JP2009081201A - Method of manufacturing backside irradiation type imaging device - Google Patents

Method of manufacturing backside irradiation type imaging device Download PDF

Info

Publication number
JP2009081201A
JP2009081201A JP2007247970A JP2007247970A JP2009081201A JP 2009081201 A JP2009081201 A JP 2009081201A JP 2007247970 A JP2007247970 A JP 2007247970A JP 2007247970 A JP2007247970 A JP 2007247970A JP 2009081201 A JP2009081201 A JP 2009081201A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
imaging device
substrate
adhesive
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007247970A
Other languages
Japanese (ja)
Inventor
Shoji Nishida
昭二 西田
Kazuhiro Nishida
和弘 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007247970A priority Critical patent/JP2009081201A/en
Publication of JP2009081201A publication Critical patent/JP2009081201A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the method of manufacturing a backside irradiation type imaging device which has high connection reliability, which has less deterioration in sensitivity caused by signal delay, and which has a small package size having a small numbers of steps of extracting an electrode which is connected with an external device. <P>SOLUTION: A backside irradiation type imaging device which has high connection reliability, which has less deterioration in sensitivity caused by signal delay, and which has a small package size can be manufactured by the steps of forming a charge transfer portion such as an electrode pad 15 and a photodiode 14 on the front surface side of a semiconductor substrate 10, adhering a support substrate 17 to the front surface side of the semiconductor substrate 10 with a first adhesive 18, thinning the backside side of the semiconductor substrate 10 and forming an optical layer such as a color filter 20 and an AR layer 19 on the thinned backside side of the semiconductor substrate 10, adhering a protection substrate 22 to the backside side of the semiconductor substrate 10 with a second adhesive 23, and peeling the support substrate 17 off of the semiconductor substrate 10. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体基板の表面側に固体撮像素子が形成され、前記半導体基板の裏面側より光を入射させる裏面照射型撮像装置の製造方法に関する。   The present invention relates to a manufacturing method of a backside illumination type imaging device in which a solid-state imaging device is formed on a front surface side of a semiconductor substrate and light is incident from the back surface side of the semiconductor substrate.

デジタルスチルカメラやビデオカメラ等の光学装置に使用される固体撮像装置は、一般的に半導体基板の表面側に形成されたフォトダイオード等の固体撮像素子と、固体撮像素子で発生した電荷を転送する転送路、転送電極、及び配線等の電荷転送部とを備えている。固体撮像素子上方にはカラーフィルタ、マイクロレンズ、遮光膜等の光層が形成され、固体撮像装置への入射光はマイクロレンズ及びカラーフィルタを介して固体撮像素子に照射されて固体撮像素子で光電変換される。光電変換により固体撮像素子で発生した電荷は、電荷転送部を経由して外部に転送される。   A solid-state imaging device used for an optical apparatus such as a digital still camera or a video camera generally transfers a solid-state imaging device such as a photodiode formed on the surface side of a semiconductor substrate and a charge generated by the solid-state imaging device. A transfer path, a transfer electrode, and a charge transfer unit such as a wiring. An optical layer such as a color filter, a microlens, and a light shielding film is formed above the solid-state image sensor. Incident light to the solid-state image sensor is irradiated to the solid-state image sensor via the microlens and the color filter, and the solid-state image sensor Converted. The charges generated in the solid-state imaging device by photoelectric conversion are transferred to the outside via the charge transfer unit.

近年このような固体撮像素子では、感度を向上させるため半導体基板の裏面側から入射する光を光電変換する裏面照射型撮像装置が提案されている(たとえば、特許文献1、特許文献2参照。)。   In recent years, in such a solid-state imaging device, a backside illumination type imaging device that photoelectrically converts light incident from the backside of a semiconductor substrate has been proposed in order to improve sensitivity (see, for example, Patent Document 1 and Patent Document 2). .

裏面照射型撮像装置では、半導体基板の表面側に固体撮像素子及び電荷転送部を形成した後に表面側へ支持基板を接着し、裏面側をバックグラインドまたはエッチング等の方法により薄層化してから、裏面側へ遮光膜、カラーフィルタ、マイクロレンズ等の光層を形成している。光層が形成された半導体基板では、電荷転送部と外部装置とを接続する電極が形成され、光層の上部に保護基板が設けられる。
特開平6−326293号公報 特開2005−353631号公報
In the backside illumination type imaging device, after forming the solid-state imaging device and the charge transfer unit on the surface side of the semiconductor substrate, the support substrate is bonded to the surface side, and the back side is thinned by a method such as back grinding or etching, Light layers such as a light shielding film, a color filter, and a microlens are formed on the back side. In the semiconductor substrate on which the optical layer is formed, an electrode for connecting the charge transfer portion and the external device is formed, and a protective substrate is provided on the optical layer.
JP-A-6-326293 JP-A-2005-353631

