WO2012002224A1 - Radiation detector and method of producing same - Google Patents

Radiation detector and method of producing same Download PDF

Info

Publication number
WO2012002224A1
WO2012002224A1 PCT/JP2011/064281 JP2011064281W WO2012002224A1 WO 2012002224 A1 WO2012002224 A1 WO 2012002224A1 JP 2011064281 W JP2011064281 W JP 2011064281W WO 2012002224 A1 WO2012002224 A1 WO 2012002224A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
radiation detector
scintillator layer
radiation
deposition
Prior art date
Application number
PCT/JP2011/064281
Other languages
French (fr)
Japanese (ja)
Inventor
中津川 晴康
成行 書史
西納 直行
大田 恭義
岩切 直人
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012002224A1 publication Critical patent/WO2012002224A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2006Measuring radiation intensity with scintillation detectors using a combination of a scintillator and photodetector which measures the means radiation intensity

Definitions

  • the present invention relates to a radiation detector and a manufacturing method thereof.
  • radiation is once converted into light by a scintillator layer such as CsI: Tl, GOS (Gd 2 O 2 S: Tb), and the converted light is converted into a semiconductor.
  • a scintillator layer such as CsI: Tl, GOS (Gd 2 O 2 S: Tb)
  • the converted light is converted into a semiconductor.
  • an indirect conversion type radiation detector there is a case in which a scintillator layer is deposited on a deposition substrate, and then a step of attaching a light detection substrate that converts light into electric charges is performed on the scintillator layer. is there.
  • the deposition substrate needs to have a certain thickness in order to improve handling, prevent warping due to the weight of the scintillator layer, and prevent deformation due to radiant heat.
  • the radiation detector after manufacturing the radiation detector, if the thickness of the deposition substrate is large, the radiation detector becomes heavy. In addition, the radiation irradiated to the deposition substrate is absorbed more and the sensitivity of the radiation detector is lowered.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-101895 discloses a process in which a photodetection substrate is attached to a scintillator layer on a deposition substrate and then the deposition substrate is removed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2008-190929 discloses that a photodetection substrate is attached to a scintillator layer on a deposition substrate, and then the back surface (outer surface) of the deposition substrate is etched or polished. Thus, a process of thinning the deposition substrate is disclosed.
  • the scintillator layer on the substrate may be damaged in the process of removing the deposition substrate.
  • the scintillator layer when the scintillator layer is composed of a plurality of columnar crystals, the scintillator layer may lose its balance and cause damage itself after the deposition substrate is removed.
  • the present invention has been made in view of the above-described facts, and an object thereof is to provide a radiation detector that is lightweight and highly sensitive to radiation, and a method for manufacturing the same.
  • the method of manufacturing a radiation detector according to the first aspect of the present invention includes a deposition step of depositing a scintillator layer that converts incident radiation into light on a plurality of stacked substrates, and the scintillator layer on the scintillator layer.
  • the scintillator layer since the scintillator layer is deposited on a plurality of stacked substrates in the deposition step, the scintillator layer can be deposited after increasing the thickness of the entire substrate, and the handling property can be improved. Warpage due to the weight of the layer can be prevented, and deformation due to radiant heat can be prevented.
  • the outer substrate is removed from the substrate on which the scintillator layer is deposited, so that the thickness of the substrate can be reduced, and the thickness of the inner substrate can be uneven.
  • the radiation detector can be reduced in weight. Furthermore, since the absorption of radiation is reduced when the thickness of the substrate is reduced, the sensitivity of the radiation detector can be increased.
  • the outer substrate is removed from the substrate on which the scintillator layer is deposited, so that the inner substrate remains, and the scintillator layer is not damaged during the removal step.
  • the thickness of the entire substrate is large, the amount of thermal expansion increases, the difference between the amount of thermal expansion of the light detection substrate widens, and there is a possibility that the radiation detector will thermally expand due to temperature change and warp.
  • the thickness of the substrate proportional to the thermal expansion amount can be reduced, and the warp of the radiation detector can be suppressed.
  • the thickness of the substrate can be reduced to suppress the warping force of the radiation detector.
  • the stacked substrates are bonded to each other with an adhesive.
  • the outer substrate can be easily removed by peeling off the adhesive.
  • the radiation detector manufacturing method wherein the stacked substrates are two, the outer substrate is transparent, and the adhesive is made of ultraviolet rays.
  • the substrate is removed by irradiating ultraviolet rays from the outer substrate side.
  • the outer substrate of the two stacked substrates can be easily removed by ultraviolet irradiation.
  • the stacked substrates are two, and the outer substrate is provided with a hole penetrating the substrate.
  • the substrate is removed by pouring a release agent from above the outer substrate into the hole.
  • the outer substrate can be easily removed from the two stacked substrates by pouring the release agent from the outer substrate.
  • a cut is made in the inner substrate after the removing step.
  • This method can further suppress the warpage of the radiation detector.
  • the method of manufacturing a radiation detector according to a sixth aspect of the present invention is the method of manufacturing a radiation detector according to any one of the first to fifth aspects, wherein the deposition step includes a plurality of columnar crystals by a vapor deposition method. Deposit a scintillator layer.
  • the scintillator layer including a plurality of columnar crystals is deposited, only the outer substrate can be removed and the inner substrate can be left out of the plurality of stacked substrates, so that the scintillator layer loses its balance. Will not cause any damage.
  • a radiation detector includes a plurality of stacked substrates, a scintillator layer that is deposited on the substrate and converts incident radiation into light, and is attached to the scintillator layer, A light detection substrate that converts light emitted from the scintillator layer into electric charge.
  • the thickness of the entire substrate is increased, handling properties are improved, or warping due to the weight of the scintillator layer is prevented, It is possible to prevent deformation due to radiant heat.
  • the thickness of the substrate can be reduced by removing the outer substrate from the plurality of stacked substrates, so that the thickness of the substrate does not become uneven.
  • the weight of the radiation detector can be reduced.
  • the absorption of radiation is reduced when the thickness of the substrate is reduced, the sensitivity of the radiation detector can be increased. Further, since it is only necessary to remove the outer substrate, the scintillator layer is not damaged.
  • the thickness of the entire substrate is large, the amount of thermal expansion increases, the difference between the amount of thermal expansion of the light detection substrate widens, and there is a possibility that the radiation detector will thermally expand due to temperature change and warp.
  • the thickness of the substrate proportional to the thermal expansion amount can be reduced, and the warp of the radiation detector can be suppressed.
  • the thickness of the substrate can be reduced to suppress the warping force of the radiation detector.
  • the plurality of stacked substrates are bonded to each other with an adhesive.
  • the radiation detector according to a ninth aspect of the present invention is the radiation detector according to the eighth aspect, wherein the plurality of stacked substrates are two, the outer substrate is transparent, and the adhesive is the outer substrate. Can be peeled off by ultraviolet rays that pass through.
  • the outer substrate of the two stacked substrates can be easily removed by ultraviolet irradiation.
  • the radiation detector according to a tenth aspect of the present invention is the radiation detector according to the eighth aspect, wherein the plurality of stacked substrates are two, and the outer substrate is provided with a hole penetrating the substrate, The adhesive can be peeled by the release agent that has passed through the hole.
  • the outer substrate can be easily removed from the two stacked substrates by pouring the release agent from the outer substrate.
  • the radiation detector according to an eleventh aspect of the present invention is the radiation detector according to any one of the seventh to tenth aspects, wherein the scintillator layer includes a plurality of columnar crystals.
  • the scintillator layer includes a plurality of columnar crystals, it is possible to remove only the outer substrate and leave the inner substrate among the plurality of stacked substrates, so that the scintillator layer loses its balance. It does not cause damage on its own.
  • the present invention it is possible to provide a radiation detector that is lightweight and highly sensitive to radiation, and a method for manufacturing the same.
  • the electronic cassette is portable, detects radiation from a radiation source that has passed through the subject, generates image information of a radiation image represented by the detected radiation, and can store the generated image information This is a photographing apparatus, and specifically configured as shown below.
  • the electronic cassette may be configured not to store the generated image information.
  • FIG. 1 is a schematic diagram showing the arrangement of electronic cassettes during radiographic imaging.
  • the electronic cassette 10 is arranged at a distance from the radiation generation unit 12 as a radiation source for generating the radiation X at the time of capturing a radiation image.
  • the space between the radiation generation unit 12 and the electronic cassette 10 at this time is an imaging position for the patient 14 as a subject to be positioned.
  • the radiation generation unit 12 gives in advance.
  • Radiation X having a radiation dose according to the imaging conditions is emitted.
  • the radiation X emitted from the radiation generation unit 12 passes through the patient 14 located at the imaging position, and is then applied to the electronic cassette 10 after carrying image information.
  • FIG. 2 is a schematic perspective view showing the internal structure of the electronic cassette 10.
  • the electronic cassette 10 is made of a material that transmits the radiation X and includes a flat casing 16 having a predetermined thickness. And the radiation detector 20 which detects the radiation X which permeate
  • a control board 22 is provided in order.
  • FIG. 3 is a circuit diagram of the electronic cassette 10.
  • the radiation detector 20 includes an upper electrode, a semiconductor layer, and a lower electrode, and includes a sensor unit 24 that accumulates charges by receiving light, and a TFT switch 26 for reading out the charges accumulated in the sensor unit 24.
  • the pixel 28 to be configured includes a TFT (Thin FilmorTransistor) active matrix substrate 30 (hereinafter referred to as a TFT substrate) in which a large number of two-dimensional pixels 28 are provided.
  • TFT Thin FilmorTransistor
  • the scintillator layer 36 is attached to the surface of the TFT substrate 30.
  • the scintillator layer 36 converts radiation X such as irradiated X-rays into light.
  • the sensor unit 24 receives the light emitted from the scintillator layer 36 and accumulates electric charges.
  • Each signal wiring 34 has an electrical signal (image signal) indicating a radiation image in accordance with the amount of charge accumulated in the sensor unit 24 when any TFT switch 26 connected to the signal wiring 34 is turned on. Is flowing.
  • connection connectors 38 are arranged side by side on one end side in the signal wiring 34 direction of the radiation detector 20, and a plurality of connectors 40 are arranged on one end side in the scanning wiring 32 direction. Yes.
  • Each signal wiring 34 is connected to a connector 38, and each scanning wiring 32 is connected to a connector 40.
  • One end of a flexible cable 42 is electrically connected to these connectors 38.
  • One end of the flexible cable 44 is electrically connected to the connector 40.
  • the flexible cable 42 and the flexible cable 44 are coupled to the control board 22.
  • the control board 22 is provided with a control unit 46 for controlling the imaging operation by the radiation detector 20 and controlling the signal processing for the electric signal flowing through each signal wiring 34.
  • the control unit 46 includes a signal detection circuit 48 and a control unit 46. And a scan signal control circuit 50.
  • the signal detection circuit 48 is provided with a plurality of connectors 52, to which the other end of the flexible cable 42 is electrically connected.
  • the signal detection circuit 48 incorporates an amplification circuit for amplifying an input electric signal for each signal wiring 34. With this configuration, the signal detection circuit 48 amplifies and detects the electric signal input from each signal wiring 34 by the amplification circuit, and is stored in each sensor unit 24 as information of each pixel 28 constituting the image. Detect the amount of charge.
  • the scan signal control circuit 50 is provided with a plurality of connectors 54, and the other end of the flexible cable 44 described above is electrically connected to these connectors 54.
  • a control signal for turning on / off the TFT switch 26 can be output to each scanning wiring 32.
  • the radiation detector 20 When taking a radiographic image in such a configuration, the radiation detector 20 is irradiated with the radiation X transmitted through the patient 14. The irradiated radiation X is converted into light by the scintillator layer 36 and irradiated to the sensor unit 24. The sensor unit 24 receives the light emitted from the scintillator layer 36 and accumulates electric charges.
  • an ON signal (+10 to 20 V) is sequentially applied from the scan signal control circuit 50 to the gate electrode of the TFT switch 26 of the radiation detector 20 through the scan wiring 32.
  • an electrical signal corresponding to the amount of charge accumulated in the sensor unit 24 flows out to the signal wiring 34.
  • the signal detection circuit 48 detects the amount of electric charge accumulated in each sensor unit 24 based on the electric signal that has flowed out to the signal wiring 34 of the radiation detector 20 as information of each pixel 28 constituting the image. Thereby, the image information which shows the image shown with the radiation irradiated to the radiation detector 20 is obtained.
  • FIG. 4 is a cross-sectional view showing a cross-sectional configuration of the electronic cassette 10.
  • the electronic cassette 10 contains the control board 22 and the radiation detector 20 in the housing 16 in order from the opposite side of the irradiation surface 18 irradiated with the radiation X.
  • the control board 22 is placed on the bottom surface inside the housing 16 via a support leg 22A, and the radiation detector according to the first embodiment of the present invention is provided via the flexible cable 42 and the flexible cable 44 described above. 20 is connected.
  • “up” refers to the direction from the control board 22 side to the radiation detector 20 side
  • “down” refers to the direction from the radiation detector 20 side to the control board 22 side.
  • the radiation detector 20 has a rectangular flat plate shape, and detects a radiation image represented by the radiation X transmitted through the patient 14 as described above.
  • the radiation detector 20 includes a TFT substrate 30, a scintillator layer 36, and a substrate 60 for depositing the scintillator layer 36.
  • the TFT substrate 30 is placed on the control substrate 22, and the above-described TFT switch 26 and sensor unit 24 are formed on a substrate (not shown).
  • a substrate material of the TFT substrate 30 for example, an inorganic material such as YSZ (zirconia stabilized yttrium), glass, saturated polyester resin, polyethylene terephthalate (PET) resin, polyethylene naphthalate (PEN) resin, polybutylene.
  • Terephthalate resin polystyrene, polycycloolefin, norbornene resin, poly (chlorotrifluoroethylene), cross-linked fumaric acid diester resin, polycarbonate (PC) resin, polyether sulfone (PES) resin, polysulfone (PSF, PSU) Resin, polyarylate (PAR) resin, allyl diglycol carbonate, cyclic polyolefin (COP, COC) resin, cellulose resin, polyimide (PI) resin, polyamideimide (PARI) resin, maleimide-olefin resin, polyamido Organic materials such as (Pa) resin, acrylic resin, fluorine resin, epoxy resin, silicone resin film, polybenzazole resin, episulfide compound, liquid crystal polymer (LCP), cyanate resin, aromatic ether resin Etc.
  • Pa polyimide
  • PARI polyamideimide
  • composite plastic materials with silicon oxide particles composite plastic materials with metal nanoparticles / inorganic oxide nanoparticles / inorganic nitride nanoparticles, composites with metal / inorganic nanofibers and / or microfibers
  • Plastic material carbon fiber, composite plastic material with carbon nanotube, composite plastic material with glass ferret, glass fiber, glass bead, composite plastic material with clay mineral or particles with mica derived crystal structure, thin glass and above alone
  • a laminated plastic material or inorganic layer for example, SiO 2 , Al 2 O 3 , SiO x N y ) having at least one bonding interface with an organic material and an organic layer made of the above-described material.
  • Having a barrier performance having at least one bonding interface Aluminum with an oxide film whose surface insulation is improved by applying an oxidation treatment (for example, anodizing treatment) to a composite material, stainless steel, or a metal laminate material obtained by laminating stainless and different metals, an aluminum substrate, or the surface.
  • an oxidation treatment for example, anodizing treatment
  • a substrate can also be used.
  • the organic material it is preferable that the organic material is excellent in dimensional stability, solvent resistance, electrical insulation, workability, low air permeability, low hygroscopicity, and the like.
  • bionanofiber can also be used as a substrate material of the TFT substrate 30, bionanofiber can also be used.
  • the bionanofiber is a composite of a cellulose microfibril bundle (bacterial cellulose) produced by bacteria (Acetobacter Xylinum) and a transparent resin.
  • the cellulose microfibril bundle has a width of 50 nm and a size of 1/10 of the visible light wavelength, and has high strength, high elasticity, and low thermal expansion.
  • a transparent resin such as acrylic resin or epoxy resin into bacterial cellulose
  • a bio-nanofiber having a light transmittance of about 90% at a wavelength of 500 nm can be obtained while containing 60-70% of the fiber.
  • Bionanofiber has a low coefficient of thermal expansion (3-7ppm) comparable to silicon crystals, and is as strong as steel (460MPa), highly elastic (30GPa), and flexible. Compared to glass substrates, etc.
