JP2009085480A - Absorption type refrigerating device - Google Patents

Absorption type refrigerating device Download PDF

Info

Publication number
JP2009085480A
JP2009085480A JP2007254211A JP2007254211A JP2009085480A JP 2009085480 A JP2009085480 A JP 2009085480A JP 2007254211 A JP2007254211 A JP 2007254211A JP 2007254211 A JP2007254211 A JP 2007254211A JP 2009085480 A JP2009085480 A JP 2009085480A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
refrigeration apparatus
evaporator
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007254211A
Other languages
Japanese (ja)
Other versions
JP5018376B2 (en
Inventor
Mitsushi Kawai
満嗣 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007254211A priority Critical patent/JP5018376B2/en
Publication of JP2009085480A publication Critical patent/JP2009085480A/en
Application granted granted Critical
Publication of JP5018376B2 publication Critical patent/JP5018376B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the efficiency of a cold use-side device by lowering a temperature of a cooled fluid at an outlet of an evaporator to a limit while preventing the freezing of a refrigerant, in an absorption type refrigerating device driven by the exhaust heat of an engine by lowering the temperature of the cooled fluid at the outlet of the evaporator to the limit while preventing the freezing of the refrigerant. <P>SOLUTION: In this exhaust heat-driven absorption type refrigerating device, a refrigerating capacity is controlled by changing a temperature of a supercooled solution flowing to an absorber and/or a flow rate of the supercooled solution, the flow of the refrigerant to the evaporator is stopped when the temperature of the cooled fluid at the outlet of the evaporator reaches a prescribed temperature or lower, the refrigerant is allowed to flow into the evaporator when the temperature reaches the prescribed temperature or higher, and the refrigerant directly flows to a dilute solution reservoir at a lower portion of the absorber during the stop of the flow of the refrigerant. According to this constitution, the temperature of the cooled fluid can be lowered to the limit and the performance of the cold use-side device can be improved to the maximum while preventing the freezing of the refrigerant. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本願発明は、エンジンの排熱で駆動される吸収式冷凍装置に関するものである。   The present invention relates to an absorption refrigeration apparatus driven by engine exhaust heat.

従来の空冷吸収式冷凍装置は、吸収器で冷媒蒸気を吸収しながら溶液を空冷フィンで冷却する直接空冷方式であり、吸収器では、冷媒蒸気の吸収と吸収溶液の冷却を同時に行うことからその性能向上には気液界面の拡大が重要である。しかし、そのためには、上下の吸収器ヘッダーや吸収器伝熱管の壁面に流れる溶液に吸収させる冷媒蒸気の圧力損失を低下させるための大口径伝熱管、また蒸発器との冷媒蒸気連絡管の大口径化等が必要であって、装置の小型化への制約が大きい。   The conventional air-cooled absorption refrigeration system is a direct air-cooling method in which the solution is cooled by air-cooling fins while absorbing the refrigerant vapor by the absorber, and the absorber absorbs the refrigerant vapor and cools the absorbed solution at the same time. Expansion of the gas-liquid interface is important for performance improvement. However, for that purpose, large-diameter heat transfer tubes for reducing the pressure loss of the refrigerant vapor absorbed by the solution flowing on the upper and lower absorber headers and the wall of the absorber heat transfer tube, and the large size of the refrigerant vapor communication tube with the evaporator are used. It is necessary to reduce the diameter of the device, and there is a great restriction on downsizing the device.

これに対して、吸収器に流入する溶液を空冷冷却器で過冷却し、吸収器内では単に冷媒蒸気を吸収させるだけで、吸収熱は過冷却された溶液の顕熱で取り去る間接空冷(溶液分離冷却)方式は、吸収器が従来よりも小型化されるので、小型の空冷吸収式冷凍装置では最も有利な方式と考えられる。   On the other hand, the solution flowing into the absorber is supercooled by an air-cooled cooler, and the refrigerant heat is simply absorbed in the absorber, and the absorbed heat is removed by sensible heat of the supercooled solution (solution The separation cooling method is considered to be the most advantageous method for a small air-cooled absorption refrigeration apparatus because the absorber is made smaller than before.

そして、この間接空冷方式の空冷吸収式冷凍装置をエンジンの排熱を利用して駆動すれば、装置の小型化と低コスト化が図れるので、従来の単に温熱を利用する形態から、温熱を冷熱に変換して利用する形態へ簡単に変更でき、排熱の有効利用が促進され、省エネ、CO2削減に大きく寄与できるものと考えられる。   If this indirect air-cooled air-cooled absorption refrigeration system is driven by using exhaust heat from the engine, the size and cost of the apparatus can be reduced. It can be easily changed to a form to be converted to use, the effective use of exhaust heat is promoted, and it can be considered that it can greatly contribute to energy saving and CO2 reduction.

ところで、この間接空冷方式の空冷吸収式冷凍装置の従来例としては、例えば、特許文献1に示されるものがあるが、この従来例のものでは、吸収器としては溶液を噴霧する方式のものを採用しているが、2重効用サイクルで、且つバーナにより溶液を加熱する従来の直火方式であり、排熱を利用した例は見当たらない。   By the way, as a conventional example of this indirect air cooling type air cooling absorption refrigeration apparatus, for example, there is one disclosed in Patent Document 1, but in this conventional example, an absorber is a type that sprays a solution. Although it is adopted, it is a conventional direct-fire method in which a solution is heated by a burner with a double-effect cycle, and there is no example using exhaust heat.

また、エンジンで圧縮式冷凍装置を駆動し、その排熱で吸収式冷凍装置を駆動し、その冷熱で圧縮式冷凍装置の冷媒を過冷却することで圧縮式冷凍装置の性能を向上させるようにした吸収式冷凍装置と圧縮式冷凍装置との組み合わせた冷凍システムの従来例としては、例えば、特許文献2に示されるものなど、多数の例がある。   Also, the compression refrigeration unit is driven by the engine, the absorption refrigeration unit is driven by the exhaust heat, and the refrigerant of the compression refrigeration unit is supercooled by the cold heat so that the performance of the compression refrigeration unit is improved. As a conventional example of a refrigeration system in which an absorption refrigeration apparatus and a compression refrigeration apparatus are combined, there are many examples such as that shown in Patent Document 2, for example.

特開平7−98163号公報JP-A-7-98163 特開平9−53864号公報JP-A-9-53864

ところで、エンジンで駆動される圧縮式冷凍装置と、その排熱で駆動される吸収式冷凍装置を組み合せたシステムにおいて、上掲の従来例では、単にその排熱を利用した吸収式冷凍装置の冷熱で圧縮式冷凍装置の冷媒を過冷却するようにしたものである。   By the way, in a system combining a compression refrigeration apparatus driven by an engine and an absorption refrigeration apparatus driven by the exhaust heat, in the above-described conventional example, the cooling heat of the absorption refrigeration apparatus that simply uses the exhaust heat. Thus, the refrigerant of the compression refrigeration apparatus is supercooled.

ところが、外気温度が低下した場合とか、圧縮式冷凍装置が部分負荷となった場合には、該圧縮式冷凍装置の凝縮器出口の冷媒温度(即ち、凝縮温度)が低下することから、特に外気温度の低下と圧縮式冷凍装置の部分負荷とが重なった場合には、この圧縮式冷凍装置の凝縮器出口の冷媒温度の低下が大きくなるため、吸収式冷凍装置の冷熱で圧縮式冷凍装置側の冷媒を過冷却できる温度幅が少なくなり、圧縮式冷凍装置の冷媒を過冷却することによる該圧縮式冷凍装置の性能向上の割合が大きく低下することになる。この結果、冷熱の利用期間(即ち、圧縮式冷凍装置による冷房運転期間)において、吸収式冷凍装置のイニシャルコストに対して、エンジン駆動の圧縮式冷凍装置のランニングコストの低減効果が少なくなるという問題がある。   However, when the outside air temperature decreases or when the compression refrigeration apparatus becomes a partial load, the refrigerant temperature (that is, the condensation temperature) at the condenser outlet of the compression refrigeration apparatus decreases. When the temperature drop and the partial load of the compression refrigeration unit overlap, the refrigerant temperature drop at the outlet of the condenser of this compression refrigeration unit becomes large. The temperature range in which the refrigerant can be supercooled is reduced, and the performance improvement rate of the compression refrigeration apparatus by supercooling the refrigerant of the compression refrigeration apparatus is greatly reduced. As a result, there is a problem that the running cost of the engine-driven compression refrigeration apparatus is less effective than the initial cost of the absorption refrigeration apparatus in the cold utilization period (that is, the cooling operation period of the compression refrigeration apparatus). There is.

さらに、エンジンで発電機を駆動し、その排熱で吸収式冷凍装置を駆動して冷熱を利用する場合や、特に、上述のようなエンジンで圧縮式冷凍装置を駆動し、その排熱で吸収式冷凍装置を駆動し、この吸収式冷凍装置で得られた冷熱で圧縮式冷凍装置の冷媒を過冷却して該圧縮式冷凍装置の性能を向上させるシステム等においては、熱源側より排出される排熱を、単に排熱を利用する機器側(排熱吸収式冷凍装置)のためだけで熱排出を停止させる等は熱源側(エンジン利用側機器)に与える影響も大きいことから、その機能を持たせる事自体、緊急時を除いて困難な事でもある。   Furthermore, when the generator is driven by the engine and the absorption refrigeration device is driven by the exhaust heat to use the cold heat, in particular, the compression refrigeration device is driven by the engine as described above and absorbed by the exhaust heat. In a system or the like that drives a refrigerating device and supercools the refrigerant of the compression refrigerating device with the cold heat obtained by the absorption refrigerating device to improve the performance of the refrigerating device, it is discharged from the heat source side Stopping heat exhaust just for the equipment side that uses exhaust heat (exhaust heat absorption refrigeration system) has a large effect on the heat source side (engine use side equipment). It is also a difficult thing to have, except in an emergency.

また、排熱量のコントロールとして、吸収式冷凍装置の出力をその蒸発器における被冷却流体の出口や出入口の温度差等で検知し、吸収式冷凍装置の発生器に流入する温水量(排熱量)を吸収式冷凍装置の出力(冷凍負荷)に応じて三方弁で制御する従来の方式は、当初より三方弁等を熱源側の装置に組み込んでおく必要があることや、より高価なものとなってしまう等の問題があるが、それ以前に、吸収式冷凍装置の能力制御に直結する蒸発器や吸収器でのコントロールではなく、発生器でのコントロールであるため、コントロールにタイムラグがあるだけではなく、低外気温とか圧縮式冷凍装置の部分負荷時のような該圧縮式冷凍装置の冷媒の凝縮温度が低い状態下における吸収式冷凍装置の冷凍能力の制御は、かなりの温度の余裕を必要とすることから、どうしても吸収式冷凍装置の蒸発器の被冷却流体温度(即ち、圧縮式冷凍装置の冷媒の過冷却温度)を、限界値(即ち、吸収液としてLiBrを、冷媒として水を用いた吸収式冷凍装置において冷媒としての水の凍結を回避できる限界温度)よりも高く設定するため、この高く設定した分だけ、圧縮式冷凍装置の冷媒を過冷却できる温度幅が少なくなり、吸収式冷凍装置の冷熱で圧縮式冷凍装置の冷媒を過冷却することによる該圧縮式冷凍装置の性能改善効果が減殺される要因ともなっていた。   In addition, as control of the amount of exhaust heat, the output of the absorption refrigeration system is detected by the temperature difference between the outlet and the outlet of the cooled fluid in the evaporator, and the amount of hot water flowing into the generator of the absorption refrigeration system (exhaust heat amount) The conventional system that controls the three-way valve in accordance with the output (refrigeration load) of the absorption refrigeration system requires that a three-way valve, etc. be built into the heat source side device from the beginning, and is more expensive. Before that, it is not the control with the evaporator or the absorber that is directly linked to the capacity control of the absorption refrigeration system, but the control with the generator, so there is only a time lag in the control. However, the control of the refrigerating capacity of the absorption refrigeration system under a condition where the refrigerant condensing temperature of the compression refrigeration system is low, such as when the outside air temperature is low or when the compression refrigeration apparatus is partially loaded, requires a considerable temperature margin. Therefore, the temperature of the cooled fluid of the evaporator of the absorption refrigeration system (that is, the supercooling temperature of the refrigerant of the compression refrigeration system) must be set to the limit value (that is, LiBr as the absorption liquid and water as the refrigerant). Therefore, the temperature range at which the refrigerant of the compression refrigeration system can be supercooled is reduced by the amount set higher, and the absorption type The performance improvement effect of the compression refrigeration apparatus due to the supercooling of the refrigerant of the compression refrigeration apparatus by the cold heat of the refrigeration apparatus has also been a factor that diminishes.

これらのことからして、圧縮式冷凍装置の効率を向上させるためには、その冷媒の過冷却度を限界まで低下させることが有効であるといえる。   From these facts, it can be said that it is effective to reduce the degree of supercooling of the refrigerant to the limit in order to improve the efficiency of the compression refrigeration apparatus.

しかしながら、圧縮式冷凍装置の冷媒の過冷却度を限界まで低下させ、少しでも圧縮式冷凍装置の効率を向上させようとすると、外気温の低下とエンジン駆動の圧縮式冷凍装置の負荷の低下が重なったような場合には、吸収式冷凍装置の能力を最小に制御したとしてもタイムラグや吸収式冷凍装置の冷凍能力が過大となってその蒸発器に流入する冷媒(水)が凍結する可能性があることから、吸収式冷凍装置の能力を早急に低下させることが必要であり、この点についても考慮することが必要である。   However, if the degree of supercooling of the refrigerant of the compression refrigeration system is reduced to the limit and the efficiency of the compression refrigeration system is improved as much as possible, the outside air temperature and the load of the engine driven compression refrigeration system will decrease. In such a case, even if the capacity of the absorption refrigeration system is controlled to the minimum, the refrigeration capacity of the time lag or the absorption refrigeration system may be excessive and the refrigerant (water) flowing into the evaporator may freeze. Therefore, it is necessary to quickly reduce the capacity of the absorption refrigeration apparatus, and this point needs to be taken into consideration.

そこで本願発明は、エンジンの排熱で駆動される吸収式冷凍装置において、冷媒の凍結を回避しつつ、蒸発器出口の被冷却流体の温度を限界まで低下させ得るようにし、これによって吸収式冷凍装置の冷熱を利用する冷熱利用側機器の効率の向上を図ることを目的としてなされたものである。   Accordingly, the present invention is an absorption refrigeration apparatus driven by engine exhaust heat so that the temperature of the fluid to be cooled at the evaporator outlet can be lowered to the limit while avoiding freezing of the refrigerant, thereby absorbing the absorption refrigeration. It was made for the purpose of improving the efficiency of the cold energy utilization side equipment that utilizes the cold energy of the apparatus.

本願発明ではかかる課題を解決するための具体的手段として次のような構成を採用している。   In the present invention, the following configuration is adopted as a specific means for solving such a problem.

