、加熱、電気分解を利用するものである。ただし、特許文献4では、焼成時に所望のディンプルを形成させるような具体的手法は示されておらず、基本的に焼成後の粒子に対して物理的処理(段落0014)または化学的処理(段落0017)を施すことによりディンプルを形成している。   As described above, when dimples are formed on the surface of the core material of the carrier powder, it is generally considered that the durability and charge retention of the resin coating layer are improved. In Patent Document 4, physical treatment and chemical treatment are cited as means for forming dimples on the surface of the core material (paragraphs 0009 and 0010). The physical treatment uses mechanical compression, shearing, impact, and friction by a ball mill or the like. The chemical treatment uses sintering, agglomeration, dipping, heating, or electrolysis by a powder production process or a surface modification treatment. However, Patent Document 4 does not show a specific method for forming a desired dimple at the time of firing. Basically, physical treatment (paragraph 0014) or chemical treatment (paragraph) is performed on the fired particles. The dimples are formed by applying 0017).

種々検討の結果、Mnフェライト、Mn−Mgフェライト、Cu−Znフェライトは本来、焼結性が良く、焼成時に揮発成分が抜けやすい。このようなことから、焼成時にディンプルは形成されないか、非常に形成されにくいことがわかった。前述の特許文献4で用いたフェライトもこの種のものであると考えられる。   As a result of various studies, Mn ferrite, Mn—Mg ferrite, and Cu—Zn ferrite are inherently good in sinterability, and volatile components are easily removed during firing. For this reason, it was found that dimples were not formed or very difficult to form during firing. The ferrite used in Patent Document 4 described above is also considered to be of this type.

本発明ではMnフリーのフェライトとして、Mgフェライトを採用する。Mgフェライトは、上記の各種フェライトと比較すると焼結性が悪い。このため、焼成によってガス成分が抜けにくく、焼成時に1次粒子表面にディンプルが形成されやすい要因を有していると考えられた。焼成時にディンプルを形成してしまえば、焼成後にディンプルを形成するための処理は必要なくなることが期待される。しかしながら、所望の特性向上をもたらすようなディンプルが形成されたものを得ることは必ずしも容易ではないことがわかった。   In the present invention, Mg ferrite is employed as the Mn-free ferrite. Mg ferrite has poor sinterability compared with the above-mentioned various ferrites. For this reason, it was considered that the gas component was not easily removed by firing, and that dimples were easily formed on the primary particle surface during firing. If dimples are formed during firing, it is expected that treatment for forming dimples after firing is unnecessary. However, it has been found that it is not always easy to obtain a dimple formed so as to improve the desired characteristics.

発明者らは詳細な検討を進めた結果、以下の要件を満たすときに、耐久性および帯電維持性の向上をもたらすMgフェライト粒子の芯材が得られることを見出した。
[1]焼成前の出発原料において、Fe源としてFe23を用い、Mg源としてMg(OH)2含有物質を用いること。
[2]FeおよびMgの含有量を下記(1)式を満たすように組成調整すること。
(MgO)X(Fe23)100-X、ただし、Xは5〜35(mol%) ……(1)
このような条件で良好なものが得られるメカニズムについては現時点で未解明であるが、焼成過程での揮発成分の抜け方が、所望のディンプル形状を得る上で好適な状態になるのではないかと推察される。
As a result of detailed investigations, the inventors have found that when the following requirements are satisfied, a core material of Mg ferrite particles that provides improved durability and charge retention can be obtained.
[1] Use Fe 2 O 3 as the Fe source and Mg (OH) 2 containing material as the Mg source in the starting material before firing.
[2] The composition is adjusted so that the contents of Fe and Mg satisfy the following formula (1).
(MgO) X (Fe 2 O 3 ) 100-X where X is 5 to 35 (mol%) (1)
The mechanism by which a good one can be obtained under such conditions is not yet elucidated, but the volatile component removal during the firing process may be a suitable state for obtaining the desired dimple shape. Inferred.

また、Mgフェライトの場合、上記特性向上のために必要な所望形状のディンプルは、特許文献4に開示のものに比べ微細なものであることが明らかになった。具体的には、下記(2)式で定義される形状比Aの平均が0.03〜0.09となるようなディンプルが好ましい。
形状比A=ディンプル深さ/ディンプル径 ……(2)
ディンプルとフェライト粒子のサイズに着目すると、下記(3)式で定義されるサイズ比Bの平均が0.002〜0.05となるようなディンプルであることが好ましい。
サイズ比B=ディンプル径/粒子径 ……(3)
この場合もディンプル径は長径を採用する。粒子径は当該フェライト粒子の長径を意味する。サイズ比Bの平均については、前述の形状比Aの場合と同様、顕微鏡観察において、ある粒子について視野に現れているディンプルをランダムに10個以上選んでB値の平均値を求める、という作業をランダムに選んだ10個以上の粒子について行い、トータルの平均値を算出して求めた値で代表させることができる。具体的には例えば、試料粉末のサンプルを少量採取して、粒子が重ならない程度に観察台上にセットし、測定する粒子を倍率6000倍でランダムに選択して測定した値が採用できる。その際、ディンプル深さについてはディンプル底部と芯材表層部のそれぞれの位置における深度のデータに基づいて測定することができる。A値の平均およびB値の平均は、10個の粒子について各粒子10個のディンプルを測定することにより得られた合計100個のディンプルについての測定データに基づいて算出すればよい。
Further, in the case of Mg ferrite, it has been clarified that dimples having a desired shape necessary for improving the above characteristics are finer than those disclosed in Patent Document 4. Specifically, dimples having an average shape ratio A defined by the following formula (2) of 0.03 to 0.09 are preferable.
Shape ratio A = Dimple depth / Dimple diameter (2)
Focusing on the size of the dimples and ferrite particles, it is preferable that the dimples have an average size ratio B defined by the following formula (3) of 0.002 to 0.05.
Size ratio B = dimple diameter / particle diameter (3)
Also in this case, the long diameter is adopted as the dimple diameter. The particle diameter means the long diameter of the ferrite particle. As for the average of the size ratio B, as in the case of the shape ratio A described above, in the microscopic observation, ten or more dimples appearing in the field of view for a certain particle are randomly selected to obtain the average value of the B values. It can be represented by a value obtained by calculating a total average value for 10 or more randomly selected particles. Specifically, for example, a value obtained by collecting a small amount of sample powder sample, setting it on an observation table so that the particles do not overlap, and randomly selecting the particles to be measured at a magnification of 6000 times can be adopted. At that time, the dimple depth can be measured based on the depth data at the respective positions of the dimple bottom portion and the core surface layer portion. What is necessary is just to calculate the average of A value and the average of B value based on the measurement data about a total of 100 dimples obtained by measuring 10 dimples of each particle for 10 particles.