  • a thin TFT substrate 30 can be formed.
  • a colorless and transparent aramid film can also be used. This aramid film has heat resistance up to 315 ° C., and has an advantageous feature that it has a low thermal expansion rate and is less prone to cracking since it has a thermal expansion coefficient close to that of a glass substrate.
  • the above-described scintillator layer 36 is attached to the upper surface of the TFT substrate 30.
  • the scintillator layer 36 has a structure including a plurality of columnar crystals, and a gap is formed between the columnar crystals.
  • Examples of the material of the scintillator layer 36 include CsI: Tl, CsI: Na (sodium-activated cesium iodide), ZnS: Cu, and CsBr.
  • a deposition substrate 60 used when the scintillator layer 36 is formed by a vapor deposition method is provided on the upper surface of the scintillator layer 36.
  • the material of the substrate 60 is not particularly limited, and the same material as the TFT substrate 30 such as glass, bionanofiber, and aramid film can be used.
  • the thermal expansion coefficient is substantially the same as the thermal expansion coefficient of the TFT substrate 30 (difference in the thermal expansion coefficient is within several PPM / ° C., for example, within 5 PPM / ° C.). It is preferable to use one.
  • the thickness of the substrate 60 is preferably thinner from the viewpoint of reducing the weight of the substrate 60 to reduce the weight of the radiation detector 20 and reducing the absorption of the radiation X.
  • the substrate 60 is preferably not warped, but may be warped to a maximum of 14 mm in the temperature range of ⁇ 30 ° C. to 50 ° C., for example, in consideration of the space inside the housing 16 of the electronic cassette 10. In order to control such warpage, the thickness of the substrate 60 may be determined in consideration of the thickness of the TFT substrate 30.
  • the irradiation surface 18 of the housing 16 is disposed on the upper surface side of the substrate 60 via a gap, and the surface of the irradiation surface 18 is irradiated with the radiation X from the irradiation surface 18. That is, irradiation is performed from the front side to which the scintillator layer 36 of the radiation detector 20 is bonded.
  • FIG. 5A and 5B are diagrams showing a manufacturing process of the radiation detector 20 according to the first embodiment of the present invention.
  • FIG. 5A is a diagram showing a substrate preparation process
  • FIG. 5B is a diagram showing a deposition process.
  • FIG. 5C is a view showing the attaching step
  • FIG. 5D is a view showing the removing step
  • FIG. 5E is a view showing the radiation detector 20 according to the first embodiment of the present invention.
  • a substrate preparation step is performed in which two substrates, the above-described substrate 60 and a substrate 100 for reinforcing the substrate 60, are prepared.
  • these two substrates are referred to as an inner substrate 60 and an outer substrate 100 for convenience.
  • the material of the outer substrate 100 is not particularly limited as long as it is a transparent material that can transmit ultraviolet rays, which will be described later, and the same material as the TFT substrate 30 and the substrate 60 can be used. preferable.
  • the materials of the outer substrate 100 and the inner substrate 60 have substantially the same thermal expansion coefficient (difference in thermal expansion coefficient) so that the outer substrate 100 and the inner substrate 60 do not warp when gradually increasing from room temperature to the deposition temperature described later. Is preferably several PPM / ° C., for example, within 5 PPM / ° C.).
  • the same material such as thick glass / thin glass, or a material having a difference in thermal expansion coefficient such as glass / aramid, aramid / glass, etc. within several PPM / ° C. Can be mentioned.
  • the thickness of the outer substrate 100 is preferably larger than the thickness of the inner substrate 60 from the viewpoint of reducing the inner substrate 60.
  • the two outer substrates 100 and the inner substrate 60 are prepared as described above, these are bonded and laminated by the adhesive 102 that can be peeled off by ultraviolet rays, and the deposition substrate 104 of the scintillator layer 36 is obtained.
  • the material of the adhesive 102 is not particularly limited as long as it is peeled off by ultraviolet rays and can maintain adhesive force even at a deposition temperature (for example, 200 ° C.) of a scintillator layer 36 described later.
  • a deposition step is performed in which the scintillator layer 36 is deposited on the inner substrate 60 of the deposition substrate 104 by a vapor deposition method.
  • a vapor deposition method can be performed by a conventional method. That is, in an environment having a degree of vacuum of 0.01 to 10 Pa, CsI: Tl is heated and vaporized by means such as energizing a resistance heating crucible, and the temperature (evaporation temperature) of the deposition substrate 104 is room temperature (20 ° C.). ) To 300 ° C. CsI: Tl may be deposited and deposited on the deposition substrate 104.
  • the CsI: Tl crystal phase is formed on the deposition substrate 104 by the vapor deposition method
  • an aggregate of crystals having a relatively small diameter of an amorphous or substantially spherical crystal is formed.
  • columnar crystals can be grown continuously by the vapor deposition method after the non-columnar crystal region is formed. Can do. That is, after forming the non-columnar crystal region, uniform columnar crystals can be efficiently grown by performing at least one of the means such as increasing the degree of vacuum and increasing the temperature of the deposition substrate 104.
  • a pasting step is performed in which the TFT substrate 30 is pasted to the scintillator layer 36 using the adhesive 106.
  • a removal step of removing the outer substrate 100 from the inner substrate 60 on which the scintillator layer 36 is deposited is performed. Specifically, ultraviolet rays UV are irradiated from the outside of the outer substrate 100, the transparent outer substrate 100 is transmitted, the adhesive 102 is peeled off, and the outer substrate 100 is removed.
  • the scintillator layer 36 is deposited on the deposition substrate 104 in which the two substrates 100 and 60 are laminated in the deposition process.
  • the scintillator layer 36 can be deposited after increasing the thickness of the entire deposition substrate 104. Therefore, handling properties can be improved, warpage due to the weight of the scintillator layer 36 can be prevented, and deformation due to radiant heat can be prevented.
  • the outer substrate 100 is removed from the inner substrate 60 on which the scintillator layer 36 is deposited, so that the thickness of the deposition substrate 104 remaining after the manufacture of the radiation detector 20 can be reduced.
  • the radiation detector 20 can be reduced in weight without the thickness of the inner substrate 60 becoming uneven. Furthermore, since the absorption of the radiation X is reduced when the thickness of the deposition substrate 104 is reduced, the sensitivity of the radiation detector 20 can be increased.
  • the outer substrate 100 is removed from the inner substrate 60 on which the scintillator layer 36 is deposited, so that the inner substrate 60 remains and does not damage the scintillator layer 36 during the removal step. .
  • the thickness of the deposition substrate 104 is large, the amount of thermal expansion increases, and the difference from the amount of thermal expansion of the light detection substrate widens, and the radiation detector 20 may be warped due to thermal expansion due to temperature change.
  • the thickness of the deposition substrate 104 that is proportional to the amount of thermal expansion can be reduced, and the warpage of the radiation detector 20 can be suppressed. Further, the thickness of the deposition substrate 104 can be reduced to suppress the warping force of the radiation detector 20.
  • the outer substrate 100 and the inner substrate 60 constituting the deposition substrate 104 are bonded to each other with an adhesive 102. Therefore, even when the scintillator layer 36 is deposited from the lower side to the upper side in the direction of gravity in order to prevent the fall of foreign matter or the like on the deposition substrate 104 during the deposition process of the scintillator layer 36, It is possible to prevent the outer substrate 100 and the inner substrate 60 from peeling off. Further, after manufacturing, the outer substrate 100 can be easily removed by removing the adhesive 102.
  • the adhesive 102 is peeled off by irradiating ultraviolet rays UV from the outer substrate 100 side, the outer substrate 100 can be easily removed from the deposition substrate 104.
  • the scintillator layer 36 including a plurality of columnar crystals is deposited by a vapor deposition method. Even when the scintillator layer 36 including a plurality of columnar crystals is deposited in this manner, only the outer substrate 100 can be removed from the deposition substrate 104 and the inner substrate 60 can be left, so that the scintillator layer 36 loses its balance. It does not cause damage on its own.
  • FIG. 6A and 6B are diagrams showing a manufacturing process of the radiation detector 200 according to the second embodiment of the present invention.
  • FIG. 6A is a diagram showing a substrate preparation process
  • FIG. 6B is a diagram showing a deposition process.
  • FIG. 6C is a view showing the attaching step
  • FIG. 6D is a view showing the removing step
  • FIG. 6E is a view showing the radiation detector 200 according to the second embodiment of the present invention.
  • these two substrates are referred to as an inner substrate 60 and an outer substrate 202 for convenience.
  • the outer substrate 202 is provided with a plurality of holes 204 that penetrate the outer substrate 202.
  • the material of the outer substrate 202 may not be a transparent material unlike the outer substrate 100 of the first embodiment, and the same material as the TFT substrate 30 and the inner substrate 60 can be used. Carbon can be used.
  • the materials of the outer substrate 202 and the inner substrate 60 have substantially the same thermal expansion coefficient (difference in thermal expansion coefficient) so that the outer substrate 202 and the inner substrate 60 do not warp when gradually increasing from room temperature to a deposition temperature described later. Is preferably several PPM / ° C., for example, within 5 PPM / ° C.). Specifically, as a combination of materials of the outer substrate 202 and the inner substrate 60, a material having a difference in thermal expansion coefficient such as carbon / glass or the like within several PPM / ° C. can be cited.
  • the substrates 206 are laminated by bonding with the adhesive 206 to obtain the deposition substrate 208 of the scintillator layer 36.
  • the material of the adhesive 206 is not particularly limited as long as it can maintain the adhesive force even at the deposition temperature (for example, 200 ° C.) of the scintillator layer 36.
  • a deposition step is performed in which the scintillator layer 36 is deposited on the inner substrate 60 of the deposition substrate 208 by a vapor deposition method.
  • the specific method of the vapor deposition method is the same as that described in the first embodiment.
  • a pasting step is performed in which the TFT substrate 30 is pasted on the scintillator layer 36 using an adhesive 106.
  • a removal step of removing the outer substrate 202 from the deposition substrate 208 from the inner substrate 60 on which the scintillator layer 36 is deposited is performed. Specifically, the adhesive 106 is peeled off and the outer substrate 202 is removed by pouring a release agent RE for the adhesive 106 such as a liquid containing alcohol into the plurality of holes 204 from the outer substrate 202.
  • a release agent RE for the adhesive 106 such as a liquid containing alcohol
  • the radiation detector 200 as shown in FIG. 6E can be acquired.
  • the obtained radiation detector 200 can be incorporated into the electronic cassette 10 in place of the radiation detector 20 described in the first embodiment.
  • the outer substrate 202 can be easily removed from the deposition substrate 208 by pouring the release agent RE from the outer substrate 202.
  • the selectivity of the outer substrate 202 can be expanded because the outer substrate 202 does not need to be transparent as compared with the first embodiment.
  • the housing 16 includes a radiation detector 20 that detects the radiation X that has passed through the patient 14 from the irradiation surface 18 side of the housing 16 that is irradiated with the radiation X, and a control board.
  • a radiation detector 20 that detects the radiation X that has passed through the patient 14 from the irradiation surface 18 side of the housing 16 that is irradiated with the radiation X
  • a control board that controls the radiation X that has passed through the patient 14 from the irradiation surface 18 side of the housing 16 that is irradiated with the radiation X
  • the grid and the radiation detector 20 that remove scattered radiation of the radiation X caused by passing through the patient 14.
  • a lead plate that absorbs backscattered radiation X may be accommodated.
  • the case 16 is not particularly limited, and for example, the front view may be a square or a circle.
  • control board 22 was formed by one
  • this invention is not limited to this embodiment, Even if the control board 22 is divided into several for every function. Good.
  • control board 22 is arranged side by side in the vertical direction (thickness direction of the housing 16) with the radiation detector 20
  • it may be arranged side by side with the radiation detector 20 in the horizontal direction.
  • the inner substrate 60 when the inner substrate 60 is not made of aluminum, an aluminum reflecting plate is pasted on the deposition substrates 104 and 208, and the scintillator layer 36 is formed on the reflecting plate. It may be deposited.
  • the TFT substrate 30 can receive more light emitted from the scintillator layer 36 than in the case where there is no reflector.
  • the case where the radiation X is irradiated from the front side to which the scintillator layer 36 of the radiation detector 20 is bonded that is, the so-called surface irradiation has been described, but the scintillator layer of the radiation detector 20 is described. Irradiation from the back surface side to which 36 is not bonded, so-called back surface irradiation may be performed. Further, in this case, since the radiation X is irradiated to the scintillator layer 36 without passing through the inner substrate 60, the inner substrate 60 can be cut after the removing step. Thereby, the curvature of the radiation detector 20 can further be suppressed. A similar method can be performed in the second embodiment.
  • the adhesive 102 is peeled off by the ultraviolet ray UV and the adhesive 204 is peeled off by the release agent RE in the second embodiment has been described, but the thermoplastic adhesive may be peeled off by heat.
  • the adhesive material is preferably a material that peels off at a temperature higher than the vapor deposition temperature of the scintillator layer 36.
  • the deposition substrate 104 is configured by the two substrates 100 and 60 laminated.
  • the deposition substrate 104 may be configured by a plurality of three or more substrates. Note that the second embodiment can have the same configuration.
  • the scintillator layer 36 may have another structure.
  • the radiation detectors 20 and 200 have been described as completed products after the outer substrates 100 and 202 have been removed. However, the radiation detectors 20 and 200 include the outer substrates 100 and 202 as finished products. When the user who purchased the product is incorporated into the electronic cassette 10, the above removal step may be performed.
  • the removal step as illustrated in FIG. 5D and the like can be omitted. That is, the outer substrate 100 can be left as it is.
  • the reason is that in the case of surface irradiation, it is necessary to remove the outer substrate 100 to avoid radiation absorption by the outer substrate 100 and to make the radiation reach the scintillator layer 36 side in order to improve the image quality. This is because there is no need to consider radiation absorption by the outer substrate 100 in the case of backside illumination. In this case, the weight of the scintillator layer 36 can be supported together with the outer substrate 100 as well as the inner substrate 60.
  • the outer substrate 100 When the outer substrate 100 is left as described above, the outer substrate 100 may be used as an indicator (control substrate 22) for the signal detection circuit 48 and the scan signal control circuit 50.
  • the rest when one of the radiation detector 20 or the signal detection circuit 48 and the scan signal control circuit 50 is damaged, the rest can be reused by separating from the indicator and replacing only the damaged one. it can.
  • the removal step can be omitted in the case of backside illumination.
  • the adhesive tape has a three-layer structure in the order of the first adhesive, the core material, and the second adhesive, the first adhesive is disposed on the inner substrate 60 side, and the second adhesive is the first adhesive. It is also possible to dispose it on the outer substrate 100 side with an adhesive force higher than that of the adhesive. With such a configuration, when the outer substrate 100 is removed, the adhesive tape does not adhere to the radiation detector 20 (inner substrate 60), and problems such as interference with radiation absorption do not occur.
  • the first adhesive can be formed in an uneven shape and disposed on the inner substrate 60 side. Further, the adhesive 106 and the adhesive of the adhesive tape may be applied to only a part of the scintillator layer 36 or the TFT substrate 30 instead of the entire surface.
  • Reference numeral 10 denotes an electronic cassette.
  • Reference numeral 20 denotes a radiation detector.
  • Reference numeral 30 denotes a TFT substrate (light detection substrate).
  • Reference numeral 36 denotes a scintillator layer.
  • Reference numeral 60 denotes a substrate (inner substrate).
  • Reference numeral 100 denotes a substrate (outer substrate).
  • Reference numeral 102 denotes an adhesive.
  • Reference numeral 104 denotes a deposition substrate (substrate).
  • Reference numeral 106 denotes an adhesive.
  • Reference numeral 200 denotes a radiation detector.
  • Reference numeral 202 denotes a substrate (outer substrate).
  • Reference numeral 204 denotes a hole.
  • Reference numeral 206 denotes an adhesive.
  • Reference numeral 208 denotes a deposition substrate (substrate).
  • Reference sign RE is a release agent.
  • the symbol UV is ultraviolet light.
  • the symbol X is radiation.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Disclosed is a radiation detector that is highly sensitive to radiation due to the weight reduction of a substrate for deposition. Also disclosed is a method of producing the radiation detector. The substrate for deposition (104) comprises a plurality of substrates (100, 60) that are laminated via an adhesion layer (102). The radiation detector comprises: a scintillator layer (36) that is deposited on the substrate for deposition (104), and that converts incident radiation into light; and a TFT substrate (30) that is pasted to the scintillator layer (36), and that converts the light emitted from the scintillator layer (36) into a charge. By removing the outside substrate (100) from the inside substrate (60) among the abovementioned plurality of substrates, the weight of the substrate for deposition (104) is reduced.