しかし、特許文献1に記載される裏面照射型固体撮像装置の製造方法では、表面側全面に支持基板が接着されたままとなっており、外部装置と接続するための電極を形成するには、裏面側に電荷転送部としての電極取り出し端子を設ける必要がある為、固体撮像装置のパッケージサイズが大きくなる。また、特許文献2に記載される裏面照射型固体撮像装置の製造方法においても、開口部からのボンディングワイヤによる接続の為、パッケージサイズが大きくなる。   However, in the manufacturing method of the backside illumination type solid-state imaging device described in Patent Document 1, the support substrate remains adhered to the entire front surface side, and in order to form an electrode for connecting to an external device, Since it is necessary to provide an electrode extraction terminal as a charge transfer unit on the back side, the package size of the solid-state imaging device is increased. Also in the method of manufacturing the backside illumination type solid-state imaging device described in Patent Document 2, the package size is increased due to the connection by the bonding wire from the opening.

更に、特許文献1において、パッケージサイズを小型化する為に支持基板に対して電極取り出し端子まで通じる貫通穴を形成する方法が考えられるが、厚みのある支持基板に対して貫通穴を形成するために多くの工程数が増えるとともに、接続界面の数が増えて接続信頼性が低下し、貫通配線の静電容量による信号遅延で感度低下となる問題が生じる。   Further, in Patent Document 1, a method of forming a through hole that leads to the electrode lead-out terminal with respect to the support substrate in order to reduce the package size can be considered, but in order to form a through hole with respect to a thick support substrate. In addition, the number of processes increases, the number of connection interfaces increases, connection reliability decreases, and there is a problem that sensitivity is lowered due to signal delay due to the capacitance of the through wiring.

本発明は、このような問題に対してなされたものであって、外部装置と接続する電極の取り出し工程数の少ない裏面照射型固体撮像装置の製造方法を提供することを目的とする。   The present invention has been made for such a problem, and it is an object of the present invention to provide a method for manufacturing a backside illumination type solid-state imaging device with a small number of steps for extracting electrodes connected to an external device.

本発明は前記目的を達成するために、半導体基板の表面側に固体撮像素子が形成され、前記半導体基板の裏面側より前記固体撮像素子へ光を入射させる裏面照射型撮像装置の製造方法において、前記半導体基板の表面側に前記固体撮像素子及び前記固体撮像素子で発生した電荷を外部装置へ転送するための電荷転送部を形成する工程と、前記固体撮像素子が形成された前記半導体基板の表面側に第1の接着剤により支持基板を接着する工程と、前記支持基板が接着された前記半導体基板の裏面側を薄層化し、薄層化された前記半導体基板の裏面側に光層を形成する工程と、裏面が薄層化されて前記光層が形成された前記半導体基板の裏面側へ第2の接着剤により保護基板を接着する工程と、前記保護基板が接着された前記半導体基板から前記支持基板を剥離する工程と、を有することを特徴としている。   In order to achieve the above-mentioned object, the present invention provides a method for manufacturing a backside illumination type imaging device in which a solid-state imaging device is formed on the front surface side of a semiconductor substrate, and light is incident on the solid-state imaging device from the back surface side of the semiconductor substrate. Forming a solid-state imaging device on the surface side of the semiconductor substrate and a charge transfer unit for transferring charges generated in the solid-state imaging device to an external device; and a surface of the semiconductor substrate on which the solid-state imaging device is formed Bonding a support substrate to the side with a first adhesive, and thinning the back side of the semiconductor substrate to which the support substrate is bonded, and forming a light layer on the back side of the thinned semiconductor substrate A step of bonding a protective substrate with a second adhesive to the back surface side of the semiconductor substrate on which the optical layer is formed by thinning the back surface, and from the semiconductor substrate to which the protective substrate is bonded Above It is characterized by having the steps of stripping a lifting board.

本発明によれば、まず半導体基板の表面側にフォトダイオード等の固体撮像素子と、固体撮像素子で発生した電荷を転送する転送路、転送電極、及び配線等の電荷転送部が形成される。続いて、固体撮像素子が形成された半導体基板の表面側には、第一の接着剤により支持基板が接着される。   According to the present invention, first, a solid-state imaging device such as a photodiode and a charge transfer portion such as a transfer path, a transfer electrode, and a wiring for transferring charges generated in the solid-state imaging device are formed on the surface side of the semiconductor substrate. Subsequently, a support substrate is bonded to the surface side of the semiconductor substrate on which the solid-state imaging element is formed by a first adhesive.