本願の第1の発明では、エンジンの排熱で駆動される発生器と、凝縮器と、流下液膜式の吸収器と、該吸収器に入る吸収溶液を過冷却する空冷過冷却器と、上記吸収器と一体の躯体内に収められて冷媒を一過性で蒸発させる蒸発器を備えた排熱駆動の吸収式冷凍装置において、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させることで吸収式冷凍装置の冷凍能力を制御するものとし、上記蒸発器の出口における被冷却流体の温度が所定温度以下となった場合に上記凝縮器から上記蒸発器に至る配管に設けた冷媒電磁弁を閉として上記蒸発器への冷媒の流入を停止させ、上記温度が所定温度以上となったときに上記冷媒電磁弁を開として上記蒸発器に上記凝縮器からの冷媒を流入させるとともに、上記冷媒電磁弁が閉作動中は上記冷媒を上記凝縮器から直接に上記吸収器下部の希溶液溜まりに流入させることを特徴としている。   In the first invention of the present application, a generator driven by exhaust heat of the engine, a condenser, a falling liquid film type absorber, an air-cooled supercooler for supercooling the absorbing solution entering the absorber, In an exhaust heat-driven absorption refrigeration apparatus including an evaporator that is housed in a housing integral with the absorber and evaporates the refrigerant in a transient manner, the temperature and / or excess temperature of the supercooled solution flowing into the absorber. The refrigeration capacity of the absorption refrigeration system is controlled by changing the flow rate of the cooling solution, and when the temperature of the fluid to be cooled at the outlet of the evaporator is equal to or lower than a predetermined temperature, the condenser is changed to the evaporator. The refrigerant solenoid valve provided in the piping to be closed is closed to stop the flow of refrigerant into the evaporator, and when the temperature exceeds a predetermined temperature, the refrigerant solenoid valve is opened and the evaporator is connected to the evaporator from the condenser. The refrigerant solenoid valve allows the refrigerant to flow in. During the closing operation is characterized in that to flow into the reservoir dilute solution directly to the absorber bottom of the refrigerant from the condenser.

係る構成によれば、
(1) 上記吸収器に流入する過冷却した吸収溶液の過冷却温度及び/又は流量を変化させることで吸収式冷凍装置の冷凍能力を制御するものであることから、例えば、従来例の如く排熱の入力制御によって発生器での冷媒発生量を増減し吸収式冷凍装置の冷凍能力の増減を行なう制御のように制御にタイムラグが生じることが無く、冷凍能力の増減制御を応答性良く迅速に行なうことができる、(2) 上記蒸発器の出口における被冷却流体の温度は吸収式冷凍装置によって低い温度に制御されているにもかかわらず更に所定温度以下となった場合には、該蒸発器に流入する冷媒が凍結する可能性があるが、このとき上記凝縮器から上記蒸発器に至る配管に設けた冷媒電磁弁を閉として上記蒸発器への冷媒の流入を停止させることで冷凍能力を早急に低下させて冷媒の凍結に至ることを防止することができ、また上記温度が所定温度以上となり冷媒が凍結する可能性が無くなったときには上記冷媒電磁弁を開として上記蒸発器に上記凝縮器からの冷媒を流入させることで冷凍能力の向上を図ることができ、
これらの相乗効果として、冷媒の凍結を防止しつつ、被冷却流体の温度を限界まで低くして冷熱利用側機器の性能を最大限度まで向上させることが可能となる。
According to this configuration,
(1) Since the refrigeration capacity of the absorption refrigeration system is controlled by changing the supercooling temperature and / or flow rate of the supercooled absorption solution flowing into the absorber, There is no time lag in the control like the control that increases or decreases the refrigerant generation amount in the generator by the heat input control and increases or decreases the refrigerating capacity of the absorption refrigeration system, and the control of increasing or decreasing the refrigerating capacity is quick with good responsiveness (2) When the temperature of the fluid to be cooled at the outlet of the evaporator is controlled to a low temperature by the absorption refrigeration apparatus, and further falls below a predetermined temperature, the evaporator The refrigerant flowing into the refrigerant may freeze, but at this time, the refrigerant electromagnetic valve provided in the pipe from the condenser to the evaporator is closed to stop the refrigerant from flowing into the evaporator. It is possible to prevent the refrigerant from rapidly freeing and freezing the refrigerant, and when the temperature is equal to or higher than a predetermined temperature and there is no possibility that the refrigerant freezes, the refrigerant electromagnetic valve is opened and the evaporator is connected to the evaporator. Refrigeration capacity can be improved by injecting refrigerant from
As a synergistic effect, it is possible to reduce the temperature of the fluid to be cooled to the limit while preventing the refrigerant from freezing, and to improve the performance of the cold energy utilization side device to the maximum extent.

また、上記冷媒電磁弁が閉作動中は上記凝縮器からの冷媒を上記吸収器下部の希溶液溜まりに流入させることにより、溶液の濃度変化を防止するとともに吸収器での吸収能力が過大になって冷媒がより凍結しやすくなるのを防止している。   Further, while the refrigerant solenoid valve is closed, the refrigerant from the condenser is caused to flow into the dilute solution reservoir below the absorber, thereby preventing change in the concentration of the solution and increasing the absorption capacity in the absorber. This prevents the refrigerant from freezing more easily.

本願の第2の発明では、上記第1の発明に係る吸収式冷凍装置において、吸収式冷凍装置の冷凍能力を、上記蒸発器の出口における被冷却流体の温度と目標温度との偏差、又は上記蒸発器の出口と入口における被冷却流体の温度差と目標温度差との偏差で規定したことを特徴としている。   In the second invention of the present application, in the absorption refrigeration apparatus according to the first invention, the refrigeration capacity of the absorption refrigeration apparatus is calculated by calculating the deviation between the temperature of the fluid to be cooled and the target temperature at the outlet of the evaporator, or It is characterized by the deviation between the temperature difference of the fluid to be cooled at the outlet and the inlet of the evaporator and the target temperature difference.

ここで、上記「目標温度」又は「目標温度差」は、冷熱利用側機器の運転状態に基づく温度又は温度差(例えば、冷熱利用側機器が圧縮式冷凍装置である場合には、外気温とか運転負荷に応じて設定される圧縮式冷媒の過冷却後の温度又は過冷却の温度差)である。従って、吸収式冷凍装置の冷凍能力が、この「被冷却流体の温度と目標温度との偏差」又は「被冷却流体の温度差と目標温度差との偏差」に対応する能力に規制されることで、過度の冷凍能力によって、例えば被冷却流体の温度が目標温度よりさらに低下して冷媒の凍結に至るというようなことが確実に防止される。   Here, the “target temperature” or “target temperature difference” is the temperature or temperature difference based on the operating state of the cold energy utilization side device (for example, the outside air temperature when the cold energy utilization side device is a compression refrigeration apparatus). The temperature after the supercooling of the compression refrigerant set according to the operating load or the temperature difference of the supercooling). Therefore, the refrigerating capacity of the absorption refrigeration system is restricted to the capacity corresponding to this "deviation between the temperature of the fluid to be cooled and the target temperature" or "deviation between the temperature difference of the fluid to be cooled and the target temperature difference". Thus, the excessive refrigeration capacity can reliably prevent, for example, the temperature of the fluid to be cooled further lower than the target temperature and freezing of the refrigerant.

本願の第3の発明では、上記第1又は第2の発明に係る吸収式冷凍装置において、上記所定温度を、上記蒸発器の出口における被冷却流体の目標温度と同等又は該目標温度より低い温度に設定したことを特徴としている。   In a third invention of the present application, in the absorption refrigeration apparatus according to the first or second invention, the predetermined temperature is equal to or lower than a target temperature of a fluid to be cooled at an outlet of the evaporator. It is characterized by being set to.

ここで、「目標温度」とは、冷熱利用側機器の運転時の目標温度であり、「目標温度より低い温度」とは上記の目標温度より更に低い限界温度である。従って、上記「所定温度」、即ち、冷媒の凍結の可能性のある限界温度を「目標温度と同等又は該目標温度より低い温度に設定する」ことで、冷熱利用側機器の能力を限界まで利用することができる。   Here, the “target temperature” is a target temperature at the time of operation of the cold energy utilization side device, and the “temperature lower than the target temperature” is a limit temperature that is lower than the target temperature. Therefore, the above-mentioned “predetermined temperature”, that is, the limit temperature that may cause the refrigerant to freeze is “set to a temperature that is equal to or lower than the target temperature”, so that the capacity of the cold-use side device is used to the limit. can do.

本願の第4の発明では、上記第1、第2又は第3の発明に係る吸収式冷凍装置において、上記空冷過冷却器に備えられたファンの発停又は風量の増減によって上記吸収器に流入する過冷却溶液の温度を変化させることで冷凍能力を制御することを特徴としている。   According to a fourth invention of the present application, in the absorption refrigeration apparatus according to the first, second or third invention, the air flows into the absorber by the start / stop of a fan provided in the air-cooled supercooler or the increase / decrease of the air volume. The refrigerating capacity is controlled by changing the temperature of the supercooled solution.

係る構成によれば、過冷却溶液の温度を変化させての冷凍能力の制御が、間接空冷方式の特性を生かして、上記ファンの発停又は風量の増減によって極めて容易且つ迅速に行なえることから、吸収式冷凍装置の能力制御範囲を最少能力まで低下させることができ、延いては、冷熱利用側機器の能力を限界まで利用することが可能となる。   According to such a configuration, the control of the refrigerating capacity by changing the temperature of the supercooled solution can be performed very easily and quickly by making use of the characteristics of the indirect air cooling system and by the start / stop of the fan or the increase / decrease of the air volume. The capacity control range of the absorption refrigeration apparatus can be reduced to the minimum capacity, and as a result, the capacity of the cold energy utilization side equipment can be utilized to the limit.

本願の第5の発明では、上記第1、第2又は第3の発明に係る吸収式冷凍装置において、上記空冷過冷却器の入口側又は出口側に設けた流量調整弁によって上記吸収器に流入する過冷却溶液の流量を変化させることで冷凍能力を制御し、又は上記流量調整弁による過冷却溶液の流量の変化と同時に上記ファンの発停又は風量を増減させることで冷凍能力を制御することを特徴としている。   According to a fifth aspect of the present invention, in the absorption refrigeration apparatus according to the first, second or third aspect of the present invention, the flow-in control valve provided on the inlet side or the outlet side of the air-cooled supercooler flows into the absorber. The refrigeration capacity is controlled by changing the flow rate of the supercooled solution, or the refrigeration capacity is controlled by changing the flow rate of the supercooled solution by the flow rate adjusting valve and simultaneously changing the flow rate of the fan. It is characterized by.

係る構成によれば、冷凍能力の制御が、流量調整弁による過冷却溶液の流量調整、又は上記ファンの発停又は風量を増減入力よって極めて容易且つ迅速に行なえることから、吸収式冷凍装置の能力制御範囲を最少能力まで低下させることができ、延いては、冷熱利用側機器の能力を限界まで利用することが可能となる。   According to such a configuration, the refrigerating capacity can be controlled very easily and quickly by adjusting the flow rate of the supercooled solution using the flow rate adjusting valve, or by starting / stopping the fan or increasing / decreasing the air volume. The capability control range can be reduced to the minimum capability, and as a result, the capability of the cold energy utilization side device can be utilized to the limit.

本願の第6の発明では、上記第1、第2又は第3の発明に係る吸収式冷凍装置において、冷媒蒸気を吸収した上記吸収器からの希溶液と上記発生器で冷媒蒸気を発生し且つ溶液熱交換器での熱交換によって温度が低下した濃溶液とを混合するもので、これらの混合溶液を吸引及び吐出する溶液ポンプの流量を増減させて上記吸収器に流入する過冷却溶液の流量を変化させることで冷凍能力を制御し、又は上記溶液ポンプの流量の増減と同時に上記ファンの発停又は風量を増減させることで冷凍能力を制御することを特徴としている。   According to a sixth invention of the present application, in the absorption refrigeration apparatus according to the first, second or third invention, the refrigerant vapor is generated by the diluted solution from the absorber which has absorbed the refrigerant vapor and the generator, and This is a mixture of concentrated solution whose temperature has decreased due to heat exchange in the solution heat exchanger, and the flow rate of the supercooled solution flowing into the absorber by increasing or decreasing the flow rate of the solution pump that sucks and discharges these mixed solutions. The refrigeration capacity is controlled by changing the refrigeration capacity, or the refrigeration capacity is controlled by increasing or decreasing the flow rate of the solution pump and simultaneously increasing or decreasing the flow rate of the fan.

係る構成によれば、溶液ポンプの流量を増減させることで、又は上記溶液ポンプの流量を増減と同時に上記ファンの発停又は風量を増減させることで、容易且つ迅速に冷凍能力を制御できることから、吸収式冷凍装置の能力制御範囲を最少能力まで低下させることができ、延いては、冷熱利用側機器の能力を限界まで利用することが可能となる。   According to such a configuration, the refrigeration capacity can be controlled easily and quickly by increasing or decreasing the flow rate of the solution pump, or by increasing or decreasing the flow rate of the solution pump and simultaneously increasing or decreasing the flow rate of the fan. The capacity control range of the absorption refrigeration apparatus can be reduced to the minimum capacity, and as a result, the capacity of the cold-use side device can be utilized to the limit.

本願の第7の発明では、エンジンの排熱で駆動される発生器と、凝縮器と、流下液膜式の吸収器と、該吸収器に入る吸収溶液を過冷却する空冷過冷却器と、上記吸収器と一体の躯体内に収められて冷媒ポンプにより冷媒を循環させながら蒸発させる蒸発器を備えた排熱駆動の吸収式冷凍装置において、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させることで吸収式冷凍装置の冷凍能力を制御するものとし、上記蒸発器の出口における被冷却流体の温度が所定温度以下となった場合に上記冷媒ポンプを停止させ、当該温度が所定温度以上となったときに上記冷媒ポンプを運転して冷媒を循環させることを特徴としている。   In the seventh invention of the present application, a generator driven by exhaust heat of the engine, a condenser, a falling liquid film type absorber, an air-cooled supercooler for supercooling the absorbing solution entering the absorber, In an exhaust heat-driven absorption refrigeration apparatus including an evaporator that is contained in a housing integrated with the absorber and evaporates while circulating the refrigerant by a refrigerant pump, the temperature of the supercooled solution flowing into the absorber and / or Alternatively, the refrigeration capacity of the absorption refrigeration system is controlled by changing the flow rate of the supercooled solution, and the refrigerant pump is stopped when the temperature of the fluid to be cooled at the outlet of the evaporator falls below a predetermined temperature. The refrigerant pump is operated to circulate the refrigerant when the temperature exceeds a predetermined temperature.