Description

放射線検出器及びその製造方法Radiation detector and manufacturing method thereof
 本発明は、放射線検出器及びその製造方法に関する。 The present invention relates to a radiation detector and a manufacturing method thereof.
 近年、放射線を直接デジタルデータに変換できるFPD(Flat Panel Detector)等の放射線検出器が実用化されている。この放射線検出器は、従来のイメージングプレートに比べて、即時に画像を確認できるといったメリットがあり、急速に普及が進んでいる。 In recent years, radiation detectors such as FPD (Flat Panel Detector) that can directly convert radiation into digital data have been put into practical use. This radiation detector has an advantage that an image can be confirmed immediately compared to a conventional imaging plate, and is rapidly spreading.
 放射線検出器は、種々のタイプのものが提案されており、例えば、放射線を一度CsI:Tl、GOS(GdS:Tb)などのシンチレータ層で光に変換し、変換した光を半導体層で電荷に変換して蓄積する間接変換方式がある。 Various types of radiation detectors have been proposed. For example, radiation is once converted into light by a scintillator layer such as CsI: Tl, GOS (Gd 2 O 2 S: Tb), and the converted light is converted into a semiconductor. There is an indirect conversion method in which the charge is converted and accumulated in a layer.
 間接変換方式の放射線検出器を製造する際には、堆積用の基板上にシンチレータ層を堆積させた後、当該シンチレータ層に光を電荷に変換する光検出基板を貼り付ける工程が行われる場合がある。
 この場合に、上記堆積用基板は、放射線検出器の製造時には、ハンドリング性の向上、シンチレータ層の重みによる反り防止、及び輻射熱による変形防止等から、ある程度の厚みが必要となる。
When manufacturing an indirect conversion type radiation detector, there is a case in which a scintillator layer is deposited on a deposition substrate, and then a step of attaching a light detection substrate that converts light into electric charges is performed on the scintillator layer. is there.
In this case, when the radiation detector is manufactured, the deposition substrate needs to have a certain thickness in order to improve handling, prevent warping due to the weight of the scintillator layer, and prevent deformation due to radiant heat.
 しかしながら、放射線検出器の製造後においては、堆積用の基板の厚みが大きいと、放射線検出器が重くなってしまう。また、堆積用の基板が照射される放射線をより多く吸収して放射線検出器の感度が低下してしまう。 However, after manufacturing the radiation detector, if the thickness of the deposition substrate is large, the radiation detector becomes heavy. In addition, the radiation irradiated to the deposition substrate is absorbed more and the sensitivity of the radiation detector is lowered.
 そこで、特許文献1(特開平11-101895号公報)には、堆積用の基板上にあるシンチレータ層に光検出基板を貼り付けた後、当該堆積用の基板を取り去る工程が開示されている。 Therefore, Patent Document 1 (Japanese Patent Application Laid-Open No. 11-101895) discloses a process in which a photodetection substrate is attached to a scintillator layer on a deposition substrate and then the deposition substrate is removed.
 また、特許文献2(特開2008-190929号公報)には、堆積用の基板上にあるシンチレータ層に光検出基板を貼り付けた後、堆積用の基板の裏面(外側面)をエッチング又は研磨して、堆積用の基板を薄くする工程が開示されている。 Patent Document 2 (Japanese Patent Application Laid-Open No. 2008-190929) discloses that a photodetection substrate is attached to a scintillator layer on a deposition substrate, and then the back surface (outer surface) of the deposition substrate is etched or polished. Thus, a process of thinning the deposition substrate is disclosed.
 しかしながら、特許文献1の工程では、堆積用の基板を取り去る工程の際、当該基板上のシンチレータ層に損傷を与える虞がある。また、特にシンチレータ層が複数の柱状結晶体で構成されていた場合、堆積用の基板を取り去った後に、シンチレータ層がバランスを崩して自ら損傷を生じる虞がある。 However, in the process of Patent Document 1, the scintillator layer on the substrate may be damaged in the process of removing the deposition substrate. In particular, when the scintillator layer is composed of a plurality of columnar crystals, the scintillator layer may lose its balance and cause damage itself after the deposition substrate is removed.
 また、特許文献2の工程では、エッチング又は研磨により堆積用の基板を薄くするため、基板の厚さを均一化するためには手間がかかる。また、薄くしても厚さを均一化しないと、放射線の散乱等が生じて放射線検出器の感度が低下する場合がある。 Further, in the process of Patent Document 2, since the substrate for deposition is thinned by etching or polishing, it takes time to make the thickness of the substrate uniform. In addition, if the thickness is not uniform even if the thickness is reduced, radiation scattering or the like may occur, and the sensitivity of the radiation detector may decrease.
 本発明は上記事実に鑑みてなされたものであり、軽量及び放射線に対する高感度な放射線検出器及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above-described facts, and an object thereof is to provide a radiation detector that is lightweight and highly sensitive to radiation, and a method for manufacturing the same.
 本発明の第1態様に係る放射線検出器の製造方法は、積層された複数の基板上に、入射する放射線を光に変換するシンチレータ層を堆積する堆積工程と、前記シンチレータ層に、前記シンチレータ層から放出された光を電気信号に変換する光検出基板を貼り付ける貼付工程と、外側の前記基板を前記シンチレータ層が堆積された前記基板から取り除く取除き工程と、を有する。 The method of manufacturing a radiation detector according to the first aspect of the present invention includes a deposition step of depositing a scintillator layer that converts incident radiation into light on a plurality of stacked substrates, and the scintillator layer on the scintillator layer. A sticking step of attaching a light detection substrate that converts light emitted from the substrate into an electrical signal, and a step of removing the outer substrate from the substrate on which the scintillator layer is deposited.
 この方法によれば、堆積工程時においては、積層された複数の基板上にシンチレータ層を堆積するので、基板全体の厚みを大きくした上でシンチレータ層を堆積でき、ハンドリング性を向上したり、シンチレータ層の重みによる反りを防止したり、輻射熱による変形を防止したりすることができる。
 また、貼付工程後の取除き工程においては、外側の基板を前記シンチレータ層が堆積された基板から取り除くので、基板の厚みを小さくすることができ、内側の基板の厚みが不均一になることもなく、放射線検出器を軽量化することができる。さらに、基板の厚みが小さくなると放射線の吸収も低減されるので、放射線検出器を高感度化することができる。
 また、取除き工程では、外側の基板を前記シンチレータ層が堆積された基板から取り除くので、内側の基板は残ったままとなり、取除き工程の際にシンチレータ層に損傷を与えることもない。
According to this method, since the scintillator layer is deposited on a plurality of stacked substrates in the deposition step, the scintillator layer can be deposited after increasing the thickness of the entire substrate, and the handling property can be improved. Warpage due to the weight of the layer can be prevented, and deformation due to radiant heat can be prevented.
Further, in the removal step after the pasting step, the outer substrate is removed from the substrate on which the scintillator layer is deposited, so that the thickness of the substrate can be reduced, and the thickness of the inner substrate can be uneven. In addition, the radiation detector can be reduced in weight. Furthermore, since the absorption of radiation is reduced when the thickness of the substrate is reduced, the sensitivity of the radiation detector can be increased.
In the removal step, the outer substrate is removed from the substrate on which the scintillator layer is deposited, so that the inner substrate remains, and the scintillator layer is not damaged during the removal step.
 また、基板全体の厚みが大きいと、熱膨張量が大きくなり、光検出基板の熱膨張量との差が広がって、温度変化により放射線検出器が熱膨張して反る可能性があるが、積層された複数枚の基板のうち外側の基板を取り除くことにより、熱膨張量と比例関係にある基板の厚みを小さくして、放射線検出器の反りを抑制することもできる。また、基板の厚みを小さくして、放射線検出器の反る力を抑制することもできる。 In addition, if the thickness of the entire substrate is large, the amount of thermal expansion increases, the difference between the amount of thermal expansion of the light detection substrate widens, and there is a possibility that the radiation detector will thermally expand due to temperature change and warp. By removing the outer substrate from the plurality of stacked substrates, the thickness of the substrate proportional to the thermal expansion amount can be reduced, and the warp of the radiation detector can be suppressed. Moreover, the thickness of the substrate can be reduced to suppress the warping force of the radiation detector.
 本発明の第2態様に係る放射線検出器の製造方法は、第1態様において、前記積層された基板は、互いに接着剤で接着されている。 In the method of manufacturing a radiation detector according to the second aspect of the present invention, in the first aspect, the stacked substrates are bonded to each other with an adhesive.
 この方法によれば、シンチレータ層の堆積工程時に、積層された複数の基板上に異物等の落下を防止するために重力方向下側から上側に向けてシンチレータ層を堆積しても、シンチレータ層の重みによって基板同士が剥がれることを抑制できる。また、取除き工程においては接着剤を剥離することで容易に外側の基板を取り除くことができる。 According to this method, even when the scintillator layer is deposited from the lower side to the upper side in the gravitational direction in order to prevent a foreign substance or the like from falling on the plurality of stacked substrates during the scintillator layer deposition step, It is possible to suppress peeling of the substrates due to the weight. In the removal step, the outer substrate can be easily removed by peeling off the adhesive.
 本発明の第3態様に係る放射線検出器の製造方法は、第2態様において、前記積層された基板は、2枚であり、外側の前記基板は、透明であり、前記接着剤は、紫外線によって剥離可能であり、前記取除き工程では、前記外側の基板側から紫外線を照射することによって、該基板を取り除く。 According to a third aspect of the present invention, there is provided the radiation detector manufacturing method according to the second aspect, wherein the stacked substrates are two, the outer substrate is transparent, and the adhesive is made of ultraviolet rays. In the removal step, the substrate is removed by irradiating ultraviolet rays from the outer substrate side.
 この方法によれば、紫外線照射によって、積層された2枚の基板のうち外側の基板を容易に取り除くことができる。 According to this method, the outer substrate of the two stacked substrates can be easily removed by ultraviolet irradiation.
 本発明の第4態様に係る放射線検出器の製造方法は、第2態様において、前記積層された基板は、2枚であり、外側の前記基板には、該基板を貫通した穴部が設けられ、前記取除き工程では、剥離剤を前記外側の基板上から前記穴部に流し込むことによって、該基板を取り除く。 In the radiation detector manufacturing method according to a fourth aspect of the present invention, in the second aspect, the stacked substrates are two, and the outer substrate is provided with a hole penetrating the substrate. In the removing step, the substrate is removed by pouring a release agent from above the outer substrate into the hole.
 この方法によれば、剥離剤を外側の基板から流し込むことによって、積層された2枚の基板のうち外側の基板を容易に取り除くことができる。 According to this method, the outer substrate can be easily removed from the two stacked substrates by pouring the release agent from the outer substrate.
 本発明の第5態様に係る放射線検出器の製造方法は、第1態様~第4態様のいずれか1つにおいて、前記取除き工程後に、内側の前記基板に切り込みを入れる。 In the method for manufacturing a radiation detector according to the fifth aspect of the present invention, in any one of the first to fourth aspects, a cut is made in the inner substrate after the removing step.
 この方法によれば、放射線検出器の反りをさらに抑制することができる。 This method can further suppress the warpage of the radiation detector.
 本発明の第6態様に係る放射線検出器の製造方法は、第1態様~第5態様のいずれか1つにおいて、前記堆積工程では、気相堆積法により、複数の柱状結晶体を含んだ前記シンチレータ層を堆積する。 The method of manufacturing a radiation detector according to a sixth aspect of the present invention is the method of manufacturing a radiation detector according to any one of the first to fifth aspects, wherein the deposition step includes a plurality of columnar crystals by a vapor deposition method. Deposit a scintillator layer.
 このように複数の柱状結晶体を含んだ前記シンチレータ層を堆積しても、積層された複数の基板のうち外側の基板のみ取り除き、内側の基板を残すことができるので、シンチレータ層がバランスを崩して自ら損傷を生じることがない。 Thus, even when the scintillator layer including a plurality of columnar crystals is deposited, only the outer substrate can be removed and the inner substrate can be left out of the plurality of stacked substrates, so that the scintillator layer loses its balance. Will not cause any damage.
 本発明の第7態様に係る放射線検出器は、積層された複数枚の基板と、前記基板上に堆積され、入射する放射線を光に変換するシンチレータ層と、前記シンチレータ層に貼り付けられ、前記シンチレータ層から放出された光を電荷に変換する光検出基板と、を備える。 A radiation detector according to a seventh aspect of the present invention includes a plurality of stacked substrates, a scintillator layer that is deposited on the substrate and converts incident radiation into light, and is attached to the scintillator layer, A light detection substrate that converts light emitted from the scintillator layer into electric charge.
 この構成によれば、例えば放射線検出器の製造時においては、基板を複数枚積層して、基板全体の厚みを大きくし、ハンドリング性を向上したり、シンチレータ層の重みによる反りを防止したり、輻射熱による変形を防止したりすることができる。
 また、放射線検出器の製造後においては、積層された複数枚の基板のうち外側の基板を取り除くことにより、基板の厚みを小さくすることができるので、基板の厚みが不均一になることもなく、放射線検出器を軽量化することができる。さらに、基板の厚みが小さくなると放射線の吸収も低減されるので、放射線検出器を高感度化できる。
 また、外側の基板を取り除くだけで良いので、シンチレータ層に損傷を与えることもない。
According to this configuration, for example, at the time of manufacturing a radiation detector, a plurality of substrates are stacked, the thickness of the entire substrate is increased, handling properties are improved, or warping due to the weight of the scintillator layer is prevented, It is possible to prevent deformation due to radiant heat.
In addition, after manufacturing the radiation detector, the thickness of the substrate can be reduced by removing the outer substrate from the plurality of stacked substrates, so that the thickness of the substrate does not become uneven. The weight of the radiation detector can be reduced. Furthermore, since the absorption of radiation is reduced when the thickness of the substrate is reduced, the sensitivity of the radiation detector can be increased.
Further, since it is only necessary to remove the outer substrate, the scintillator layer is not damaged.
 また、基板全体の厚みが大きいと、熱膨張量が大きくなり、光検出基板の熱膨張量との差が広がって、温度変化により放射線検出器が熱膨張して反る可能性があるが、積層された複数枚の基板のうち外側の基板を取り除くことにより、熱膨張量と比例関係にある基板の厚みを小さくして、放射線検出器の反りを抑制することもできる。また、基板の厚みを小さくして、放射線検出器の反る力を抑制することもできる。 In addition, if the thickness of the entire substrate is large, the amount of thermal expansion increases, the difference between the amount of thermal expansion of the light detection substrate widens, and there is a possibility that the radiation detector will thermally expand due to temperature change and warp. By removing the outer substrate from the plurality of stacked substrates, the thickness of the substrate proportional to the thermal expansion amount can be reduced, and the warp of the radiation detector can be suppressed. Moreover, the thickness of the substrate can be reduced to suppress the warping force of the radiation detector.
 本発明の第8態様に係る放射線検出器は、第7態様において、前記積層された複数の基板は、互いに接着剤で接着されている。 In the radiation detector according to the eighth aspect of the present invention, in the seventh aspect, the plurality of stacked substrates are bonded to each other with an adhesive.
 この構成によれば、製造時において、積層された複数の基板上に異物等の落下を防止するために重力方向下側から上側に向けてシンチレータ層を堆積しても、シンチレータ層の重みによって基板同士が剥がれることを抑制できる。また、製造後においては接着剤を剥離することで容易に外側の基板を取り除くことができる。 According to this configuration, even when the scintillator layer is deposited from the lower side to the upper side in the gravitational direction in order to prevent the fall of foreign matters or the like on the plurality of stacked substrates at the time of manufacture, It can suppress that each other peels. Further, after manufacturing, the outer substrate can be easily removed by peeling off the adhesive.
 本発明の第9態様に係る放射線検出器は、第8態様において、前記積層された複数の基板は、2枚であり、外側の前記基板は透明であり、前記接着剤は、前記外側の基板を透過する紫外線によって剥離可能である。 The radiation detector according to a ninth aspect of the present invention is the radiation detector according to the eighth aspect, wherein the plurality of stacked substrates are two, the outer substrate is transparent, and the adhesive is the outer substrate. Can be peeled off by ultraviolet rays that pass through.
 この構成によれば、紫外線照射によって、積層された2枚の基板のうち外側の基板を容易に取り除くことができる。 According to this configuration, the outer substrate of the two stacked substrates can be easily removed by ultraviolet irradiation.
 本発明の第10態様に係る放射線検出器は、第8態様において、前記積層された複数の基板は、2枚であり、外側の前記基板には、該基板を貫通した穴部が設けられ、前記接着剤は、前記穴部を通過した剥離剤により剥離可能である。 The radiation detector according to a tenth aspect of the present invention is the radiation detector according to the eighth aspect, wherein the plurality of stacked substrates are two, and the outer substrate is provided with a hole penetrating the substrate, The adhesive can be peeled by the release agent that has passed through the hole.
 この構成によれば、剥離剤を外側の基板から流し込むことによって、積層された2枚の基板のうち外側の基板を容易に取り除くことができる。 According to this configuration, the outer substrate can be easily removed from the two stacked substrates by pouring the release agent from the outer substrate.
 本発明の第11態様に係る放射線検出器は、第7態様~第10態様のいずれか1つにおいて、前記シンチレータ層は、複数の柱状結晶体を含んで構成される。 The radiation detector according to an eleventh aspect of the present invention is the radiation detector according to any one of the seventh to tenth aspects, wherein the scintillator layer includes a plurality of columnar crystals.
 このようにシンチレータ層を複数の柱状結晶体を含んで構成しても、積層された複数の基板のうち外側の基板のみ取り除き、内側の基板を残すことができるので、シンチレータ層がバランスを崩して自ら損傷を生じることがない。 Even if the scintillator layer includes a plurality of columnar crystals, it is possible to remove only the outer substrate and leave the inner substrate among the plurality of stacked substrates, so that the scintillator layer loses its balance. It does not cause damage on its own.
 本発明によれば、軽量及び放射線に対する高感度な放射線検出器及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a radiation detector that is lightweight and highly sensitive to radiation, and a method for manufacturing the same.