このとき、半導体基板表面に形成されたアライメントマークの視認性を確保する為または支持基板の剥離を容易にする為、支持基板は光透過性のある材質または複数の穴が形成されている。更に、支持基板は半導体基板と熱膨張係数が近い素材が使用され、具体的な支持基板の材質としては、シリコンウェーハ、石英ガラス、無アルカリガラス、またはホウケイ酸ガラスが挙げられる。また、第1の接着剤としては、後の工程において支持基板を容易に剥離する為、レジスト材または紫外線光、熱などにより接着力が低下する自己剥離性を有する接着剤を使用する。   At this time, in order to ensure the visibility of the alignment mark formed on the surface of the semiconductor substrate or to facilitate the peeling of the support substrate, the support substrate is formed with a light-transmitting material or a plurality of holes. Further, the support substrate is made of a material having a thermal expansion coefficient close to that of the semiconductor substrate. Specific examples of the support substrate material include silicon wafer, quartz glass, non-alkali glass, and borosilicate glass. In addition, as the first adhesive, a resist material or an adhesive having a self-peeling property whose adhesive strength is reduced by ultraviolet light, heat, or the like is used in order to easily peel the support substrate in a later step.

続いて、支持基板が接着された半導体基板は、裏面側をバックグラインドまたはエッチング等の方法により薄層化され、薄層化された裏面側へ遮光膜、カラーフィルタ、マイクロレンズ等の光層が形成される。続いて、光層が形成された半導体基板の裏面側には、第2の接着剤により低α線ガラス等による保護基板が接着される。   Subsequently, the semiconductor substrate to which the support substrate is bonded is thinned on the back side by a method such as back grinding or etching, and a light layer such as a light-shielding film, a color filter, or a micro lens is formed on the thinned back side. It is formed. Subsequently, a protective substrate made of low α-ray glass or the like is bonded to the back surface side of the semiconductor substrate on which the optical layer is formed by the second adhesive.

続いて、保護基板が接着された半導体基板から支持基板が剥離される。支持基板の剥離では、支持基板側をレジスト現像液に浸漬する、支持基板側に紫外線光を照射する、または支持基板側を加熱することにより第1の接着剤の接着力を選択的に低下させることにより行われる。支持基板が剥離された半導体基板には、表面側に電極が形成されて裏面照射型固体撮像装置となる。   Subsequently, the support substrate is peeled from the semiconductor substrate to which the protective substrate is bonded. In peeling the support substrate, the adhesive force of the first adhesive is selectively reduced by immersing the support substrate side in a resist developer, irradiating the support substrate side with ultraviolet light, or heating the support substrate side. Is done. An electrode is formed on the front surface side of the semiconductor substrate from which the support substrate has been peeled off to form a backside illumination type solid-state imaging device.

これらにより、保護基板接着後に容易に支持基板が剥離され、少ない工程数で外部装置と接続する電極の取り出しを行うことが可能であるとともに、接続信頼性が高く、信号遅延による感度低下が少なくパッケージサイズの小さい裏面照射型固体撮像装置を製造することが可能となる。   As a result, the support substrate is easily peeled off after the protective substrate is adhered, and it is possible to take out the electrode to be connected to the external device with a small number of steps, and the connection reliability is high, and the sensitivity is not lowered due to signal delay. It becomes possible to manufacture a small size back-illuminated solid-state imaging device.

以上説明したように、本発明の裏面照射型撮像装置の製造方法によれば、外部装置と接続する電極の取り出し工程数の少ない裏面照射型固体撮像装置の製造方法を提供することが可能となる。   As described above, according to the manufacturing method of the backside illumination type imaging device of the present invention, it is possible to provide the manufacturing method of the backside illumination type solid-state imaging device with a small number of steps of taking out the electrode connected to the external device. .

以下添付図面に従って本発明に係る固体撮像素子の製造方法の好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of a method for producing a solid-state imaging device according to the present invention will be described in detail with reference to the accompanying drawings.

図1から図11は本発明に係る裏面照射型撮像装置の製造方法の工程を示す断面図である。図1は支持基板17を貼り付ける前の半導体基板10の断面構造を示す断面図である。   1 to 11 are cross-sectional views showing the steps of a method for manufacturing a backside illumination type imaging device according to the present invention. FIG. 1 is a cross-sectional view showing a cross-sectional structure of the semiconductor substrate 10 before the support substrate 17 is attached.