係る構成によれば、
(1) 上記吸収器に流入する過冷却した吸収溶液の過冷却温度及び/又は流量を変化させることで吸収式冷凍装置の冷凍能力を制御するものであることから、例えば、従来例の如く、排熱の入力制御によって発生器での冷媒発生量を増減し吸収式冷凍装置の冷凍能力の増減を行なう制御のように制御にタイムラグが生じることが無く、冷凍能力の増減制御を応答性良く迅速に行なうことができる、
(2) 上記蒸発器の出口における被冷却流体の温度は吸収式冷凍装置によって低い温度に制御されているにもかかわらず更に所定温度以下となった場合には、該蒸発器に流入する冷媒が凍結する可能性があるが、このとき上記冷媒ポンプを停止させて上記蒸発器への冷媒の流入を停止させることで冷凍能力を早急に低下させて冷媒の凍結に至ることを防止でき、更に上記温度が所定温度以上となり冷媒が凍結する可能性が無くなったときには上記冷媒ポンプ運転して冷媒を循環させることで冷凍能力の向上を図ることができ、
これらの相乗効果として、冷媒の凍結を防止しつつ、被冷却流体の温度を限界まで低くして冷熱利用側機器の性能を最大限度まで向上させることが可能となる。
According to this configuration,
(1) Since the refrigeration capacity of the absorption refrigeration system is controlled by changing the supercooling temperature and / or flow rate of the supercooled absorption solution flowing into the absorber, for example, as in the conventional example, The control for increasing or decreasing the refrigeration capacity does not cause a time lag like the control for increasing or decreasing the refrigerant generation amount in the generator by the input control of exhaust heat and increasing or decreasing the refrigeration capacity of the absorption refrigeration system, and the refrigeration capacity increase or decrease control is quick with good responsiveness. Can be done on the
(2) When the temperature of the fluid to be cooled at the outlet of the evaporator is controlled to a low temperature by the absorption refrigeration system and becomes lower than a predetermined temperature, the refrigerant flowing into the evaporator Although there is a possibility of freezing, at this time, the refrigerant pump can be stopped to stop the inflow of the refrigerant to the evaporator, thereby rapidly reducing the refrigeration capacity and preventing the refrigerant from being frozen. When the temperature is equal to or higher than the predetermined temperature and there is no possibility that the refrigerant freezes, the refrigerant pump can be operated to circulate the refrigerant to improve the refrigerating capacity.
As a synergistic effect, it is possible to reduce the temperature of the fluid to be cooled to the limit while preventing the refrigerant from freezing, and to improve the performance of the cold energy utilization side device to the maximum extent.

本願の第8の発明では、上記第7の発明に係る吸収式冷凍装置において、上記吸収式冷凍装置の冷凍能力を、上記蒸発器の出口における被冷却流体の温度と目標温度との偏差、又は上記蒸発器の出口と入口における被冷却流体の温度差と目標温度差との偏差で規定することを特徴としている。   In the eighth invention of the present application, in the absorption refrigeration apparatus according to the seventh invention, the refrigeration capacity of the absorption refrigeration apparatus is calculated by calculating a deviation between the temperature of the fluid to be cooled at the outlet of the evaporator and the target temperature, or It is defined by the deviation between the temperature difference of the fluid to be cooled at the outlet and the inlet of the evaporator and the target temperature difference.

ここで、上記「目標温度」又は「目標温度差」は、冷熱利用側機器の運転状態に基づく温度又は温度差(例えば、冷熱利用側機器が圧縮式冷凍装置である場合には、外気温とか運転負荷に応じて設定される圧縮式冷凍装置の過冷却後の冷媒温度又は過冷却の温度差)である。従って、吸収式冷凍装置の冷凍能力が、この「被冷却流体の温度と目標温度との偏差」又は「被冷却流体の温度差と目標温度差との偏差」に対応する能力に規制されることで、過度の冷凍能力によって例えば、被冷却流体の温度が目標温度よりさらに低下して冷媒の凍結に至るというようなことが確実に防止される。   Here, the “target temperature” or “target temperature difference” is the temperature or temperature difference based on the operating state of the cold energy utilization side device (for example, the outside air temperature when the cold energy utilization side device is a compression refrigeration apparatus). It is the refrigerant temperature after the supercooling of the compression refrigeration system or the temperature difference between the supercooling) set according to the operating load. Therefore, the refrigerating capacity of the absorption refrigeration system is restricted to the capacity corresponding to this "deviation between the temperature of the fluid to be cooled and the target temperature" or "deviation between the temperature difference of the fluid to be cooled and the target temperature difference". Thus, for example, the excessive refrigeration capacity reliably prevents the temperature of the fluid to be cooled from lowering below the target temperature and causing the refrigerant to freeze.

本願の第9の発明では、上記第7又は第8の発明に係る吸収式冷凍装置において、上記所定温度を、上記蒸発器の出口における被冷却流体の目標温度と同等又は該目標温度より低い温度に設定したことを特徴としている。   In a ninth invention of the present application, in the absorption refrigeration apparatus according to the seventh or eighth invention, the predetermined temperature is equal to or lower than a target temperature of a fluid to be cooled at an outlet of the evaporator. It is characterized by being set to.

ここで、「目標温度」とは、冷熱利用側機器の運転時の目標温度であり、「目標温度より低い温度」とは上記の目標温度よりも更に低い限界温度である。従って、上記「所定温度」、即ち、冷媒の凍結の可能性のある限界温度を「目標温度と同等又は該目標温度より低い温度に設定する」ことで、冷熱利用側機器の能力を限界まで利用することができる。   Here, the “target temperature” is a target temperature at the time of operation of the cold energy utilization side device, and the “temperature lower than the target temperature” is a limit temperature lower than the above target temperature. Therefore, the above-mentioned “predetermined temperature”, that is, the limit temperature that may cause the refrigerant to freeze is “set to a temperature that is equal to or lower than the target temperature”, so that the capacity of the cold-use side device is used to the limit. can do.

本願の第10の発明では、上記第7、第8又は第9の発明に係る吸収式冷凍装置において、上記空冷過冷却器に備えられたファンの発停又は風量の増減によって上記吸収器に流入する上記過冷却溶液の温度を変化させることで冷凍能力を制御することを特徴としている。   According to a tenth aspect of the present invention, in the absorption refrigeration apparatus according to the seventh, eighth or ninth aspect of the present invention, the air flows into the absorber by the start / stop of a fan provided in the air-cooled supercooler or the increase / decrease of the air volume. The refrigerating capacity is controlled by changing the temperature of the supercooled solution.

係る構成によれば、過冷却溶液の温度を変化させての冷凍能力の制御が、間接空冷方式の特性を生かして、上記ファンの発停又は風量の増減によって極めて容易且つ迅速に行なえることから、吸収式冷凍装置の能力制御範囲を最少能力まで低下させることができ、延いては、冷熱利用側機器の能力を限界まで利用することが可能となる。   According to such a configuration, the control of the refrigerating capacity by changing the temperature of the supercooled solution can be performed very easily and quickly by making use of the characteristics of the indirect air cooling system and by the start / stop of the fan or the increase / decrease of the air volume. The capacity control range of the absorption refrigeration apparatus can be reduced to the minimum capacity, and as a result, the capacity of the cold energy utilization side equipment can be utilized to the limit.

本願の第11の発明では、上記第7、第8又は第9の発明に係る吸収式冷凍装置において、上記空冷過冷却器の入口側又は出口側に設けた流量調整弁によって上記吸収器に流入する過冷却溶液の流量を変化させることで冷凍能力を制御し、又は上記流量調整弁による過冷却溶液の流量の変化と同時に上記ファンの発停又は風量を増減させることで冷凍能力を制御することを特徴としている。   According to an eleventh aspect of the present invention, in the absorption refrigeration apparatus according to the seventh, eighth or ninth aspect of the present invention, the absorption refrigeration apparatus flows into the absorber by a flow rate adjusting valve provided on the inlet side or the outlet side of the air-cooled supercooler. The refrigeration capacity is controlled by changing the flow rate of the supercooled solution, or the refrigeration capacity is controlled by changing the flow rate of the supercooled solution by the flow rate adjusting valve and simultaneously changing the flow rate of the fan. It is characterized by.

係る構成によれば、冷凍能力の制御が、流量調整弁による過冷却溶液の流量調整、又は上記ファンの発停又は風量を増減入力よって極めて容易且つ迅速に行なえることから、吸収式冷凍装置の能力制御範囲を最少能力まで低下させることができ、延いては、冷熱利用側機器の能力を限界まで利用することが可能となる。   According to such a configuration, the refrigerating capacity can be controlled very easily and quickly by adjusting the flow rate of the supercooled solution using the flow rate adjusting valve, or by starting / stopping the fan or increasing / decreasing the air volume. The capability control range can be reduced to the minimum capability, and as a result, the capability of the cold energy utilization side device can be utilized to the limit.

本願の第12の発明では、上記第7、第8又は第9の発明に係る吸収式冷凍装置において、冷媒蒸気を吸収した上記吸収器からの希溶液と上記発生器で冷媒蒸気を発生し且つ溶液熱交換器での熱交換によって温度が低下した濃溶液とを混合するもので、これらの混合溶液を吸引及び吐出する溶液ポンプの流量を増減させて上記吸収器に流入する過冷却溶液の流量を変化させることで冷凍能力を制御し、又は上記溶液ポンプの流量の増減と同時に上記ファンの発停又は風量を増減させることで冷凍能力を制御することを特徴としている。   According to a twelfth aspect of the present invention, in the absorption refrigeration apparatus according to the seventh, eighth, or ninth aspect of the invention, the refrigerant vapor is generated by the diluted solution from the absorber that has absorbed the refrigerant vapor and the generator, and This is a mixture of concentrated solution whose temperature has decreased due to heat exchange in the solution heat exchanger, and the flow rate of the supercooled solution flowing into the absorber by increasing or decreasing the flow rate of the solution pump that sucks and discharges these mixed solutions. The refrigeration capacity is controlled by changing the refrigeration capacity, or the refrigeration capacity is controlled by increasing or decreasing the flow rate of the solution pump and simultaneously increasing or decreasing the flow rate of the fan.

係る構成によれば、溶液ポンプの流量を増減させることで、又は上記溶液ポンプの流量の増減と同時に上記ファンの発停又は風量を増減させることで、容易且つ迅速に冷凍能力を制御できることから、吸収式冷凍装置の能力制御範囲を最少能力まで低下させることができ、延いては、冷熱利用側機器の能力を限界まで利用することが可能となる。   According to such a configuration, the refrigeration capacity can be easily and quickly controlled by increasing or decreasing the flow rate of the solution pump, or by increasing or decreasing the flow rate of the solution pump and simultaneously increasing or decreasing the flow rate of the fan. The capacity control range of the absorption refrigeration apparatus can be reduced to the minimum capacity, and as a result, the capacity of the cold-use side device can be utilized to the limit.

以上の結果、本願発明の吸収式冷凍装置によれば、その冷媒の凍結を防止しつつ、被冷却流体の温度を限界まで低くして冷熱利用側機器の性能を最大限度まで向上させることが可能となる。特に、上記冷熱利用側機器として圧縮式冷凍装置を採用し、該圧縮式冷凍装置の凝縮器からの冷媒を吸収式冷凍装置の蒸発器で得られる冷熱によって過冷却するようにしたものにあっては、該圧縮式冷凍装置の性能向上が図れる。   As a result, according to the absorption refrigeration apparatus of the present invention, the temperature of the fluid to be cooled can be lowered to the limit while preventing the refrigerant from freezing, and the performance of the cold-use equipment can be improved to the maximum extent. It becomes. In particular, a compression refrigeration apparatus is employed as the cold heat utilization side device, and the refrigerant from the condenser of the compression refrigeration apparatus is supercooled by the cold heat obtained by the evaporator of the absorption refrigeration apparatus. Can improve the performance of the compression refrigeration apparatus.

以下、本願発明を好適な実施形態に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described based on preferred embodiments.

I:第1の実施形態
図1には、本願発明の第1の実施形態に係る冷凍システムが示されている。この冷凍システムは、排熱駆動の吸収式冷凍装置Zと圧縮式冷凍装置Xを組み合わせて構成される。
I: First Embodiment FIG. 1 shows a refrigeration system according to a first embodiment of the present invention. This refrigeration system is configured by combining an exhaust heat driven absorption refrigeration apparatus Z and a compression refrigeration apparatus X.

上記吸収式冷凍装置Zは、冷媒として水(HO)を、吸収液として臭化リチウム(LiBr)を採用するとともに、排温水を加熱源として用いた排熱駆動式の空冷吸収式冷凍装置であって、吸収希溶液を熱交換器1aにおいて排温水で加熱して冷媒蒸気と吸収濃溶液を生成させる発生器1と、該発生器1から管路51を通して流入される冷媒蒸気を凝縮させて冷媒液とする凝縮器2と、該凝縮器2から管路52を通して流入される冷媒液を被冷却流体(即ち、次述の圧縮式冷凍装置Xの凝縮器23から出る冷媒)が内部に流れているプレート式熱交換器3aのプレート面に散布して一過性でこれを蒸発させる蒸発器3と、上記発生器1からの吸収濃溶液に対して上記蒸発器3で生成された冷媒蒸気を吸収させて吸収希溶液を生成させる流下液膜式の吸収器4と、上記発生器1へ管路53を通して流入される吸収希溶液と該発生器1から管路54を通して流出する吸収濃溶液をプレート式熱交換器5aにおいて熱交換させる溶液熱交換器5と、上記溶液熱交換器5からの吸収濃溶液と上記吸収器4の下部に設けた希溶液溜り16の吸収希溶液との混合溶液を管路55を通して流入させてこれを過冷却して上記吸収器4に流入させるファン7を備えた空冷式の溶液冷却器6と、上記吸収器4からの吸収希溶液を上記溶液熱交換器5を介して上記発生器1に流入させる溶液ポンプ9を備えて構成される。 The absorption refrigeration apparatus Z employs water (H 2 O) as a refrigerant, lithium bromide (LiBr) as an absorption liquid, and an exhaust heat-driven air-cooled absorption refrigeration apparatus that uses exhaust hot water as a heating source. In the heat exchanger 1a, the absorption dilute solution is heated with exhaust warm water to generate the refrigerant vapor and the absorption concentrated solution, and the refrigerant vapor flowing from the generator 1 through the pipe 51 is condensed. The refrigerant to be cooled and the fluid to be cooled (that is, the refrigerant that is discharged from the condenser 23 of the compression refrigeration apparatus X described below) inside the refrigerant liquid flowing in from the condenser 2 through the pipe line 52 are contained inside. The evaporator 3 that is sprayed on the plate surface of the flowing plate heat exchanger 3a and temporarily evaporates it, and the refrigerant generated in the evaporator 3 with respect to the absorbed concentrated solution from the generator 1 A stream that absorbs vapor to form an absorbing dilute solution The plate-type heat exchanger 5a exchanges heat between the liquid film type absorber 4, the absorbing dilute solution flowing into the generator 1 through the pipe 53 and the absorbing concentrated solution flowing out of the generator 1 through the pipe 54. The mixed solution of the solution heat exchanger 5, the absorption concentrated solution from the solution heat exchanger 5 and the absorption dilute solution in the dilute solution reservoir 16 provided in the lower part of the absorber 4 is caused to flow through the line 55. An air-cooled solution cooler 6 provided with a fan 7 that is supercooled and flows into the absorber 4, and an absorbed diluted solution from the absorber 4 flows into the generator 1 through the solution heat exchanger 5. A solution pump 9 is provided.