放射線画像撮影時における電子カセッテの配置を示す概略図である。It is the schematic which shows arrangement | positioning of the electronic cassette at the time of radiographic image photography. 図1に示す電子カセッテの内部構造を示す概略斜視図である。It is a schematic perspective view which shows the internal structure of the electronic cassette shown in FIG. 図1に示す電子カセッテの回路図を示す図である。It is a figure which shows the circuit diagram of the electronic cassette shown in FIG. 図1に示す電子カセッテの断面構成を示した断面図である。It is sectional drawing which showed the cross-sectional structure of the electronic cassette shown in FIG. 本発明の第1実施形態に係る放射線検出器の製造工程を示した図であって、特に基板用意工程を示す図である。It is the figure which showed the manufacturing process of the radiation detector which concerns on 1st Embodiment of this invention, Comprising: It is a figure which shows a board | substrate preparation process especially. 本発明の第1実施形態に係る放射線検出器の製造工程を示した図であって、特に堆積工程を示す図である。It is the figure which showed the manufacturing process of the radiation detector concerning 1st Embodiment of this invention, Comprising: It is a figure which shows a deposition process especially. 本発明の第1実施形態に係る放射線検出器の製造工程を示した図であって、特に貼付工程を示す図である。It is the figure which showed the manufacturing process of the radiation detector which concerns on 1st Embodiment of this invention, Comprising: It is a figure which shows a sticking process especially. 本発明の第1実施形態に係る放射線検出器の製造工程を示した図であって、特に取除き工程を示す図である。It is the figure which showed the manufacturing process of the radiation detector which concerns on 1st Embodiment of this invention, Comprising: It is a figure which shows a removal process especially. 本発明の第1実施形態に係る放射線検出器の製造工程を示した図であって、特に本発明の第1実施形態に係る放射線検出器を示す図である。It is a figure showing a manufacturing process of a radiation detector concerning a 1st embodiment of the present invention, and is a figure showing a radiation detector concerning a 1st embodiment of the present invention especially. 本発明の第2実施形態に係る放射線検出器の製造工程を示した図であって、特に基板用意工程を示す図である。It is the figure which showed the manufacturing process of the radiation detector which concerns on 2nd Embodiment of this invention, Comprising: It is a figure which shows a board | substrate preparation process especially. 本発明の第2実施形態に係る放射線検出器の製造工程を示した図であって、特に堆積工程を示す図である。It is the figure which showed the manufacturing process of the radiation detector which concerns on 2nd Embodiment of this invention, Comprising: It is a figure which shows a deposition process especially. 本発明の第2実施形態に係る放射線検出器の製造工程を示した図であって、特に貼付工程を示す図である。It is the figure which showed the manufacturing process of the radiation detector which concerns on 2nd Embodiment of this invention, Comprising: It is a figure which shows a sticking process especially. 本発明の第2実施形態に係る放射線検出器の製造工程を示した図であって、特に取除き工程を示す図である。It is the figure which showed the manufacturing process of the radiation detector which concerns on 2nd Embodiment of this invention, Comprising: It is a figure which shows a removal process especially. 本発明の第2実施形態に係る放射線検出器の製造工程を示した図であって、特に本発明の第2実施形態に係る放射線検出器を示す図である。It is the figure which showed the manufacturing process of the radiation detector which concerns on 2nd Embodiment of this invention, Comprising: It is a figure which shows the radiation detector which concerns on 2nd Embodiment of this invention especially.
(第1実施形態)
 以下、添付の図面を参照しながら、本発明の第1実施形態に係る放射線検出器及びその製造方法について具体的に説明する。なお、図中、同一又は対応する機能を有する部材(構成要素)には同じ符号を付して適宜説明を省略する。
(First embodiment)
Hereinafter, a radiation detector and a manufacturing method thereof according to a first embodiment of the present invention will be specifically described with reference to the accompanying drawings. In the drawings, members (components) having the same or corresponding functions are denoted by the same reference numerals and description thereof is omitted as appropriate.
-放射線画像撮影装置の全体構成-
 まず、本発明の第1実施形態に係る放射線検出器を内蔵した放射線画像撮影装置の一例としての電子カセッテの構成を説明する。
-Overall configuration of radiation imaging equipment-
First, the configuration of an electronic cassette as an example of a radiographic imaging apparatus incorporating a radiation detector according to the first embodiment of the present invention will be described.
 電子カセッテは、可搬性を有し、被写体を透過した放射線源からの放射線を検出し、その検出した放射線により表わされる放射線画像の画像情報を生成し、その生成した画像情報を記憶可能な放射線画像撮影装置であり、具体的には以下に示すように構成されている。なお、電子カセッテは、生成した画像情報を記憶しない構成であっても良い。 The electronic cassette is portable, detects radiation from a radiation source that has passed through the subject, generates image information of a radiation image represented by the detected radiation, and can store the generated image information This is a photographing apparatus, and specifically configured as shown below. The electronic cassette may be configured not to store the generated image information.
 図1は、放射線画像撮影時における電子カセッテの配置を示す概略図である。 FIG. 1 is a schematic diagram showing the arrangement of electronic cassettes during radiographic imaging.
 電子カセッテ10は、放射線画像の撮影時において、放射線Xを発生させる放射線源としての放射線発生部12と間隔を空けて配置される。このときの放射線発生部12と電子カセッテ10との間は、被写体としての患者14が位置するための撮影位置とされており、放射線画像の撮影が指示されると、放射線発生部12は予め与えられた撮影条件等に応じた放射線量の放射線Xを射出する。放射線発生部12から射出された放射線Xは、撮影位置に位置している患者14を透過することで画像情報を担持した後に電子カセッテ10に照射される。 The electronic cassette 10 is arranged at a distance from the radiation generation unit 12 as a radiation source for generating the radiation X at the time of capturing a radiation image. The space between the radiation generation unit 12 and the electronic cassette 10 at this time is an imaging position for the patient 14 as a subject to be positioned. When an instruction to capture a radiographic image is given, the radiation generation unit 12 gives in advance. Radiation X having a radiation dose according to the imaging conditions is emitted. The radiation X emitted from the radiation generation unit 12 passes through the patient 14 located at the imaging position, and is then applied to the electronic cassette 10 after carrying image information.
 図2は、電子カセッテ10の内部構造を示す概略斜視図である。 FIG. 2 is a schematic perspective view showing the internal structure of the electronic cassette 10.
 電子カセッテ10は、放射線Xを透過させる材料から成り、所定の厚みを有する平板状の筐体16を備えている。そして、この筐体16の内部に、放射線Xが照射される筐体16の照射面18側から、患者14を透過した放射線Xを検出する放射線検出器20、及び当該放射線検出器20を制御する制御基板22が順に設けられている。 The electronic cassette 10 is made of a material that transmits the radiation X and includes a flat casing 16 having a predetermined thickness. And the radiation detector 20 which detects the radiation X which permeate | transmitted the patient 14 from the irradiation surface 18 side of the housing | casing 16 where radiation X is irradiated inside this housing | casing 16, and the said radiation detector 20 are controlled. A control board 22 is provided in order.
 図3は、電子カセッテ10の回路図を示す図である。 FIG. 3 is a circuit diagram of the electronic cassette 10.
 放射線検出器20は、上部電極と半導体層と下部電極を備え、光を受けて電荷を蓄積するセンサ部24と、センサ部24に蓄積された電荷を読み出すためのTFTスイッチ26と、を含んで構成される画素28が2次元状に多数設けられたTFT(Thin Film Transistor)アクティブマトリクス基板30(以下、TFT基板という)を備えている。 The radiation detector 20 includes an upper electrode, a semiconductor layer, and a lower electrode, and includes a sensor unit 24 that accumulates charges by receiving light, and a TFT switch 26 for reading out the charges accumulated in the sensor unit 24. The pixel 28 to be configured includes a TFT (Thin FilmorTransistor) active matrix substrate 30 (hereinafter referred to as a TFT substrate) in which a large number of two-dimensional pixels 28 are provided.
 また、TFT基板30には、前述したTFTスイッチ26をON/OFFするための複数の走査配線32と、センサ部24に蓄積された電荷を読み出すための複数の信号配線34と、が互いに交差して設けられている。 Further, on the TFT substrate 30, a plurality of scanning wirings 32 for turning on / off the above-described TFT switch 26 and a plurality of signal wirings 34 for reading out electric charges accumulated in the sensor unit 24 intersect each other. Is provided.
 本発明の第1実施形態に係る放射線検出器20では、TFT基板30の表面にシンチレータ層36が貼り付けられている。 In the radiation detector 20 according to the first embodiment of the present invention, the scintillator layer 36 is attached to the surface of the TFT substrate 30.
 シンチレータ層36は、照射されたX線などの放射線Xを光に変換する。センサ部24は、シンチレータ層36から照射された光を受けて電荷を蓄積する。 The scintillator layer 36 converts radiation X such as irradiated X-rays into light. The sensor unit 24 receives the light emitted from the scintillator layer 36 and accumulates electric charges.
 そして、各信号配線34には、信号配線34に接続された何れかのTFTスイッチ26がONされることによりセンサ部24に蓄積された電荷量に応じて放射線画像を示す電気信号(画像信号)が流れるようになっている。 Each signal wiring 34 has an electrical signal (image signal) indicating a radiation image in accordance with the amount of charge accumulated in the sensor unit 24 when any TFT switch 26 connected to the signal wiring 34 is turned on. Is flowing.
 また、放射線検出器20の信号配線34方向の一端側には、結線用のコネクタ38が複数個並んで設けられ、走査配線32方向の一端側には、コネクタ40が複数個並んで設けられている。そして、各信号配線34はコネクタ38に接続され、各走査配線32はコネクタ40に接続されている。 Further, a plurality of connection connectors 38 are arranged side by side on one end side in the signal wiring 34 direction of the radiation detector 20, and a plurality of connectors 40 are arranged on one end side in the scanning wiring 32 direction. Yes. Each signal wiring 34 is connected to a connector 38, and each scanning wiring 32 is connected to a connector 40.
 これらコネクタ38には、フレキシブルケーブル42の一端が電気的に接続されている。また、コネクタ40には、フレキシブルケーブル44の一端が電気的に接続されている。
 そして、これらフレキシブルケーブル42及びフレキシブルケーブル44は、制御基板22に結合されている。
One end of a flexible cable 42 is electrically connected to these connectors 38. One end of the flexible cable 44 is electrically connected to the connector 40.
The flexible cable 42 and the flexible cable 44 are coupled to the control board 22.
 この制御基板22には、放射線検出器20による撮影動作の制御、及び各信号配線34に流れる電気信号に対する信号処理の制御を行う制御部46が設けられ、制御部46は、信号検出回路48と、スキャン信号制御回路50と、を備えている。 The control board 22 is provided with a control unit 46 for controlling the imaging operation by the radiation detector 20 and controlling the signal processing for the electric signal flowing through each signal wiring 34. The control unit 46 includes a signal detection circuit 48 and a control unit 46. And a scan signal control circuit 50.
 信号検出回路48には、複数個のコネクタ52が設けられており、これらのコネクタ52に、上述したフレキシブルケーブル42の他端が電気的に接続されている。信号検出回路48は、信号配線34毎に、入力される電気信号を増幅する増幅回路を内蔵している。この構成により、信号検出回路48は、各信号配線34より入力される電気信号を増幅回路により増幅して検出することで、画像を構成する各画素28の情報として、各センサ部24に蓄積された電荷量を検出する。 The signal detection circuit 48 is provided with a plurality of connectors 52, to which the other end of the flexible cable 42 is electrically connected. The signal detection circuit 48 incorporates an amplification circuit for amplifying an input electric signal for each signal wiring 34. With this configuration, the signal detection circuit 48 amplifies and detects the electric signal input from each signal wiring 34 by the amplification circuit, and is stored in each sensor unit 24 as information of each pixel 28 constituting the image. Detect the amount of charge.
 一方、スキャン信号制御回路50には、複数個のコネクタ54が設けられており、これらのコネクタ54に、上述したフレキシブルケーブル44の他端が電気的に接続されており、スキャン信号制御回路50が各走査配線32にTFTスイッチ26をON/OFFするための制御信号を出力可能とされている。 On the other hand, the scan signal control circuit 50 is provided with a plurality of connectors 54, and the other end of the flexible cable 44 described above is electrically connected to these connectors 54. A control signal for turning on / off the TFT switch 26 can be output to each scanning wiring 32.
 このような構成において放射線画像の撮影を行う場合、放射線検出器20には患者14を透過した放射線Xが照射される。照射された放射線Xはシンチレータ層36で光に変換され、センサ部24に照射される。センサ部24は、シンチレータ層36から照射された光を受けて電荷を蓄積する。 When taking a radiographic image in such a configuration, the radiation detector 20 is irradiated with the radiation X transmitted through the patient 14. The irradiated radiation X is converted into light by the scintillator layer 36 and irradiated to the sensor unit 24. The sensor unit 24 receives the light emitted from the scintillator layer 36 and accumulates electric charges.
 画像読出時には、スキャン信号制御回路50から放射線検出器20のTFTスイッチ26のゲート電極に走査配線32を介して順次ON信号(+10~20V)が印加される。これにより、放射線検出器20のTFTスイッチ26が順次ONされることによりセンサ部24に蓄積された電荷量に応じた電気信号が信号配線34に流れ出す。信号検出回路48は、放射線検出器20の信号配線34に流れ出した電気信号に基づいて各センサ部24に蓄積された電荷量を、画像を構成する各画素28の情報として検出する。これにより、放射線検出器20に照射された放射線により示される画像を示す画像情報を得る。 At the time of image reading, an ON signal (+10 to 20 V) is sequentially applied from the scan signal control circuit 50 to the gate electrode of the TFT switch 26 of the radiation detector 20 through the scan wiring 32. Thereby, when the TFT switch 26 of the radiation detector 20 is sequentially turned on, an electrical signal corresponding to the amount of charge accumulated in the sensor unit 24 flows out to the signal wiring 34. The signal detection circuit 48 detects the amount of electric charge accumulated in each sensor unit 24 based on the electric signal that has flowed out to the signal wiring 34 of the radiation detector 20 as information of each pixel 28 constituting the image. Thereby, the image information which shows the image shown with the radiation irradiated to the radiation detector 20 is obtained.
-電子カセッテ10の断面構成-
 次に、電子カセッテ10の構成についてより具体的に説明する。図4は、電子カセッテ10の断面構成を示した断面図である。
-Cross-sectional configuration of electronic cassette 10-
Next, the configuration of the electronic cassette 10 will be described more specifically. FIG. 4 is a cross-sectional view showing a cross-sectional configuration of the electronic cassette 10.
 同図に示すように、電子カセッテ10は、その筐体16内部に、放射線Xが照射される照射面18の逆側から順に、上述の制御基板22と放射線検出器20を内蔵している。
 制御基板22は、筐体16内部の底面上に支持脚22Aを介して載置されており、上述のフレキシブルケーブル42及びフレキシブルケーブル44を介して、本発明の第1実施形態に係る放射線検出器20と連結されている。
 なお、以下、実施形態で「上」とは、制御基板22側から放射線検出器20側の方向であり、「下」とは放射線検出器20側から制御基板22側の方向を指すものとする。
As shown in the figure, the electronic cassette 10 contains the control board 22 and the radiation detector 20 in the housing 16 in order from the opposite side of the irradiation surface 18 irradiated with the radiation X.
The control board 22 is placed on the bottom surface inside the housing 16 via a support leg 22A, and the radiation detector according to the first embodiment of the present invention is provided via the flexible cable 42 and the flexible cable 44 described above. 20 is connected.
In the following embodiments, “up” refers to the direction from the control board 22 side to the radiation detector 20 side, and “down” refers to the direction from the radiation detector 20 side to the control board 22 side. .
 本発明の第1実施形態に係る放射線検出器20は、矩形平板状とされ、上述のように患者14を透過した放射線Xにより現される放射線画像を検出するものである。そして、この放射線検出器20は、TFT基板30と、シンチレータ層36と、当該シンチレータ層36の堆積用の基板60とから構成されている。 The radiation detector 20 according to the first embodiment of the present invention has a rectangular flat plate shape, and detects a radiation image represented by the radiation X transmitted through the patient 14 as described above. The radiation detector 20 includes a TFT substrate 30, a scintillator layer 36, and a substrate 60 for depositing the scintillator layer 36.
 TFT基板30は、制御基板22上に載置されており、上述のTFTスイッチ26とセンサ部24とが不図示の基板上に形成されて構成されたものである。
 TFT基板30の基板材料としては、例えばYSZ(ジルコニア安定化イットリウム)、ガラス等の無機材料の他、飽和ポリエステル系樹脂、ポリエチレンテレフタレート(PET)系樹脂、ポリエチレンナフタレート(PEN)系樹脂、ポリブチレンテレフタレート系樹脂、ポリスチレン、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)、架橋フマル酸ジエステル系樹脂、ポリカーボネート(PC)系樹脂、ポリエーテルスルフォン(PES)樹脂、ポリスルフォン(PSF,PSU)樹脂、ポリアリレート(PAR)樹脂、アリルジグリコールカーボネート、環状ポリオレフィン(COP,COC)樹脂、セルロース系樹脂、ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂、マレイミド-オレフィン樹脂、ポリアミド(Pa)樹脂、アクリル系樹脂、フッ素系樹脂、エポキシ系樹脂、シリコーン系樹脂フィルム、ポリベンズアゾール系樹脂、エピスルフィド化合物、液晶ポリマー(LCP)、シアネート系樹脂、芳香族エーテル系樹脂などの有機材料などが挙げられる。その他にも酸化ケイ素粒子との複合プラスチック材料、金属ナノ粒子・無機酸化物ナノ粒子・無機窒化物ナノ粒子などとの複合プラスチック材料、金属系・無機系のナノファイバー及び/又はマイクロファイバーとの複合プラスチック材料、カーボン繊維、カーボンナノチューブとの複合プラスチック材料、ガラスフェレーク・ガラスファイバー・ガラスビーズとの複合プラスチック材料、粘土鉱物や雲母派生結晶構造を有する粒子との複合プラスチック材料、薄いガラスと上記単独有機材料との間に少なくとも1回の接合界面を有する積層プラスチック材料や無機層(例えばSiO, Al, SiO)と上述した材料からなる有機層を交互に積層することで、少なくとも1回以上の接合界面を有するバリア性能を有する複合材料、ステンレス、あるいはステンレスと異種金属を積層した金属積層材料、アルミニウム基板、あるいは表面に酸化処理(例えば、陽極酸化処理)を施すことで表面の絶縁性を向上してある酸化被膜付きのアルミニウム基板を使用することもできる。前記有機材料の場合、寸法安定性、耐溶剤性、電気絶縁性、加工性、低通気性、又は低吸湿性等に優れていることが好ましい。
The TFT substrate 30 is placed on the control substrate 22, and the above-described TFT switch 26 and sensor unit 24 are formed on a substrate (not shown).
As a substrate material of the TFT substrate 30, for example, an inorganic material such as YSZ (zirconia stabilized yttrium), glass, saturated polyester resin, polyethylene terephthalate (PET) resin, polyethylene naphthalate (PEN) resin, polybutylene. Terephthalate resin, polystyrene, polycycloolefin, norbornene resin, poly (chlorotrifluoroethylene), cross-linked fumaric acid diester resin, polycarbonate (PC) resin, polyether sulfone (PES) resin, polysulfone (PSF, PSU) Resin, polyarylate (PAR) resin, allyl diglycol carbonate, cyclic polyolefin (COP, COC) resin, cellulose resin, polyimide (PI) resin, polyamideimide (PARI) resin, maleimide-olefin resin, polyamido Organic materials such as (Pa) resin, acrylic resin, fluorine resin, epoxy resin, silicone resin film, polybenzazole resin, episulfide compound, liquid crystal polymer (LCP), cyanate resin, aromatic ether resin Etc. Other composite plastic materials with silicon oxide particles, composite plastic materials with metal nanoparticles / inorganic oxide nanoparticles / inorganic nitride nanoparticles, composites with metal / inorganic nanofibers and / or microfibers Plastic material, carbon fiber, composite plastic material with carbon nanotube, composite plastic material with glass ferret, glass fiber, glass bead, composite plastic material with clay mineral or particles with mica derived crystal structure, thin glass and above alone By alternately laminating a laminated plastic material or inorganic layer (for example, SiO 2 , Al 2 O 3 , SiO x N y ) having at least one bonding interface with an organic material and an organic layer made of the above-described material. , Having a barrier performance having at least one bonding interface Aluminum with an oxide film whose surface insulation is improved by applying an oxidation treatment (for example, anodizing treatment) to a composite material, stainless steel, or a metal laminate material obtained by laminating stainless and different metals, an aluminum substrate, or the surface. A substrate can also be used. In the case of the organic material, it is preferable that the organic material is excellent in dimensional stability, solvent resistance, electrical insulation, workability, low air permeability, low hygroscopicity, and the like.
 また、TFT基板30の基板材料としては、バイオナノファイバも用いることができる。バイオナノファイバは、バクテリア(酢酸菌、Acetobacter Xylinum)が産出するセルロースミクロフィブリル束(バクテリアセルロース)と透明樹脂とを複合したものである。セルロースミクロフィブリル束は、幅50nmと可視光波長に対して1/10のサイズで、かつ、高強度、高弾性、低熱膨である。バクテリアセルロースにアクリル樹脂、エポキシ樹脂等の透明樹脂を含浸・硬化させることで、繊維を60-70%も含有しながら、波長500nmで約90%の光透過率を示すバイオナノファイバが得られる。バイオナノファイバは、シリコン結晶に匹敵する低い熱膨張係数(3-7ppm)を有し、鋼鉄並の強度(460MPa)、高弾性(30GPa)で、かつフレキシブルであることから、ガラス基板等と比べて薄くTFT基板30を形成できる。
 また、無色透明のアラミドフィルムを用いることもできる。このアラミドフィルムは、315℃までの耐熱性があり、ガラス基板と熱膨張率が近いために製造後の反りが少なく、かつ割れにくいという有利な特徴を持つ。
Further, as a substrate material of the TFT substrate 30, bionanofiber can also be used. The bionanofiber is a composite of a cellulose microfibril bundle (bacterial cellulose) produced by bacteria (Acetobacter Xylinum) and a transparent resin. The cellulose microfibril bundle has a width of 50 nm and a size of 1/10 of the visible light wavelength, and has high strength, high elasticity, and low thermal expansion. By impregnating and curing a transparent resin such as acrylic resin or epoxy resin into bacterial cellulose, a bio-nanofiber having a light transmittance of about 90% at a wavelength of 500 nm can be obtained while containing 60-70% of the fiber. Bionanofiber has a low coefficient of thermal expansion (3-7ppm) comparable to silicon crystals, and is as strong as steel (460MPa), highly elastic (30GPa), and flexible. Compared to glass substrates, etc. A thin TFT substrate 30 can be formed.
A colorless and transparent aramid film can also be used. This aramid film has heat resistance up to 315 ° C., and has an advantageous feature that it has a low thermal expansion rate and is less prone to cracking since it has a thermal expansion coefficient close to that of a glass substrate.
 このTFT基板30の上面には、上述のシンチレータ層36が貼り付けられている。シンチレータ層36は、複数の柱状結晶体を含んだ構造とされており、柱状結晶体同士の間には隙間が形成されている。
 シンチレータ層36の材料としては、例えば、CsI:Tl、CsI:Na(ナトリウム賦活ヨウ化セシウム)、ZnS:Cu及びCsBr等が挙げられる。
The above-described scintillator layer 36 is attached to the upper surface of the TFT substrate 30. The scintillator layer 36 has a structure including a plurality of columnar crystals, and a gap is formed between the columnar crystals.
Examples of the material of the scintillator layer 36 include CsI: Tl, CsI: Na (sodium-activated cesium iodide), ZnS: Cu, and CsBr.
 シンチレータ層36の上面には、シンチレータ層36を気相堆積法により形成する際に使用した堆積用の基板60が設けられている。
 この基板60の材料としては、特に限定はなく、TFT基板30と同様のもの、例えばガラスやバイオナノファイバ、アラミドフィルムを用いることができる。ただし、放射線検出器20の反りを抑制可能という観点から、TFT基板30の熱膨張率と略同一(熱膨張率の差異が数PPM/℃、例えば5PPM/℃以内)の熱膨張率を有したものを用いることが好ましい。
On the upper surface of the scintillator layer 36, a deposition substrate 60 used when the scintillator layer 36 is formed by a vapor deposition method is provided.
The material of the substrate 60 is not particularly limited, and the same material as the TFT substrate 30 such as glass, bionanofiber, and aramid film can be used. However, from the viewpoint that the warpage of the radiation detector 20 can be suppressed, the thermal expansion coefficient is substantially the same as the thermal expansion coefficient of the TFT substrate 30 (difference in the thermal expansion coefficient is within several PPM / ° C., for example, within 5 PPM / ° C.). It is preferable to use one.
 また、基板60の厚みは、基板60の重みを低減して放射線検出器20を軽量化し、かつ放射線Xの吸収を低減するという観点から、薄い方が好ましい。
 また、基板60は反らない方が好ましいが、電子カセッテ10の筺体16内部の空間を考慮して、例えば温度-30℃~50℃の範囲で最大14mmまで反ってもよい。また、このような反りを制御するために、基板60の厚みを、TFT基板30の厚みを考慮しつつ決定してもよい。
The thickness of the substrate 60 is preferably thinner from the viewpoint of reducing the weight of the substrate 60 to reduce the weight of the radiation detector 20 and reducing the absorption of the radiation X.
The substrate 60 is preferably not warped, but may be warped to a maximum of 14 mm in the temperature range of −30 ° C. to 50 ° C., for example, in consideration of the space inside the housing 16 of the electronic cassette 10. In order to control such warpage, the thickness of the substrate 60 may be determined in consideration of the thickness of the TFT substrate 30.
 この基板60の上面側には、隙間を介して筐体16の照射面18が配置されており、この照射面18から、放射線Xが表面照射される。すなわち、放射線検出器20のシンチレータ層36が接着された表側から照射される。 The irradiation surface 18 of the housing 16 is disposed on the upper surface side of the substrate 60 via a gap, and the surface of the irradiation surface 18 is irradiated with the radiation X from the irradiation surface 18. That is, irradiation is performed from the front side to which the scintillator layer 36 of the radiation detector 20 is bonded.
-放射線検出器20の製造方法-
 次に、本発明の第1実施形態に係る放射線検出器20の製造方法を説明する。
-Manufacturing method of radiation detector 20-
Next, a method for manufacturing the radiation detector 20 according to the first embodiment of the present invention will be described.
 図5は、本発明の第1実施形態に係る放射線検出器20の製造工程を示した図であって、図5Aは基板用意工程を示す図であり、図5Bは堆積工程を示す図であり、図5Cは貼付工程を示す図であり、図5Dは取除き工程を示す図であり、図5Eは本発明の第1実施形態に係る放射線検出器20を示す図である。 5A and 5B are diagrams showing a manufacturing process of the radiation detector 20 according to the first embodiment of the present invention. FIG. 5A is a diagram showing a substrate preparation process, and FIG. 5B is a diagram showing a deposition process. FIG. 5C is a view showing the attaching step, FIG. 5D is a view showing the removing step, and FIG. 5E is a view showing the radiation detector 20 according to the first embodiment of the present invention.
1.基板用意工程
 まず、図5Aに示すように、上述した基板60と当該基板60の補強用の基板100との2枚の基板を用意する、基板用意工程を行う。以下、これら2枚の基板を、便宜的に、それぞれ内側基板60、外側基板100と称す。
 外側基板100の材料は、後述する紫外線を透過可能な透明材料であれば、特に限定はなく、TFT基板30や基板60と同様のものを用いることができるが、例えば、アラミドフィルムを用いることが好ましい。
 外側基板100と内側基板60の材料は、室温から後述する蒸着温度に徐々に上げていく時に外側基板100と内側基板60が反らないように、熱膨張率が略同一(熱膨張率の差異が数PPM/℃、例えば5PPM/℃以内)であることが好ましい。具体的に、外側基板100と内側基板60の材料の組み合わせとして、厚ガラス/薄ガラス等の同じ材料や、ガラス/アラミド、アラミド/ガラス等の熱膨張率の差異が数PPM/℃以内の材料のものが挙げられる。
1. Substrate Preparation Step First, as shown in FIG. 5A, a substrate preparation step is performed in which two substrates, the above-described substrate 60 and a substrate 100 for reinforcing the substrate 60, are prepared. Hereinafter, these two substrates are referred to as an inner substrate 60 and an outer substrate 100 for convenience.
The material of the outer substrate 100 is not particularly limited as long as it is a transparent material that can transmit ultraviolet rays, which will be described later, and the same material as the TFT substrate 30 and the substrate 60 can be used. preferable.
The materials of the outer substrate 100 and the inner substrate 60 have substantially the same thermal expansion coefficient (difference in thermal expansion coefficient) so that the outer substrate 100 and the inner substrate 60 do not warp when gradually increasing from room temperature to the deposition temperature described later. Is preferably several PPM / ° C., for example, within 5 PPM / ° C.). Specifically, as a combination of materials of the outer substrate 100 and the inner substrate 60, the same material such as thick glass / thin glass, or a material having a difference in thermal expansion coefficient such as glass / aramid, aramid / glass, etc. within several PPM / ° C. Can be mentioned.
 また、外側基板100の厚みは、内側基板60を薄くするという観点から、内側基板60の厚みよりも厚くすることが好ましい。 The thickness of the outer substrate 100 is preferably larger than the thickness of the inner substrate 60 from the viewpoint of reducing the inner substrate 60.
以上のように2枚の外側基板100及び内側基板60を用意した後、これらを紫外線によって剥離可能な接着剤102により貼り合わせて積層化し、シンチレータ層36の堆積用基板104を得る。
この接着剤102の材料は、紫外線によって剥離するものであり、後述するシンチレータ層36の蒸着温度(例えば200℃)でも接着力を保持するものであれば、特に限定されない。
After the two outer substrates 100 and the inner substrate 60 are prepared as described above, these are bonded and laminated by the adhesive 102 that can be peeled off by ultraviolet rays, and the deposition substrate 104 of the scintillator layer 36 is obtained.
The material of the adhesive 102 is not particularly limited as long as it is peeled off by ultraviolet rays and can maintain adhesive force even at a deposition temperature (for example, 200 ° C.) of a scintillator layer 36 described later.
2.堆積工程
 次に、図5Bに示すように、堆積用基板104のうち内側基板60上に気相堆積法により、シンチレータ層36を堆積する、堆積工程を行う。
 具体的に、CsI:Tlを用いた態様を例に挙げて説明する。
 気相堆積法は常法により行うことができる。即ち、真空度0.01~10Paの環境下、CsI:Tlを抵抗加熱式のるつぼに通電するなどの手段で加熱して気化させ、堆積用基板104の温度(蒸着温度)を室温(20℃)~300℃としてCsI:Tlを堆積用基板104上に蒸着し堆積させればよい。
 気相堆積法により堆積用基板104上にCsI:Tlの結晶相を形成する際、当初は不定形或いは略球状結晶の直径の比較的小さな結晶の集合体が形成される。気相堆積法の実施に際しては、真空度及び堆積用基板104温度の少なくとも一方の条件を変更することで、非柱状結晶領域の形成後に連続して気相堆積法により柱状結晶体を成長させることができる。
 即ち、非柱状結晶領域を形成した後、真空度を上げる、堆積用基板104温度を高くする等の手段のうち少なくとも一方を行うことで、効率よく均一な柱状結晶を成長させることができる。
2. Deposition Step Next, as shown in FIG. 5B, a deposition step is performed in which the scintillator layer 36 is deposited on the inner substrate 60 of the deposition substrate 104 by a vapor deposition method.
Specifically, an embodiment using CsI: Tl will be described as an example.
The vapor deposition method can be performed by a conventional method. That is, in an environment having a degree of vacuum of 0.01 to 10 Pa, CsI: Tl is heated and vaporized by means such as energizing a resistance heating crucible, and the temperature (evaporation temperature) of the deposition substrate 104 is room temperature (20 ° C.). ) To 300 ° C. CsI: Tl may be deposited and deposited on the deposition substrate 104.
When the CsI: Tl crystal phase is formed on the deposition substrate 104 by the vapor deposition method, initially, an aggregate of crystals having a relatively small diameter of an amorphous or substantially spherical crystal is formed. In carrying out the vapor deposition method, by changing at least one of the conditions of the degree of vacuum and the temperature of the deposition substrate 104, columnar crystals can be grown continuously by the vapor deposition method after the non-columnar crystal region is formed. Can do.
That is, after forming the non-columnar crystal region, uniform columnar crystals can be efficiently grown by performing at least one of the means such as increasing the degree of vacuum and increasing the temperature of the deposition substrate 104.
3.貼付工程
 次に、図5Cに示すように、シンチレータ層36に、接着剤106を用いてTFT基板30を貼り付ける、貼付工程を行う。
3. Next, as shown in FIG. 5C, a pasting step is performed in which the TFT substrate 30 is pasted to the scintillator layer 36 using the adhesive 106.
4.取除き工程
 次に、図5Dに示すように、堆積用基板104のうち外側基板100をシンチレータ層36が堆積された内側基板60から取り除く、取除き工程を行う。
 具体的には、外側基板100の外側から紫外線UVを照射し、透明な外側基板100を透過させ、接着剤102を剥離させて、外側基板100を取り除く。
4). Removal Step Next, as shown in FIG. 5D, a removal step of removing the outer substrate 100 from the inner substrate 60 on which the scintillator layer 36 is deposited is performed.
Specifically, ultraviolet rays UV are irradiated from the outside of the outer substrate 100, the transparent outer substrate 100 is transmitted, the adhesive 102 is peeled off, and the outer substrate 100 is removed.
5.放射線検出器20の取得
 以上の工程を経ることにより、図5E及び図4に示すような放射線検出器20を取得することができる。
5. Acquisition of Radiation Detector 20 Through the above steps, the radiation detector 20 as shown in FIGS. 5E and 4 can be acquired.
-作用-
 本発明の第1実施形態に係る放射線検出器20の製造方法によれば、堆積工程時においては、2枚の基板100,60が積層された堆積用基板104上にシンチレータ層36を堆積するので、堆積用基板104全体の厚みを大きくした上でシンチレータ層36を堆積できる。したがって、ハンドリング性を向上したり、シンチレータ層36の重みによる反りを防止したり、輻射熱による変形を防止したりすることができる。
 また、貼付工程後の取除き工程においては、外側基板100をシンチレータ層36が堆積された内側基板60から取り除くので、放射線検出器20の製造後に残る堆積用基板104の厚みを小さくすることができ、内側基板60の厚みが不均一になることもなく、放射線検出器20を軽量化することができる。さらに、堆積用基板104の厚みが小さくなると放射線Xの吸収も低減されるので、放射線検出器20を高感度化することができる。
 また、取除き工程では、外側基板100をシンチレータ層36が堆積された内側基板60から取り除くので、内側基板60は残ったままとなり、取除き工程の際にシンチレータ層36に損傷を与えることもない。
-Action-
According to the method for manufacturing the radiation detector 20 according to the first embodiment of the present invention, the scintillator layer 36 is deposited on the deposition substrate 104 in which the two substrates 100 and 60 are laminated in the deposition process. The scintillator layer 36 can be deposited after increasing the thickness of the entire deposition substrate 104. Therefore, handling properties can be improved, warpage due to the weight of the scintillator layer 36 can be prevented, and deformation due to radiant heat can be prevented.
Further, in the removal step after the attaching step, the outer substrate 100 is removed from the inner substrate 60 on which the scintillator layer 36 is deposited, so that the thickness of the deposition substrate 104 remaining after the manufacture of the radiation detector 20 can be reduced. The radiation detector 20 can be reduced in weight without the thickness of the inner substrate 60 becoming uneven. Furthermore, since the absorption of the radiation X is reduced when the thickness of the deposition substrate 104 is reduced, the sensitivity of the radiation detector 20 can be increased.
In the removal step, the outer substrate 100 is removed from the inner substrate 60 on which the scintillator layer 36 is deposited, so that the inner substrate 60 remains and does not damage the scintillator layer 36 during the removal step. .
 また、堆積用基板104の厚みが大きいと、熱膨張量が大きくなり、光検出基板の熱膨張量との差が広がって、温度変化により放射線検出器20が熱膨張して反る可能性があるが、堆積用基板104のうち外側基板100を取り除くことにより、熱膨張量と比例関係にある堆積用基板104の厚みを小さくして、放射線検出器20の反りを抑制することができる。また、堆積用基板104の厚みを小さくして、放射線検出器20の反る力を抑制することもできる。 In addition, if the thickness of the deposition substrate 104 is large, the amount of thermal expansion increases, and the difference from the amount of thermal expansion of the light detection substrate widens, and the radiation detector 20 may be warped due to thermal expansion due to temperature change. However, by removing the outer substrate 100 from the deposition substrate 104, the thickness of the deposition substrate 104 that is proportional to the amount of thermal expansion can be reduced, and the warpage of the radiation detector 20 can be suppressed. Further, the thickness of the deposition substrate 104 can be reduced to suppress the warping force of the radiation detector 20.
 また、堆積用基板104を構成する外側基板100と内側基板60は、互いに接着剤102で接着している。従って、シンチレータ層36の堆積工程時に、堆積用基板104上に異物等の落下を防止するために重力方向下側から上側に向けてシンチレータ層36を堆積しても、シンチレータ層36の重みによって、外側基板100と内側基板60とが剥がれること抑制することができる。また、製造後においては接着剤102を剥離することで容易に外側基板100を取り除くことができる。 Further, the outer substrate 100 and the inner substrate 60 constituting the deposition substrate 104 are bonded to each other with an adhesive 102. Therefore, even when the scintillator layer 36 is deposited from the lower side to the upper side in the direction of gravity in order to prevent the fall of foreign matter or the like on the deposition substrate 104 during the deposition process of the scintillator layer 36, It is possible to prevent the outer substrate 100 and the inner substrate 60 from peeling off. Further, after manufacturing, the outer substrate 100 can be easily removed by removing the adhesive 102.
 また、外側基板100側から紫外線UVを照射することによって、接着剤102を剥離するため、堆積用基板104のうち外側基板100を容易に取り除くことができる。 Further, since the adhesive 102 is peeled off by irradiating ultraviolet rays UV from the outer substrate 100 side, the outer substrate 100 can be easily removed from the deposition substrate 104.
 また、堆積工程では、気相堆積法により、複数の柱状結晶体を含んだシンチレータ層36を堆積している。このように複数の柱状結晶体を含んだシンチレータ層36を堆積しても、堆積用基板104のうち外側基板100のみ取り除き、内側基板60を残すことができるので、シンチレータ層36がバランスを崩して自ら損傷を生じることがない。 In the deposition process, the scintillator layer 36 including a plurality of columnar crystals is deposited by a vapor deposition method. Even when the scintillator layer 36 including a plurality of columnar crystals is deposited in this manner, only the outer substrate 100 can be removed from the deposition substrate 104 and the inner substrate 60 can be left, so that the scintillator layer 36 loses its balance. It does not cause damage on its own.
(第2実施形態)
 次に、本発明の第2実施形態に係る放射線検出器200及びその製造方法について説明する。
(Second Embodiment)
Next, a radiation detector 200 and a method for manufacturing the same according to a second embodiment of the present invention will be described.
-放射線検出器200の製造方法-
 図6は、本発明の第2実施形態に係る放射線検出器200の製造工程を示した図であって、図6Aは基板用意工程を示す図であり、図6Bは堆積工程を示す図であり、図6Cは貼付工程を示す図であり、図6Dは取除き工程を示す図であり、図6Eは本発明の第2実施形態に係る放射線検出器200を示す図である。
-Manufacturing method of radiation detector 200-
6A and 6B are diagrams showing a manufacturing process of the radiation detector 200 according to the second embodiment of the present invention. FIG. 6A is a diagram showing a substrate preparation process, and FIG. 6B is a diagram showing a deposition process. FIG. 6C is a view showing the attaching step, FIG. 6D is a view showing the removing step, and FIG. 6E is a view showing the radiation detector 200 according to the second embodiment of the present invention.
1.基板用意工程
 まず、図6Aに示すように、上述した基板60と当該基板60の補強用の基板202との2枚の基板を用意する、基板用意工程を行う。以下、これら2枚の基板を、便宜的に、それぞれ内側基板60、外側基板202と称す。
 外側基板202には、該外側基板202を貫通した複数の穴部204が設けられている。そして、外側基板202の材料は、第1実施形態の外側基板100とは異なり透明材料でなくてもよく、TFT基板30や内側基板60と同様のものを用いることができるが、例えば、アルミニウムやカーボンを用いることができる。
 外側基板202と内側基板60の材料は、室温から後述する蒸着温度に徐々に上げていく時に外側基板202及び内側基板60が反らないように、熱膨張率が略同一(熱膨張率の差異が数PPM/℃、例えば5PPM/℃以内)であることが好ましい。具体的に、外側基板202と内側基板60の材料の組み合わせとして、カーボン/ガラス等の熱膨張率の差異が数PPM/℃以内の材料のものが挙げられる。
1. Substrate Preparation Step First, as shown in FIG. 6A, a substrate preparation step of preparing two substrates, the substrate 60 described above and a substrate 202 for reinforcement of the substrate 60, is performed. Hereinafter, these two substrates are referred to as an inner substrate 60 and an outer substrate 202 for convenience.
The outer substrate 202 is provided with a plurality of holes 204 that penetrate the outer substrate 202. The material of the outer substrate 202 may not be a transparent material unlike the outer substrate 100 of the first embodiment, and the same material as the TFT substrate 30 and the inner substrate 60 can be used. Carbon can be used.
The materials of the outer substrate 202 and the inner substrate 60 have substantially the same thermal expansion coefficient (difference in thermal expansion coefficient) so that the outer substrate 202 and the inner substrate 60 do not warp when gradually increasing from room temperature to a deposition temperature described later. Is preferably several PPM / ° C., for example, within 5 PPM / ° C.). Specifically, as a combination of materials of the outer substrate 202 and the inner substrate 60, a material having a difference in thermal expansion coefficient such as carbon / glass or the like within several PPM / ° C. can be cited.
以上のように2枚の外側基板202及び内側基板60を用意した後、接着剤206により貼り合わせて積層化し、シンチレータ層36の堆積用基板208を得る。
この接着剤206の材料は、シンチレータ層36の蒸着温度(例えば200℃)でも接着力を保持するものであれば、特に限定されない。
After the two outer substrates 202 and the inner substrate 60 are prepared as described above, the substrates 206 are laminated by bonding with the adhesive 206 to obtain the deposition substrate 208 of the scintillator layer 36.
The material of the adhesive 206 is not particularly limited as long as it can maintain the adhesive force even at the deposition temperature (for example, 200 ° C.) of the scintillator layer 36.
2.堆積工程
 次に、図6Bに示すように、堆積用基板208のうち内側基板60上に気相堆積法により、シンチレータ層36を堆積する、堆積工程を行う。気相堆積法の具体的方法は、第1実施形態で説明したものと同様である。
2. Deposition Step Next, as shown in FIG. 6B, a deposition step is performed in which the scintillator layer 36 is deposited on the inner substrate 60 of the deposition substrate 208 by a vapor deposition method. The specific method of the vapor deposition method is the same as that described in the first embodiment.
3.貼付工程
 次に、図6Cに示すように、シンチレータ層36に、接着剤106を用いてTFT基板30を貼り付ける、貼付工程を行う。
3. Next, as shown in FIG. 6C, a pasting step is performed in which the TFT substrate 30 is pasted on the scintillator layer 36 using an adhesive 106.
4.取除き工程
 次に、図6Dに示すように、堆積用基板208のうち外側基板202をシンチレータ層36が堆積された内側基板60から取り除く、取除き工程を行う。
 具体的には、アルコールを含む液体等接着剤106用の剥離剤REを外側基板202上から複数の穴部204に流し込むことによって、接着剤106を剥離して外側基板202を取り除く。
4). Removal Step Next, as shown in FIG. 6D, a removal step of removing the outer substrate 202 from the deposition substrate 208 from the inner substrate 60 on which the scintillator layer 36 is deposited is performed.
Specifically, the adhesive 106 is peeled off and the outer substrate 202 is removed by pouring a release agent RE for the adhesive 106 such as a liquid containing alcohol into the plurality of holes 204 from the outer substrate 202.
5.放射線検出器200の取得
 以上の工程を経ることにより、図6Eに示すような放射線検出器200を取得することができる。そして、得られた放射線検出器200を第1実施形態で説明した放射線検出器20の代わりとして、電子カセッテ10に組み込むことができる。
5. Acquisition of Radiation Detector 200 Through the above steps, the radiation detector 200 as shown in FIG. 6E can be acquired. The obtained radiation detector 200 can be incorporated into the electronic cassette 10 in place of the radiation detector 20 described in the first embodiment.
-作用-
 本発明の第2実施形態に係る放射線検出器200の製造方法によれば、剥離剤REを外側基板202から流し込むことによって、堆積用基板208のうち外側基板202を容易に取り除くことができる。また、第1態様に比べ、外側基板202を透明とする必要がないので外側基板202の選択性を広げることができる。
-Action-
According to the method of manufacturing the radiation detector 200 according to the second embodiment of the present invention, the outer substrate 202 can be easily removed from the deposition substrate 208 by pouring the release agent RE from the outer substrate 202. In addition, the selectivity of the outer substrate 202 can be expanded because the outer substrate 202 does not need to be transparent as compared with the first embodiment.
(変形例)
 なお、本発明を特定の第1,第2実施形態について詳細に説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであり、例えば上述の複数の実施形態は、適宜、組み合わされて実施可能である。また、以下の変形例を、適宜、組み合わせてもよい。
(Modification)
Although the present invention has been described in detail with respect to specific first and second embodiments, the present invention is not limited to such embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art. For example, the above-described plurality of embodiments can be implemented in combination as appropriate. Moreover, you may combine the following modifications suitably.
 例えば、第1実施形態では、筐体16の内部には、放射線Xが照射される筐体16の照射面18側から、患者14を透過した放射線Xを検出する放射線検出器20、及び制御基板22が順に設けられている場合を説明したが、放射線Xが照射される照射面18側から順に、患者14を透過することに伴って生ずる放射線Xの散乱線を除去するグリッド、放射線検出器20、及び放射線Xのバック散乱線を吸収する鉛板が収容されていてもよい。 For example, in the first embodiment, the housing 16 includes a radiation detector 20 that detects the radiation X that has passed through the patient 14 from the irradiation surface 18 side of the housing 16 that is irradiated with the radiation X, and a control board. Although the case where 22 is provided in order has been described, in order from the irradiation surface 18 side where the radiation X is irradiated, the grid and the radiation detector 20 that remove scattered radiation of the radiation X caused by passing through the patient 14. , And a lead plate that absorbs backscattered radiation X may be accommodated.
 また、第1実施形態では、筐体16の形状が矩形平板状である場合を説明したが、特に限定されるものではなく、例えば正面視が正方形や円形になるようにしてもよい。 In the first embodiment, the case where the shape of the housing 16 is a rectangular flat plate has been described. However, the case 16 is not particularly limited, and for example, the front view may be a square or a circle.
 また、第1実施形態では、制御基板22を1つで形成した場合について説明したが、本発明はかかる実施形態に限定されるものではなく、制御基板22が機能毎に複数に分かれていてもよい。さらに、制御基板22を、放射線検出器20と垂直方向(筐体16の厚み方向)に並んで配置する場合を説明したが、放射線検出器20と水平方向に並んで配置するようにしてもよい。 Moreover, although 1st Embodiment demonstrated the case where the control board 22 was formed by one, this invention is not limited to this embodiment, Even if the control board 22 is divided into several for every function. Good. Furthermore, although the case where the control board 22 is arranged side by side in the vertical direction (thickness direction of the housing 16) with the radiation detector 20 has been described, it may be arranged side by side with the radiation detector 20 in the horizontal direction. .
 また、第1,第2実施形態において、内側基板60がアルミニウムから構成されていない場合、堆積用基板104,208上にアルミニウムの反射板を貼り付け、当該反射板の上に、シンチレータ層36を堆積してもよい。この場合、反射板がない場合に比べ、シンチレータ層36から照射された光をより多くTFT基板30が受光することができる。 In the first and second embodiments, when the inner substrate 60 is not made of aluminum, an aluminum reflecting plate is pasted on the deposition substrates 104 and 208, and the scintillator layer 36 is formed on the reflecting plate. It may be deposited. In this case, the TFT substrate 30 can receive more light emitted from the scintillator layer 36 than in the case where there is no reflector.
また、第1実施形態の電子カセッテ10では、放射線Xが、放射線検出器20のシンチレータ層36が接着された表側から照射、所謂表面照射される場合を説明したが、放射線検出器20のシンチレータ層36が接着されていない裏面側から照射、所謂裏面照射されてもよい。また、この場合、放射線Xが内側基板60を介さずシンチレータ層36に照射されることになるので、取除き工程後に、内側基板60に切り込みを入れることもできる。これにより、放射線検出器20の反りをさらに抑制することができる。なお、第2実施形態でも同様な方法を行うことができる。 In the electronic cassette 10 of the first embodiment, the case where the radiation X is irradiated from the front side to which the scintillator layer 36 of the radiation detector 20 is bonded, that is, the so-called surface irradiation has been described, but the scintillator layer of the radiation detector 20 is described. Irradiation from the back surface side to which 36 is not bonded, so-called back surface irradiation may be performed. Further, in this case, since the radiation X is irradiated to the scintillator layer 36 without passing through the inner substrate 60, the inner substrate 60 can be cut after the removing step. Thereby, the curvature of the radiation detector 20 can further be suppressed. A similar method can be performed in the second embodiment.
 また、第1実施形態では接着剤102を紫外線UVにより、また第2実施形態では接着剤204を剥離剤REにより剥離する場合を説明したが、熱可塑性接着剤を熱により剥離してもよい。この場合、接着剤の材料は、シンチレータ層36の蒸着温度よりも高い温度で、剥離する材料とすることが好ましい。
 また、外側基板100と内側基板60は、接着剤102により接着されている場合を説明したが、例えば両面テープで接着されていてもよいし、また接着されておらずまた単に重ねあわされているだけでもよい。
Further, in the first embodiment, the case where the adhesive 102 is peeled off by the ultraviolet ray UV and the adhesive 204 is peeled off by the release agent RE in the second embodiment has been described, but the thermoplastic adhesive may be peeled off by heat. In this case, the adhesive material is preferably a material that peels off at a temperature higher than the vapor deposition temperature of the scintillator layer 36.
Moreover, although the case where the outer side board | substrate 100 and the inner side board | substrate 60 were adhere | attached with the adhesive agent 102 was demonstrated, you may adhere | attach with the double-sided tape, for example, it is not adhere | attached, and is simply overlaid. Just be fine.
 また、第1実施形態では、堆積用基板104が積層された2枚の基板100,60で構成される場合を説明したが、3枚以上の複数の基板で構成されていてもよい。なお、第2実施形態でも同様な構成とすることができる。 In the first embodiment, the case where the deposition substrate 104 is configured by the two substrates 100 and 60 laminated is described. However, the deposition substrate 104 may be configured by a plurality of three or more substrates. Note that the second embodiment can have the same configuration.
 また、シンチレータ層36が複数の柱状結晶体を含む構造とされる場合を説明したが、堆積用基板104,208を用いる限りにおいて、シンチレータ層36は他の構造を有していてもよい。 Further, although the case where the scintillator layer 36 has a structure including a plurality of columnar crystals has been described, as long as the deposition substrates 104 and 208 are used, the scintillator layer 36 may have another structure.
 また、放射線検出器20,200は、外側基板100,202を取り除いた後の構成を完成品として説明したが、外側基板100,202を含んだ形で完成品とし、これら放射線検出器20,200を購入したユーザが、電子カセッテ10に組み込む際に、上記取り除き工程を行うようにしてもよい。 In addition, the radiation detectors 20 and 200 have been described as completed products after the outer substrates 100 and 202 have been removed. However, the radiation detectors 20 and 200 include the outer substrates 100 and 202 as finished products. When the user who purchased the product is incorporated into the electronic cassette 10, the above removal step may be performed.
 第1実施形態では、表面照射を前提としたが、上述した裏面照射を前提とする場合には、図5D等に示すような取除き工程を省略することもできる。すなわち、外側基板100を残したままとすることができる。理由としては、表面照射の場合には、高画質化のために、外側基板100を取り除くことにより当該外側基板100による放射線吸収を回避して放射線をよりシンチレータ層36側に届かせる必要があるが、裏面照射の場合には外側基板100による放射線吸収を考慮する必要がないからである。また、この場合、シンチレータ層36の自重を内側基板60だけでなく外側基板100と合わせて支持することができる。そして、このように外側基板100を残す場合は、この外側基板100を信号検出回路48及びスキャン信号制御回路50の指示台(制御基板22)として利用してもよい。この構成において、放射線検出器20又は信号検出回路48及びスキャン信号制御回路50のいずれかが損傷した時には、指示台から分離させて、損傷したもののみ交換することにより、残りは再利用することができる。
 なお、第2実施形態でも同様に裏面照射の場合には、取除き工程を省略することもできる。
In the first embodiment, it is assumed that the front surface irradiation is performed. However, in the case where the above-described back surface irradiation is assumed, the removal step as illustrated in FIG. 5D and the like can be omitted. That is, the outer substrate 100 can be left as it is. The reason is that in the case of surface irradiation, it is necessary to remove the outer substrate 100 to avoid radiation absorption by the outer substrate 100 and to make the radiation reach the scintillator layer 36 side in order to improve the image quality. This is because there is no need to consider radiation absorption by the outer substrate 100 in the case of backside illumination. In this case, the weight of the scintillator layer 36 can be supported together with the outer substrate 100 as well as the inner substrate 60. When the outer substrate 100 is left as described above, the outer substrate 100 may be used as an indicator (control substrate 22) for the signal detection circuit 48 and the scan signal control circuit 50. In this configuration, when one of the radiation detector 20 or the signal detection circuit 48 and the scan signal control circuit 50 is damaged, the rest can be reused by separating from the indicator and replacing only the damaged one. it can.
In the second embodiment as well, the removal step can be omitted in the case of backside illumination.
 また、第1実施形態の貼付工程では、図5Cに示すように、シンチレータ層36に、接着剤106を用いてTFT基板30を貼り付ける場合を説明したが、接着剤106の代わりに接着テープを用いてもよい。この際、接着テープを第1の接着剤と芯材と第2の接着剤の順の三層構造として、第1の接着剤を内側基板60側に配置し、第2の接着剤を第1の接着剤より接着力を高くして外側基板100側に配置することもできる。このような構成にすれば、外側基板100を取り除く際、放射線検出器20(内側基板60)に接着テープが付着することなく、放射線吸収の妨げ等の問題が発生しない。同様の観点から、第1の接着剤を凹凸形状にして内側基板60側に配置することもできる。
 また、接着剤106や接着テープの接着剤は、シンチレータ層36又はTFT基板30の全面でなく一部のみに塗るようにしてもよい。
Further, in the attaching step of the first embodiment, as shown in FIG. 5C, the case where the TFT substrate 30 is attached to the scintillator layer 36 using the adhesive 106 has been described, but an adhesive tape is used instead of the adhesive 106. It may be used. At this time, the adhesive tape has a three-layer structure in the order of the first adhesive, the core material, and the second adhesive, the first adhesive is disposed on the inner substrate 60 side, and the second adhesive is the first adhesive. It is also possible to dispose it on the outer substrate 100 side with an adhesive force higher than that of the adhesive. With such a configuration, when the outer substrate 100 is removed, the adhesive tape does not adhere to the radiation detector 20 (inner substrate 60), and problems such as interference with radiation absorption do not occur. From the same point of view, the first adhesive can be formed in an uneven shape and disposed on the inner substrate 60 side.
Further, the adhesive 106 and the adhesive of the adhesive tape may be applied to only a part of the scintillator layer 36 or the TFT substrate 30 instead of the entire surface.
 なお、日本出願2010-150207の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書中に参照により取り込まれる。
The entire disclosure of Japanese Application 2010-150207 is incorporated herein by reference.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.
符号10は、電子カセッテである。
符号20は、 放射線検出器である。
符号30は、TFT基板(光検出基板)である。
符号36は、シンチレータ層である。
符号60は、基板(内側の基板)である。
符号100は、基板(外側の基板)である。
符号102は、接着剤である。
符号104は、堆積用基板(基板)である。
符号106は、接着剤である。
符号200は、放射線検出器である。
符号202は、基板(外側の基板)である。
符号204は、穴部である。
符号206は、接着剤である。
符号208は、堆積用基板(基板)である。
符号REは、剥離剤である。
符号UVは、紫外線である。
符号Xは、放射線である。
Reference numeral 10 denotes an electronic cassette.
Reference numeral 20 denotes a radiation detector.
Reference numeral 30 denotes a TFT substrate (light detection substrate).
Reference numeral 36 denotes a scintillator layer.
Reference numeral 60 denotes a substrate (inner substrate).
Reference numeral 100 denotes a substrate (outer substrate).
Reference numeral 102 denotes an adhesive.
Reference numeral 104 denotes a deposition substrate (substrate).
Reference numeral 106 denotes an adhesive.
Reference numeral 200 denotes a radiation detector.
Reference numeral 202 denotes a substrate (outer substrate).
Reference numeral 204 denotes a hole.
Reference numeral 206 denotes an adhesive.
Reference numeral 208 denotes a deposition substrate (substrate).
Reference sign RE is a release agent.
The symbol UV is ultraviolet light.
The symbol X is radiation.

Claims (11)

  1.  積層された複数の基板上に、入射する放射線を光に変換するシンチレータ層を堆積する堆積工程と、
     前記シンチレータ層に、前記シンチレータ層から放出された光を電気信号に変換する光検出基板を貼り付ける貼付工程と、
     外側の前記基板を前記シンチレータ層が堆積された前記基板から取り除く取除き工程と、
     を有する放射線検出器の製造方法。
    A deposition step of depositing a scintillator layer that converts incident radiation into light on a plurality of stacked substrates;
    Affixing a light detection substrate for converting light emitted from the scintillator layer into an electrical signal on the scintillator layer;
    Removing the outer substrate from the substrate on which the scintillator layer is deposited;
    A method for manufacturing a radiation detector.
  2.  前記積層された基板は、互いに接着剤で接着されている、
     請求項1に記載の放射線検出器の製造方法。
    The laminated substrates are bonded to each other with an adhesive,
    The manufacturing method of the radiation detector of Claim 1.
  3.  前記積層された基板は、2枚であり、
     外側の前記基板は、透明であり、
     前記接着剤は、紫外線によって剥離可能であり、
     前記取除き工程では、前記外側の基板側から紫外線を照射することによって、該基板を取り除く、
     請求項2に記載の放射線検出器の製造方法。
    The stacked substrates are two pieces,
    The outer substrate is transparent;
    The adhesive is peelable by ultraviolet rays,
    In the removing step, the substrate is removed by irradiating ultraviolet rays from the outer substrate side.
    The manufacturing method of the radiation detector of Claim 2.
  4.  前記積層された基板は、2枚であり、
     外側の前記基板には、該基板を貫通した穴部が設けられ、
     前記取除き工程では、剥離剤を前記外側の基板上から前記穴部に流し込むことによって、該基板を取り除く、
     請求項2に記載の放射線検出器の製造方法。
    The stacked substrates are two pieces,
    The outer substrate is provided with a hole penetrating the substrate,
    In the removing step, the substrate is removed by pouring a release agent from the outer substrate into the hole.
    The manufacturing method of the radiation detector of Claim 2.
  5.  前記取除き工程後に、内側の前記基板に切り込みを入れる、請求項1~請求項4の何れか1項に記載の放射線検出器の製造方法。 The method of manufacturing a radiation detector according to any one of claims 1 to 4, wherein, after the removing step, a cut is made in the inner substrate.
  6.  前記堆積工程では、気相堆積法により、複数の柱状結晶体を含んだ前記シンチレータ層を堆積する、
     請求項1~請求項5の何れか1項に記載の放射線検出器の製造方法。
    In the deposition step, the scintillator layer including a plurality of columnar crystals is deposited by a vapor deposition method.
    The method for manufacturing a radiation detector according to any one of claims 1 to 5.
  7.  積層された複数枚の基板と、
     前記基板上に堆積され、入射する放射線を光に変換するシンチレータ層と、
     前記シンチレータ層に貼り付けられ、前記シンチレータ層から放出された光を電荷に変換する光検出基板と、
     を備える放射線検出器。
    A plurality of stacked substrates;
    A scintillator layer deposited on the substrate and converting incident radiation into light;
    A photodetecting substrate that is attached to the scintillator layer and converts light emitted from the scintillator layer into electric charge;
    A radiation detector comprising:
  8.  前記積層された複数の基板は、互いに接着剤で接着されている、
     請求項7に記載の放射線検出器。
    The plurality of stacked substrates are bonded to each other with an adhesive,
    The radiation detector according to claim 7.
  9.  前記積層された複数の基板は、2枚であり、
     外側の前記基板は透明であり、
     前記接着剤は、前記外側の基板を透過する紫外線によって剥離可能である、
     請求項8に記載の放射線検出器。
    The plurality of stacked substrates are two pieces,
    The outer substrate is transparent;
    The adhesive can be peeled off by ultraviolet rays that pass through the outer substrate.
    The radiation detector according to claim 8.
  10.  前記積層された複数の基板は、2枚であり、
     外側の前記基板には、該基板を貫通した穴部が設けられ、
     前記接着剤は、前記穴部を通過した剥離剤により剥離可能である、
     請求項8に記載の放射線検出器。
    The plurality of stacked substrates are two pieces,
    The outer substrate is provided with a hole penetrating the substrate,
    The adhesive is peelable by a release agent that has passed through the hole,
    The radiation detector according to claim 8.
  11.  前記シンチレータ層は、複数の柱状結晶体を含んで構成される、
     請求項7~請求項10の何れか1項に記載の放射線検出器。
     
    The scintillator layer is configured to include a plurality of columnar crystals.
    The radiation detector according to any one of claims 7 to 10.
PCT/JP2011/064281 2010-06-30 2011-06-22 Radiation detector and method of producing same WO2012002224A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-150207 2010-06-30
JP2010150207A JP2012013533A (en) 2010-06-30 2010-06-30 Radiation detector and manufacturing method of the same

Publications (1)

Publication Number Publication Date
WO2012002224A1 true WO2012002224A1 (en) 2012-01-05

Family

ID=45401944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064281 WO2012002224A1 (en) 2010-06-30 2011-06-22 Radiation detector and method of producing same

Country Status (2)

Country Link
JP (1) JP2012013533A (en)
WO (1) WO2012002224A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2833165B1 (en) * 2012-03-30 2020-10-14 Hitachi Metals, Ltd. Scintillator array manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6143164B2 (en) * 2012-03-30 2017-06-07 日立金属株式会社 Manufacturing method of scintillator array

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172511A (en) * 2003-12-09 2005-06-30 Canon Inc Radiation detector, its manufacturing method, and radiation imaging systems
JP2006189377A (en) * 2005-01-07 2006-07-20 Canon Inc Scintillator panel, radiation detector, and radiation detection system
JP2009081201A (en) * 2007-09-25 2009-04-16 Fujifilm Corp Method of manufacturing backside irradiation type imaging device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172511A (en) * 2003-12-09 2005-06-30 Canon Inc Radiation detector, its manufacturing method, and radiation imaging systems
JP2006189377A (en) * 2005-01-07 2006-07-20 Canon Inc Scintillator panel, radiation detector, and radiation detection system
JP2009081201A (en) * 2007-09-25 2009-04-16 Fujifilm Corp Method of manufacturing backside irradiation type imaging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2833165B1 (en) * 2012-03-30 2020-10-14 Hitachi Metals, Ltd. Scintillator array manufacturing method

Also Published As

Publication number Publication date
JP2012013533A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5473835B2 (en) Radiation detector, radiation imaging apparatus, and method of manufacturing radiation detector
JP5178900B2 (en) Radiation detector
JP5657614B2 (en) Radiation detector and radiographic imaging apparatus
US9465117B2 (en) Radiation detecting apparatus
US8648312B2 (en) Radiation detection apparatus, manufacturing method thereof, and radiation detection system
US20130341516A1 (en) Radiation detection apparatus, method of manufacturing the same, and imaging system
JP5456013B2 (en) Radiation imaging device
CN105319573B (en) Radiological image detection and its manufacture method
JP5693173B2 (en) Radiation detection apparatus and radiation detection system
JP5702220B2 (en) Radiography equipment
JP2012137438A5 (en)
JP7376636B2 (en) Radiation detector, radiation imaging device, and method for manufacturing radiation detector
JP2013152160A (en) Radiation imaging device and radiation imaging system
JP2008209124A (en) Scintillator panel
JP2012154811A (en) Scintillator panel and method for manufacturing the same, and radiation detection device
JP7342184B2 (en) Radiation detector, radiation imaging device, and method for manufacturing radiation detector
JP2012211866A (en) Radiation detection device
JP2019023579A (en) Scintillator
CN109324341B (en) Radiation detection apparatus, method of manufacturing the same, and radiation imaging system
JP2012128091A (en) Radiological imaging apparatus
WO2012002224A1 (en) Radiation detector and method of producing same
WO2011152323A1 (en) Radiological imaging device
JP2012013572A (en) Method of manufacturing radiation detector, and radiation image shooting device
JP2013040953A (en) Radiation image imaging device
JP2004095820A (en) Scintillator, radiation imager, its manufacturing method and radiation imaging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800689

Country of ref document: EP

Kind code of ref document: A1