まず、本発明に係わる裏面照射型撮像装置の製造方法では、図1に示すように、半導体基板10の表面側に固体撮像素子であるフォトダイオード14、電極パッド15、不図示の転送電極、転送路、画素分離層等の電荷転送部を形成する工程が行われる。   First, in the method for manufacturing a backside illumination type imaging device according to the present invention, as shown in FIG. 1, a photodiode 14 which is a solid-state imaging device, an electrode pad 15, a transfer electrode (not shown), A step of forming a charge transfer section such as a path and a pixel separation layer is performed.

本実施の形態では半導体基板10としてSOI基板11、SOI酸化膜12、SOI活性層13を備えているSOI(Silicon on Insulator)ウェーハを使用し、半導体基板10の表面側であるSOI活性層13に従来周知の手法によりフォトダイオード14、外部装置へ電荷を転送する電極パッド15が形成される。フォトダイオード14、パッド15の上からは窒化シリコン・酸化シリコンなどにより形成される平坦化層16が形成される。   In the present embodiment, an SOI (Silicon on Insulator) wafer including an SOI substrate 11, an SOI oxide film 12, and an SOI active layer 13 is used as the semiconductor substrate 10, and the SOI active layer 13 on the surface side of the semiconductor substrate 10 is used. A photodiode 14 and an electrode pad 15 for transferring charges to an external device are formed by a conventionally known method. A planarization layer 16 made of silicon nitride, silicon oxide or the like is formed on the photodiode 14 and the pad 15.

続いて、表面側にフォトダイオード14、電極パッド15、平坦化層16等が形成された半導体基板10の表面側へ、図2に示すように、支持基板17を第1の接着剤18により接着する。   Subsequently, as shown in FIG. 2, the support substrate 17 is bonded to the front surface side of the semiconductor substrate 10 on which the photodiode 14, the electrode pad 15, the planarization layer 16, and the like are formed on the front surface side, with the first adhesive 18. To do.

後の工程において半導体基板10表面側に形成された不図示のアライメントマークを基準として裏面側にカラーフィルタ、マイクロレンズ等の光層を構成する各要素を形成する際、支持基板17は光透過性のある透明な材質を用いることによりアライメントマークの視認性を確保する。また、アライメントマークの視認性を確保する方法としては、アライメントマーク上の支持基板17にアライメントマークを認識するための穴を設けてもよい。   When forming each element constituting an optical layer such as a color filter and a microlens on the back surface with reference to an alignment mark (not shown) formed on the front surface side of the semiconductor substrate 10 in a later step, the support substrate 17 is light transmissive. The visibility of the alignment mark is ensured by using a transparent material having a gap. As a method of ensuring the visibility of the alignment mark, a hole for recognizing the alignment mark may be provided in the support substrate 17 on the alignment mark.

支持基板17の具体的な材質としては、半導体基板10と熱膨張係数が近い素材であって、シリコンウェーハ、石英ガラス、無アルカリガラス、またはホウケイ酸ガラス等が使用される。   A specific material of the support substrate 17 is a material having a thermal expansion coefficient close to that of the semiconductor substrate 10, and silicon wafer, quartz glass, non-alkali glass, borosilicate glass, or the like is used.

なお、支持基板17には、アライメントマークを認識する為の穴だけでなく、後の工程で第1の接着剤18を剥離するための薬剤を、第1の接着剤18まで浸透させるための穴が複数開いていてもよい。   The support substrate 17 has not only a hole for recognizing the alignment mark, but also a hole for allowing the first adhesive 18 to penetrate into the first adhesive 18 in a later step. There may be multiple open.

第1の接着剤18は、レジスト材または紫外線光、熱などにより接着力が低下する自己剥離性を有するテープ形状の接着剤を使用する。接着剤18がレジスト材の場合は、支持基板17上にスピンコートにより塗布し、粘着テープ状の物の場合は支持基板17に貼着して使用する。   As the first adhesive 18, a resist material or a tape-shaped adhesive having a self-peeling property whose adhesive strength is reduced by ultraviolet light, heat, or the like is used. When the adhesive 18 is a resist material, it is applied onto the support substrate 17 by spin coating, and when it is an adhesive tape-like material, it is adhered to the support substrate 17 for use.

第1の接着剤18は、KOH等に対しての耐アルカリ性を備え、150℃以上、望ましくは220℃以上の耐熱性を備えた物であって、支持基板17と半導体基板10とを接着した際に半導体基板10の表面側に形成されたアライメントマークを視認可能な物を使用する。   The first adhesive 18 has an alkali resistance against KOH or the like and has a heat resistance of 150 ° C. or higher, desirably 220 ° C. or higher, and adheres the support substrate 17 and the semiconductor substrate 10. At this time, an object that can visually recognize the alignment mark formed on the surface side of the semiconductor substrate 10 is used.

第1の接着剤18としては、レジスト材料もしくはエポキシ系の自己剥離性接着剤等が好適に使用可能である。   As the first adhesive 18, a resist material or an epoxy-based self-peeling adhesive can be preferably used.

支持基板17と半導体基板10との貼り合せでは真空中において0.2〜0.3kg/cm2の圧力をかけて行われる。接着後、接着剤18がレジスト材の場合は、100〜200℃の温度で1〜3分のレジストベークを行う。   Bonding of the support substrate 17 and the semiconductor substrate 10 is performed by applying a pressure of 0.2 to 0.3 kg / cm 2 in a vacuum. After bonding, when the adhesive 18 is a resist material, resist baking is performed at a temperature of 100 to 200 ° C. for 1 to 3 minutes.

続いて、半導体基板10は図3に示すように反転して装置に載置され、半導体基板10の裏面側が、図4に示すように、バックグラインドまたはエッチング等の従来周知の手法によりSOI基板11まで薄層化される。   Subsequently, the semiconductor substrate 10 is inverted and placed on the apparatus as shown in FIG. 3, and the back side of the semiconductor substrate 10 is placed on the SOI substrate 11 by a conventionally known technique such as back grinding or etching as shown in FIG. Is thinned.

続いて、薄層化された半導体基板10の裏面側には、反射防止膜、カラーフィルタ等から成る光層が形成される。例えば、本実施の形態では、光層として図5に示すように、入射光の表面反射防止を目的としたAR層19が薄層化された半導体基板10の裏面側へ形成される。   Subsequently, an optical layer made of an antireflection film, a color filter, or the like is formed on the back surface side of the thinned semiconductor substrate 10. For example, in the present embodiment, as shown in FIG. 5, the AR layer 19 is formed on the back surface side of the thinned semiconductor substrate 10 for the purpose of preventing the surface reflection of incident light as the optical layer.

続いて、AR層19の上に図6に示すように、同じく光層としてカラーフィルタ20が形成される。カラーフィルタ20の形成では、カラーフィルタ20の各色の塗布、ベーク、及びフォトレジストの塗布、ベーク、現像を繰り返し、所望の形状のカラーフィルタ20を形成していく。カラーフィルタ20形成後は、図7に示すように、カラーフィルタ20の周囲に遮光層21が形成される。   Subsequently, as shown in FIG. 6, a color filter 20 is formed as an optical layer on the AR layer 19. In forming the color filter 20, the color filter 20 having a desired shape is formed by repeatedly applying each color of the color filter 20, baking, and applying, baking, and developing the photoresist. After the color filter 20 is formed, a light shielding layer 21 is formed around the color filter 20 as shown in FIG.

光層を構成する各要素が形成された半導体基板10の裏面側へは、続いて図8に示すように、保護基板22が第2の接着剤23により接着される。保護基板22は、低α線ガラス等により形成される光透過性の板状部材であって、表面には入射光の反射を防止する反射防止層24が形成されている。   Next, as shown in FIG. 8, the protective substrate 22 is bonded to the back surface side of the semiconductor substrate 10 on which the elements constituting the optical layer are formed by a second adhesive 23. The protective substrate 22 is a light-transmitting plate-like member formed of low α-ray glass or the like, and an antireflection layer 24 that prevents reflection of incident light is formed on the surface.

第2の接着剤としては、光透過性であるエポキシ系接着剤等が好適に利用できる。   As the second adhesive, a light transmissive epoxy adhesive or the like can be suitably used.

続いて、保護基板22が接着された半導体基板10から、図9に示すように、支持基板17が剥離される。支持基板17の剥離は、第1の接着剤18がレジスト材の場合、半導体基板10の表面側をレジスト現像液に浸漬し、支持基板17に形成された穴からレジスト現像液を浸透させて第1の接着剤18を除去することにより行われる。また、第1の接着剤18として紫外線により接着力が低下する接着剤を使用する場合は、紫外線光を支持基板17側より照射し、熱により接着力が低下する接着剤を使用した場合は、半導体基板10の表面側を加熱することにより接着剤の接着力を低下させて支持基板17を自己剥離させる。これにより、半導体基板10より支持基板17が容易に剥離することが可能となる。   Subsequently, as shown in FIG. 9, the support substrate 17 is peeled from the semiconductor substrate 10 to which the protective substrate 22 is bonded. When the first adhesive 18 is a resist material, the support substrate 17 is peeled off by immersing the surface side of the semiconductor substrate 10 in a resist developer and allowing the resist developer to permeate through the holes formed in the support substrate 17. This is done by removing one adhesive 18. In addition, when using an adhesive whose adhesive strength is reduced by ultraviolet rays as the first adhesive 18, when ultraviolet light is irradiated from the support substrate 17 side and an adhesive whose adhesive strength is reduced by heat is used, By heating the surface side of the semiconductor substrate 10, the adhesive force of the adhesive is reduced and the support substrate 17 is peeled off. Thereby, the support substrate 17 can be easily peeled from the semiconductor substrate 10.