本発明のキャリア粉は以下のようにして得ることができる。
〔原料粉の調合〕
Mgフェライトを構成する各成分の原料調合にあたり、Fe源としてはFe23(ヘマタイト)を使用すればよい。Mg源としてはMg(OH)2含有物質を使用する。具体的には水酸化マグネシウムMg(OH)2、マグネシウム水和物の一種である3MgCO3・Mg(OH)2・3H2Oなどが挙げられる。これらの原料を、ソフトフェライト中のMgおよびFeの組成比が前記(1)式を満たすようにそれぞれ秤量する。また、焼結性を調整するためにC源となる物質を使用することが望ましい。例えば、カーボンブラック、ポリビニルアルコール(PVA)、グラファイト、ポリアクリルアミド、アセチレン等が使用できる。C源は、上記Fe源とMg源の総量100質量部に対して、C元素換算で0.5〜2.0質量部を添加することが好ましい。0.5質量部未満では焼結性の向上が不十分となりやすく、2.0質量部を超えると焼結が進みすぎて粒子の球状性を維持することが難しくなる。1.0質量部以下とすることが一層好ましい。これらの原料を十分に混合して調合する。この混合粉を水と混合し、更に必要に応じてポリカルボン酸等の分散剤を添加して混合し、原料(水以外の各混合物質)の配合比で60〜90質量%程度のスラリーとする。混合方法は、乳鉢等の使用による通常の混合でよい。その後、このスラリーをボールミル等で湿式粉砕することが望ましい。このようにして原料を十分微細に混合したスラリーをここでは「混合スラリー」と呼んでいる。
The carrier powder of the present invention can be obtained as follows.
[Preparation of raw material powder]
In preparing the raw materials for each component constituting the Mg ferrite, Fe 2 O 3 (hematite) may be used as the Fe source. A Mg (OH) 2 containing material is used as the Mg source. Specific examples include magnesium hydroxide Mg (OH) 2 and 3MgCO 3 .Mg (OH) 2 .3H 2 O which is a kind of magnesium hydrate. These raw materials are weighed so that the composition ratio of Mg and Fe in the soft ferrite satisfies the formula (1). Further, it is desirable to use a substance that becomes a C source in order to adjust the sinterability. For example, carbon black, polyvinyl alcohol (PVA), graphite, polyacrylamide, acetylene, etc. can be used. The C source is preferably added in an amount of 0.5 to 2.0 parts by mass in terms of C element with respect to 100 parts by mass of the total amount of the Fe source and Mg source. If the amount is less than 0.5 parts by mass, the sinterability tends to be insufficiently improved, and if the amount exceeds 2.0 parts by mass, the sintering proceeds so much that it is difficult to maintain the spherical shape of the particles. More preferably, it is 1.0 mass part or less. These raw materials are mixed thoroughly and prepared. This mixed powder is mixed with water, and if necessary, a dispersing agent such as polycarboxylic acid is added and mixed, and a slurry of about 60 to 90% by mass with the mixing ratio of raw materials (each mixed substance other than water) To do. The mixing method may be ordinary mixing using a mortar or the like. Thereafter, it is desirable to wet pulverize this slurry with a ball mill or the like. The slurry in which the raw materials are sufficiently finely mixed in this manner is referred to herein as “mixed slurry”.

〔乾燥〕
混合スラリーを噴霧乾燥機等で噴霧乾燥するか、あるいはペレタイザーで造粒したのち例えばロータリーキルンなどにより乾燥して、「混合スラリーの乾燥物」を得る。乾燥物としては例えば径が10〜500μm程度の球状ペレットが好ましい。
[Dry]
The mixed slurry is spray-dried with a spray dryer or the like, or granulated with a pelletizer and then dried with, for example, a rotary kiln to obtain a “dried mixture slurry”. As the dried product, for example, spherical pellets having a diameter of about 10 to 500 μm are preferable.

〔焼成〕
次いで、前記乾燥物(ペレット)を焼成してMgフェライトとする。例えば、電気炉にて窒素ガス雰囲気中、1000〜1500℃の温度で焼成処理を行うことができる。原料粉の種類および配合量を前記のように調整して得たペレットを用いることにより、この焼成において微細なディンプルが1次粒子の表面に形成されるものと考えられ、特別な後処理を施すことなく耐久性および帯電維持性の向上をもたらすMgフェライト粒子の芯材が得られるのである。原料中に添加されたCは、焼結性をコントロールするとともに、CO2となって抜けるものと考えられる。
[Baking]
Next, the dried product (pellet) is fired to form Mg ferrite. For example, baking can be performed at a temperature of 1000 to 1500 ° C. in a nitrogen gas atmosphere in an electric furnace. By using pellets obtained by adjusting the kind and blending amount of the raw material powder as described above, it is considered that fine dimples are formed on the surface of the primary particles in this firing, and a special post-treatment is performed. Thus, a core material of Mg ferrite particles that can improve durability and charge maintenance can be obtained. C added to the raw material is considered to control sinterability and escape as CO 2 .

〔粒度調整〕
焼成により得られたMgフェライトは、粉砕機で粉砕することにより概ね1次粒子の状態にする(すなわち解砕する)。既に表面には微細なディンプルが形成されているので、特別な粉砕工程や表面改質工程は必要ない。1次粒子に分離可能な条件であれば粉砕処理の手段に特に制約はない。粉砕処理の際には一部、1次粒子自体の粉砕が生じることもあるが、そのような粉砕された微粉は、風力分級機等により除去すればよい。解砕粉を分級または篩分けして、所定の粒度を有するものを採取し、キャリア粉を得るための芯材とする。
(Granularity adjustment)
The Mg ferrite obtained by firing is made into a primary particle state (i.e., pulverized) by being pulverized by a pulverizer. Since fine dimples are already formed on the surface, no special pulverization step or surface modification step is required. There are no particular restrictions on the means for the pulverization treatment as long as the primary particles can be separated. In the pulverization process, the primary particles themselves may be partially pulverized, but such pulverized fine powder may be removed by an air classifier or the like. The pulverized powder is classified or sieved, and a powder having a predetermined particle size is collected and used as a core material for obtaining carrier powder.

〔樹脂被覆〕
次に、上記のようにして得られた芯材の粒子表面に樹脂被覆を行って、キャリア粉を構築する。樹脂被覆量は芯材100質量部に対し、0.5〜5.0質量部とすることが好ましい。被覆する樹脂としては種々のものが適用でき、例えばアクリル系樹脂、スチレン系樹脂、スチレン−アクリル系樹脂、オレフィン樹脂(ポリエチレン、塩素化ポリエチレン、ポリプロピレン等)、ポリエステル系樹脂(ポリエチレンテレフタレート、ポリカーボネート等)、不飽和ポリエステル系樹脂、塩化ビニル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、シリコーン系樹脂、フッ素系樹脂(ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリ弗化ビニリデン等)、フエノール系樹脂、キシレン系樹脂、ジアリルフタレート系樹脂等が挙げられる。
[Resin coating]
Next, a resin powder is applied to the particle surface of the core material obtained as described above to construct a carrier powder. The resin coating amount is preferably 0.5 to 5.0 parts by mass with respect to 100 parts by mass of the core material. Various resins can be applied as coating resins, such as acrylic resins, styrene resins, styrene-acrylic resins, olefin resins (polyethylene, chlorinated polyethylene, polypropylene, etc.), polyester resins (polyethylene terephthalate, polycarbonate, etc.). , Unsaturated polyester resins, vinyl chloride resins, polyamide resins, polyurethane resins, epoxy resins, silicone resins, fluorine resins (polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, etc.), Examples include phenol resins, xylene resins, diallyl phthalate resins, and the like.

樹脂被覆を行うには、前記の所定樹脂を溶剤に希釈して芯材の表面に被覆するのが一般的である。溶剤としては所定樹脂が可溶なものであればよい。所定樹脂が有機溶剤に可溶な樹脂の場合、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、メタノール等を使用することができ、所定樹脂が水溶性樹脂またはエマルジョンタイプの樹脂であれば、水を用いることができる。芯材粒子表面への被覆方法としては、浸漬法、スプレー法、刷毛塗り法等が適用できる。このような湿式法の場合、被覆後に樹脂層を乾燥させる。一方、湿式法の他、芯材表面に所定樹脂粉末を付着させる乾式法によっても樹脂被覆を行うことができる。   In order to perform resin coating, it is common to dilute the predetermined resin in a solvent and coat the surface of the core material. Any solvent may be used as long as the predetermined resin is soluble. When the predetermined resin is soluble in an organic solvent, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, methanol or the like can be used. If the predetermined resin is a water-soluble resin or an emulsion type resin, water is used. be able to. As a method for coating the surface of the core material particles, a dipping method, a spray method, a brush coating method, or the like can be applied. In such a wet method, the resin layer is dried after coating. On the other hand, in addition to the wet method, the resin coating can be performed by a dry method in which a predetermined resin powder is adhered to the surface of the core material.

上記、湿式法、乾式法のいずれを適用しても、その後、芯材表面に被着した所定樹脂を焼きつけることが好ましい。焼き付け処理は、固定式または流動式の電気炉、ロータリー式電気炉、バーナー炉などを使用して、外部加熱方式または内部加熱方式で行うことができる。マイクロウェーブによる焼きつけも可能である。焼きつけ温度は所定樹脂によって異なるが、融点以上またはガラス転移点以上の温度が必要である。所定樹脂が、熱硬化性樹脂または縮合型樹脂である場合は、硬化が十分に進む温度にまで上げる必要がある。   Regardless of the wet method or the dry method, it is preferable to bake a predetermined resin adhered to the surface of the core material. The baking process can be performed by an external heating method or an internal heating method using a fixed or fluid electric furnace, a rotary electric furnace, a burner furnace, or the like. Baking with microwaves is also possible. The baking temperature varies depending on the predetermined resin, but a temperature higher than the melting point or higher than the glass transition point is required. When the predetermined resin is a thermosetting resin or a condensation type resin, it is necessary to raise the temperature to a temperature at which the curing proceeds sufficiently.

具体的に例えば、所定樹脂としてシリコーン樹脂を選択し、これを芯材へ被覆する場合を例示すると、以下のようにすればよい。
まず、シリコーン樹脂をトルエンで希釈する。その際、処理に供する芯材100質量部に対し、シリコーン樹脂を例えば3質量部となるように配合して、シリコーン樹脂の希釈液を作る。この液と芯材粉末とを撹拌機に入れ、必要に応じて硬化剤も添加し、撹拌する。撹拌混合を終えたら、樹脂の液が被覆された芯材を例えば190℃×30分の加熱処理に供することにより溶媒を乾燥除去する。次いで、オーブンまたはトンネル炉を用いて、例えば169〜280℃×3時間の加熱に供することによりシリコーン樹脂の焼きつけ処理を行う。これによりキャリア粉が得られる。
Specifically, for example, when a silicone resin is selected as the predetermined resin and this is coated on the core material, the following may be performed.
First, the silicone resin is diluted with toluene. In that case, with respect to 100 mass parts of core materials used for a process, a silicone resin is mix | blended so that it may become 3 mass parts, for example, and the dilution liquid of a silicone resin is made. This liquid and the core material powder are put into a stirrer, and a curing agent is also added and stirred as necessary. When the stirring and mixing is completed, the solvent is dried and removed by subjecting the core material coated with the resin liquid to a heat treatment of 190 ° C. × 30 minutes, for example. Next, using an oven or a tunnel furnace, the silicon resin is baked by, for example, heating at 169 to 280 ° C. for 3 hours. Thereby, carrier powder is obtained.

〔実施例1〕
Fe原料としてFe23を、Mg原料としてMg(OH)2を用意した。焼成後のソフトフェライト組成比としてMgO:Fe23=20:80(モル比)となる割合、すなわち前記(1)式のXが20(mol%)となるように、これら原料を調合し混合粉とした。この混合粉100質量部に対してカーボンブラック0.7質量部、分散剤1.5質量部と、水を加えて攪拌し、スラリー濃度83質量%程度のスラリーとした。さらにこのスラリーを湿式ボールミルで湿式粉砕して混合スラリーを得た。次いで、混合スラリーをスプレードライヤーで乾燥して造粒した後、45μmと25μmの篩を用いて篩い分けし、平均粒径が35μm程度の乾燥物(ペレット)を得た。このペレットを焼成炉に装入して、窒素ガス雰囲気中にて1180℃で4時間焼成し、塊状の焼成品を得た。得られた焼成品をハンマーミルで粉砕し、この粉砕物を風力分級機にかけて微粉部分を分級除去し、次に磁場選鉱して非磁性部分を分離し、さらに38μmの篩を通して平均粒径約30μmの芯材粉を得た。なお、この芯材粉は、X線回折の結果、フェライト構造を有することが確認された(以下の各例において同じ)。
[Example 1]
Fe 2 O 3 was prepared as the Fe raw material, and Mg (OH) 2 was prepared as the Mg raw material. These raw materials were prepared so that the composition ratio of MgO: Fe 2 O 3 = 20: 80 (molar ratio) as the soft ferrite composition ratio after firing, that is, X in the formula (1) was 20 (mol%). A mixed powder was obtained. To 100 parts by mass of the mixed powder, 0.7 parts by mass of carbon black, 1.5 parts by mass of a dispersant and water were added and stirred to obtain a slurry having a slurry concentration of about 83% by mass. Further, this slurry was wet pulverized by a wet ball mill to obtain a mixed slurry. Next, the mixed slurry was dried with a spray dryer and granulated, and then sieved using a 45 μm and 25 μm sieve to obtain a dried product (pellet) having an average particle size of about 35 μm. The pellets were charged into a firing furnace and fired at 1180 ° C. for 4 hours in a nitrogen gas atmosphere to obtain a massive fired product. The obtained fired product is pulverized with a hammer mill, and the pulverized product is applied to an air classifier to classify and remove the fine powder portion. Then, the non-magnetic portion is separated by magnetic field separation, and the average particle size is about 30 μm through a 38 μm sieve. Core material powder was obtained. As a result of X-ray diffraction, this core material powder was confirmed to have a ferrite structure (the same applies in the following examples).

得られた芯材粉について、ディンプルの形状比A、サイズ比Bを求めた。また静抵抗、磁気特性(飽和磁化、残留磁化、保磁力)を調べた。
ディンプルの形状比A、サイズ比Bは、粒子径、ディンプル径、ディンプル深さを、超深度カラー3D形状測定顕微鏡VK−9500(株式会社キーエンス製)により測定することにより求めた。具体的には、試料粉末のサンプルを少量採取して、粒子が重ならない程度に観察台上にセットし、測定する粒子を倍率6000倍でランダムに選択して測定した。ディンプル深さについてはディンプル底部と芯材表層部のそれぞれの位置における深度のデータに基づいて測定した。A値の平均およびB値の平均は、10個の粒子について各粒子10個のディンプルを測定することにより得られた合計100個のディンプルについての測定データに基づいて算出した。
静抵抗は、試料の芯材粉を直径12.9mmφの絶縁性のパイプに正確に5g充填し、265gの重りで圧力を掛けて、パイプの上下に設置された電極に接続した超絶縁計(東亜電波工業株式会社製)を用いて測定した。
磁気特性は、室温専用振動試料型磁力計(VSM)(東英工業株式会社製)により測定した。
About the obtained core material powder, the shape ratio A and the size ratio B of the dimple were obtained. In addition, static resistance and magnetic characteristics (saturation magnetization, residual magnetization, coercive force) were examined.
The dimple shape ratio A and size ratio B were determined by measuring the particle diameter, dimple diameter, and dimple depth with an ultra-deep color 3D shape measurement microscope VK-9500 (manufactured by Keyence Corporation). Specifically, a small sample of the sample powder was collected and set on the observation table so that the particles did not overlap, and the particles to be measured were randomly selected at a magnification of 6000 and measured. The dimple depth was measured based on the depth data at the respective positions of the dimple bottom and the core surface layer. The average of the A values and the average of the B values were calculated based on measurement data for a total of 100 dimples obtained by measuring 10 dimples for each particle.
The static resistance is a superinsulator (5g) filled in an insulating pipe with a diameter of 12.9mmφ and a pressure applied with a weight of 265g and connected to electrodes installed above and below the pipe. Measured using Toa Denpa Kogyo Co., Ltd.
The magnetic properties were measured with a room temperature dedicated vibration sample magnetometer (VSM) (manufactured by Toei Kogyo Co., Ltd.).

次いで、シリコーン樹脂をトルエンで希釈した処理液を用意した。その際、被処理材である芯材100質量部に対しシリコーン樹脂が3質量部となるようにした。この液とキャリア芯材とを撹拌機に入れて撹拌した。撹拌混合後、190℃×30分の加熱処理を行って溶媒を乾燥除去した。次いで、オーブンを用いて250℃×3時間の熱処理に供し、シリコーン樹脂の焼きつけを行い、キャリア粉を作製した。   Next, a treatment liquid in which the silicone resin was diluted with toluene was prepared. At that time, the silicone resin was adjusted to 3 parts by mass with respect to 100 parts by mass of the core material as the material to be treated. This liquid and the carrier core material were put into a stirrer and stirred. After stirring and mixing, a heat treatment at 190 ° C. for 30 minutes was performed to remove the solvent by drying. Subsequently, it was subjected to a heat treatment at 250 ° C. for 3 hours using an oven, and a silicone resin was baked to prepare a carrier powder.

得られたキャリア粉について、静抵抗、樹脂被覆層の耐久性、帯電維持性を調べた。
静抵抗は前述の方法で測定した。
樹脂被覆層の耐久性は以下のようにして調べた。すなわち、キャリア粉75.0gとSiC(297〜1400μm)25.0gを内蓋付きポリ瓶(100cc)の中に入れ、このポリ瓶の側面に磁石を巻きつけた。これをシェイキングマシーン(Red Devil Equipment Co.)にセットして16時間撹拌した。この攪拌後のキャリア粉の被覆状態を電子顕微鏡により観察し、樹脂の剥離が見られないものを○(良好)、樹脂の剥離がわずかで使用可能であるものを△(許容範囲内)、樹脂の剥離が多くて使用できないものを×(不良)と評価した。
The obtained carrier powder was examined for static resistance, durability of the resin coating layer, and charge retention.
Static resistance was measured by the method described above.
The durability of the resin coating layer was examined as follows. That is, 75.0 g of carrier powder and 25.0 g of SiC (297 to 1400 μm) were placed in a plastic bottle (100 cc) with an inner lid, and a magnet was wound around the side surface of the plastic bottle. This was set on a shaking machine (Red Devil Equipment Co.) and stirred for 16 hours. The state of coating of the carrier powder after stirring was observed with an electron microscope. Good (excellent) when resin peeling was not observed, and good (allowable) when resin peeling was slight, and resin Those that could not be used due to a lot of peeling were evaluated as x (defect).

帯電維持性は以下のようにして調べた。すなわち、キャリア92質量部とポリエステルを主成分とするトナー8質量部をボールミルにて最大120分まで撹拌混合し、時間ごとにサンプリングを行い、そのときの帯電量を吸引法帯電量測定装置を使用し測定した。そして、攪拌時間が120分の帯電量と30分の帯電量の差ΔQ120-30を求め、ΔQ120-30値がゼロまたは正になったものを○(良好)、負になったものを×(不良)と評価した。 The charge maintenance property was examined as follows. That is, 92 parts by mass of a carrier and 8 parts by mass of a toner containing polyester as a main component are agitated and mixed in a ball mill for a maximum of 120 minutes, sampling is performed every hour, and the charge amount at that time is measured using a suction method charge amount measurement device And measured. Then, the difference ΔQ 120-30 between the charge amount of 120 minutes and the charge amount of 30 minutes is obtained, and when the ΔQ 120-30 value becomes zero or positive, ○ (good), and negative one X (defect) was evaluated.

次に、このキャリア粉を用いた電子写真現像剤をデジタル反転現像方式を採用する40枚機で使用し、初期画像において画像濃度、カブリ濃度、キャリア飛びを調べ、○(良好)、△(やや不良)、×(不良)の3段階評価を行った。
結果は表1に示してある(以下の各例において同じ)。
また、帯電維持性について図1にグラフを示してある(以下の各例において同じ)。
なお、参考のため実施例1で得られた芯材粉の電子顕微鏡写真を図2に示した。
Next, the electrophotographic developer using the carrier powder is used in a 40 sheet machine adopting the digital reversal development method, and the image density, fog density, and carrier jump are examined in the initial image, and ○ (good), Δ (somewhat) (Defect) and x (defect) were evaluated in three stages.
The results are shown in Table 1 (same in the following examples).
Further, the graph of FIG. 1 shows the charge maintenance property (the same applies to the following examples).
For reference, an electron micrograph of the core powder obtained in Example 1 is shown in FIG.

〔実施例2〕
MgO:Fe23=10:90、すなわち前記(1)式のXが10(mol%)となるようにした以外は実施例1と同様に実験を行った。
[Example 2]
Experiments were performed in the same manner as in Example 1 except that MgO: Fe 2 O 3 = 10: 90, that is, X in the formula (1) was set to 10 (mol%).

〔実施例3〕
MgO:Fe23=30:70、すなわち前記(1)式のXが30(mol%)となるようにした以外は実施例1と同様に実験を行った。
Example 3
Experiments were performed in the same manner as in Example 1 except that MgO: Fe 2 O 3 = 30: 70, that is, X in the formula (1) was set to 30 (mol%).

〔比較例1〕
MgO:Fe23=40:60、すなわち前記(1)式のXが40(mol%)となるようにした以外は実施例1と同様に実験を行った。
[Comparative Example 1]
Experiments were performed in the same manner as in Example 1 except that MgO: Fe 2 O 3 = 40: 60, that is, X in the formula (1) was set to 40 (mol%).

〔比較例2〕
MgO:Fe23=3:97、すなわち前記(1)式のXが3(mol%)となるようにした以外は実施例1と同様に実験を行った。
なお、参考のため比較例2で得られた芯材粉の電子顕微鏡写真を図3に示した。
[Comparative Example 2]
Experiments were performed in the same manner as in Example 1 except that MgO: Fe 2 O 3 = 3: 97, that is, X in the formula (1) was set to 3 (mol%).
For reference, an electron micrograph of the core powder obtained in Comparative Example 2 is shown in FIG.

〔比較例3〕
原料のMg(OH)2の代わりに、MnOを用い、MnO:Fe23=20:80とした以外は実施例1と同様に実験を行った。
[Comparative Example 3]
An experiment was performed in the same manner as in Example 1 except that MnO was used instead of the raw material Mg (OH) 2 and MnO: Fe 2 O 3 = 20: 80.

〔結果について〕
表1からわかるように、前記(1)式を満たすように原料を配合することにより得られたMgフェライトからなる実施例1〜3の芯材は、キャリア粉の芯材に求められる磁気特性を有しており、また、表面には前記形状比Aの平均が0.03〜0.09、サイズ比Bの平均が0.002〜0.05となる微細なディンプルを有していた。そして、樹脂を被覆した後のキャリア粉において、十分高い静抵抗を示し、樹脂被覆層の耐久性についても十分改善されていた。また、帯電量は時間とともに上昇しながら推移する傾向にあり(図1)、低下は見られず、優れた帯電維持性を呈した。さらに画像特性も良好であった。
[About the results]
As can be seen from Table 1, the core materials of Examples 1 to 3 made of Mg ferrite obtained by blending the raw materials so as to satisfy the formula (1) have the magnetic properties required for the core material of the carrier powder. Further, the surface had fine dimples having an average shape ratio A of 0.03 to 0.09 and an average size ratio B of 0.002 to 0.05. And in the carrier powder after coat | covering resin, sufficiently high static resistance was shown and the durability of the resin coating layer was also fully improved. Further, the charge amount tended to increase with time (FIG. 1), no decrease was observed, and excellent charge retention was exhibited. Furthermore, the image characteristics were also good.

これに対し比較例1では(1)式のX値が大きすぎたためディンプルが径の割には深くなりすぎ、その結果、キャリア粉は樹脂被覆層の耐久性には優れていたものの、帯電維持性および画像特性に劣った。比較例2は(1)式のX値が小さすぎたためディンプルが微細になりすぎ、その結果、キャリア粉は樹脂被覆層の耐久性、帯電維持性および画像特性に劣った。比較例3はMnフェライトを芯材としたものであり、ディンプルの形成は認められなかった。そのため、キャリア粉は樹脂被覆層の耐久性、帯電維持性および画像特性に劣った。   On the other hand, in Comparative Example 1, since the X value in the formula (1) was too large, the dimples were too deep for the diameter. Inferior in image quality and image characteristics. In Comparative Example 2, since the X value of the formula (1) was too small, the dimples became too fine, and as a result, the carrier powder was inferior in the durability, charge maintenance and image characteristics of the resin coating layer. In Comparative Example 3, Mn ferrite was used as a core material, and formation of dimples was not recognized. Therefore, the carrier powder is inferior in the durability, charge maintenance and image characteristics of the resin coating layer.

各キャリア粉について帯電量の推移を示すグラフ。The graph which shows transition of the charge amount about each carrier powder. 実施例1で得られたMgフェライトからなる芯材粉の外観を示す電子顕微鏡写真。4 is an electron micrograph showing the appearance of a core powder made of Mg ferrite obtained in Example 1. FIG. 比較例2で得られたMgフェライトからなる芯材粉の外観を示す電子顕微鏡写真。4 is an electron micrograph showing the appearance of a core powder made of Mg ferrite obtained in Comparative Example 2. FIG.

Claims (4)

Fe源としてFe23を用い、Mg源としてMg(OH)2含有物質を用いて、FeおよびMgの含有量が下記(1)式を満たすように組成調整された混合スラリーを作り、そのスラリーの乾燥物を焼成したのち、粒度調整して得られるフェライト粒子、
を芯材にもつ電子写真現像用キャリア粉。
(MgO)X(Fe23)100-X、ただし、Xは5〜35(mol%) ……(1)
Using Fe 2 O 3 as the Fe source and Mg (OH) 2 -containing material as the Mg source, a mixed slurry whose composition was adjusted so that the Fe and Mg contents satisfy the following formula (1) was prepared. After firing the dried slurry, ferrite particles obtained by adjusting the particle size,
A carrier powder for electrophotographic development with a core material.
(MgO) X (Fe 2 O 3 ) 100-X where X is 5 to 35 (mol%) (1)
下記(1)式を満たす組成を有し、下記(2)式で定義される形状比Aの平均が0.03〜0.09となるディンプルが表面に形成されているフェライト粒子、
を芯材にもつ電子写真現像用キャリア粉。
(MgO)X(Fe23)100-X、ただし、Xは5〜35(mol%) ……(1)
形状比A=ディンプル深さ/ディンプル径 ……(2)
Ferrite particles having a composition satisfying the following formula (1), and dimples having an average shape ratio A defined by the following formula (2) of 0.03 to 0.09 formed on the surface,
A carrier powder for electrophotographic development with a core material.
(MgO) X (Fe 2 O 3 ) 100-X where X is 5 to 35 (mol%) (1)
Shape ratio A = Dimple depth / Dimple diameter (2)
芯材の表面に樹脂被覆層を有する請求項1または2に記載の電子写真現像用キャリア粉。   The carrier powder for electrophotographic development according to claim 1 or 2, further comprising a resin coating layer on the surface of the core material. トナーと請求項1〜3のいずれかに記載のキャリア粉とを含む2成分系電子写真現像剤。   A two-component electrophotographic developer comprising a toner and the carrier powder according to claim 1.
JP2005138678A 2005-05-11 2005-05-11 Method for producing ferrite particles of carrier powder core material for electrophotographic development Active JP4534061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005138678A JP4534061B2 (en) 2005-05-11 2005-05-11 Method for producing ferrite particles of carrier powder core material for electrophotographic development

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005138678A JP4534061B2 (en) 2005-05-11 2005-05-11 Method for producing ferrite particles of carrier powder core material for electrophotographic development

Publications (2)

Publication Number Publication Date
JP2006317620A true JP2006317620A (en) 2006-11-24
JP4534061B2 JP4534061B2 (en) 2010-09-01

Family

ID=37538366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005138678A Active JP4534061B2 (en) 2005-05-11 2005-05-11 Method for producing ferrite particles of carrier powder core material for electrophotographic development

Country Status (1)

Country Link
JP (1) JP4534061B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009251312A (en) * 2008-04-07 2009-10-29 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer and its manufacturing method, carrier for electrophotographic developer, and electrophotographic developer
JP2011123435A (en) * 2009-12-14 2011-06-23 Dowa Electronics Materials Co Ltd Ferrite particle, and carrier for electrophotographic development and electrophotographic developer using the same, and method for producing ferrite particle
JP2011150098A (en) * 2010-01-21 2011-08-04 Dowa Electronics Materials Co Ltd Ferrite particle, carrier for electrophotographic development using the same, and electrophotographic developer
JP2011164225A (en) * 2010-02-05 2011-08-25 Powdertech Co Ltd Ferrite carrier core material of resin filled type for electrophotographic developer, ferrite carrier, and electrophotographic developer using the ferrite carrier
JP2011209476A (en) * 2010-03-30 2011-10-20 Dowa Electronics Materials Co Ltd Ferrite particle and carrier for electrophotography development using the same, developer for electrophotography and method of manufacturing the ferrite particle

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194882A (en) * 1992-07-24 1994-07-15 Kanto Denka Kogyo Co Ltd Electrophotographic carrier and its production
JP2001089155A (en) * 1999-09-20 2001-04-03 Mitsui Mining & Smelting Co Ltd Iron oxide particle and its production
JP2001154416A (en) * 1999-11-29 2001-06-08 Kanto Denka Kogyo Co Ltd Electrophotographic carrier
JP2001154417A (en) * 1999-11-24 2001-06-08 Konica Corp Image forming method, image forming device and developer used in same
JP2002182435A (en) * 2000-12-15 2002-06-26 Kao Corp Positive charge type two-component developer
JP2002214843A (en) * 2001-01-16 2002-07-31 Konica Corp Two-component developer and method for manufacturing carrier
JP2002311653A (en) * 2001-04-19 2002-10-23 Kao Corp Positive electrification two-component developer
JP2003302786A (en) * 2001-04-27 2003-10-24 Kao Corp Positively charged toner for two-component development
JP2004020908A (en) * 2002-06-17 2004-01-22 Kao Corp Color toner
JP2004280085A (en) * 2003-02-25 2004-10-07 Kao Corp Electrostatic charge image developing toner
WO2004088680A2 (en) * 2003-03-31 2004-10-14 Kanto Denka Kogyo Co. Ltd. A mg-based ferrite, an electrophotographic development carrier containing the ferrite, and a developer containing the carrier