ここで、上記蒸発器3と吸収器4は一体の躯体15内に収められており、上記蒸発器3の下部に流下する未蒸発冷媒はそのまま上記躯体15の底壁を流れて上記吸収器4の下部に設けられた希溶液溜り16に流入し、該希溶液溜り16内の吸収希溶液に混合される。これによって、上記発生器1で発生する冷媒量の増減で溶液濃度が大きく変化するのが防止される。   Here, the evaporator 3 and the absorber 4 are housed in an integral housing 15, and the unevaporated refrigerant flowing down to the lower part of the evaporator 3 flows through the bottom wall of the housing 15 as it is. It flows into the dilute solution reservoir 16 provided at the lower part of the slag and is mixed with the absorbed dilute solution in the dilute solution reservoir 16. As a result, the solution concentration is prevented from greatly changing due to an increase or decrease in the amount of refrigerant generated in the generator 1.

また、上記凝縮器2と上記蒸発器3を接続する管路52には、冷媒電磁弁10が備えられており、該冷媒電磁弁10の開作動で上記凝縮器2からの冷媒が上記吸収器4側に供給され、該冷媒電磁弁10の閉作動で上記冷媒の上記蒸発器3側への供給が停止される。   The conduit 52 connecting the condenser 2 and the evaporator 3 is provided with a refrigerant electromagnetic valve 10, and the refrigerant from the condenser 2 is transferred to the absorber by opening the refrigerant electromagnetic valve 10. 4 is supplied, and the supply of the refrigerant to the evaporator 3 side is stopped by the closing operation of the refrigerant electromagnetic valve 10.

さらに、上記管路52の上記凝縮器2と冷媒電磁弁10の中間位置と上記吸収器4の希溶液溜り16は、バイパス管路56を介して接続されており、上記冷媒電磁弁10の閉作動中、上記凝縮器2からの冷媒はバイパス管路56を介して直接、上記希溶液溜り16に流入される。   Further, an intermediate position between the condenser 2 and the refrigerant solenoid valve 10 in the pipe 52 and the dilute solution reservoir 16 in the absorber 4 are connected via a bypass pipe 56, and the refrigerant solenoid valve 10 is closed. During operation, the refrigerant from the condenser 2 flows directly into the dilute solution reservoir 16 via the bypass line 56.

上記圧縮式冷凍装置Xは、エンジン26によって駆動される圧縮機21と蒸発器22と凝縮器23と膨張弁24及び四路弁25を管路で接続して構成される。そして、上記凝縮器23で凝縮して流出する液冷媒は、管路61を介して上記吸収式冷凍装置Z側の上記蒸発器3のプレート式熱交換器3aにその下端側から流入し、その上端側から管路62を介して上記蒸発器22側へ流出するが、その際、上記吸収式冷凍装置の蒸発器3のプレート式熱交換器3aにおいて過冷却される。   The compression refrigeration apparatus X is configured by connecting a compressor 21, an evaporator 22, a condenser 23, an expansion valve 24, and a four-way valve 25 that are driven by an engine 26 through a pipeline. Then, the liquid refrigerant condensed and flowing out in the condenser 23 flows into the plate heat exchanger 3a of the evaporator 3 on the absorption refrigeration apparatus Z side from the lower end side through the pipe 61, The refrigerant flows out from the upper end side to the evaporator 22 side through the pipe line 62. At that time, it is supercooled in the plate heat exchanger 3a of the evaporator 3 of the absorption refrigeration apparatus.

そして、上記吸収式冷凍装置Zを上記圧縮式冷凍装置Xのエンジン26の排温水を熱源として駆動させるために、上記エンジン26の冷却水循環系と上記発生器1の熱交換器1aとが管路57,58によって接続されている。   In order to drive the absorption refrigeration apparatus Z using the exhaust water of the engine 26 of the compression refrigeration apparatus X as a heat source, the cooling water circulation system of the engine 26 and the heat exchanger 1a of the generator 1 are connected to each other by a pipe. 57 and 58 are connected.

以上のように構成された冷凍システムは以下のように作動する。   The refrigeration system configured as described above operates as follows.

先ず、上記圧縮式冷凍装置Xにおいては、上記エンジン26によって上記圧縮式冷凍装置Xの圧縮機21を駆動し、該圧縮機21から吐出されたガス冷媒を上記凝縮器23において凝縮させて液冷媒とするとともに、該液冷媒をさらに上記吸収式冷凍装置Z側の上記蒸発器3において過冷却し、この過冷却冷媒を上記蒸発器22において蒸発させて室内の冷房を行なう。この場合、上記凝縮器23からの液冷媒を過冷却することで、その冷凍能力の向上が図られるものである。   First, in the compression refrigeration apparatus X, the compressor 26 of the compression refrigeration apparatus X is driven by the engine 26, and the gas refrigerant discharged from the compressor 21 is condensed in the condenser 23 to be liquid refrigerant. In addition, the liquid refrigerant is further supercooled in the evaporator 3 on the absorption refrigeration apparatus Z side, and the supercooled refrigerant is evaporated in the evaporator 22 to cool the room. In this case, the refrigeration capacity can be improved by supercooling the liquid refrigerant from the condenser 23.

一方、上記吸収式冷凍装置Zにおいては、上記エンジン26からの排温水を受けて、上記発生器1で上記吸収器4からの吸収希溶液が加熱され、冷媒蒸気と吸収濃溶液が生成される。上記発生器1で発生した冷媒蒸気は、ファン8を備えた空冷式の上記凝縮器2において凝縮され、液冷媒とされる。   On the other hand, in the absorption refrigeration apparatus Z, the generator 1 receives the hot water from the engine 26, and the generator 1 heats the absorption dilute solution from the absorber 4 to generate refrigerant vapor and the absorption concentrated solution. . The refrigerant vapor generated in the generator 1 is condensed in the air-cooled condenser 2 provided with a fan 8 to be a liquid refrigerant.

ここで、上記冷媒電磁弁10が開作動中である場合は、上記凝縮器2からの液冷媒は、上記蒸発器3の上部に流入され、散布器(図示省略)から上記プレート式熱交換器3aの上部に均等に散布され、該熱交換器3aの表面に沿って流下する間に蒸発して冷媒蒸気を発生する。また、このとき、その蒸発熱によって上記プレート式熱交換器3a内を流れる上記圧縮式冷凍装置X側の冷媒を過冷却する。これに対して、上記冷媒電磁弁10の閉作動中は、上記凝縮器2からの液冷媒は、直接、上記吸収器4側の上記希溶液溜り16に流入され、上記蒸発器3側への供給が停止される。   Here, when the refrigerant solenoid valve 10 is in an open operation, the liquid refrigerant from the condenser 2 flows into the upper part of the evaporator 3 and is supplied from the spreader (not shown) to the plate heat exchanger. It spreads evenly over the top of 3a and evaporates while flowing down along the surface of the heat exchanger 3a to generate refrigerant vapor. At this time, the refrigerant on the compression refrigeration apparatus X side flowing in the plate heat exchanger 3a is supercooled by the heat of evaporation. On the other hand, during the closing operation of the refrigerant solenoid valve 10, the liquid refrigerant from the condenser 2 flows directly into the dilute solution reservoir 16 on the absorber 4 side, and enters the evaporator 3 side. Supply is stopped.

一方、上記吸収器4においては、上記空冷過冷却器6において過冷却された吸収希溶液が散布器(図示省略)からプレート4aに均等に散布され、該プレート4aにそって流下する間に上記蒸発器3からの冷媒蒸気を吸収して吸収希溶液とされ、上記希溶液溜り16に貯留される。   On the other hand, in the absorber 4, the absorption dilute solution supercooled in the air-cooled supercooler 6 is evenly sprayed from the sprayer (not shown) to the plate 4a and flows down along the plate 4a. The refrigerant vapor from the evaporator 3 is absorbed to form an absorbing diluted solution, which is stored in the diluted solution reservoir 16.

上記希溶液溜り16には、上記吸収器4において冷媒蒸気を吸収した吸収希溶液と、上記蒸発器3から流入する未蒸発冷媒、及び上記冷媒電磁弁10の閉作動中に上記バイパス管路56を通って流入する上記凝縮器2からの冷媒からなる混合溶液が貯留されるとともに、この混合溶液は上記溶液ポンプ9によって上記発生器1側へ供給される。この際、上記溶液熱交換器5において、上記吸収器4側からの吸収希溶液と上記発生器1で生成された吸収濃溶液との間での熱交換によって熱回収が行なわれる。   In the dilute solution reservoir 16, the absorbed dilute solution that has absorbed the refrigerant vapor in the absorber 4, the non-evaporated refrigerant flowing in from the evaporator 3, and the bypass conduit 56 during the closing operation of the refrigerant solenoid valve 10. A mixed solution composed of refrigerant from the condenser 2 flowing in through the reservoir is stored, and the mixed solution is supplied to the generator 1 side by the solution pump 9. At this time, in the solution heat exchanger 5, heat recovery is performed by heat exchange between the absorption diluted solution from the absorber 4 side and the absorption concentrated solution generated in the generator 1.

そして、この吸収式冷凍装置Zにおいては、その冷凍能力が、上記吸収器4における吸収能力の調整によって増減制御される。即ち、上記吸収器4の吸収能力を高めて吸収希溶液への冷媒蒸気の吸収作用を高めることで、上記蒸発器3における蒸発能力(即ち、圧縮式冷凍装置X側の冷媒に対する過冷却能力)が高められ、結果的に吸収式冷凍装置Z全体としての冷凍能力が高められるものである。   In the absorption refrigeration apparatus Z, the refrigeration capacity is increased or decreased by adjusting the absorption capacity in the absorber 4. That is, by increasing the absorption capacity of the absorber 4 and increasing the absorption of refrigerant vapor into the absorption diluted solution, the evaporation capacity in the evaporator 3 (that is, the supercooling capacity for the refrigerant on the compression refrigeration apparatus X side). As a result, the refrigerating capacity of the absorption refrigeration apparatus Z as a whole is enhanced.

ところで、既述のように、上記圧縮式冷凍装置Xの冷凍能力は、上記凝縮器23から出た冷媒の過冷却度によって変化し、過冷却度が高いほど冷凍能力が高くなる関係にある。従って、圧縮式冷凍装置Xの能力向上という点では、上記吸収式冷凍装置Zの冷熱によって上記圧縮式冷凍装置X側の冷媒をできるだけ過冷却すればよいことになり、そのためには、上記圧縮式冷凍装置Xの冷凍能力に対応した過冷却温度を達成できるような能力の吸収式冷凍装置Zを組み合わせれば良いことになる。   By the way, as described above, the refrigeration capacity of the compression refrigeration apparatus X varies depending on the degree of supercooling of the refrigerant discharged from the condenser 23, and the refrigeration capacity increases as the degree of supercooling increases. Therefore, in terms of improving the capacity of the compression refrigeration apparatus X, the refrigerant on the compression refrigeration apparatus X side needs to be supercooled as much as possible by the cold heat of the absorption refrigeration apparatus Z. What is necessary is just to combine the absorption refrigeration apparatus Z of the capability which can achieve the supercooling temperature corresponding to the refrigerating capacity of the refrigeration apparatus X.

ところが、外気温度が低下した場合とか、圧縮式冷凍装置Xが部分負荷となった場合には、該圧縮式冷凍装置Xの凝縮器23の出口の冷媒温度(即ち、凝縮温度)が低下することから、特に外気温度の低下と圧縮式冷凍装置Xの部分負荷とが重なった場合には、この圧縮式冷凍装置Xの凝縮器23の出口の冷媒温度の低下が大きくなるため、吸収式冷凍装置Zの冷熱で圧縮式冷凍装置X側の冷媒を過冷却できる温度幅が少なくなり、圧縮式冷凍装置Xの冷媒を過冷却することによる該圧縮式冷凍装置の性能向上の割合が大きく低下することになる。この結果、冷熱の利用期間(即ち、圧縮式冷凍装置による冷房運転期間)において、吸収式冷凍装置Zのイニシャルコストに対して、エンジン駆動の圧縮式冷凍装置Xのランニングコストの低減効果が少なくなる。   However, when the outside air temperature decreases or when the compression refrigeration apparatus X becomes a partial load, the refrigerant temperature (that is, the condensation temperature) at the outlet of the condenser 23 of the compression refrigeration apparatus X decreases. In particular, when the decrease in the outside air temperature and the partial load of the compression refrigeration apparatus X overlap, the absorption refrigeration apparatus has a large decrease in the refrigerant temperature at the outlet of the condenser 23 of the compression refrigeration apparatus X. The temperature range in which the refrigerant on the compression refrigeration apparatus X side can be supercooled by the cold heat of Z is reduced, and the performance improvement rate of the compression refrigeration apparatus by subcooling the refrigerant of the compression refrigeration apparatus X is greatly reduced. become. As a result, the effect of reducing the running cost of the engine-driven compression refrigeration apparatus X is less than the initial cost of the absorption refrigeration apparatus Z during the cold utilization period (that is, the cooling operation period of the compression refrigeration apparatus). .

また、低外気温とか圧縮式冷凍装置Xの部分負荷時のような該圧縮式冷凍装置Xの冷媒の凝縮温度が低い状態下における吸収式冷凍装置Zの冷凍能力の制御は、かなりの温度の余裕を必要とすることから、どうしても吸収式冷凍装置Zの蒸発器3の被冷却流体温度(即ち、圧縮式冷凍装置Zの冷媒の過冷却温度)を、限界値(即ち、吸収液としてLiBrを、冷媒として水を用いた吸収式冷凍装置において冷媒としての水の凍結を回避できる限界温度)よりも高く設定するため、この高く設定した分だけ、圧縮式冷凍装置Xの冷媒を過冷却できる温度幅が少なくなり、吸収式冷凍装置Zの冷熱で圧縮式冷凍装置Xの冷媒を過冷却することによる該圧縮式冷凍装置Xの性能改善効果が減殺される要因でもある。   In addition, the control of the refrigerating capacity of the absorption refrigeration apparatus Z under a condition where the refrigerant condensing temperature of the compression refrigeration apparatus X is low, such as when the external temperature is low or when the compression refrigeration apparatus X is partially loaded, Since a margin is required, the temperature of the cooled fluid of the evaporator 3 of the absorption refrigeration apparatus Z (that is, the supercooling temperature of the refrigerant of the compression refrigeration apparatus Z) is inevitably set to the limit value (that is, LiBr is used as the absorption liquid). Therefore, in the absorption refrigeration apparatus using water as the refrigerant, the temperature can be set higher than the limit temperature at which freezing of water as the refrigerant can be avoided. The width is reduced, and the performance improvement effect of the compression refrigeration apparatus X by supercooling the refrigerant of the compression refrigeration apparatus X with the cold heat of the absorption refrigeration apparatus Z is also a factor that diminishes.

以上のことから考えて、圧縮式冷凍装置Xの効率を向上させるためには、その冷媒の過冷却度を限界まで低下させることが有効であるといえる。   In view of the above, in order to improve the efficiency of the compression refrigeration apparatus X, it can be said that it is effective to reduce the supercooling degree of the refrigerant to the limit.

その一方で、圧縮式冷凍装置Xの冷媒の過冷却度を限界まで低下させ、少しでも圧縮式冷凍装置Xの効率を向上させようとすると、外気温の低下とエンジン駆動の圧縮式冷凍装置Xの負荷の低下が重なったような場合には、吸収式冷凍装置Zの冷凍能力が過大となってその蒸発器3に流入する冷媒(水)が凍結する可能性があることから、吸収式冷凍装置Zの能力を早急に低下させることが必要となる。   On the other hand, if the supercooling degree of the refrigerant of the compression refrigeration apparatus X is reduced to the limit and the efficiency of the compression refrigeration apparatus X is improved as much as possible, the outside air temperature decreases and the engine driven compression refrigeration apparatus X In the case where the decrease in the load of the refrigerant is overlapped, the refrigerating capacity of the absorption refrigeration apparatus Z becomes excessive and the refrigerant (water) flowing into the evaporator 3 may be frozen. It is necessary to quickly reduce the capacity of the device Z.

そこで、この実施形態においては、これらの事情を考慮して、吸収式冷凍装置Zの蒸発器3における冷媒の凍結を回避しつつ、圧縮式冷凍装置Xの冷媒の過冷却度を限界まで低下させることで、該圧縮式冷凍装置Xの能力改善を図るようにしている。   Therefore, in this embodiment, in consideration of these circumstances, the degree of supercooling of the refrigerant of the compression refrigeration apparatus X is reduced to the limit while avoiding freezing of the refrigerant in the evaporator 3 of the absorption refrigeration apparatus Z. Thus, the capacity of the compression refrigeration apparatus X is improved.

係る制御を実現するために、この実施形態では、蒸発器3の出口の冷媒温度、即ち、圧縮式冷凍装置Xの冷媒の過冷却温度の制御を、間接空冷方式の上記吸収器4の特性を活用して、該吸収器4に流入する吸収希溶液の過冷却温度もしくは流量を変化させることで行なうとともに、圧縮式冷凍装置Xの冷媒の過冷却温度が限界値に達したときに上記蒸発器3への冷媒の供給を停止して蒸発器3の出口の冷媒温度が更に低下して冷媒の凍結が発生するのを未然に回避することで、圧縮式冷凍装置Xの冷媒の過冷却温度を限界まで低くして該圧縮式冷凍装置Xの効率を限界まで高めるようにしている。   In order to realize such control, in this embodiment, the refrigerant temperature at the outlet of the evaporator 3, that is, the supercooling temperature of the refrigerant of the compression refrigeration apparatus X is controlled, and the characteristics of the absorber 4 of the indirect air cooling system are controlled. The evaporator is used by changing the supercooling temperature or flow rate of the absorbing dilute solution flowing into the absorber 4 and when the refrigerant supercooling temperature of the compression refrigeration apparatus X reaches a limit value. 3 is stopped to prevent the refrigerant temperature at the outlet of the evaporator 3 from further decreasing and freezing of the refrigerant, thereby reducing the refrigerant subcooling temperature of the compression refrigeration apparatus X. The efficiency of the compression refrigeration apparatus X is increased to the limit by lowering the limit.

具体的には、上記蒸発器3の出口側に温度センサ18を設けて該出口側における上記圧縮式冷凍装置X側の冷媒の過冷却温度を検出し、この検出温度を制御器30に入力するとともに、該制御器30からの制御信号によって上記冷媒電磁弁10の開閉制御、及び上記溶液ポンプ9の発停やポンプの回転数で制御を行なうようにしている。   Specifically, a temperature sensor 18 is provided on the outlet side of the evaporator 3 to detect the supercooling temperature of the refrigerant on the compression refrigeration apparatus X side on the outlet side, and this detected temperature is input to the controller 30. At the same time, the control signal from the controller 30 controls the opening and closing of the refrigerant solenoid valve 10 and the control of the solution pump 9 by starting and stopping and the number of rotations of the pump.

これらの制御における思想は、以下の通りである。   The idea of these controls is as follows.

即ち、上記吸収式冷凍装置Zの冷凍能力(吸収式冷凍装置Zに要求される冷凍能力)を、外気温とか圧縮式冷凍装置Xの負荷状態で決まる該圧縮式冷凍装置Xの凝縮器23における冷媒の凝縮温度に対応して求められる目標とすべき冷媒の過冷却温度(即ち、目標温度)と、上記温度センサ18によって検出される実際の過冷却温度との偏差で規定する。   That is, the refrigeration capacity of the absorption refrigeration apparatus Z (the refrigeration capacity required for the absorption refrigeration apparatus Z) is determined in the condenser 23 of the compression refrigeration apparatus X determined by the outside air temperature or the load state of the compression refrigeration apparatus X. It is defined by the deviation between the refrigerant subcooling temperature (that is, the target temperature) to be obtained in accordance with the refrigerant condensation temperature and the actual supercooling temperature detected by the temperature sensor 18.

そして、この吸収式冷凍装置Zに要求される冷凍能力を、上記空冷過冷却器6に設けられた上記ファン7の発停によって、あるいは該ファン7の風量を増減させることによって上記空冷過冷却器6を循環する過冷却溶液の温度を変化させることで、又は上記溶液ポンプ9の流量を増減させて上記空冷過冷却器6を循環する過冷却溶液の流量を増減させることで実現するものである。係る制御によって、上記圧縮式冷凍装置X側の冷媒の過冷却温度を目標温度まで低下させて該圧縮式冷凍装置Xの運転効率を限界まで高めることができるものである。   The refrigerating capacity required for the absorption refrigeration apparatus Z is determined by the start and stop of the fan 7 provided in the air-cooled supercooler 6 or by increasing or decreasing the air volume of the fan 7. This is realized by changing the temperature of the supercooled solution circulating through the air pump 6, or by increasing or decreasing the flow rate of the solution pump 9 to increase or decrease the flow rate of the supercooled solution circulating through the air-cooled supercooler 6. . By such control, the supercooling temperature of the refrigerant on the compression refrigeration apparatus X side can be lowered to the target temperature, and the operation efficiency of the compression refrigeration apparatus X can be increased to the limit.

一方、上記吸収式冷凍装置Zにおいては水を冷媒として使用していることから、上記蒸発器3の蒸発温度、即ち、上記圧縮式冷凍装置X側の冷媒の過冷却温度が過度に低下すると上記冷媒が凍結する恐れがある。このため、このような冷媒の凍結を防止すべく、上記冷媒が凍結する恐れのある限界の蒸発温度を「所定温度」として設定し、上記温度センサ18によって検出される上記蒸発器3の出口側の冷媒温度が上記所定値以下に低下したときには、上記冷媒電磁弁10を閉作動させて上記凝縮器2からの冷媒の上記蒸発器3側への供給を停止し、上記吸収式冷凍装置Zの冷凍能力を低下させ、蒸発温度がさらに低下するのを防止する。また、上記蒸発器3の出口側の冷媒温度が上記所定値以上に回復したときには、上記冷媒電磁弁10を開作動させて上記凝縮器2からの冷媒を上記蒸発器3側に供給し、上記吸収式冷凍装置Zの冷凍能力を高める。   On the other hand, since the absorption refrigeration apparatus Z uses water as a refrigerant, if the evaporation temperature of the evaporator 3, that is, the supercooling temperature of the refrigerant on the compression refrigeration apparatus X side, is excessively reduced, The refrigerant may freeze. Therefore, in order to prevent such freezing of the refrigerant, a limit evaporating temperature at which the refrigerant may freeze is set as a “predetermined temperature”, and the outlet side of the evaporator 3 detected by the temperature sensor 18 is set. When the refrigerant temperature falls below the predetermined value, the refrigerant solenoid valve 10 is closed to stop the supply of the refrigerant from the condenser 2 to the evaporator 3 side, and the absorption refrigeration apparatus Z Decreases the refrigeration capacity and prevents the evaporation temperature from further decreasing. When the refrigerant temperature on the outlet side of the evaporator 3 recovers to the predetermined value or more, the refrigerant electromagnetic valve 10 is opened to supply the refrigerant from the condenser 2 to the evaporator 3 side, Increase the refrigeration capacity of the absorption refrigeration system Z.

このような蒸発器3側における冷媒の供給・停止制御によって、上記蒸発器3における冷媒の凍結が未然に防止されるものである。   The refrigerant supply / stop control on the evaporator 3 side prevents the refrigerant in the evaporator 3 from being frozen.

なお、上記冷媒電磁弁10の閉作動中、上記凝縮器2からの冷媒は、上記バイパス管路56を通って上記蒸発器3の下部に設けられた上記希溶液溜り16に直接流入される。これによって、溶液濃度の大きな変化が抑制され、冷凍能力の安定化が図られると同時に溶液濃度が過度に濃くならないことから吸収器の能力が制御されて冷媒の凍結防止の効果も高められる。   During the closing operation of the refrigerant solenoid valve 10, the refrigerant from the condenser 2 flows directly into the dilute solution reservoir 16 provided at the lower part of the evaporator 3 through the bypass pipe 56. This suppresses a large change in the solution concentration, stabilizes the refrigerating capacity, and at the same time prevents the solution concentration from becoming excessively high, thereby controlling the capacity of the absorber and enhancing the effect of preventing the refrigerant from freezing.

以上のように、この実施形態の冷凍システムにおいては、上記吸収式冷凍装置Z側での冷媒の凍結を防止しつつ、上記圧縮式冷凍装置Xの運転効率を限界まで高めることができるものである。   As described above, in the refrigeration system of this embodiment, the operating efficiency of the compression refrigeration apparatus X can be increased to the limit while preventing the refrigerant from freezing on the absorption refrigeration apparatus Z side. .

なお、この実施形態では、吸収式冷凍装置Zの冷凍能力を上記蒸発器3の出口における冷媒温度と上記目標温度の偏差に基づいて制御するようにしているが、他の実施形態では、この冷凍能力を、例えば、上記蒸発器3の出口と入口の温度差と目標温度差の偏差に基づいて制御することもできる。   In this embodiment, the refrigeration capacity of the absorption refrigeration apparatus Z is controlled on the basis of the deviation between the refrigerant temperature at the outlet of the evaporator 3 and the target temperature. The capacity can be controlled based on, for example, the deviation between the temperature difference between the outlet and the inlet of the evaporator 3 and the target temperature difference.

II:第2の実施形態
図2には、本願発明の第2の実施形態に係る冷凍システムが示されている。この冷凍システムは、上記第1の実施形態に係る冷凍システムと基本構成を同じにするものであって、排熱駆動の吸収式冷凍装置Zと圧縮式冷凍装置Xを組み合わせて構成される。
II: Second Embodiment FIG. 2 shows a refrigeration system according to a second embodiment of the present invention. This refrigeration system has the same basic configuration as that of the refrigeration system according to the first embodiment, and is configured by combining an exhaust heat-driven absorption refrigeration apparatus Z and a compression refrigeration apparatus X.

そして、この実施形態に係る冷凍システムが上記第1の実施形態に係る冷凍システムと異なる点は、上記空冷過冷却器6の上流側に流量調整弁11を設け、又は下流側に流量調整弁12を設けた点である。   The refrigeration system according to this embodiment is different from the refrigeration system according to the first embodiment in that a flow rate adjustment valve 11 is provided on the upstream side of the air-cooled supercooler 6 or a flow rate adjustment valve 12 is provided on the downstream side. This is the point.

このように上記流量調整弁11又は流量調整弁12を設けることで、上記吸収式冷凍装置Zの冷凍能力を、上記空冷過冷却器6に備えられたファン7の発停、又は該ファン7の風量を増減させて上記空冷過冷却器6を循環する過冷却溶液の温度を変化させることによる吸収能力の制御、又は上記溶液ポンプ9の流量を増減させて上記空冷過冷却器6を循環する過冷却溶液の流量を増減させることによる吸収能力の制御に代えて、又はこれらの制御と同時に、上記流量調整弁11又は流量調整弁12によって上記空冷過冷却器6を循環する過冷却溶液の流量を増減調整することによる吸収能力の制御が可能となり、その結果、上記吸収式冷凍装置Zの冷凍能力の制御が、より一層精度良く且つ迅速に行なえるものである。   By providing the flow rate adjusting valve 11 or the flow rate adjusting valve 12 in this way, the refrigerating capacity of the absorption refrigeration apparatus Z can be increased or decreased by the fan 7 provided in the air-cooled supercooler 6 or the fan 7. The absorption capacity is controlled by changing the temperature of the supercooled solution circulating in the air-cooled supercooler 6 by increasing or decreasing the amount of air, or the flow rate of the solution pump 9 is increased or decreased to circulate the air-cooled supercooler 6. Instead of or simultaneously with the control of the absorption capacity by increasing or decreasing the flow rate of the cooling solution, the flow rate of the supercooling solution circulating through the air-cooled supercooler 6 by the flow rate adjusting valve 11 or the flow rate adjusting valve 12 is adjusted. The absorption capacity can be controlled by adjusting the increase / decrease, and as a result, the refrigerating capacity of the absorption refrigeration apparatus Z can be controlled with higher accuracy and speed.

尚、上記以外の構成及び作用効果は上記第1の実施形態の場合と同様であるので、ここでは図2の各構成部材に図1の各構成部材に対応させて同一の符号を付した上で、該第1の実施形態における該当説明を援用し、ここでの説明を省略する。   In addition, since the structure and the effect other than the above are the same as in the case of the first embodiment, the same reference numerals are given to the respective constituent members in FIG. 2 corresponding to the respective constituent members in FIG. Thus, the corresponding explanation in the first embodiment is used, and the explanation here is omitted.

III:第3の実施形態
図3には、本願発明の第3の実施形態に係る冷凍システムが示されている。この冷凍システムは、排熱駆動の吸収式冷凍装置Zと圧縮式冷凍装置Xを組み合わせて構成される。
III: Third Embodiment FIG. 3 shows a refrigeration system according to a third embodiment of the present invention. This refrigeration system is configured by combining an exhaust heat driven absorption refrigeration apparatus Z and a compression refrigeration apparatus X.

上記吸収式冷凍装置Zは、冷媒として水(HO)を、吸収液として臭化リチウム(LiBr)を採用するとともに、排温水を加熱源として用いた排熱駆動式の空冷吸収式冷凍装置であって、吸収希溶液を熱交換器1aにおいて排温水で加熱して冷媒蒸気と吸収濃溶液を生成させる発生器1と、該発生器1から管路51を通して流入される冷媒蒸気を凝縮させて冷媒液とする凝縮器2と、該凝縮器2から管路52を通して蒸発器3の下部に設けられた冷媒溜り17に流入される冷媒液を被冷却流体(即ち、次述の圧縮式冷凍装置Xの凝縮器23から出る冷媒)が流れているプレート式熱交換器3aのプレート面に散布させるべく循環させる冷媒ポンプ13と、該冷媒ポンプ13によって循環される冷媒液を上記プレート式熱交換器3aのプレート面に散布させてこれを蒸発させる循環式の蒸発器3と、上記発生器1からの吸収濃溶液に対して上記蒸発器3で生成された冷媒蒸気を吸収させて吸収希溶液を生成させる流下液膜式の吸収器4と、上記発生器1へ管路53を通して流入される吸収希溶液と該発生器1から管路54を通して流出する吸収濃溶液をプレート式熱交換器5aにおいて熱交換させる溶液熱交換器5と、上記溶液熱交換器5からの吸収濃溶液と上記吸収器4の下部に設けた希溶液溜り16の吸収希溶液との混合溶液を管路55を通して流入させてこれを過冷却して上記吸収器4に流入させるファン7を備えた空冷式の溶液冷却器6と、上記吸収器4からの吸収希溶液を上記溶液熱交換器6を介して上記発生器1に流入させる溶液ポンプ9を備えて構成される。 The absorption refrigeration apparatus Z employs water (H 2 O) as a refrigerant, lithium bromide (LiBr) as an absorption liquid, and an exhaust heat-driven air-cooled absorption refrigeration apparatus that uses exhaust hot water as a heating source. In the heat exchanger 1a, the absorption dilute solution is heated with exhaust warm water to generate the refrigerant vapor and the absorption concentrated solution, and the refrigerant vapor flowing from the generator 1 through the pipe 51 is condensed. The refrigerant 2 flowing into the refrigerant reservoir 17 provided in the lower part of the evaporator 3 from the condenser 2 through the conduit 52 and the evaporator 3 is cooled with the fluid to be cooled (that is, the compression refrigeration described below). The refrigerant pump 13 is circulated so as to be sprayed on the plate surface of the plate heat exchanger 3a through which the refrigerant flowing out of the condenser 23 of the apparatus X flows, and the refrigerant liquid circulated by the refrigerant pump 13 is exchanged with the plate heat exchanger. Of the container 3a A recirculating evaporator 3 that is sprayed on the surface of the steam and evaporates it, and an absorbing concentrated solution from the generator 1 absorbs the refrigerant vapor generated in the evaporator 3 to generate an absorbing diluted solution. The plate-type heat exchanger 5a heats the falling film absorber 4 to be discharged, the absorption dilute solution flowing into the generator 1 through the pipe 53 and the absorption concentrated solution flowing out of the generator 1 through the pipe 54. The solution heat exchanger 5 to be exchanged, and the mixed solution of the absorption concentrated solution from the solution heat exchanger 5 and the absorption dilute solution in the dilute solution reservoir 16 provided in the lower part of the absorber 4 are caused to flow through the line 55. An air-cooled solution cooler 6 provided with a fan 7 that supercools this and flows into the absorber 4, and the absorbed dilute solution from the absorber 4 through the solution heat exchanger 6 and the generator 1. It is provided with a solution pump 9 that flows into the apparatus.

ここで、上記蒸発器3と吸収器4は一体の躯体15内に収められており、上記蒸発器3の下部に流下する未蒸発冷媒は上記冷媒ポンプ13によって上記蒸発器3の上部に循環されるが、該冷媒溜り17に溜り切らずここから溢れた未蒸発冷媒は上記躯体15の底壁を流れて上記吸収器4の下部に設けられた希溶液溜り16に流入し、該希溶液溜り16内の吸収希溶液に混合される。これによって、上記発生器1で発生する冷媒量の増減で溶液濃度が大きく変化するのが防止される。   Here, the evaporator 3 and the absorber 4 are housed in an integral housing 15, and the unevaporated refrigerant flowing down to the lower part of the evaporator 3 is circulated to the upper part of the evaporator 3 by the refrigerant pump 13. However, the non-evaporated refrigerant that has overflowed from the refrigerant pool 17 without flowing through it flows through the bottom wall of the casing 15 and flows into the dilute solution reservoir 16 provided at the lower part of the absorber 4. 16 is mixed with the absorbing dilute solution. As a result, the solution concentration is prevented from greatly changing due to an increase or decrease in the amount of refrigerant generated in the generator 1.

上記圧縮式冷凍装置Xは、エンジン26によって駆動される圧縮機21と蒸発器22と凝縮器23と膨張弁24及び四路弁25を管路で接続して構成される。そして、上記凝縮器23で凝縮して流出する液冷媒は、管路61を介して上記吸収式冷凍装置Z側の上記蒸発器3のプレート式熱交換器3aにその下端側から流入し、その上端側から管路62を介して上記蒸発器22側へ流出するが、その際、上記蒸発器3のプレート式熱交換器3aにおいて過冷却される。   The compression refrigeration apparatus X is configured by connecting a compressor 21, an evaporator 22, a condenser 23, an expansion valve 24, and a four-way valve 25 that are driven by an engine 26 through a pipeline. Then, the liquid refrigerant condensed and flowing out in the condenser 23 flows into the plate heat exchanger 3a of the evaporator 3 on the absorption refrigeration apparatus Z side from the lower end side through the pipe 61, It flows out from the upper end side to the evaporator 22 side through the pipe line 62, but at that time, it is supercooled in the plate heat exchanger 3 a of the evaporator 3.

そして、上記吸収式冷凍装置Zを上記圧縮式冷凍装置Xのエンジン26の排温水を熱源として駆動させるために、上記エンジン26の冷却水循環系と上記発生器1の熱交換器1aとが管路57,58によって接続されている。   In order to drive the absorption refrigeration apparatus Z using the exhaust water of the engine 26 of the compression refrigeration apparatus X as a heat source, the cooling water circulation system of the engine 26 and the heat exchanger 1a of the generator 1 are connected to each other by a pipe. 57 and 58 are connected.

以上のように構成された冷凍システムは以下のように作動する。   The refrigeration system configured as described above operates as follows.

先ず、上記圧縮式冷凍装置Xにおいては、上記エンジン26によって上記圧縮式冷凍装置Xの圧縮機21を駆動し、該圧縮機21から吐出されたガス冷媒を上記凝縮器23において凝縮させて液冷媒とするとともに、該液冷媒をさらに上記吸収式冷凍装置Z側の上記蒸発器3において過冷却し、この過冷却冷媒を上記蒸発器22において蒸発させて室内の冷房を行なう。この場合、上記凝縮器23からの液冷媒を過冷却することで、その冷凍能力の向上が図られるものである。   First, in the compression refrigeration apparatus X, the compressor 26 of the compression refrigeration apparatus X is driven by the engine 26, and the gas refrigerant discharged from the compressor 21 is condensed in the condenser 23 to be liquid refrigerant. In addition, the liquid refrigerant is further supercooled in the evaporator 3 on the absorption refrigeration apparatus Z side, and the supercooled refrigerant is evaporated in the evaporator 22 to cool the room. In this case, the refrigeration capacity can be improved by supercooling the liquid refrigerant from the condenser 23.

一方、上記吸収式冷凍装置Zにおいては、上記エンジン26からの排温水を受けて、上記発生器1で上記吸収器4からの吸収希溶液が加熱され、冷媒蒸気と吸収濃溶液が生成される。上記発生器1で発生した冷媒蒸気は、ファン8を備えた空冷式の上記凝縮器2において凝縮され、液冷媒とされる。   On the other hand, in the absorption refrigeration apparatus Z, the generator 1 receives the hot water from the engine 26, and the generator 1 heats the absorption dilute solution from the absorber 4 to generate refrigerant vapor and the absorption concentrated solution. . The refrigerant vapor generated in the generator 1 is condensed in the air-cooled condenser 2 provided with a fan 8 to be a liquid refrigerant.

上記凝縮器2からの液冷媒は、上記冷媒溜り17に流入した後、上記冷媒ポンプ13によって上記蒸発器3の上部に流入され、散布器(図示省略)から上記プレート式熱交換器3aの上部に均等に散布され、該熱交換器3aの表面に沿って流下する間に蒸発して冷媒蒸気を発生する。また、このとき、その蒸発熱によって上記プレート式熱交換器3a内を流れる上記圧縮式冷凍装置X側の冷媒を過冷却する。   The liquid refrigerant from the condenser 2 flows into the refrigerant reservoir 17, and then flows into the upper part of the evaporator 3 by the refrigerant pump 13, and from the spreader (not shown) to the upper part of the plate heat exchanger 3a. And is vaporized while flowing down along the surface of the heat exchanger 3a to generate refrigerant vapor. At this time, the refrigerant on the compression refrigeration apparatus X side flowing in the plate heat exchanger 3a is supercooled by the heat of evaporation.

一方、上記吸収器4においては、上記空冷過冷却器6において過冷却された吸収希溶液が散布器(図示省略)からプレート4aに均等に散布され、該プレート4aにそって流下する間に上記蒸発器3からの冷媒蒸気を吸収して吸収希溶液とされ、上記希溶液溜り16に貯留される。   On the other hand, in the absorber 4, the absorption dilute solution supercooled in the air-cooled supercooler 6 is evenly sprayed from the sprayer (not shown) to the plate 4a and flows down along the plate 4a. The refrigerant vapor from the evaporator 3 is absorbed to form an absorbing diluted solution, which is stored in the diluted solution reservoir 16.

上記希溶液溜り16には、上記吸収器4において冷媒蒸気を吸収した吸収希溶液と、上記蒸発器3から流入する未蒸発冷媒からなる混合溶液が貯留されるとともに、この混合溶液は上記溶液ポンプ9によって上記発生器1側へ供給される。この際、上記溶液熱交換器5において、上記吸収器4側からの吸収希溶液と上記発生器1で生成された吸収濃溶液との間での熱交換によって熱回収が行なわれる。   The dilute solution reservoir 16 stores a mixed solution composed of an absorbed dilute solution that has absorbed refrigerant vapor in the absorber 4 and an unevaporated refrigerant that flows in from the evaporator 3, and the mixed solution is stored in the solution pump. 9 to the generator 1 side. At this time, in the solution heat exchanger 5, heat recovery is performed by heat exchange between the absorption diluted solution from the absorber 4 side and the absorption concentrated solution generated in the generator 1.

そして、この吸収式冷凍装置Zにおいては、その冷凍能力が、上記吸収器4における吸収能力の調整によって増減制御される。即ち、上記吸収器4に流入する溶液の過冷却温度を大きくし吸収能力を高めて吸収溶液への冷媒蒸気の吸収作用を高めることで、上記蒸発器3における蒸発能力(即ち、圧縮式冷凍装置X側の冷媒に対する過冷却能力)が高められ、結果的に吸収式冷凍装置Z全体としての冷凍能力が高められるものである。   In the absorption refrigeration apparatus Z, the refrigeration capacity is increased or decreased by adjusting the absorption capacity in the absorber 4. That is, by increasing the supercooling temperature of the solution flowing into the absorber 4 and increasing the absorption capacity to enhance the absorption of the refrigerant vapor into the absorption solution, the evaporation capacity (that is, the compression refrigeration apparatus) in the evaporator 3 is increased. The supercooling capacity of the refrigerant on the X side) is increased, and as a result, the refrigerating capacity of the absorption refrigeration apparatus Z as a whole is increased.

ところで、既述のように、上記圧縮式冷凍装置Xの冷凍能力は、上記凝縮器23から出た冷媒の過冷却度によって変化し、過冷却度が高いほど冷凍能力が高くなる関係にある。従って、圧縮式冷凍装置Xの能力向上という点では、上記吸収式冷凍装置Zの冷熱によって上記圧縮式冷凍装置X側の冷媒をできるだけ過冷却すればよいことになり、そのためには、上記圧縮式冷凍装置Xの冷凍能力に対応した過冷却温度を達成できるような能力の吸収式冷凍装置Zを組み合わせれば良いことになる。   By the way, as described above, the refrigeration capacity of the compression refrigeration apparatus X varies depending on the degree of supercooling of the refrigerant discharged from the condenser 23, and the refrigeration capacity increases as the degree of supercooling increases. Therefore, in terms of improving the capacity of the compression refrigeration apparatus X, the refrigerant on the compression refrigeration apparatus X side needs to be supercooled as much as possible by the cold heat of the absorption refrigeration apparatus Z. What is necessary is just to combine the absorption refrigeration apparatus Z of the capability which can achieve the supercooling temperature corresponding to the refrigerating capacity of the refrigeration apparatus X.

ところが、外気温度が低下した場合とか、圧縮式冷凍装置Xが部分負荷となった場合には、該圧縮式冷凍装置Xの凝縮器23の出口の冷媒温度(即ち、凝縮温度)が低下することから、特に外気温度の低下と圧縮式冷凍装置Xの部分負荷とが重なった場合には、この圧縮式冷凍装置Xの凝縮器23の出口の冷媒温度の低下が大きくなるため、吸収式冷凍装置Zの冷熱で圧縮式冷凍装置X側の冷媒を過冷却できる温度幅が少なくなり、圧縮式冷凍装置Xの冷媒を過冷却することによる該圧縮式冷凍装置の性能向上の割合が大きく低下することになる。この結果、冷熱の利用期間(即ち、圧縮式冷凍装置による冷房運転期間)において、吸収式冷凍装置Zのイニシャルコストに対して、エンジン駆動の圧縮式冷凍装置Xのランニングコストの低減効果が少なくなる。   However, when the outside air temperature decreases or when the compression refrigeration apparatus X becomes a partial load, the refrigerant temperature (that is, the condensation temperature) at the outlet of the condenser 23 of the compression refrigeration apparatus X decreases. In particular, when the decrease in the outside air temperature and the partial load of the compression refrigeration apparatus X overlap, the absorption refrigeration apparatus has a large decrease in the refrigerant temperature at the outlet of the condenser 23 of the compression refrigeration apparatus X. The temperature range in which the refrigerant on the compression refrigeration apparatus X side can be supercooled by the cold heat of Z is reduced, and the performance improvement rate of the compression refrigeration apparatus by subcooling the refrigerant of the compression refrigeration apparatus X is greatly reduced. become. As a result, the effect of reducing the running cost of the engine-driven compression refrigeration apparatus X is less than the initial cost of the absorption refrigeration apparatus Z during the cold utilization period (that is, the cooling operation period of the compression refrigeration apparatus). .

また、低外気温とか圧縮式冷凍装置Xの部分負荷時のような該圧縮式冷凍装置Xの冷媒の凝縮温度が低い状態下における吸収式冷凍装置Zの冷凍能力の制御は、かなりの温度の余裕を必要とすることから、どうしても吸収式冷凍装置Zの蒸発器3の被冷却流体温度(即ち、圧縮式冷凍装置Zの冷媒の過冷却温度)を、限界値(即ち、吸収液としてLiBrを、冷媒として水を用いた吸収式冷凍装置において冷媒としての水の凍結を回避できる限界温度)よりも高く設定するため、この高く設定した分だけ、圧縮式冷凍装置Xの冷媒を過冷却できる温度幅が少なくなり、吸収式冷凍装置Zの冷熱で圧縮式冷凍装置Xの冷媒を過冷却することによる該圧縮式冷凍装置Xの性能改善効果が減殺される要因でもある。   In addition, the control of the refrigerating capacity of the absorption refrigeration apparatus Z under a condition where the refrigerant condensing temperature of the compression refrigeration apparatus X is low, such as when the external temperature is low or when the compression refrigeration apparatus X is partially loaded, Since a margin is required, the temperature of the cooled fluid of the evaporator 3 of the absorption refrigeration apparatus Z (that is, the supercooling temperature of the refrigerant of the compression refrigeration apparatus Z) is inevitably set to the limit value (that is, LiBr is used as the absorption liquid). Therefore, in the absorption refrigeration apparatus using water as the refrigerant, the temperature can be set higher than the limit temperature at which freezing of water as the refrigerant can be avoided. The width is reduced, and the performance improvement effect of the compression refrigeration apparatus X by supercooling the refrigerant of the compression refrigeration apparatus X with the cold heat of the absorption refrigeration apparatus Z is also a factor that diminishes.