支持基板17が剥離された半導体基板10は、続いて図10に示すように平坦化層16の一部に穴25を形成し電極パッド15を露出させる。露出した各電極パッド15上には、図11に示すように、外部装置との接続を行う為のバンプ26が形成され裏面照射型撮像装置となる。   The semiconductor substrate 10 from which the support substrate 17 has been peeled is then formed with a hole 25 in a part of the planarization layer 16 to expose the electrode pad 15 as shown in FIG. On each exposed electrode pad 15, as shown in FIG. 11, bumps 26 for connection to an external device are formed to form a backside illumination type imaging device.

以上説明したように、本発明の裏面照射型撮像装置の製造方法によれば、保護基板接着後に容易に支持基板が剥離され、少ない工程数で外部装置と接続する電極の取り出しを行うことが可能となる。   As described above, according to the manufacturing method of the backside illuminating type imaging device of the present invention, the support substrate can be easily peeled off after the protective substrate is bonded, and the electrode connected to the external device can be taken out with a small number of steps. It becomes.

更に、半導体基板表面側から厚みのある支持基板が剥離されているので、接続界面の数が減り、配線の静電容量も大きくなることが無いため、接続信頼性が高く、信号遅延による感度低下が少なくパッケージサイズの小さい裏面照射型固体撮像装置を製造することが可能となる。   Furthermore, since the thick support substrate is peeled off from the semiconductor substrate surface side, the number of connection interfaces is reduced and the capacitance of the wiring does not increase, so the connection reliability is high and the sensitivity is reduced due to signal delay. Therefore, it is possible to manufacture a back-illuminated solid-state imaging device with a small package size.

本実施の形態に係わる裏面照射型撮像装置の製造方法の半導体基板の断面構造を示した断面図。Sectional drawing which showed the cross-section of the semiconductor substrate of the manufacturing method of the backside illumination type imaging device concerning this Embodiment. 裏面照射型撮像装置の製造方法の半導体基板に支持基板を接着した状態の断面図。Sectional drawing of the state which adhere | attached the support substrate on the semiconductor substrate of the manufacturing method of a back irradiation type imaging device. 裏面照射型撮像装置の製造方法の半導体基板を反転させた状態の断面図。Sectional drawing of the state which reversed the semiconductor substrate of the manufacturing method of a back irradiation type imaging device. 裏面照射型撮像装置の製造方法の裏面側の薄層化状態を示した断面図。Sectional drawing which showed the thin layer state of the back surface side of the manufacturing method of a back irradiation type imaging device. 裏面照射型撮像装置の製造方法のAR層を形成した状態の断面図。Sectional drawing of the state in which AR layer of the manufacturing method of the backside illumination type imaging device was formed. 裏面照射型撮像装置の製造方法のカラーフィルタを形成した状態の断面図。Sectional drawing of the state in which the color filter of the manufacturing method of a back irradiation type imaging device was formed. 裏面照射型撮像装置の製造方法の遮光層を形成した状態の断面図。Sectional drawing of the state which formed the light shielding layer of the manufacturing method of a back irradiation type imaging device. 裏面照射型撮像装置の製造方法の保護基板を接着した状態の断面図。Sectional drawing of the state which adhered the protective substrate of the manufacturing method of a back irradiation type imaging device. 裏面照射型撮像装置の製造方法の支持基板を剥離した状態の断面図。Sectional drawing of the state which peeled the support substrate of the manufacturing method of a back irradiation type imaging device. 裏面照射型撮像装置の製造方法の平坦化層に穴を形成した状態の断面図。Sectional drawing of the state which formed the hole in the planarization layer of the manufacturing method of a back irradiation type imaging device. 裏面照射型撮像装置の製造方法のバンプを形成した状態の断面図。Sectional drawing of the state in which the bump of the manufacturing method of a back irradiation type imaging device was formed.

符号の説明Explanation of symbols

10…半導体基板,11…SOI基板,12…SOI酸化膜,13…SOI活性層,14…固体撮像素子,15…電極パッド,16…平坦化層,17…支持基板,18…第1の接着剤,19…AR層,20…カラーフィルタ,21…遮光層,22…保護基板,23…第2の接着剤,24…反射防止層,25…穴,26…バンプ DESCRIPTION OF SYMBOLS 10 ... Semiconductor substrate, 11 ... SOI substrate, 12 ... SOI oxide film, 13 ... SOI active layer, 14 ... Solid-state image sensor, 15 ... Electrode pad, 16 ... Planarization layer, 17 ... Support substrate, 18 ... 1st adhesion | attachment 19 ... AR layer, 20 ... color filter, 21 ... light shielding layer, 22 ... protective substrate, 23 ... second adhesive, 24 ... antireflection layer, 25 ... hole, 26 ... bump

Claims (6)

半導体基板の表面側に固体撮像素子が形成され、前記半導体基板の裏面側より前記固体撮像素子へ光を入射させる裏面照射型撮像装置の製造方法において、
前記半導体基板の表面側に前記固体撮像素子及び前記固体撮像素子で発生した電荷を外部装置へ転送するための電荷転送部を形成する工程と、
前記固体撮像素子が形成された前記半導体基板の表面側に第1の接着剤により支持基板を接着する工程と、
前記支持基板が接着された前記半導体基板の裏面側を薄層化し、薄層化された前記半導体基板の裏面側に光層を形成する工程と、
裏面が薄層化されて前記光層が形成された前記半導体基板の裏面側へ第2の接着剤により保護基板を接着する工程と、
前記保護基板が接着された前記半導体基板から前記支持基板を剥離する工程と、を有することを特徴とする裏面照射型撮像装置の製造方法。
In the manufacturing method of the backside illumination type imaging device in which a solid-state imaging device is formed on the front surface side of the semiconductor substrate and light is incident on the solid-state imaging device from the back surface side of the semiconductor substrate.
Forming a solid-state image sensor on the surface side of the semiconductor substrate and a charge transfer unit for transferring charges generated in the solid-state image sensor to an external device;
Bonding a support substrate with a first adhesive to the surface side of the semiconductor substrate on which the solid-state imaging element is formed;
Thinning the back side of the semiconductor substrate to which the support substrate is bonded, and forming an optical layer on the back side of the thinned semiconductor substrate;
Bonding a protective substrate with a second adhesive to the back side of the semiconductor substrate on which the back surface is thinned and the optical layer is formed;
And a step of peeling the supporting substrate from the semiconductor substrate to which the protective substrate is bonded.
前記第1の接着剤は、レジスト材または自己剥離性を有する接着剤であることを特徴とする請求項1に記載の裏面照射型撮像装置の製造方法。   The method of manufacturing a backside illumination imaging apparatus according to claim 1, wherein the first adhesive is a resist material or a self-peeling adhesive. 前記支持基板は、光透過性であることを特徴とする請求項1または請求項2に記載の裏面照射型撮像装置の製造方法。   The method for manufacturing a backside illumination imaging apparatus according to claim 1, wherein the support substrate is light transmissive. 前記支持基板は、複数の穴が形成されていることを特徴とする請求項1または請求項2に記載の裏面照射型撮像装置の製造方法。   The method for manufacturing a backside illumination type imaging device according to claim 1, wherein the support substrate has a plurality of holes formed therein. 前記支持基板はシリコンウェーハ、石英ガラス、無アルカリガラス、またはホウケイ酸ガラスのいずれかであることを特徴とする請求項1、2、3、または4のいずれか1項に記載の裏面照射型撮像装置の製造方法。   5. The backside illuminated imaging according to claim 1, wherein the support substrate is one of a silicon wafer, quartz glass, non-alkali glass, or borosilicate glass. Device manufacturing method. 前記支持基板の剥離は、紫外線光、熱、またはレジスト現像液のいずれかを用いて前記第1の接着剤の接着力を選択的に低下させて行うことを特徴とする請求項1、2、3、4、または5のいずれか1項に記載の裏面照射型撮像装置の製造方法。
The support substrate is peeled off by selectively reducing the adhesive force of the first adhesive using any one of ultraviolet light, heat, and a resist developer. 6. A method for manufacturing a backside illumination type imaging device according to any one of 3, 4, and 5.
JP2007247970A 2007-09-25 2007-09-25 Method of manufacturing backside irradiation type imaging device Pending JP2009081201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007247970A JP2009081201A (en) 2007-09-25 2007-09-25 Method of manufacturing backside irradiation type imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007247970A JP2009081201A (en) 2007-09-25 2007-09-25 Method of manufacturing backside irradiation type imaging device

Publications (1)

Publication Number Publication Date
JP2009081201A true JP2009081201A (en) 2009-04-16

Family

ID=40655755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007247970A Pending JP2009081201A (en) 2007-09-25 2007-09-25 Method of manufacturing backside irradiation type imaging device

Country Status (1)

Country Link
JP (1) JP2009081201A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002224A1 (en) * 2010-06-30 2012-01-05 富士フイルム株式会社 Radiation detector and method of producing same
JP2017022213A (en) * 2015-07-08 2017-01-26 凸版印刷株式会社 Printed wiring board
JP2017037096A (en) * 2012-03-30 2017-02-16 日立金属株式会社 Method for manufacturing scintillator array
JP2017157736A (en) * 2016-03-03 2017-09-07 エスアイアイ・セミコンダクタ株式会社 Semiconductor apparatus having light receiving device
WO2018105558A1 (en) * 2016-12-05 2018-06-14 凸版印刷株式会社 Solid-state imaging element
JP2018098488A (en) * 2016-12-07 2018-06-21 清華大学Tsinghua University Photoelectric element package structure by metallic bond and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002224A1 (en) * 2010-06-30 2012-01-05 富士フイルム株式会社 Radiation detector and method of producing same
JP2017037096A (en) * 2012-03-30 2017-02-16 日立金属株式会社 Method for manufacturing scintillator array
JP2017022213A (en) * 2015-07-08 2017-01-26 凸版印刷株式会社 Printed wiring board
JP2017157736A (en) * 2016-03-03 2017-09-07 エスアイアイ・セミコンダクタ株式会社 Semiconductor apparatus having light receiving device
WO2018105558A1 (en) * 2016-12-05 2018-06-14 凸版印刷株式会社 Solid-state imaging element
CN109983580A (en) * 2016-12-05 2019-07-05 凸版印刷株式会社 Solid-state image pickup element
JPWO2018105558A1 (en) * 2016-12-05 2019-10-24 凸版印刷株式会社 Solid-state image sensor
US10910425B2 (en) 2016-12-05 2021-02-02 Toppan Printing Co., Ltd. Solid-state image sensor
JP7110987B2 (en) 2016-12-05 2022-08-02 凸版印刷株式会社 Solid-state image sensor
JP2018098488A (en) * 2016-12-07 2018-06-21 清華大学Tsinghua University Photoelectric element package structure by metallic bond and manufacturing method thereof
US10510683B2 (en) 2016-12-07 2019-12-17 Tsinghua University Packaging structures for metallic bonding based opto-electronic device and manufacturing methods thereof

Similar Documents

Publication Publication Date Title
JP4280085B2 (en) Wafer sawing method
US7923798B2 (en) Optical device and method for fabricating the same, camera module using optical device, and electronic equipment mounting camera module
US7157352B2 (en) Method for producing ultra-thin semiconductor device
USRE46836E1 (en) Imaging device and method of manufacturing the same and electronic apparatus
EP1453097A1 (en) Solid-state image sensor and its production method
US20100091168A1 (en) Solid-state image pickup apparatus, and method of manufacturing solid-state image pickup apparatus
JP2003197885A (en) Optical device and its manufacturing method, optical module, circuit board and electronic equipment
JP2004031939A (en) Imaging apparatus and its manufacturing method
WO2013075650A1 (en) Encapsulation method for image sensor chip and camera module
JP2007142207A (en) Solid-state image pickup device, and manufacturing method thereof
JP2010129989A (en) Electronic element wafer module, method of manufacturing the same, electronic element module, optical element wafer module, method of manufacturing the same, and electronic information apparatus
JP2009081201A (en) Method of manufacturing backside irradiation type imaging device
JP2010165939A (en) Solid-state imaging device and method of manufacturing the same
WO2020103214A1 (en) Camera assembly and packaging method therefor, lens module, and electronic device
WO2020103210A1 (en) Photographing assembly and packaging method therefor, as well as lens module and electronic equipment
JP2011187482A (en) Solid-state imaging apparatus, module for optical device, and method of manufacturing solid-state imaging apparatus
WO2020003796A1 (en) Solid-state imaging device, electronic apparatus, and manufacturing method of solid-state imaging device
JP2010245121A (en) Semiconductor device
JP2008258201A (en) Rear surface irradiation type solid-state imaging element
JP2005322745A (en) Semiconductor element, method for manufacturing the same, solid-state imaging element, and method for manufacturing the same
JP4468427B2 (en) Manufacturing method of semiconductor device
JP2004063782A (en) Solid-state image sensing device and its manufacturing method
JP2003347529A (en) Solid-state image pickup device and its manufacturing method
CN111009542B (en) Packaging method and packaging structure
JP2005268238A (en) Rear surface irradiation type solid state imaging device and its manufacturing method