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194882A (en) * 1992-07-24 1994-07-15 Kanto Denka Kogyo Co Ltd Electrophotographic carrier and its production
JP2001089155A (en) * 1999-09-20 2001-04-03 Mitsui Mining & Smelting Co Ltd Iron oxide particle and its production
JP2001154417A (en) * 1999-11-24 2001-06-08 Konica Corp Image forming method, image forming device and developer used in same
JP2001154416A (en) * 1999-11-29 2001-06-08 Kanto Denka Kogyo Co Ltd Electrophotographic carrier
JP2002182435A (en) * 2000-12-15 2002-06-26 Kao Corp Positive charge type two-component developer
JP2002214843A (en) * 2001-01-16 2002-07-31 Konica Corp Two-component developer and method for manufacturing carrier
JP2002311653A (en) * 2001-04-19 2002-10-23 Kao Corp Positive electrification two-component developer
JP2003302786A (en) * 2001-04-27 2003-10-24 Kao Corp Positively charged toner for two-component development
JP2004020908A (en) * 2002-06-17 2004-01-22 Kao Corp Color toner
JP2004280085A (en) * 2003-02-25 2004-10-07 Kao Corp Electrostatic charge image developing toner
WO2004088680A2 (en) * 2003-03-31 2004-10-14 Kanto Denka Kogyo Co. Ltd. A mg-based ferrite, an electrophotographic development carrier containing the ferrite, and a developer containing the carrier

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009251312A (en) * 2008-04-07 2009-10-29 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer and its manufacturing method, carrier for electrophotographic developer, and electrophotographic developer
JP2011123435A (en) * 2009-12-14 2011-06-23 Dowa Electronics Materials Co Ltd Ferrite particle, and carrier for electrophotographic development and electrophotographic developer using the same, and method for producing ferrite particle
JP2011150098A (en) * 2010-01-21 2011-08-04 Dowa Electronics Materials Co Ltd Ferrite particle, carrier for electrophotographic development using the same, and electrophotographic developer
JP2011164225A (en) * 2010-02-05 2011-08-25 Powdertech Co Ltd Ferrite carrier core material of resin filled type for electrophotographic developer, ferrite carrier, and electrophotographic developer using the ferrite carrier
US8475988B2 (en) 2010-02-05 2013-07-02 Powdertech Co., Ltd. Resin-filled ferrite carrier core material for electrophotographic developer, ferrite carrier and electrophotographic developer using the ferrite carrier
JP2011209476A (en) * 2010-03-30 2011-10-20 Dowa Electronics Materials Co Ltd Ferrite particle and carrier for electrophotography development using the same, developer for electrophotography and method of manufacturing the ferrite particle

Also Published As

Publication number Publication date
JP4534061B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP5194194B2 (en) Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP4474561B2 (en) Carrier core material for electrophotographic developer, carrier powder for electrophotographic developer, and production method thereof
JP5377386B2 (en) Carrier core material for electrophotographic developer, production method thereof, carrier for electrophotographic developer, and electrophotographic developer
JP5825670B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
KR101291909B1 (en) Carrier core material for electrophotography developer, carrier for electrophotography developer, and electrophotography developer
JP4534061B2 (en) Method for producing ferrite particles of carrier powder core material for electrophotographic development
JP5921801B2 (en) Carrier core material for electrophotographic developer and method for producing the same
JP6757872B1 (en) Ferrite particles, carrier core material for electrophotographic developer, carrier for electrophotographic developer and electrophotographic developer
JP2021088487A (en) Ferrite mixed powder, carrier core material for electrophotographic developer, carrier for electrophotographic developer and electrophotographic developer
JP5930576B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP2012076955A (en) Ferrite particle, and electrophotographic developing carrier and electrophotographic developer using the same
WO2021200172A1 (en) Ferrite particles, electrophotographic developer carrier core material, electrophotographic developer carrier, and electrophotographic developer
JP5352614B2 (en) Method for producing carrier core material for electrophotographic developer, carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP5769350B1 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
EP2891925B1 (en) Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP6742119B2 (en) Core material for carrier, carrier, developer and electrophotographic development system
JP6061423B2 (en) Carrier core material, carrier for electrophotographic development using the same and developer for electrophotography
JP2015093817A (en) Mn FERRITE PARTICLE AND DEVELOPER CARRIER FOR ELECTROPHOTOGRAPHY USING THE SAME, DEVELOPER FOR ELECTROPHOTOGRAPHY
US20230296999A1 (en) Ferrite particle, carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP5689988B2 (en) Carrier core material for electrophotographic developer and method for producing the same
WO2022250149A1 (en) Ferrite particles, carrier for electrophotographic developer, electrophotographic developer, and ferrite particle production method
WO2022250150A1 (en) Ferrite particle, carrier for electrophotographic developer, electrophotographic developer, and method for producing ferrite particle
JP5352607B2 (en) Method for producing carrier core material for electrophotographic developer, carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP5924814B2 (en) Method for producing ferrite particles
JP2021193062A (en) Ferrite particle, carrier for electrophotographic developing agent and electrophotographic developing agent, and method of manufacturing ferrite particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100524

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4534061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250