以上のことから考えて、圧縮式冷凍装置Xの効率を向上させるためには、その冷媒の過冷却度を限界まで低下させることが有効であるといえる。   In view of the above, in order to improve the efficiency of the compression refrigeration apparatus X, it can be said that it is effective to reduce the supercooling degree of the refrigerant to the limit.

その一方で、圧縮式冷凍装置Xの冷媒の過冷却度を限界まで低下させ、少しでも圧縮式冷凍装置Xの効率を向上させようとすると、外気温の低下とエンジン駆動の圧縮式冷凍装置Xの負荷の低下が重なったような場合には、吸収式冷凍装置Zの冷凍能力が過大となってその蒸発器3に流入する冷媒(水)が凍結する可能性があることから、吸収式冷凍装置Zの能力を早急に低下させることが必要となる。   On the other hand, if the supercooling degree of the refrigerant of the compression refrigeration apparatus X is reduced to the limit and the efficiency of the compression refrigeration apparatus X is improved as much as possible, the outside air temperature decreases and the engine driven compression refrigeration apparatus X In the case where the decrease in the load of the refrigerant is overlapped, the refrigerating capacity of the absorption refrigeration apparatus Z becomes excessive and the refrigerant (water) flowing into the evaporator 3 may be frozen. It is necessary to quickly reduce the capacity of the device Z.

そこで、この実施形態においては、これらの事情を考慮して、吸収式冷凍装置Zの蒸発器3における冷媒の凍結を回避しつつ、圧縮式冷凍装置Xの冷媒の過冷却度を限界まで低下させることで、該圧縮式冷凍装置Xの能力改善を図るようにしている。   Therefore, in this embodiment, in consideration of these circumstances, the degree of supercooling of the refrigerant of the compression refrigeration apparatus X is reduced to the limit while avoiding freezing of the refrigerant in the evaporator 3 of the absorption refrigeration apparatus Z. Thus, the capacity of the compression refrigeration apparatus X is improved.

係る制御を実現するために、この実施形態では、蒸発器3の出口の冷媒温度、即ち、圧縮式冷凍装置Xの冷媒の過冷却温度の制御を、間接空冷方式の上記吸収器4の特性を活用して、該吸収器4に流入する吸収希溶液の過冷却温度を変化させることで行なうとともに、圧縮式冷凍装置Xの冷媒の過冷却温度が限界値に達したときには、上記吸収希溶液の過冷却温度を変化させること、及び上記蒸発器3への冷媒の供給量を調整することによって、該蒸発器3の出口の冷媒温度がそれ以上に低下して冷媒の凍結が発生するのを未然に回避し、圧縮式冷凍装置Xの冷媒の過冷却温度を限界まで低くして該圧縮式冷凍装置Xの効率を限界まで高めるようにしている。   In order to realize such control, in this embodiment, the refrigerant temperature at the outlet of the evaporator 3, that is, the supercooling temperature of the refrigerant of the compression refrigeration apparatus X is controlled, and the characteristics of the absorber 4 of the indirect air cooling system are controlled. This is performed by changing the supercooling temperature of the absorbing dilute solution flowing into the absorber 4 and when the supercooling temperature of the refrigerant of the compression refrigeration apparatus X reaches a limit value, By changing the supercooling temperature and adjusting the amount of refrigerant supplied to the evaporator 3, the refrigerant temperature at the outlet of the evaporator 3 is further reduced and freezing of the refrigerant occurs. Thus, the supercooling temperature of the refrigerant of the compression refrigeration apparatus X is lowered to the limit, and the efficiency of the compression refrigeration apparatus X is increased to the limit.

具体的には、上記蒸発器3の出口側に温度センサ18を設けて該出口側における上記圧縮式冷凍装置X側の冷媒の過冷却温度を検出し、この検出温度を制御器30に入力するとともに、該制御器30からの制御信号によって上記ファン7及び冷媒ポンプ13、溶液ポンプ9の作動を制御するようにしている。   Specifically, a temperature sensor 18 is provided on the outlet side of the evaporator 3 to detect the supercooling temperature of the refrigerant on the compression refrigeration apparatus X side on the outlet side, and this detected temperature is input to the controller 30. At the same time, the operation of the fan 7, the refrigerant pump 13, and the solution pump 9 is controlled by a control signal from the controller 30.

これらの制御における思想は、以下の通りである。   The idea of these controls is as follows.

即ち、上記吸収式冷凍装置Zの冷凍能力(吸収式冷凍装置Zに要求される冷凍能力)を、外気温とか圧縮式冷凍装置Xの負荷状態で決まる該圧縮式冷凍装置Xの凝縮器23における冷媒の凝縮温度に対応して求められる目標とすべき冷媒の過冷却温度(即ち、目標温度)と、上記温度センサ18によって検出される実際の過冷却温度との偏差で規定する。   That is, the refrigeration capacity of the absorption refrigeration apparatus Z (the refrigeration capacity required for the absorption refrigeration apparatus Z) is determined in the condenser 23 of the compression refrigeration apparatus X determined by the outside air temperature or the load state of the compression refrigeration apparatus X. It is defined by the deviation between the refrigerant subcooling temperature (that is, the target temperature) to be obtained in accordance with the refrigerant condensation temperature and the actual supercooling temperature detected by the temperature sensor 18.

そして、この吸収式冷凍装置Zに要求される冷凍能力を、上記空冷過冷却器6に設けられた上記ファン7の発停によって、あるいは該ファン7の風量を増減させることによって上記空冷過冷却器6を循環する過冷却溶液の温度を変化させることで、または溶液ポンプの流量を増減させることで上記空冷過冷却器6を循環する過冷却溶液の流量を増減させることで実現するものである。係る制御によって、上記圧縮式冷凍装置X側の冷媒の過冷却温度を目標温度まで低下させて該圧縮式冷凍装置Xの運転効率を限界まで高めることができるものである。   The refrigerating capacity required for the absorption refrigeration apparatus Z is determined by the start and stop of the fan 7 provided in the air-cooled supercooler 6 or by increasing or decreasing the air volume of the fan 7. This is realized by increasing or decreasing the flow rate of the supercooled solution circulating through the air-cooled supercooler 6 by changing the temperature of the supercooled solution circulating through the air pump 6, or by increasing or decreasing the flow rate of the solution pump. By such control, the supercooling temperature of the refrigerant on the compression refrigeration apparatus X side can be lowered to the target temperature, and the operation efficiency of the compression refrigeration apparatus X can be increased to the limit.

一方、上記吸収式冷凍装置Zにおいては水を冷媒として使用していることから、上記蒸発器3の蒸発温度、即ち、上記圧縮式冷凍装置X側の冷媒の過冷却温度が過度に低下すると上記冷媒が凍結する恐れがある。このため、このような冷媒の凍結を防止すべく、上記冷媒が凍結する恐れのある限界の蒸発温度を「所定温度」として設定し、上記温度センサ18によって検出される上記蒸発器3の出口側の冷媒温度が上記所定値以下に低下したときには、上記空冷過冷却器6の上記ファン7を停止させるか、その風量を減少させて過冷却溶液の温度を低下させて吸収能力を抑制するとともに、上記冷媒ポンプ13を停止して上記蒸発器3側への冷媒の供給を停止させることで、上記吸収式冷凍装置Zの冷凍能力を低下させ、蒸発温度がさらに低下するのを防止する。また、上記蒸発器3の出口側の冷媒温度が上記所定値以上に回復したときには、上記冷媒ポンプ13の運転を再開し、上記蒸発器3側へ冷媒を供給するとともに、上記ファン7を運転し、又はその風量を増大させて上記吸収式冷凍装置Zの冷凍能力を高める。   On the other hand, since the absorption refrigeration apparatus Z uses water as a refrigerant, if the evaporation temperature of the evaporator 3, that is, the supercooling temperature of the refrigerant on the compression refrigeration apparatus X side, is excessively reduced, The refrigerant may freeze. Therefore, in order to prevent such freezing of the refrigerant, a limit evaporating temperature at which the refrigerant may freeze is set as a “predetermined temperature”, and the outlet side of the evaporator 3 detected by the temperature sensor 18 is set. When the refrigerant temperature of the air-cooled supercooler 6 falls below the predetermined value, the fan 7 of the air-cooled supercooler 6 is stopped or the air volume is reduced to lower the temperature of the supercooled solution to suppress the absorption capacity, By stopping the refrigerant pump 13 and stopping the supply of the refrigerant to the evaporator 3 side, the refrigeration capacity of the absorption refrigeration apparatus Z is reduced, and the evaporation temperature is prevented from further decreasing. When the refrigerant temperature on the outlet side of the evaporator 3 recovers to the predetermined value or more, the operation of the refrigerant pump 13 is resumed, the refrigerant is supplied to the evaporator 3 side, and the fan 7 is operated. Alternatively, the refrigeration capacity of the absorption refrigeration apparatus Z is increased by increasing the air volume.

このような蒸発器3側における冷媒の供給・停止制御と上記吸収器4側における過冷却溶液の温度制御によって、上記蒸発器3における冷媒の凍結が未然に防止されるものである。   The refrigerant supply / stop control on the evaporator 3 side and the temperature control of the supercooled solution on the absorber 4 side prevent the refrigerant from freezing in the evaporator 3 in advance.

以上のように、この実施形態の冷凍システムにおいては、上記吸収式冷凍装置Z側での冷媒の凍結を防止しつつ、上記圧縮式冷凍装置Xの運転効率を限界まで高めることができるものである。   As described above, in the refrigeration system of this embodiment, the operating efficiency of the compression refrigeration apparatus X can be increased to the limit while preventing the refrigerant from freezing on the absorption refrigeration apparatus Z side. .

なお、この実施形態では、吸収式冷凍装置Zの冷凍能力を上記蒸発器3の出口における冷媒温度と上記目標温度の偏差に基づいて制御するようにしているが、他の実施形態では、この冷凍能力を、例えば、上記蒸発器3の出口と入口の温度差と目標温度差の偏差に基づいて制御することもできる。   In this embodiment, the refrigeration capacity of the absorption refrigeration apparatus Z is controlled on the basis of the deviation between the refrigerant temperature at the outlet of the evaporator 3 and the target temperature. The capacity can be controlled based on, for example, the deviation between the temperature difference between the outlet and the inlet of the evaporator 3 and the target temperature difference.

IV:第4の実施形態
図4には、本願発明の第4の実施形態に係る冷凍システムが示されている。この冷凍システムは、上記第3の実施形態に係る冷凍システムと基本構成を同じにするものであって、排熱駆動の吸収式冷凍装置Zと圧縮式冷凍装置Xを組み合わせて構成される。
IV: Fourth Embodiment FIG. 4 shows a refrigeration system according to a fourth embodiment of the present invention. This refrigeration system has the same basic configuration as the refrigeration system according to the third embodiment, and is configured by combining an exhaust heat driven absorption refrigeration apparatus Z and a compression refrigeration apparatus X.

そして、この実施形態に係る冷凍システムが上記第3の実施形態に係る冷凍システムと異なる点は、上記空冷過冷却器6の上流側に流量調整弁11を設け、又は下流側に流量調整弁12を設けた点である。   The refrigeration system according to this embodiment differs from the refrigeration system according to the third embodiment in that a flow rate adjustment valve 11 is provided on the upstream side of the air-cooling supercooler 6 or a flow rate adjustment valve 12 is provided on the downstream side. This is the point.

このように上記流量調整弁11又は流量調整弁12を設けることで、上記吸収式冷凍装置Zの冷凍能力を、上記空冷過冷却器6に備えられたファン7の発停、又は該ファン7の風量を増減させて上記空冷過冷却器6を循環する過冷却溶液の温度を変化させることによる吸収能力の制御に代えて、又はこれと同時に、上記流量調整弁11又は流量調整弁12によって上記空冷過冷却器6を循環する過冷却溶液の流量を増減調整することによる吸収能力の制御が可能となり、その結果、上記吸収式冷凍装置Zの冷凍能力の制御が、より一層精度良く且つ迅速に行なえるものである。   By providing the flow rate adjusting valve 11 or the flow rate adjusting valve 12 in this way, the refrigerating capacity of the absorption refrigeration apparatus Z can be increased or decreased by the fan 7 provided in the air-cooled supercooler 6 or the fan 7. Instead of or simultaneously with the control of the absorption capacity by changing the temperature of the supercooled solution circulating in the air-cooled supercooler 6 by increasing or decreasing the air volume, the air-cooling is performed by the flow rate regulating valve 11 or the flow rate regulating valve 12. The absorption capacity can be controlled by increasing / decreasing the flow rate of the supercooled solution circulating through the supercooler 6, and as a result, the refrigerating capacity of the absorption refrigeration apparatus Z can be controlled with higher accuracy and speed. Is.

尚、上記以外の構成及び作用効果は上記第3の実施形態の場合と同様であるので、ここでは図4の各構成部材に図3の各構成部材に対応させて同一の符号を付した上で、該第3の実施形態における該当説明を援用し、ここでの説明を省略する。   In addition, since the structure and the effect other than the above are the same as in the case of the third embodiment, the same reference numerals are given to the respective constituent members in FIG. 4 corresponding to the respective constituent members in FIG. Thus, the corresponding explanation in the third embodiment is used, and the explanation here is omitted.

本願発明の第1の実施の形態に係る吸収式冷凍装置のシステム図である。1 is a system diagram of an absorption refrigeration apparatus according to a first embodiment of the present invention. 本願発明の第2の実施の形態に係る吸収式冷凍装置のシステム図である。It is a system diagram of an absorption refrigeration apparatus according to a second embodiment of the present invention. 本願発明の第3の実施の形態に係る吸収式冷凍装置のシステム図である。It is a system diagram of the absorption refrigeration apparatus which concerns on 3rd Embodiment of this invention. 本願発明の第4の実施の形態に係る吸収式冷凍装置のシステム図である。It is a system diagram of an absorption refrigeration apparatus according to a fourth embodiment of the present invention.

符号の説明Explanation of symbols

1 ・・発生器
2 ・・凝縮器
3 ・・蒸発器
4 ・・吸収器
5 ・・溶液熱交換器
6 ・・空冷過冷却器
7 ・・ファン
8 ・・ファン
9 ・・溶液ポンプ
10 ・・冷媒電磁弁
11 ・・流量調整弁
12 ・・流量調整弁
13 ・・冷媒ポンプ
15 ・・躯体
16 ・・希溶液溜り
17 ・・冷媒溜り
18 ・・温度センサ
21 ・・圧縮機
22 ・・蒸発器
23 ・・凝縮器
24 ・・膨張弁
25 ・・四路弁
26 ・・エンジン
30 ・・制御器
1 ·· Generator 2 ·· Condenser 3 ·· Evaporator 4 ··· Absorber 5 ·· Solution heat exchanger 6 ·· Air-cooled supercooler 7 ·· Fan 8 ·· Fan 9 ·· Solution pump 10 ··· Refrigerant solenoid valve 11 .. Flow rate adjusting valve 12 .. Flow rate adjusting valve 13 .. Refrigerant pump 15 .. Housing 16 .. Diluted solution reservoir 17 .. Refrigerant reservoir 18 .. Temperature sensor 21 .. Compressor 22 .. Evaporator 23 .. Condenser 24 .. Expansion valve 25 .. Four-way valve 26 .. Engine 30 .. Controller

Claims (12)

エンジンの排熱で駆動される発生器と、凝縮器と、流下液膜式の吸収器と、該吸収器に入る吸収溶液を過冷却する空冷過冷却器と、上記吸収器と一体の躯体内に収められて冷媒を一過性で蒸発させる蒸発器を備えた排熱駆動の吸収式冷凍装置であって、
上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させることで吸収式冷凍装置の冷凍能力を制御するものとし、
上記蒸発器の出口における被冷却流体の温度が所定温度以下となった場合に上記凝縮器から上記蒸発器に至る配管に設けた冷媒電磁弁を閉として上記蒸発器への冷媒の流入を停止させ、上記温度が所定温度以上となったときに上記冷媒電磁弁を開として上記蒸発器に上記凝縮器からの冷媒を流入させるとともに、上記冷媒電磁弁が閉作動中は上記冷媒を上記凝縮器から直接に上記吸収器下部の希溶液溜まりに流入させるようにしたことを特徴とする吸収式冷凍装置。
A generator driven by engine exhaust heat, a condenser, a falling film absorber, an air-cooled supercooler that supercools the absorbing solution entering the absorber, and a housing integrated with the absorber Is an exhaust heat driven absorption refrigeration apparatus equipped with an evaporator that temporarily evaporates the refrigerant,
The refrigeration capacity of the absorption refrigeration system shall be controlled by changing the temperature of the supercooled solution flowing into the absorber and / or the flow rate of the supercooled solution,
When the temperature of the fluid to be cooled at the outlet of the evaporator becomes equal to or lower than a predetermined temperature, the refrigerant solenoid valve provided in the pipe from the condenser to the evaporator is closed to stop the flow of the refrigerant into the evaporator. When the temperature exceeds a predetermined temperature, the refrigerant solenoid valve is opened to allow the refrigerant from the condenser to flow into the evaporator, and the refrigerant is removed from the condenser while the refrigerant solenoid valve is closed. An absorption refrigeration apparatus characterized in that it directly flows into a dilute solution reservoir below the absorber.
吸収式冷凍装置の冷凍能力が、上記蒸発器の出口における被冷却流体の温度と目標温度との偏差、又は上記蒸発器の出口と入口における被冷却流体の温度差と目標温度差との偏差であることを特徴とする請求項1記載の吸収式冷凍装置。   The refrigeration capacity of the absorption refrigeration system is the deviation between the temperature of the cooled fluid at the outlet of the evaporator and the target temperature, or the difference between the temperature difference of the cooled fluid at the outlet and the inlet of the evaporator and the target temperature difference. The absorption refrigeration apparatus according to claim 1, wherein the absorption refrigeration apparatus is provided. 上記所定温度が、上記蒸発器の出口における被冷却流体の目標温度と同等又は該目標温度より低い温度であることを特徴とする請求項1又は2に記載の吸収式冷凍装置。   The absorption refrigeration apparatus according to claim 1 or 2, wherein the predetermined temperature is equal to or lower than a target temperature of a fluid to be cooled at an outlet of the evaporator. 上記空冷過冷却器に備えられたファンの発停又は風量の増減によって上記吸収器に流入する上記過冷却溶液の温度を変化させることで冷凍能力を制御するようにしたことを特徴とする請求項1、2又は3記載の吸収式冷凍装置。   The refrigeration capacity is controlled by changing the temperature of the supercooled solution flowing into the absorber by the start / stop of a fan provided in the air-cooled supercooler or the increase / decrease of the air volume. The absorption refrigeration apparatus according to 1, 2, or 3. 上記空冷過冷却器の入口側又は出口側に設けた流量調整弁によって上記吸収器に流入する過冷却溶液の流量を変化させることで冷凍能力を制御し、
又は上記流量調整弁による過冷却溶液の流量の変化と同時に上記ファンの発停又は風量を増減させることで冷凍能力を制御することを特徴とする請求項1、2又は3記載の吸収式冷凍装置。
The refrigeration capacity is controlled by changing the flow rate of the supercooled solution flowing into the absorber by the flow rate adjusting valve provided on the inlet side or the outlet side of the air-cooled supercooler,
The absorption refrigeration apparatus according to claim 1, 2 or 3, wherein the refrigerating capacity is controlled by changing the flow rate of the supercooled solution by the flow rate adjusting valve and simultaneously increasing or decreasing the amount of air flow of the fan. .
冷媒蒸気を吸収した上記吸収器からの希溶液と上記発生器で冷媒蒸気を発生し且つ溶液熱交換器での熱交換によって温度が低下した濃溶液とを混合するもので、
これらの混合溶液を吸引及び吐出する溶液ポンプの流量を増減させて上記吸収器に流入する過冷却溶液の流量を変化させることで冷凍能力を制御し、
又は上記溶液ポンプの流量を増減と同時に上記ファンの発停又は風量を増減させることで冷凍能力を制御することを特徴とする請求項1、2又は3記載の吸収式冷凍装置。
Mixing the dilute solution from the absorber that has absorbed the refrigerant vapor with the concentrated solution that has generated the refrigerant vapor in the generator and whose temperature has been reduced by heat exchange in the solution heat exchanger,
Control the refrigeration capacity by changing the flow rate of the supercooled solution flowing into the absorber by increasing or decreasing the flow rate of the solution pump that sucks and discharges these mixed solutions,
4. The absorption refrigeration apparatus according to claim 1, wherein the refrigeration capacity is controlled by increasing or decreasing the flow rate of the solution pump and simultaneously increasing or decreasing the fan flow rate.
エンジンの排熱で駆動される発生器と、凝縮器と、流下液膜式の吸収器と、該吸収器に入る吸収溶液を過冷却する空冷過冷却器と、上記吸収器と一体の躯体内に収められて冷媒ポンプにより冷媒を循環させながら蒸発させる蒸発器を備えた排熱駆動の吸収式冷凍装置であって、
上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させることで吸収式冷凍装置の冷凍能力を制御するものとし、
上記蒸発器の出口における被冷却流体の温度が所定温度以下となった場合に上記冷媒ポンプを停止させ、当該温度が所定温度以上となったときに上記冷媒ポンプを運転して冷媒を循環させることを特徴とする吸収式冷凍装置。
A generator driven by engine exhaust heat, a condenser, a falling film absorber, an air-cooled supercooler that supercools the absorbing solution entering the absorber, and a housing integrated with the absorber An exhaust-heat-driven absorption refrigeration apparatus equipped with an evaporator that evaporates while circulating the refrigerant by a refrigerant pump,
The refrigeration capacity of the absorption refrigeration system shall be controlled by changing the temperature of the supercooled solution flowing into the absorber and / or the flow rate of the supercooled solution,
The refrigerant pump is stopped when the temperature of the fluid to be cooled at the outlet of the evaporator becomes a predetermined temperature or lower, and the refrigerant pump is operated to circulate the refrigerant when the temperature becomes the predetermined temperature or higher. An absorption refrigeration apparatus characterized by the above.
上記吸収式冷凍装置の冷凍能力が、上記蒸発器の出口における被冷却流体の温度と目標温度との偏差、又は上記蒸発器の出口と入口における被冷却流体の温度差と目標温度差との偏差で規定されることを特徴とする請求項7記載の吸収式冷凍装置。   The refrigerating capacity of the absorption refrigeration apparatus is a deviation between the temperature of the cooled fluid at the outlet of the evaporator and the target temperature, or a deviation between the temperature difference of the cooled fluid at the outlet and the inlet of the evaporator and the target temperature difference. The absorption refrigeration apparatus according to claim 7, characterized in that: 上記所定温度が、上記蒸発器の出口における被冷却流体の目標温度と同等又は該目標温度より低い温度であることを特徴とする請求項7又は8に記載の吸収式冷凍装置。   The absorption refrigeration apparatus according to claim 7 or 8, wherein the predetermined temperature is equal to or lower than a target temperature of a fluid to be cooled at an outlet of the evaporator. 上記空冷過冷却器に備えられたファンの発停又は風量の増減によって上記吸収器に流入する過冷却溶液の温度を変化させることで冷凍能力を制御するようにしたことを特徴とする請求項7、8又は9記載の吸収式冷凍装置。   8. The refrigerating capacity is controlled by changing the temperature of the supercooled solution flowing into the absorber by the start / stop of a fan provided in the air-cooled supercooler or the increase / decrease of the air volume. The absorption refrigeration apparatus according to claim 8 or 9. 上記空冷過冷却器の入口側又は出口側に設けた流量調整弁によって上記吸収器に流入する過冷却溶液の流量を変化させることで冷凍能力を制御し、
又は上記流量調整弁による過冷却溶液の流量の変化と同時に上記ファンの発停又は風量を増減させることで冷凍能力を制御することを特徴とする請求項7、8又は9記載の吸収式冷凍装置。
The refrigeration capacity is controlled by changing the flow rate of the supercooled solution flowing into the absorber by the flow rate adjusting valve provided on the inlet side or the outlet side of the air-cooled supercooler,
The absorption refrigeration apparatus according to claim 7, 8 or 9, wherein the refrigerating capacity is controlled by changing the flow rate of the supercooled solution by the flow rate adjusting valve and simultaneously increasing or decreasing the fan flow rate. .
冷媒蒸気を吸収した上記吸収器からの希溶液と上記発生器で冷媒蒸気を発生し且つ溶液熱交換器での熱交換によって温度が低下した濃溶液とを混合するもので、
これらの混合溶液を吸引及び吐出する溶液ポンプの流量を増減させて上記吸収器に流入する過冷却溶液の流量を変化させることで冷凍能力を制御し、
又は上記溶液ポンプの流量を増減と同時に上記ファンの発停又は風量を増減させることで冷凍能力を制御することを特徴とする請求項7、8又は9記載の吸収式冷凍装置。
Mixing the dilute solution from the absorber that has absorbed the refrigerant vapor with the concentrated solution that has generated the refrigerant vapor in the generator and whose temperature has been reduced by heat exchange in the solution heat exchanger,
Control the refrigeration capacity by changing the flow rate of the supercooled solution flowing into the absorber by increasing or decreasing the flow rate of the solution pump that sucks and discharges these mixed solutions,
The absorption refrigeration apparatus according to claim 7, 8 or 9, wherein the refrigeration capacity is controlled by increasing or decreasing the flow rate of the solution pump and simultaneously increasing or decreasing the fan flow rate.
JP2007254211A 2007-09-28 2007-09-28 Refrigeration system Expired - Fee Related JP5018376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007254211A JP5018376B2 (en) 2007-09-28 2007-09-28 Refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007254211A JP5018376B2 (en) 2007-09-28 2007-09-28 Refrigeration system

Publications (2)

Publication Number Publication Date
JP2009085480A true JP2009085480A (en) 2009-04-23
JP5018376B2 JP5018376B2 (en) 2012-09-05

Family

ID=40659135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007254211A Expired - Fee Related JP5018376B2 (en) 2007-09-28 2007-09-28 Refrigeration system

Country Status (1)

Country Link
JP (1) JP5018376B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124359A (en) * 1978-03-20 1979-09-27 Kawasaki Heavy Ind Ltd Air-cooled absorption refrigerator to remove absorbed heat using absorption liquid for thermal medium
JPH08247571A (en) * 1995-03-14 1996-09-27 Toshiba Corp Air-conditioner
JPH09236352A (en) * 1996-03-01 1997-09-09 Yazaki Corp Hot water heating absorption refrigerating machine
JPH11257796A (en) * 1998-03-10 1999-09-24 Daikin Ind Ltd Air-cooled absorber
JP2000205692A (en) * 1999-01-11 2000-07-28 Hitachi Building Equipment Engineering Co Ltd Method and apparatus for controlling operation of lithium bromide absorption refrigerating machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124359A (en) * 1978-03-20 1979-09-27 Kawasaki Heavy Ind Ltd Air-cooled absorption refrigerator to remove absorbed heat using absorption liquid for thermal medium
JPH08247571A (en) * 1995-03-14 1996-09-27 Toshiba Corp Air-conditioner
JPH09236352A (en) * 1996-03-01 1997-09-09 Yazaki Corp Hot water heating absorption refrigerating machine
JPH11257796A (en) * 1998-03-10 1999-09-24 Daikin Ind Ltd Air-cooled absorber
JP2000205692A (en) * 1999-01-11 2000-07-28 Hitachi Building Equipment Engineering Co Ltd Method and apparatus for controlling operation of lithium bromide absorption refrigerating machine

Also Published As

Publication number Publication date
JP5018376B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
CN108302839A (en) Air-conditioner system
JP2008116173A (en) Absorption type refrigerating machine
JP4885467B2 (en) Absorption heat pump
JP2009058181A (en) Absorption type refrigerating apparatus
JP5098547B2 (en) Absorption refrigeration system
JP5240040B2 (en) Refrigeration equipment
JP5092668B2 (en) Absorption refrigeration system
CN108375255A (en) Air-conditioner system
JP5018376B2 (en) Refrigeration system
JPH0733937B2 (en) Absorption refrigerator
JP2009052811A (en) Exhaust heat drive-type absorption refrigerating device
JP5092677B2 (en) Absorption refrigeration system
CN202188703U (en) Air-cooling spillover type cold water machine set
JP5229076B2 (en) Refrigeration equipment
JP5434207B2 (en) Refrigeration equipment
JP5098561B2 (en) Absorption refrigeration system
JPH09243197A (en) Cooling water temperature controller of absorption cooling and heating machine
JP2011047522A (en) Absorption refrigerating machine
JP2005300047A (en) Heat exchanger system and absorption refrigerating machine using the same
JP3434279B2 (en) Absorption refrigerator and how to start it
JP2004028374A (en) Refrigerating equipment combined with absorption type and compression type
JP3434283B2 (en) Absorption refrigerator and how to start it
JP4073219B2 (en) Absorption chiller / heater
JP2517425B2 (en) Absorption refrigerator
JP5233715B2 (en) Absorption refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees