JP2009085917A - 液体状態検知センサ - Google Patents

液体状態検知センサ Download PDF

Info

Publication number
JP2009085917A
JP2009085917A JP2007259649A JP2007259649A JP2009085917A JP 2009085917 A JP2009085917 A JP 2009085917A JP 2007259649 A JP2007259649 A JP 2007259649A JP 2007259649 A JP2007259649 A JP 2007259649A JP 2009085917 A JP2009085917 A JP 2009085917A
Authority
JP
Japan
Prior art keywords
heating resistor
current
unit
liquid state
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007259649A
Other languages
English (en)
Other versions
JP4897635B2 (ja
Inventor
Shinji Kumazawa
真治 熊澤
Masayuki Motomura
雅幸 本村
Katsunori Yazawa
克則 矢澤
Satoru Abe
悟 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2007259649A priority Critical patent/JP4897635B2/ja
Publication of JP2009085917A publication Critical patent/JP2009085917A/ja
Application granted granted Critical
Publication of JP4897635B2 publication Critical patent/JP4897635B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

【課題】発熱抵抗体へ供給する電力を安定化させるためのフィードバック制御の高速化を図り、液体中の特定成分の濃度といった液体における状態の検知の精度をより高めることができる液体状態検知センサを提供する。
【解決手段】尿素水溶液の尿素濃度を検知するための発熱抵抗体114を、電源部390、発熱抵抗体114、MOS−FET350、電流検出抵抗360の順に接続し、グランドを介して閉ループ回路を構成した。そして、MOS−FET350のゲート電圧をオペアンプ370で制御し、その制御を電流検出抵抗360の一端に現れる電位Sと、基準電源380の電位Tとの比較により行うことで、定電流回路を形成した。電流検出抵抗360をグランドに接続したことで、電流検出抵抗360の両端の電位差を検出するための差動増幅回路が不要となり、オペアンプ370によるMOS−FET350へのフィードバック制御の高速化を図ることができる。
【選択図】図2

Description

本発明は、液体に含まれる特定成分の濃度などの液体の状態を検知する液体状態検知センサに関するものである。
ディーゼル自動車から排出される窒素酸化物(NOx)を無害なガスに還元する排ガス浄化装置にNOx選択還元触媒(SCR)を用いる場合があるが、その還元剤として尿素水溶液が用いられる。この還元反応を効率よく行うには、尿素濃度が32.5wt%の尿素水溶液を用いるとよいことが知られている。しかし、自動車に搭載される尿素水タンクに収容される尿素水溶液は、過酷な環境条件下で保管され、また経時変化などにより、その尿素濃度に変化を生ずる場合がある。また、尿素水タンクに誤って異種水溶液(例えば軽油)あるいは水が混入される可能性もある。こうしたことから、尿素水溶液の尿素濃度を管理できるように、尿素濃度を検知するための濃度センサ(液体状態検知センサ)が尿素水タンクに取り付けられ、濃度検知が行われている。
ところで、尿素水溶液の熱伝導率は、自身に含まれる尿素の濃度により差異が生ずることが知られており、温度に応じて抵抗値が変化する性質を有する発熱抵抗体を一定時間加熱した場合、発熱抵抗体の周囲における尿素水溶液の尿素の濃度によって発熱抵抗体の抵抗値変化の度合が異なってくる。このことから、発熱抵抗体を一定時間加熱したときの発熱抵抗体の抵抗値変化の度合いを捉えれば、尿素水溶液に含まれる尿素の濃度を検知することができる(例えば、特許文献1参照。)。
このような液体状態検知センサでは、発熱抵抗体の抵抗値変化が自身の発熱による影響を受けにくくするため、尿素濃度の測定の際には短期間発熱抵抗体への通電が行われる。短期間の通電による発熱抵抗体の抵抗値変化は小さいものであり、精確に濃度測定を行うためには、発熱抵抗体に安定した電力を供給する必要がある。そこで一般的には、例えば図4に示されるような定電流出力回路500が構成されて発熱抵抗体507への通電が行われており、電力供給の安定化が図られている。具体的には電源501に、電流検出抵抗502、トランジスタ504および発熱抵抗体507が順に直列に接続され、グランドに接続されている。電流検出抵抗502の両端には、その両端の電位差Viを検出する差動増幅回路503が接続されており、この差動増幅回路503の出力が、基準電源506から供給される基準電位Vsと共に、オペアンプ505に入力されている。そしてオペアンプ505の出力は、トランジスタ504のベースに入力されている。定電流出力回路500がこうした構成を有することで、電源501の供給する電力が不安定となり電流検出抵抗502を流れる電流の大きさに変動を生じても、電位差Viと基準電位Vsとの比較結果に基づくオペアンプ505の制御により、トランジスタ504のコレクタ−エミッタ間を流れる電流、すなわち、発熱抵抗体507を流れる電流は、その大きさが一定に保たれるのである。
特開2007−114181号公報
しかしながら、定電流出力回路500のように、差動増幅回路503およびオペアンプ505を用いて発熱抵抗体507に流れる電流を一定に保つためのフィードバック制御を行う回路構成では、電子部品の点数が多くなるため、上記のようなフィードバック制御の速度が低下する傾向にある。尿素濃度の検知は発熱抵抗体への短期間の通電によって行われるため、検知精度をより高められるようにフィードバック制御の高速化が求められていた。
本発明は上記問題点を解決するためになされたものであり、発熱抵抗体へ供給する電力を安定化させるためのフィードバック制御の高速化を図り、液体の状態の検知精度をより高めることができる液体状態検知センサを提供することを目的とする。
上記目的を達成するために、請求項1に係る発明の液体状態検知センサは、発熱抵抗体に一定時間通電したときの液体に対する前記発熱抵抗体の放熱特性に基づいて、前記発熱抵抗体の周囲における前記液体の状態を検知する液体状態検知センサにおいて、前記発熱抵抗体に通電するために、前記発熱抵抗体の一端側に配置される電源部と、前記発熱抵抗体に流れる電流を検出するために、自身の一端側に前記発熱抵抗体が配置され、自身の他端がグランドに接続される電流検出手段と、当該電流検出手段によって検出される電流の大きさに基づいて、前記発熱抵抗体に流れる電流の大きさを調整するために、前記発熱抵抗体と前記電流検出手段との間に配置される電流調整手段とを備え、前記電源部、前記発熱抵抗体、前記電流調整手段、および前記電流検出手段がこの順に直列に接続されて、前記グランドを介して閉ループ回路を構成すると共に、基準となる電圧と、前記電流検出手段の一端の電圧とが入力され、両電圧の比較結果に応じて前記電流調整手段の駆動状態の制御を行う制御手段をさらに備えている。
また、請求項2に係る発明の液体状態検知センサは、請求項1に記載の発明の構成に加え、前記制御手段には、前記電流検出手段の前記一端の電圧の入力に、前記制御手段を駆動または非駆動の状態に制御する制御信号が重畳されて入力されることを特徴とする。
また、請求項3に係る発明の液体状態検知センサは、請求項1または2に記載の発明の構成に加え、前記電源部には、当該電源部から前記発熱抵抗体に供給される電圧の波形に生ずる変動ノイズを除去するノイズ除去手段を備えている。
また、請求項4に係る発明の液体状態検知センサは、請求項3に記載の発明の構成に加え、前記ノイズ除去手段は、降圧型のリニアレギュレータであることを特徴とする。
請求項1に係る発明の液体状態検知センサでは、電流検出手段を電流調整手段の下流側(グランド側)に配置し、グランドとの電位差をもって電流検出手段の両端の電位差を検出することができる。そしてこの電位差を基準となる電圧と比較することで制御手段による電流調整手段の制御を行うことができるので、電流検出手段の両端の電位差を検出するための差動増幅回路が不要となり、電気回路の構成を簡易化できることからフィードバック制御の高速化を図ることができる。発熱抵抗体の放熱特性に基づく液体の状態の検知は、発熱抵抗体への短期間の通電を通じて行われるため、フィードバック制御を高速化することにより、より精確に、液体の状態の検知を行うことができる。
なお、本発明に係る液体状態検知センサは、発熱抵抗体に一定時間通電したときの液体に対する発熱抵抗体の放熱特性に基づき液体の状態を検知するものであるが、発熱抵抗体の放熱特性をもとに状態検知される対象としては、液体中に含まれる特定成分の濃度検知や液体の種別検知などが挙げられる。
また、請求項2に係る発明では、制御手段の駆動・非駆動を制御する制御信号は、基準となる電圧が入力される側ではなく、電流検出手段が接続される側に入力される。つまり、制御手段を非駆動の状態としたときには、制御手段の出力は低電位側に維持されることとなる。制御手段による電流調整手段の制御は比較的低い電圧により行われることから、制御手段を駆動状態にする際に、制御手段の出力を電流調整手段の制御が可能な電圧に復帰させるまでにかかる時間は、制御手段の出力を高電位側に維持して制御手段を非駆動の状態とした場合と比べて短くなる。従って、フィードバック制御の高速化を図ることができ、より精確に、液体の状態の検知を行うことができる。
ところで、電源部から発熱抵抗体に供給される電圧の波形は、供給開始後、安定するまでに、一時的に規定電圧を超える、いわゆるオーバーシュートを示したり、一時的に規定電圧を下回る、いわゆるアンダーシュートを示したりしてふらつきが生ずる場合がある。また、電源部が昇圧回路を含んで構成される場合には、昇圧回路を構成するスイッチング素子のスイッチングノイズが、発熱抵抗体に供給される電圧の波形に重畳する場合がある(なお、本明細書では、このような電圧波形に生ずるふらつきやスイッチングノイズを総称して、変動ノイズと言うことにする。)。そこで請求項3に係る発明では、このような電圧波形に生ずる変動ノイズをノイズ除去手段によって除去すれば、電源部からの電圧の供給開始直後から安定した電力を発熱抵抗体に供給することができ、より精確に、液体の状態の検知を行うことができる。
そして、このようなノイズ除去手段として、請求項4に係る発明のように降圧型のリニアレギュレータを用いれば、スイッチングレギュレータを用いた場合と比べ自身の駆動に伴う変動ノイズの発生がないため、発熱抵抗体に安定した電力を供給することがでる。
以下、本発明を具体化した液体状態検知センサの一実施の形態について、図面を参照して説明する。まず、図1を参照し、一例としての液体状態検知センサ100の構造について説明する。図1は、液体状態検知センサ100の一部を切り欠いてみた縦断面図である。なお、液体状態検知センサ100においてレベル検知部70(外筒電極10および内部電極20から構成されるコンデンサ)の長手方向を軸線O方向とし、液体性状検知部30が設けられる側を先端側、取付金具40が設けられる側を後端側とする。
本実施の形態の液体状態検知センサ100は、ディーゼル自動車の排気ガス中に含まれる窒素酸化物(NOx)の還元に使用される尿素水溶液の状態を検知するためのセンサである。具体的には、尿素水溶液のレベル(液位)、温度、およびその溶液に含まれる特定成分としての尿素の濃度を検知するものである。図1に示すように、液体状態検知センサ100は、円筒形状を有する外筒電極10、およびその外筒電極10の内部にて外筒電極10の軸線O方向に沿って設けられた円筒状の内部電極20から構成されるレベル検知部70を有する。また、内部電極20の先端側に設けられた液体性状検知部30と、液体状態検知センサ100を尿素水タンク98(図2参照)に取り付けるための取付金具40とを備えている。
外筒電極10は金属材料からなり、軸線O方向に延びる長細い円筒形状を有する。外筒電極10の外周上にて周方向に等間隔となる3本の母線上には、各母線に沿ってそれぞれ複数の細幅のスリット15が断続的に開口されている。また、外筒電極10の先端部11において、上記スリット15が形成された各母線上には、後述する内部電極20との間に介在されるゴムブッシュ80の抜け防止のための開口部16がそれぞれ設けられている。さらに、外筒電極10の後端側の基端部12に近い位置で、スリット15が形成された各母線とは異なる母線上には、1つの空気抜孔19が形成されている。
外筒電極10の先端部11は、後述する液体性状検知部30のセラミックヒータ110の径方向周囲を、そのセラミックヒータ110を覆って保護するプロテクタ130ごと包囲するように、開口部16の位置よりさらに軸線O方向先端側に延長されている。そして外筒電極10の最先端部(図中最下部)は開口されている。
また、外筒電極10の基端部12は、金属製の取付金具40の先端に設けられた電極支持部41に、その外周に係合した状態で溶接されている。取付金具40は尿素水タンク98に液体状態検知センサ100を固定するための台座として機能し、取り付けボルトを挿通するための取り付け孔(図示外)が、電極支持部41の後端側で鍔状に設けられた鍔部42に開口されている。
取付金具40の鍔部42を挟んで電極支持部41の反対側には、鍔部42から直立する壁面に囲われ凹部状をなす収容部43が形成されている。収容部43には、後述する尿素水溶液のレベル、温度、尿素濃度などを検知するための回路や、図示外の外部回路(本実施の形態では、自動車のエンジン制御装置(ECU))との電気的な接続を行うための入出力回路等が搭載された回路基板60などが収容される。なお、この取付金具40は、回路基板60に対し、そのグランド電位をなす配線部(図示しない)と同電位となるように接続されているため、外筒電極10は取付金具40を介して接地されている。
回路基板60は、収容部43の内壁面の四隅より突出する基板載置部(図示外)上に載置されている。収容部43はカバー45に覆われ保護されており、そのカバー45は、鍔部42に固定されている。また、カバー45の側面にはコネクタ62が固定されており、コネクタ62の接続端子(図示外)と回路基板60上のパターン(後述する入出力回路部290)とが配線ケーブル61によって接続されている。このコネクタ62を介し、回路基板60とECUとの接続が行われる。
取付金具40の電極支持部41には収容部43内に貫通する孔46が開口されており、この孔46内に、内部電極20の基端部22が挿通されている。本実施の形態の内部電極20は軸線O方向に延びる長細い円筒形状をした金属材料からなる。この内部電極20の外周面上には、PTFE、PFA、ETFE等のフッ素系樹脂やエポキシ樹脂、ポリイミド樹脂などからなる絶縁性被膜23が形成されている。この内部電極20と外筒電極10との間で、尿素水溶液のレベルに応じて静電容量が変化するコンデンサを形成してなるレベル検知部70が構成されている。
内部電極20の軸線O方向後端側の基端部22には、内部電極20を取付金具40に固定するためのパイプガイド55とインナーケース50が配置されている。パイプガイド55は内部電極20の基端部22の端縁寄りに接合された環状のガイド部材である。インナーケース50は内部電極20と外筒電極10とが確実に絶縁されるように内部電極20を位置決め支持する鍔付き筒状の樹脂製部材であり、先端側が取付金具40の電極支持部41の孔46に内挿されている。インナーケース50には径方向外側に向かって突出する鍔部51が形成されており、インナーケース50が電極支持部41に係合される際には、収容部43側から電極支持部41の孔46に挿通される。そして、鍔部51が収容部43内の底面に当接することで、インナーケース50が孔46内を通り抜けることが防止される。また、内部電極20は、収容部43側からインナーケース50の内側に挿通されるが、パイプガイド55が鍔部51に当接することで、インナーケース50からの脱落が防止される。
さらに、インナーケース50の外周と内周とには、それぞれ、Oリング53とOリング54とが設けられている。Oリング53は、インナーケース50の外周と取付金具40の孔46との間の隙間を密閉し、Oリング54は、インナーケース50の内周と内部電極20の基端部22の外周との間の隙間を密閉している。これにより、液体状態検知センサ100が尿素水タンク98(図2参照)に取り付けられた際に、尿素水タンク98の内部と外部とが収容部43を介して連通しないように、その水密性および気密性が保たれる。なお、取付金具40の鍔部42の先端側の面には図示外の板状のシール部材(例えばゴムパッキン)が装着され、液体状態検知センサ100を尿素水タンク98に取り付けた際に、鍔部42と尿素水タンク98との間の水密性および気密性が保たれるようになっている。
そして、内部電極20の取付金具40への組み付けの際には、2枚の押さえ板56,57によって、パイプガイド55がインナーケース50の鍔部51に対して押圧される。絶縁性の押さえ板56は、パイプガイド55との間に押さえ板57を挟み、パイプガイド55を押圧した状態で、ネジ58によって収容部43内に固定される。これにより、パイプガイド55に接合された内部電極20が電極支持部41に固定されることとなる。押さえ板56,57には中央に孔59が開口されており、内部電極20の電極引出線52と、後述するセラミックヒータ110との電気的な接続を行う2本のリード線90(図1では一方のリード線90のみを表示している)を内包する2芯のケーブル91とが挿通され、それぞれ回路基板60上のパターンに電気的に接続されている。回路基板60のグランド側の電極(図示外)は取付金具40に接続されており、取付金具40に溶接された外筒電極10がグランド側に電気的に接続される。
次に、内部電極20の先端部21に設けられた液体性状検知部30は、本実施の形態では尿素水溶液の温度および含有される尿素の濃度の検出を行う液体性状検出素子としてのセラミックヒータ110を有する。セラミックヒータ110は、絶縁性セラミックからなる2枚の板材で、PtまたはWを主体とする発熱抵抗体114(図2参照)を挟んで埋設し、焼成したものである。このセラミックヒータ110は、内部電極20の先端部21に装着される絶縁性樹脂製のホルダ120に支持されている。ホルダ120は、外径が段違い状2段に構成された円筒形状を有し、小径となる先端側にて、発熱抵抗体114の埋設された側を露出した状態のセラミックヒータ110を、接着剤からなる固定部材125,126で固定している。そして大径側となる後端側が内部電極20の先端部21に装着されており、その内部電極20の外周面とホルダ120の内周面との間にシールリング140が介在され、内部電極20の内部の水密性および気密性が確保されている。また、セラミックヒータ110のホルダ120から露出された部分は、プロテクタ130によって周囲を覆われ保護されている。
ところで、ホルダ120の装着前に、セラミックヒータ110のコネクタ119にはケーブル91の2本のリード線90の芯線がそれぞれ加締めまたは半田付けにより接合される。さらに絶縁性の保護部材95により、コネクタ119とリード線90とが接合部位ごと覆われ保護される。そして、2つのリード線90は筒形状の内部電極20内を挿通され、上記回路基板60に接続されている。
次に、プロテクタ130は、有底円筒形状に形成された金属製の保護部材である。開口側がホルダ120の小径部分の外周に嵌合されている。また、プロテクタ130の外周上には液体流通孔(図示外)が開口されており、プロテクタ130の内外での尿素水溶液の交換が行われる。そして、上記した液体性状検知部30は、内部電極20の先端部21にホルダ120を介し装着され、さらにゴムブッシュ80によって、外筒電極10内で弾性的に支持される。ゴムブッシュ80は円筒形状を有し、その外周面上に形成された突起部87が、外筒電極10の開口部16に係合されて固定される。また、ゴムブッシュ80の外周面と内周面とのそれぞれには、軸線O方向に沿った複数の溝(図示外)が溝設されている。液体状態検知センサ100が尿素水タンク98に取り付けられた際に、この溝を介し、ゴムブッシュ80の先端側に流入する尿素水溶液と、後端側に流入する尿素水溶液との液交換や気泡抜きが行われる。
次に、図2を参照して、液体状態検知センサ100の電気的な構成について説明する。図2は、液体状態検知センサ100の電気的な構成を示す図である。図2に示すように、液体状態検知センサ100は液体収容容器としての尿素水タンク98に取り付けられ、一対の電極(外筒電極10および内部電極20)を備えたレベル検知部70と、発熱抵抗体114が埋設されたセラミックヒータ110を備えた液体性状検知部30とが、尿素水タンク98に収容された状態検知対象の液体としての尿素水溶液に浸漬される。
液体状態検知センサ100の回路基板60上には、公知のCPU、ROM、RAM等を有するマイクロコンピュータ220が搭載されている。このマイクロコンピュータ220には、レベル検知部70の制御を行うレベル検知回路部250と、液体性状検知部30の制御を行う液体性状検知回路部280と、ECUとの通信を行う入出力回路部290とが接続されている。
入出力回路部290は、液体状態検知センサ100とECUとの間での信号の入出力を行うため、通信プロトコルの制御を行う。また、レベル検知回路部250は、マイクロコンピュータ220の指示に基づき、レベル検知部70の外筒電極10と内部電極20との間に交流電圧を印加し、レベル検知部70をなすコンデンサを流れた電流を電圧変換して、その電圧信号をマイクロコンピュータ220に出力する回路部である。
次に、液体性状検知回路部280は、マイクロコンピュータ220の指示に基づき、液体性状検知部30のセラミックヒータ110に定電流を流し、発熱抵抗体114の両端に発生する検出電圧をマイクロコンピュータ220に出力する回路部である。液体性状検知回路部280は、差動増幅回路部230および定電流出力回路部300を有する。差動増幅回路部230は、発熱抵抗体114の一端に現れる電位Pinと他端に現れる電位Poutとの差分を検出電圧としてA/D変換し、マイクロコンピュータ220に出力する。
定電流出力回路部300は、発熱抵抗体114に流す定電流を出力するための回路部である。定電流出力回路部300は、電源部390、ノイズ除去部330、スイッチ部340、MOS−FET350、電流検出抵抗360、オペアンプ370、および基準電源380から構成される。
電源部390は、直流電源であるバッテリー310、昇圧回路部320から構成される。また、この電源部390と発熱抵抗体114との間には、ノイズ除去部330が接続される。バッテリー310は、発熱抵抗体114に通電するための電力を生成する電源であり、一端がグランドに接続されている。バッテリー310の他端には公知のスイッチング回路から構成される昇圧回路部320の一端が接続されており、この昇圧回路部320では、バッテリー310から供給される電圧の昇圧が行われる。昇圧回路部320の他端にはノイズ除去部330の一端が接続されている。ノイズ除去部330は公知の構成の降圧型のリニアレギュレータ(図2では回路構成の一例を示す。)であり、昇圧回路部320で一旦上昇させた電圧を降下させつつ、スイッチングノイズやバッテリーの電圧変動に伴う電圧のふらつきといった電圧波形に生ずる変動ノイズの除去を行って、発熱抵抗体に供給される電圧(ひいては電力)の安定化を図る。なお、ノイズ除去部330が、本発明における「ノイズ除去手段」に相当する。
そしてノイズ除去部330の他端には、発熱抵抗体114の一端が接続されている。発熱抵抗体114は、前述したように、尿素水溶液中に浸漬されて、自身を流れる電流によって発熱する。発熱抵抗体114の他端は、自身を流れる電流の大きさを調整するために設けられるN型のMOS−FET350のドレインに接続されている。MOS−FET350のソースには発熱抵抗体114を流れる電流の大きさを検出するために設けられる電流検出抵抗360の一端が接続されており、その他端はグランドに接続されている。このように、バッテリー310、昇圧回路部320、ノイズ除去部330、発熱抵抗体114、MOS−FET350、および電流検出抵抗360はこの順に接続されて、グランドを介し閉ループ回路を構成している。なお、MOS−FET350が、本発明における「電流調整手段」に相当し、電流検出抵抗360が、本発明における「電流検出手段」に相当する。
また、MOS−FET350のゲートには、ドレイン−ソース間を流れる電流の大きさを制御するために設けられるオペアンプ370の出力端子が接続されている。このオペアンプ370の反転入力端子(−入力端子)には電流検出抵抗360の一端が接続されており、非反転入力端子(+入力端子)には、基準となる電圧を発生する基準電源380に接続されている。そして、オペアンプ370の反転入力端子にはマイクロコンピュータ220によって制御されるスイッチ部340からの出力も接続されており、MOS−FET350の駆動・非駆動を制御するための制御信号(電位)が、電流検出抵抗360からの一端に現れる電位Sに重畳される。なお、オペアンプ370が、本発明における「制御手段」に相当する。
ここで、発熱抵抗体114による尿素水溶液の状態の検知原理について簡単に説明する。発熱抵抗体114への通電開始後間もない時間内では、発熱抵抗体の発熱がまだ大きくなされていないため、発熱抵抗体自身の温度は、自身の周囲に存在する尿素水液体の温度とほぼ同一である。そして時間の経過と共に、発熱抵抗体114自身の温度は連続的に上昇していく。従って、通電開始から短期間における発熱抵抗体114の抵抗値変化と周囲に存在する尿素水溶液の温度との相関関係を予め確認しておくことにより、尿素水溶液の温度を測定することが可能である。また、尿素水溶液は、その濃度(溶液中の尿素濃度)に応じて熱伝導率に違いが生ずることが知られている。つまり、発熱抵抗体114の温度上昇率は、尿素水溶液の熱伝導率、すなわち濃度に応じて異なってくる。このことから、発熱抵抗体114を一定時間加熱したときの、発熱抵抗体114の抵抗値変化の度合いに基づき、尿素水溶液の尿素濃度を得ることができる。
このような原理に基づいて、液体状態検知センサ100では、発熱抵抗体114への通電開始直後(詳細には、通電開始後10ms経過後)に差動増幅回路部230により検出される検出電圧V1をもとに、尿素水溶液の温度をマイクロコンピュータ220にて行う。さらに、この液体状態検知センサ100では、発熱抵抗体114に通電を開始してから700msといった短期間の通電時間経過後に、差動増幅回路部230により検出される検出電圧V2と、発熱抵抗体114への通電開始直後に検出された上記検出電圧V1との差分値をマイクロコンピュータ220にて演算し、この差分値をもとに尿素濃度の測定を行う。これらの測定をより精確に行うためには、発熱抵抗体114に定電流を流すことが肝要である。つまり、バッテリー310における電圧変動や昇圧回路部320におけるスイッチングノイズの影響を低減し、さらに定電流を流せば、外的要因による発熱抵抗体114自身の抵抗値の変動を低減し、精確な測定結果を得ることができるのである。
液体性状検知回路部280では、電源部390において、バッテリー310から供給された電力を昇圧回路部320において一旦昇圧し、ノイズ除去部330において降圧することによって、スイッチングノイズやバッテリーの電圧変動に伴う電圧のふらつきといった電圧波形に生ずる変動ノイズの除去を行うことができる。バッテリー310から供給される電圧の波形は、供給開始後、安定するまでに、一時的に規定電圧を超える、いわゆるオーバーシュートを示したり、一時的に規定電圧を下回る、いわゆるオーバーシュートを示したりする場合がある。このような電圧の波形に生ずる変動ノイズをノイズ除去部330、すなわち降圧型のリニアレギュレータによって除去すれば、電力の供給開始直後から安定した電力を発熱抵抗体114に供給することができる。
そして、発熱抵抗体114を流れる電流の大きさは、電流検出抵抗360の一端に現れる電位Sとして検出されることとなる。この電位Sはオペアンプ370に入力されており、基準電源380の電位Tと比較され、その比較結果が出力としてMOS−FET350のゲートに入力され、ゲート電圧が調整されることとなる。電位Sが電位Tより高ければMOS−FET350のドレイン−ソース間を流れる電流、すなわち発熱抵抗体114を流れる電流が減衰される。そして電位Sが電位Tより低ければ、発熱抵抗体114を流れる電流が増幅される。このようなフィードバック制御を行うことにより、液体性状検知回路部280では、発熱抵抗体114に定電流を供給することができる。
なお、尿素水溶液の温度測定では、発熱抵抗体114への通電開始後、発熱抵抗体114自身の発熱による温度変化の影響が出るまでの僅かな時間で発熱抵抗体114の抵抗値を検出する必要がある。このためには発熱抵抗体114を流れる電流が、より早く安定化することが好ましい。本実施の形態では、電流調整を行うMOS−FET350よりも下流側(グランド側)に電流検出を行う電流検出抵抗360を配置し、この電流検出抵抗360の一端に現れる電位Sをグランドとの電位差として得られるようにしている。この電位Sとの比較対象となる基準電源380の電位Tもまたグランドとの電位差であり、こうした構成とすることにより、電流検出抵抗360の両端の電位差を求める回路部分を不要とし、回路構成の簡易化を図り、回路の信頼性を高めることができる。また、回路構成の簡易化によって、オペアンプ370によるMOS−FET350の制御が有効となるまでの時間をより早めることができるので、フィードバック制御の速度を向上することができる。これにより、尿素水溶液の温度および尿素濃度の検知精度を高めることができる。
また、ノイズ除去部330において取りきれなかったノイズや外的要因によるノイズ(例えば電磁波ノイズなど)によって発熱抵抗体114を流れる電流に変動が生じても、電流検出抵抗360を発熱抵抗体114よりもグランド側に配置したことで、そのノイズを検出することができる。発熱抵抗体114に定電流を流すために行われるフィードバック制御では、こうしたノイズによる影響も低減されることとなり、尿素水溶液の温度および尿素濃度の検知精度を高めることができる。
さらに、オペアンプ370の駆動・非駆動の制御を行うスイッチ部340からの制御信号が−入力端子側に入力されるため、オペアンプ370は非駆動時には負側の飽和状態となり、つまりその出力が0Vの状態となっている。オペアンプ370が駆動時に飽和状態から復帰するには時間を要することが知られているが、MOS−FET350のゲート電圧として出力されることとなる比較的小さな電圧を出力可能な状態になるには、正側の飽和状態からよりも負側飽和状態から復帰する方が早い。このように、スイッチ部340からの制御信号が、オペアンプ370の−入力端子側に入力されることで、オペアンプ370によるMOS−FET350の制御が有効となるまでの時間をより早め、応答性を向上することができる。
なお、本発明は各種の変形が可能なことはいうまでもない。例えば、バッテリー310が発熱抵抗体114に供給するのに必要な電圧に対して十分に高い電圧を供給することができれば、昇圧回路部320を設けなくともよい。また、スイッチ部340は、オペアンプ370とMOS−FET350との間の位置(図2における点Uで示す)に配置してもよいし、ノイズ除去部330と発熱抵抗体114との間の位置(図2における点Vで示す)に配置してもよい。
さらに、スイッチ部340は、図3に示すような回路構成を採っていてもよい。具体的には、基準電源480の正極側に2つの抵抗491,492を直列に接続した分圧回路を接続し、その分圧回路の一端を接地する。そして、分圧回路の分圧点をオペアンプ370の非反転入力端子に接続する。さらに、スイッチ部340のうち、オペアンプ370の反転入力端子に接続される側の端部と反対側の端部を、基準電源480と抵抗491との間に接続する。このような回路構成においても、上記実施の形態と同様な機能を果たす定電流出力回路部400となる。
また、液体状態検知センサ100としては、レベル検知部70を有さないタイプのセンサであってもよい。また、上記の実施形態の液体状態検知センサ100では、尿素水溶液の温度検知と尿素の濃度検知とを行ったが、尿素水溶液の温度検知を行わないものであってもよい。さらに、尿素の濃度検知に代えて、液体の種別検知を行うようにしてもよい。
また、検知対象の液体として用いた尿素水溶液は一例に過ぎず、他の液体であってもよい。また、ノイズ除去部330は、コンデンサを用いて簡易的にノイズの除去を行う回路構成であってもよい。さらに、電流調整部はMOS−FET350に限られず、NPN型のトランジスタや他のスイッチング素子で構成されてもよい。
液体状態検知センサ100の一部を切り欠いてみた縦断面図である。 液体状態検知センサ100の電気的な構成を示す図である。 変形例としての定電流出力回路部400におけるスイッチ部340の回路構成を示す図である。 従来の液体状態検知センサの定電流出力回路500を示す図である。
符号の説明
100 液体状態検知センサ
114 発熱抵抗体
330 ノイズ除去部(ノイズ除去手段)
340 スイッチ部
350 MOS−FET(電流調整手段)
360 電流検出抵抗(電流検出手段)
370 オペアンプ(制御手段)
380、480 基準電源
390 電源部

Claims (4)

  1. 発熱抵抗体に一定時間通電したときの液体に対する前記発熱抵抗体の放熱特性に基づいて、前記発熱抵抗体の周囲における前記液体の状態を検知する液体状態検知センサにおいて、
    前記発熱抵抗体に通電するために、前記発熱抵抗体の一端側に配置される電源部と、
    前記発熱抵抗体に流れる電流を検出するために、自身の一端側に前記発熱抵抗体が配置され、自身の他端がグランドに接続される電流検出手段と、
    当該電流検出手段によって検出される電流の大きさに基づいて、前記発熱抵抗体に流れる電流の大きさを調整するために、前記発熱抵抗体と前記電流検出手段との間に配置される電流調整手段と
    を備え、
    前記電源部、前記発熱抵抗体、前記電流調整手段、および前記電流検出手段がこの順に直列に接続されて、前記グランドを介して閉ループ回路を構成すると共に、
    基準となる電圧と、前記電流検出手段の一端の電圧とが入力され、両電圧の比較結果に応じて前記電流調整手段の駆動状態の制御を行う制御手段をさらに備えたことを特徴とする液体状態検知センサ。
  2. 前記制御手段には、前記電流検出手段の前記一端の電圧の入力に、前記制御手段を駆動または非駆動の状態に制御する制御信号が重畳されて入力されることを特徴とする請求項1に記載の液体状態検知センサ。
  3. 前記電源部には、当該電源部から前記発熱抵抗体に供給される電圧の波形に生ずる変動ノイズを除去するノイズ除去手段を備えたことを特徴とする請求項1または2に記載の液体状態検知センサ。
  4. 前記ノイズ除去手段は、降圧型のリニアレギュレータであることを特徴とする請求項3に記載の液体状態検知センサ。
JP2007259649A 2007-10-03 2007-10-03 液体状態検知センサ Expired - Fee Related JP4897635B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007259649A JP4897635B2 (ja) 2007-10-03 2007-10-03 液体状態検知センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007259649A JP4897635B2 (ja) 2007-10-03 2007-10-03 液体状態検知センサ

Publications (2)

Publication Number Publication Date
JP2009085917A true JP2009085917A (ja) 2009-04-23
JP4897635B2 JP4897635B2 (ja) 2012-03-14

Family

ID=40659507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259649A Expired - Fee Related JP4897635B2 (ja) 2007-10-03 2007-10-03 液体状態検知センサ

Country Status (1)

Country Link
JP (1) JP4897635B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102312597B1 (ko) * 2020-05-22 2021-10-14 네메시스 주식회사 노이즈 영향을 저감하는 글루코스 센싱 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862266A (ja) * 1994-08-25 1996-03-08 Yamatake Honeywell Co Ltd 静電容量変化量検出装置
JP2002323469A (ja) * 2001-01-29 2002-11-08 Leco Corp 熱伝導度セルのための制御回路
JP2007114181A (ja) * 2005-07-08 2007-05-10 Ngk Spark Plug Co Ltd 液体状態検知センサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862266A (ja) * 1994-08-25 1996-03-08 Yamatake Honeywell Co Ltd 静電容量変化量検出装置
JP2002323469A (ja) * 2001-01-29 2002-11-08 Leco Corp 熱伝導度セルのための制御回路
JP2007114181A (ja) * 2005-07-08 2007-05-10 Ngk Spark Plug Co Ltd 液体状態検知センサ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102312597B1 (ko) * 2020-05-22 2021-10-14 네메시스 주식회사 노이즈 영향을 저감하는 글루코스 센싱 장치
KR20210144612A (ko) * 2020-05-22 2021-11-30 네메시스 주식회사 넓은 센싱 범위와 낮은 노이즈 영향을 가지는 글루코스 센싱 장치
KR102391015B1 (ko) 2020-05-22 2022-04-26 네메시스 주식회사 넓은 센싱 범위와 낮은 노이즈 영향을 가지는 글루코스 센싱 장치

Also Published As

Publication number Publication date
JP4897635B2 (ja) 2012-03-14

Similar Documents

Publication Publication Date Title
US7712363B2 (en) Liquid state detecting sensor
US7574900B2 (en) Liquid state detection sensor
US7665347B2 (en) Liquid state detecting apparatus
US8017080B2 (en) Liquid state detecting apparatus
JP4828936B2 (ja) 液状態検知センサ
JP4704997B2 (ja) 液体状態検知装置
US20070193345A1 (en) Liquid-condition detection sensor
WO2008007438A1 (fr) Détecteur de gaz
JP4594278B2 (ja) 液体状態検知センサ
JP2008088937A (ja) 検出装置及びエンジン制御装置
JP4897635B2 (ja) 液体状態検知センサ
JP4995598B2 (ja) 液体状態検知センサ
JP5021528B2 (ja) 液体状態検知センサ
JP2010048772A (ja) 液体状態検知センサ
US6874481B2 (en) Fuel supply apparatus and residual fuel amount indication device for fuel supply apparatus
US6781389B1 (en) Conductivity sensor for detecting conductivity of a fluid
JP4620648B2 (ja) 液体状態検知装置
JP2006126053A (ja) 故障検出装置
JP2007010587A (ja) 液体状態検知センサ
JP4944681B2 (ja) 液体状態検知センサ
JP4719570B2 (ja) 液体状態検知センサ
JP2007163177A (ja) 液体状態検知センサ
JP4704891B2 (ja) 液体状態検知装置
KR20190066609A (ko) 람다 센서의 작동을 위한 제어 유닛
JP2009103665A (ja) 液体状態検知センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Ref document number: 4897635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees