JP2009081113A - Horizontal stripe type fuel battery cell and fuel battery - Google Patents

Horizontal stripe type fuel battery cell and fuel battery Download PDF

Info

Publication number
JP2009081113A
JP2009081113A JP2007251344A JP2007251344A JP2009081113A JP 2009081113 A JP2009081113 A JP 2009081113A JP 2007251344 A JP2007251344 A JP 2007251344A JP 2007251344 A JP2007251344 A JP 2007251344A JP 2009081113 A JP2009081113 A JP 2009081113A
Authority
JP
Japan
Prior art keywords
support substrate
porous support
fuel cell
electrode layer
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007251344A
Other languages
Japanese (ja)
Other versions
JP5179131B2 (en
Inventor
Masahito Nishihara
雅人 西原
Makoto Koi
真 兒井
Kenji Horiuchi
賢治 堀内
Takaaki Somekawa
貴亮 染川
Yoshio Matsuzaki
良雄 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Tokyo Gas Co Ltd
Original Assignee
Kyocera Corp
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Tokyo Gas Co Ltd filed Critical Kyocera Corp
Priority to JP2007251344A priority Critical patent/JP5179131B2/en
Publication of JP2009081113A publication Critical patent/JP2009081113A/en
Application granted granted Critical
Publication of JP5179131B2 publication Critical patent/JP5179131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a horizontal stripe type fuel battery cell of a high yield which does not lengthwise crack in a longitudinal direction from a right upper section of a gas passage section, even at the time of manufacturing or power generation of the cell. <P>SOLUTION: In the horizontal stripe type fuel battery cell 10 in which a plurality of power generation elements 13 having an inside electrode 13a, a solid electrolyte 13b and an outside electrode 13c laminated in sequence are arranged in parallel on the surface of an electrically-isolated porous support substrate 11 having three or more of gas passages 12 in a width direction, with the inside electrode 13a of the power generation element 13 and the outside electrode 13c of the other power generation element 13 adjacent to the power generation element 13 are electrically connected with each other, a diameter of the gas passage 12 located at either side in a width direction of the porous support substrate 11 is smaller than a diameter of the other gas passage located nearer a center side than that gas passage 12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、横縞型燃料電池セルおよびそれを用いた燃料電池に関する。   The present invention relates to a horizontal stripe fuel cell and a fuel cell using the same.

近年、次世代エネルギーとして、燃料電池セルを複数接続してなるセルスタックを、収納容器に収容した燃料電池が種々提案されている。このような燃料電池セルとしては、固体高分子形燃料電池セル、リン酸形燃料電池セル、溶融炭酸塩形燃料電池セル、固体電解質形燃料電池セルなど、各種のものが知られている。とりわけ、固体電解質形燃料電池セルは、発電効率が高く、また、作動温度が600℃〜1000℃と高いため、その排熱を利用できるなどの利点を有しており、研究開発が推し進められている。   In recent years, various types of fuel cells in which a cell stack formed by connecting a plurality of fuel cells is accommodated in a storage container have been proposed as next-generation energy. As such a fuel cell, various types such as a polymer electrolyte fuel cell, a phosphoric acid fuel cell, a molten carbonate fuel cell, and a solid electrolyte fuel cell are known. In particular, solid electrolyte fuel cells have advantages such as high power generation efficiency and high operating temperatures of 600 ° C to 1000 ° C, so that the exhaust heat can be used, and research and development has been promoted. Yes.

図7は、従来の固体電解質形燃料電池セルを示す一部破断斜視図である。この固体電解質形燃料電池セル10は、横縞型といって、電気絶縁体である平板状の多孔質支持基板11の表面に、燃料極層13a、固体電解質13bおよび空気極層13cが順次積層された多層構造の発電素子13を、多孔質支持基板11の長手方向に所定間隔をおいて複数形成することにより構成されている。互いに隣接する発電素子13は、それぞれ素子間接続部材17(「インターコネクタ」ともいう。)により電気的に直列に接続されている。すなわち、一方の発電素子13の燃料極層13aと他方の発電素子13の空気極層13cとが、素子間接続部材17により接続されている。また、多孔質支持基板11の内部には長手方向に貫通した複数のガス流路12が形成されている。
前記横縞型燃料電池セル10において、固体電解質13bの酸素イオン伝導性が600℃以上で高くなるため、このような温度で空気極層13cに酸素を含むガスを流し、燃料極層13aに対しては前記ガス流路12に水素を含むガスを流すことにより、空気極層13cと燃料極層13aとの酸素濃度差が高くなり、空気極層13cと燃料極層13aとの間で電位差が発生する。
この電位差により、酸素イオンは、空気極層13cから固体電解質13bを介して燃料極層13aへ移動する。移動した酸素イオンが、燃料極層13aで水素と結合して水となり、同時に燃料極層13aで電子が発生する。
すなわち、空気極層13cでは、下記式(1)の電極反応を生じ、燃料極層13aでは、下記式(2)の電極反応を生じる。
空気極層3c: 1/2O2+2e- →O2- ・・(1)
燃料極層3a: O2-+H2 → H2O+2e- ・・(2)
そして、一方の発電素子13の燃料極層13aと他方の発電素子13の空気極層13cとを電気的に接続することにより、一方の発電素子13の燃料極層13aから他方の発電素子13の空気極層13cへの電子の移動が起こり、両極間で起電力が生じる。
このように、固体電解質形燃料電池セルでは、酸素と水素を供給することにより、前記の反応を連続して起こし、起電力を生じさせて発電する(例えば、特許文献1、2参照)。
特開平10−003932号公報 特開2006−269276号公報
FIG. 7 is a partially broken perspective view showing a conventional solid oxide fuel cell. This solid electrolyte fuel cell 10 is called a horizontal stripe type, and a fuel electrode layer 13a, a solid electrolyte 13b, and an air electrode layer 13c are sequentially laminated on the surface of a flat porous support substrate 11 that is an electrical insulator. A plurality of power generating elements 13 having a multilayer structure are formed at predetermined intervals in the longitudinal direction of the porous support substrate 11. The power generating elements 13 adjacent to each other are electrically connected in series by inter-element connection members 17 (also referred to as “interconnectors”). That is, the fuel electrode layer 13 a of one power generation element 13 and the air electrode layer 13 c of the other power generation element 13 are connected by the inter-element connection member 17. A plurality of gas flow paths 12 penetrating in the longitudinal direction are formed inside the porous support substrate 11.
In the horizontal stripe fuel cell 10, the oxygen ion conductivity of the solid electrolyte 13 b increases at 600 ° C. or higher. Therefore, a gas containing oxygen flows through the air electrode layer 13 c at such a temperature, and the fuel electrode layer 13 a By flowing a gas containing hydrogen through the gas flow path 12, the oxygen concentration difference between the air electrode layer 13c and the fuel electrode layer 13a increases, and a potential difference occurs between the air electrode layer 13c and the fuel electrode layer 13a. To do.
Due to this potential difference, oxygen ions move from the air electrode layer 13c to the fuel electrode layer 13a via the solid electrolyte 13b. The moved oxygen ions are combined with hydrogen in the fuel electrode layer 13a to become water, and at the same time, electrons are generated in the fuel electrode layer 13a.
That is, the electrode reaction of the following formula (1) occurs in the air electrode layer 13c, and the electrode reaction of the following formula (2) occurs in the fuel electrode layer 13a.
Air electrode layer 3c: 1 / 2O 2 + 2e → O 2− (1)
The fuel electrode layer 3a: O 2- + H 2 → H 2 O + 2e - ·· (2)
Then, by electrically connecting the fuel electrode layer 13 a of one power generation element 13 and the air electrode layer 13 c of the other power generation element 13, the fuel electrode layer 13 a of one power generation element 13 is connected to the other power generation element 13. Electrons move to the air electrode layer 13c, and an electromotive force is generated between the two electrodes.
Thus, in the solid oxide fuel cell, by supplying oxygen and hydrogen, the above reaction is continuously caused to generate an electromotive force to generate electric power (see, for example, Patent Documents 1 and 2).
JP 10-003932 A JP 2006-269276 A

しかし、従来の燃料電池セルは、作製時に酸素含有雰囲気での焼成により、例えば、多孔質支持基板11や燃料極層13aのNi成分がNiOとなっているため、これを還元処理により還元する時、あるいは発電中に還元雰囲気に曝されて還元される時、発生する応力歪によりガス流路の真上部で長手方向(ガス流れ方向)に縦割れをするおそれがある。この縦割れは、局部的に燃料電池セルの強度が低下した場合だけでなく、同一セル内における強度差が大きい場合にも発生する。そしてこの縦割れ箇所は配列方向の両端にあるガス流路において頻度が極めて高い。そのため、燃料電池セルの製品の歩留まりが低いという不具合がある。
特に、近年においては、燃料電池セルにおける発電量増加、およびコンパクト化という観点から、燃料電池セルの厚みが薄くなり、幅が広くなる傾向にあるため、上記縦割れが発生しやすい。
本発明の課題は、横縞型燃料電池セルの作製時および発電時においても、ガス流路部の直上部より長手方向に縦割れをしない、歩留まりの高い横縞型燃料電池セルを提供することにある。
However, in the conventional fuel cell, since the Ni component of the porous support substrate 11 and the fuel electrode layer 13a is NiO by firing in an oxygen-containing atmosphere at the time of production, for example, when this is reduced by reduction treatment Or, when being reduced by being exposed to a reducing atmosphere during power generation, there is a risk of longitudinal cracking in the longitudinal direction (gas flow direction) in the upper portion of the gas flow path due to the generated stress strain. This vertical crack occurs not only when the strength of the fuel cell is locally reduced but also when the strength difference in the same cell is large. And this vertical crack location is very high in the gas flow path in the both ends of the arrangement direction. Therefore, there exists a malfunction that the yield of the product of a fuel cell is low.
In particular, in recent years, from the viewpoint of increasing the amount of power generation in a fuel cell and making it more compact, the fuel cell tends to be thinner and wider, so the vertical crack is likely to occur.
An object of the present invention is to provide a high-yield horizontal-striped fuel cell that does not cause vertical cracks in the longitudinal direction from directly above the gas flow path even when the horizontal-striped fuel cell is manufactured and during power generation. .

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、多孔質支持基板の幅方向の端部における強度が多孔質支持基板の中で最も低く、多孔質支持基板の幅方向中心部に向かうほど強度が高くなること、またガス流路の孔径(面積)が大きいほど強度低下が大きいという知見を得た。このことから多孔質支持基板の側面に最も近いガス流路の孔径を他のガス流路の孔径よりも小さくすることにより、燃料電池セルの作製時および発電時においても縦割れを抑制できることを見出して、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the strength at the end in the width direction of the porous support substrate is the lowest among the porous support substrates, and the center in the width direction of the porous support substrate. It has been found that the strength increases as it goes to the portion, and that the strength decrease increases as the hole diameter (area) of the gas flow path increases. From this, it was found that by making the hole diameter of the gas flow path closest to the side surface of the porous support substrate smaller than the hole diameter of the other gas flow paths, vertical cracks can be suppressed during the production of fuel cells and during power generation. Thus, the present invention has been completed.

即ち、本発明における横縞型燃料電池セルおよび燃料電池は、以下の構成を有する。
(1)幅方向に3つ以上のガス流路を内部に備えた電気絶縁性の多孔質支持基板の表面に、内側電極、固体電解質および外側電極が順次積層された発電素子を複数並設し、前記発電素子の内側電極と、該発電素子に隣接する他の発電素子の外側電極とが(互いに隣接する前記発電素子のうち、一方の発電素子の内側電極と、他方の発電素子の外側電極とが)電気的に接続されている横縞型燃料電池セルであって、前記多孔質支持基板の幅方向の両端にあるガス流路の直径が該ガス流路より中心側に位置する他のガス流路の直径よりも小さいことを特徴とする横縞型燃料電池セル。
(2)前記多孔質支持基板の幅方向の中心側に位置する他のガス流路の直径が、前記多孔質支持基板の厚みに対し37%以上65%以下であることを特徴とする(1)に記載の横縞型燃料電池セル。
(3)前記多孔質支持基板の幅方向の両端にあるガス流路の直径が、前記多孔質支持基板の厚みに対し34%以上50%以下であることを特徴とする(1)または(2)に記載の横縞型燃料電池セル。
(4)前記多孔質支持基板の厚みが2.0mm以上3.5mm以下であることを特徴とする(1)〜(3)のいずれかに記載の横縞型燃料電池セル。
(5)前記発電素子は前記多孔質支持基板の幅方向の両端にあるガス流路より中心側に配設されていることを特徴とする(1)〜(4)のいずれかに記載の横縞型燃料電池セル。
(6)(1)〜(5)のいずれかに記載の横縞型燃料電池セルを収納容器内に複数収容してなることを特徴とする燃料電池。
That is, the horizontal stripe fuel cell and the fuel cell according to the present invention have the following configurations.
(1) A plurality of power generation elements in which an inner electrode, a solid electrolyte, and an outer electrode are sequentially laminated are arranged in parallel on the surface of an electrically insulating porous support substrate having three or more gas flow paths in the width direction. The inner electrode of the power generation element and the outer electrode of another power generation element adjacent to the power generation element (of the power generation elements adjacent to each other, the inner electrode of one power generation element and the outer electrode of the other power generation element And other gas in which the diameter of the gas flow path at both ends in the width direction of the porous support substrate is located closer to the center than the gas flow path. A horizontally-striped fuel cell characterized by being smaller than the diameter of the flow path.
(2) The diameter of another gas flow channel located on the center side in the width direction of the porous support substrate is 37% or more and 65% or less with respect to the thickness of the porous support substrate (1) ) Horizontal stripe fuel cell.
(3) The diameter of the gas flow path at both ends in the width direction of the porous support substrate is 34% or more and 50% or less with respect to the thickness of the porous support substrate (1) or (2) ) Horizontal stripe fuel cell.
(4) The horizontal stripe fuel cell according to any one of (1) to (3), wherein the porous support substrate has a thickness of 2.0 mm to 3.5 mm.
(5) The horizontal stripes according to any one of (1) to (4), wherein the power generation element is disposed closer to a center side than gas flow paths at both ends in the width direction of the porous support substrate. Type fuel cell.
(6) A fuel cell comprising a plurality of horizontally-striped fuel cells according to any one of (1) to (5) contained in a storage container.

本発明の横縞型燃料電池セルによれば、多孔質支持基板の幅方向の両端にあるガス流路の直径をこれより中心側のガス流路の直径より小さくしたので、多孔質支持基板の幅方向の両端部での強度が増大し、そのため横縞型燃料電池セルの作製および発電時において縦割れを抑制でき、歩留まりの高い横縞型燃料電池セルを提供することができる。
また、本発明の燃料電池によれば、上記した横縞型燃料電池セルを用いるので、信頼性を確保した上で高い発電量を得ることができる。
According to the laterally striped fuel cell of the present invention, the diameter of the gas flow path at both ends in the width direction of the porous support substrate is made smaller than the diameter of the gas flow path on the center side. The strength at both ends in the direction is increased, and therefore vertical cracks can be suppressed during production and power generation of the horizontal stripe fuel cell, and a horizontal stripe fuel cell having a high yield can be provided.
Moreover, according to the fuel cell of the present invention, since the above-described horizontal stripe fuel cell is used, a high power generation amount can be obtained while ensuring reliability.

以下、本発明の横縞型燃料電池セルの一実施形態について、添付図面を参照しながら詳細に説明する。
図1は、本発明の横縞型燃料電池セルの構造を示す一部破断斜視図である。この燃料電池セル10は、中空平板状の電気絶縁性の多孔質支持基板11の表裏面に、複数の発電素子13を多孔質支持基板11の長手方向に沿って複数個配置し、それらを素子間接続部材17を介して直列に接続した「横縞型」といわれるものである。
Hereinafter, an embodiment of a horizontal stripe fuel cell according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a partially broken perspective view showing the structure of a horizontal stripe fuel cell according to the present invention. In this fuel cell 10, a plurality of power generation elements 13 are arranged along the longitudinal direction of the porous support substrate 11 on the front and back surfaces of a hollow flat plate-like electrically insulating porous support substrate 11. This is called a “horizontal stripe type” connected in series via the inter-connection member 17.

本発明の横縞型燃料電池セルは、図1に示すように、多孔質支持基板11の表裏面に、その長手方向に所定間隔をおいて、複数の発電素子13をそれぞれ配列することにより構成されている。それぞれの発電素子13は、集電燃料極層23、活性燃料極層13a、固体電解質13bおよび空気極層13cを順次積層した層構造となっている。   As shown in FIG. 1, the horizontally-striped fuel cell of the present invention is configured by arranging a plurality of power generating elements 13 on the front and back surfaces of a porous support substrate 11 at predetermined intervals in the longitudinal direction. ing. Each power generating element 13 has a layer structure in which a current collecting fuel electrode layer 23, an active fuel electrode layer 13a, a solid electrolyte 13b, and an air electrode layer 13c are sequentially stacked.

多孔質支持基板11の表裏面における互いに隣接する発電素子13同士は、第1集電層17aおよび第2集電層17bからなる素子間接続部材17により直列に接続されている(図2参照)。すなわち、一方の発電素子13の活性燃料極層13aの上に第1集電層17aが形成され、この第1集電層17aは、長手方向両端部を含めその周囲が固体電解質13bによりガスシール状態で被覆され、固体電解質13bから帯状に露出している。この第1集電層17aの露出した部分が第2集電層17bにより被覆され、この第2集電層17bが、他方の発電素子13の空気極層13c上に形成され、これにより、発電素子13同士が直列に電気的に接続された構造となっている。   The power generating elements 13 adjacent to each other on the front and back surfaces of the porous support substrate 11 are connected in series by an inter-element connection member 17 including a first current collecting layer 17a and a second current collecting layer 17b (see FIG. 2). . That is, a first current collecting layer 17a is formed on the active fuel electrode layer 13a of one power generating element 13, and the first current collecting layer 17a is gas-sealed by the solid electrolyte 13b including its both ends in the longitudinal direction. It coat | covers in the state and is exposed to the strip | belt shape from the solid electrolyte 13b. The exposed portion of the first current collecting layer 17a is covered with the second current collecting layer 17b, and this second current collecting layer 17b is formed on the air electrode layer 13c of the other power generating element 13, thereby generating power. The elements 13 are electrically connected in series.

多孔質支持基板11は多孔質であり、さらにその内部には、内径の小さな複数の燃料ガス流路12が、隔壁51で隔てられて長手方向に延びるようにして貫通して設けられている。前記ガス流路12の数は、発電性能および構造強度の点から、例えば3〜20個が好ましく、6〜17個であるのがより好ましい。このように、多孔質支持基板11の内部にガス流路12を複数形成することにより、多孔質支持基板11の内部に大きなガス流路を1本形成する場合に比べて、多孔質支持基板11を扁平板状とすることができ、燃料電池セル1の体積当たりの発電素子13の面積を増加し発電量を大きくすることができる。よって、必要とする発電量を得るための燃料電池セル本数を減らすことができる。また、燃料電池セル間の接続箇所数を減少させることもできる。   The porous support substrate 11 is porous, and a plurality of fuel gas passages 12 having a small inner diameter are provided through the porous support substrate 11 so as to extend in the longitudinal direction and separated by the partition walls 51. The number of the gas flow paths 12 is preferably 3 to 20, for example, and more preferably 6 to 17, in terms of power generation performance and structural strength. In this way, by forming a plurality of gas flow paths 12 inside the porous support substrate 11, the porous support substrate 11 can be compared with the case where one large gas flow path is formed inside the porous support substrate 11. Can be made into a flat plate shape, and the area of the power generation element 13 per volume of the fuel cell 1 can be increased to increase the amount of power generation. Therefore, the number of fuel cells for obtaining the required power generation amount can be reduced. In addition, the number of connection points between the fuel cells can be reduced.

このガス流路12内に燃料ガス(水素ガス)を流し、かつ空気極層13cを空気等の酸素含有ガスに曝すことにより、活性燃料極層13aおよび空気極層13c間で前述した式(1)、(2)に示す電極反応が生じ、両極間に電位差が発生し、発電するようになっている。   By flowing a fuel gas (hydrogen gas) through the gas flow path 12 and exposing the air electrode layer 13c to an oxygen-containing gas such as air, the above-described equation (1) is obtained between the active fuel electrode layer 13a and the air electrode layer 13c. ), Electrode reaction shown in (2) occurs, a potential difference is generated between the two electrodes, and power is generated.

本発明にかかる多孔質支持基板11は、図1に示したように、幅方向Xの両端にある前記ガス流路12の直径がそれより中心側(幅方向において内側)にある他のガス流路12の直径よりも小さい構成をなす。このような構成とすることにより、従来、多孔質支持基板11の幅方向の端部での強度が弱く、また幅方向の部位によって強度が異なることで縦割れが発生するという問題点を改善できる。すなわち、本発明の構成により多孔質支持基板11の幅方向の部位における強度の差を低減し、全体的に均一な強度分布を確保することができる。その結果、燃料電池セル10の作製時において酸素含有雰囲気での焼成後に還元処理により還元する時、あるいは発電中に還元雰囲気に曝されて還元される時、発生する応力歪による多孔質支持基板11の縦割れを防止でき、歩留まりの高い燃料電池セル10を作製することができる。   As shown in FIG. 1, the porous support substrate 11 according to the present invention has another gas flow in which the diameter of the gas flow path 12 at both ends in the width direction X is closer to the center side (inner side in the width direction). The configuration is smaller than the diameter of the path 12. By adopting such a configuration, it is possible to improve the conventional problem that the strength at the end in the width direction of the porous support substrate 11 is weak, and that vertical cracks occur due to the difference in strength depending on the portion in the width direction. . That is, the structure of the present invention can reduce the difference in strength in the width direction portion of the porous support substrate 11 and ensure a uniform strength distribution as a whole. As a result, when the fuel cell 10 is manufactured, the porous support substrate 11 is caused by the stress strain generated when the fuel cell 10 is reduced by the reduction treatment after firing in the oxygen-containing atmosphere, or when it is reduced by being exposed to the reducing atmosphere during power generation. Thus, the fuel cell 10 with a high yield can be manufactured.

前記多孔質支持基板11の幅方向の中心側にある前記他のガス流路12の直径は、前記多孔質支持基板11の厚みに対し37%以上65%以下であるのが好ましい。一方、前記多孔質支持基板11の幅方向の両端にあるガス流路12の直径は、前記多孔質支持基板11の厚みに対し34%以上50%以下であるのが好ましい。ガス流路12の直径は、下限値は燃料極へのガス拡散量を多くするという点から設定され、上限は、多孔質支持基板11の幅方向の中央部、端部における強度を向上するという観点から設定されている。
また、多孔質支持基板11は、幅方向の中心側に存在する平板部11aと、その幅方向の両端部に存在し外面が曲面の半割円柱部11bとを有しており、前記多孔質支持基板11の幅方向の両端にあるガス流路12は、半割円柱部11b、または半割円柱部11bと平坦部11aに跨って存在している。半割円柱部11bにより、多孔質支持基板11の幅方向の両端部における応力集中を抑制することができる。そして、この半割円柱部11b、または半割円柱部11bと平坦部11aに跨って存在して、多孔質支持基板11の幅方向両端のガス流路12が存在しているため、多孔質支持基板11に発電素子を効率的に形成でき、コンパクトで高い発電量のセルを得ることができる。
前記多孔質支持基板11の幅方向の中心側および両端にあるガス流路12の直径並びに両端の位置を上記範囲内とすることにより、多孔質支持基板11の幅方向の部位における強度の差を一層低減し、全体的に均一な強度分布を一層確保することができる。
なお、ガス流路の断面形状は、厳密には円形でない場合もあるが、本発明では、円形でない場合でも、支持基板の厚み方向における最大幅を直径とした。
The diameter of the other gas channel 12 on the center side in the width direction of the porous support substrate 11 is preferably 37% or more and 65% or less with respect to the thickness of the porous support substrate 11. On the other hand, the diameter of the gas flow path 12 at both ends in the width direction of the porous support substrate 11 is preferably 34% or more and 50% or less with respect to the thickness of the porous support substrate 11. The diameter of the gas flow path 12 is set from the viewpoint that the lower limit value increases the amount of gas diffusion to the fuel electrode, and the upper limit is that the strength at the center and the end in the width direction of the porous support substrate 11 is improved. It is set from the viewpoint.
The porous support substrate 11 includes a flat plate portion 11a that exists on the center side in the width direction, and a halved columnar portion 11b that exists at both ends in the width direction and whose outer surface is a curved surface. The gas flow paths 12 at both ends in the width direction of the support substrate 11 exist across the half cylinder part 11b or the half cylinder part 11b and the flat part 11a. Due to the half columnar portion 11b, stress concentration at both ends in the width direction of the porous support substrate 11 can be suppressed. And since the gas flow path 12 at both ends in the width direction of the porous support substrate 11 exists across the half cylinder part 11b or the half cylinder part 11b and the flat part 11a, the porous support A power generation element can be efficiently formed on the substrate 11, and a compact and high-power generation cell can be obtained.
By setting the diameter and the position of both ends of the gas flow path 12 at the center side and both ends in the width direction of the porous support substrate 11 within the above range, the difference in strength in the width direction portion of the porous support substrate 11 is obtained. It is possible to further reduce and secure a uniform intensity distribution as a whole.
In addition, although the cross-sectional shape of the gas flow path may not be strictly circular, in the present invention, the maximum width in the thickness direction of the support substrate is defined as the diameter even when it is not circular.

前記多孔質支持基板11の幅方向の両端にあるガス流路12は、前記発電素子13へのガス供給源として寄与しない場合がある。前記両端のガス流路12は他のガス流路12に比べ流路直径が小さいため、多孔質支持基板11のガス導入口での抵抗が高くなり、前記両端のガス流路12において圧損が大きくなるので、この流路でのガスの供給が不十分となり良好な発電の妨げとなる。したがって、前記発電素子13は前記多孔質支持基板11の幅方向の両端にあるガス流路12より中心側に配設するのが好ましい。   The gas flow paths 12 at both ends in the width direction of the porous support substrate 11 may not contribute as a gas supply source to the power generation element 13 in some cases. Since the gas flow path 12 at both ends has a smaller flow path diameter than the other gas flow paths 12, the resistance at the gas introduction port of the porous support substrate 11 is increased, and the pressure loss in the gas flow paths 12 at both ends is large. Therefore, the supply of gas in this flow path is insufficient, which hinders good power generation. Therefore, it is preferable that the power generating element 13 is disposed closer to the center than the gas flow paths 12 at both ends in the width direction of the porous support substrate 11.

前記燃料電池セル10を複数集合して、図2に示すようなセルスタックを組み立てる。このセルスタックの両端に、セルスタックで発生した電力を燃料電池外に取り出すための導電部材(図示せず)を取り付けて、収納容器内に収容して、燃料電池を製作することができる。 この収納容器に空気等の酸素含有ガスを導入し、水素等の燃料ガスを導入管を通して燃料ガスマニホールド50に導入する。燃料ガスを燃料ガスマニホールド50を通して燃料電池セル10内部に導入し、燃料電池セル10を所定温度に加熱すれば、燃料電池セル10によって発電することができる。使用された燃料ガス、酸素含有ガスは、燃料電池セル10の先端部Eから排気され、収納容器外に排出される。   A plurality of the fuel cells 10 are assembled to assemble a cell stack as shown in FIG. A conductive member (not shown) for taking out the electric power generated in the cell stack to the outside of the fuel cell is attached to both ends of the cell stack, and the fuel cell can be manufactured by accommodating it in a storage container. An oxygen-containing gas such as air is introduced into the storage container, and a fuel gas such as hydrogen is introduced into the fuel gas manifold 50 through an introduction pipe. If the fuel gas is introduced into the fuel cell 10 through the fuel gas manifold 50 and the fuel cell 10 is heated to a predetermined temperature, the fuel cell 10 can generate electric power. The used fuel gas and oxygen-containing gas are exhausted from the front end E of the fuel battery cell 10 and discharged out of the storage container.

図2に示すように、燃料電池セル10は、セル間接続部材19を介して互いに電気的に接続されている。
すなわち、セルスタックの下端部において、一方の燃料電池セル10の下端部に素子間接続部材17bが設けられ、該一方の燃料電池セル10の空気極層13cと導通している。また、前記素子間接続部材17bは、セル間接続部材19を介して、他方の燃料電池セル10の素子間接続部材17b、17aを介して燃料極層13aと導通している。一方、各燃料電池セル10の上端部においては、多孔質支持基板11の一方の表面の空気極層13cと他方の表面(裏面)の燃料極層13aとが素子間接続部材17を介して接続されている。これにより、一方の多孔質支持基板11の一方の表面の各発電素子部13で発生した電流を他方の表面(裏面)の各発電素子部13へ送ることができる。すなわち、一方の多孔質支持基板11の表裏面間の発電素子部13を電気的に直列の接続とすることができる。
このように、セルスタックは、前記した燃料電池セル10が、セル間接続部材19を介して互いに電気的に接続されていれば、燃料電池セル10を密に配置することができるため、発電量当たりのセルスタックの体積を小さくすることができる。そのため、小型で、熱効率の高いセルスタックを提供することができる。
As shown in FIG. 2, the fuel cells 10 are electrically connected to each other via inter-cell connection members 19.
That is, at the lower end of the cell stack, the inter-element connection member 17 b is provided at the lower end of one fuel cell 10 and is electrically connected to the air electrode layer 13 c of the one fuel cell 10. The inter-element connection member 17 b is electrically connected to the fuel electrode layer 13 a via the inter-cell connection member 19 and the inter-element connection members 17 b and 17 a of the other fuel cell 10. On the other hand, at the upper end of each fuel cell 10, the air electrode layer 13 c on one surface of the porous support substrate 11 and the fuel electrode layer 13 a on the other surface (back surface) are connected via an inter-element connection member 17. Has been. Thereby, the electric current which generate | occur | produced in each power generation element part 13 of one surface of one porous support substrate 11 can be sent to each power generation element part 13 of the other surface (back surface). That is, the power generating element portion 13 between the front and back surfaces of one porous support substrate 11 can be electrically connected in series.
In this way, the cell stack can densely arrange the fuel cells 10 as long as the fuel cells 10 described above are electrically connected to each other via the inter-cell connection member 19. The volume of the hit cell stack can be reduced. Therefore, a small and highly efficient cell stack can be provided.

以下、燃料電池セル10を構成する各部材の材質を詳しく説明する。
(多孔質支持基板)
本発明に係る多孔質支持基板11は、Mg酸化物(MgO)と、Ni若しくはNi酸化物(NiO)と、希土類元素酸化物とからなっている。なお、希土類元素酸化物を構成する希土類元素としては、Y、La、Yb、Tm、Er、Ho、Dy、Gd、Sm、Prなどを例示することができるが、好ましくは、Y23やYb23、特にY23である。
Hereinafter, the material of each member constituting the fuel battery cell 10 will be described in detail.
(Porous support substrate)
The porous support substrate 11 according to the present invention is made of Mg oxide (MgO), Ni or Ni oxide (NiO), and a rare earth element oxide. Examples of rare earth elements constituting rare earth element oxides include Y, La, Yb, Tm, Er, Ho, Dy, Gd, Sm, and Pr. Preferably, Y 2 O 3 or Yb 2 O 3 , especially Y 2 O 3 .

MgOは70〜80体積%、希土類元素酸化物は10〜20体積%、NiあるいはNiO(NiOは、発電時には、通常、水素ガスにより還元されてNiとして存在する)は、NiO換算で10〜25体積%、特に15〜20体積%の範囲で多孔質支持基板11中に含有されているのがよい。
この多孔質支持基板11の熱膨張係数は、通常、10.5〜12.5×10-6(1/K)程度である。
MgO is 70 to 80% by volume, rare earth element oxide is 10 to 20% by volume, Ni or NiO (NiO is usually reduced by hydrogen gas and present as Ni during power generation) is 10 to 25 in terms of NiO. It is good to contain in the porous support substrate 11 in the range of volume%, especially 15-20 volume%.
The thermal expansion coefficient of the porous support substrate 11 is usually about 10.5 to 12.5 × 10 −6 (1 / K).

多孔質支持基板11は、発電素子13間の電気的ショートを防ぐために電気絶縁性であることが必要であり、通常、10Ω・cm以上の抵抗率を有することが望ましい。Ni等の含量が前記範囲を超えると、電気抵抗値が低下し易い。また、Ni等の含量が前記範囲よりも少ないと、希土類元素酸化物(例えばY23)を単独で用いた場合と変わらなくなってしまい、発電素子13との熱膨張係数の調整が困難となる傾向がある。 The porous support substrate 11 needs to be electrically insulative in order to prevent an electrical short circuit between the power generating elements 13, and normally has a resistivity of 10 Ω · cm or more. When the content of Ni or the like exceeds the above range, the electric resistance value tends to decrease. Further, when the content of Ni or the like is less than the above range, it is not different from the case where a rare earth element oxide (for example, Y 2 O 3 ) is used alone, and it is difficult to adjust the thermal expansion coefficient with the power generation element 13. Tend to be.

なお、前記多孔質支持基板11は、燃料ガス流路12内の燃料ガスを活性燃料極層13aの表面まで導入可能でなければならず、このため、多孔質であることが必要である。一般に、その開気孔率は25%以上、特に30〜40%の範囲にあるのがよい。   The porous support substrate 11 must be able to introduce the fuel gas in the fuel gas flow path 12 up to the surface of the active fuel electrode layer 13a, and therefore needs to be porous. In general, the open porosity should be 25% or more, especially in the range of 30-40%.

(燃料極層)
燃料極層は、前記式(2)の電極反応を生じさせるものであり、本実施形態においては、固体電解質13b側の活性燃料極層13aと、多孔質支持基板11側の集電燃料極層23との二層構造に形成されている。
前記固体電解質13b側の活性燃料極層13aは、それ自体公知の多孔質の導電性セラミックスから形成される。例えば、希土類元素が固溶しているZrO2(安定化ジルコニア)と、Niおよび/又はNiO(以下、Ni等と呼ぶ)とからなる。この希土類元素が固溶した安定化ジルコニアとしては、後述する固体電解質13bに使用されているものと同様のものを用いるのがよい。
(Fuel electrode layer)
The fuel electrode layer causes the electrode reaction of the above formula (2), and in this embodiment, the active fuel electrode layer 13a on the solid electrolyte 13b side and the current collecting fuel electrode layer on the porous support substrate 11 side. 23 and a two-layer structure.
The active fuel electrode layer 13a on the solid electrolyte 13b side is formed of a known porous conductive ceramic. For example, it is composed of ZrO 2 (stabilized zirconia) in which a rare earth element is dissolved, and Ni and / or NiO (hereinafter referred to as Ni or the like). As the stabilized zirconia in which the rare earth element is dissolved, the same one used for the solid electrolyte 13b described later is preferably used.

活性燃料極層13a中の安定化ジルコニア含量は、35〜65体積%の範囲にあることが好ましく、またNi等の含量は、良好な集電性能を発揮させるため、NiO換算で65〜35体積%の範囲にあるのがよい。
さらに活性燃料極層13aの開気孔率は、15%以上、特に20〜40%の範囲にあるのがよい。
The stabilized zirconia content in the active fuel electrode layer 13a is preferably in the range of 35 to 65% by volume, and the content of Ni or the like is 65 to 35% in terms of NiO in order to exhibit good current collecting performance. % Should be in the range.
Further, the open porosity of the active fuel electrode layer 13a is preferably 15% or more, particularly preferably in the range of 20 to 40%.

前記活性燃料極層13aの熱膨張係数は、通常、12.3×10-6(1/K)程度である。
また、固体電解質13bとの熱膨張差に起因して発生する熱応力を吸収し、活性燃料極層13aの割れや剥離などを防止するという点から、活性燃料極層13aの厚みは、5〜15μmの範囲にあることが望ましい。
燃料極層のうち、前記多孔質支持基板11側の集電燃料極層23は、多孔質支持基板11と同様、Ni若しくはNi酸化物と、希土類元素酸化物との混合体である。
The thermal expansion coefficient of the active fuel electrode layer 13a is usually about 12.3 × 10 −6 (1 / K).
The active fuel electrode layer 13a has a thickness of 5 to 5 because it absorbs thermal stress generated due to the difference in thermal expansion from the solid electrolyte 13b and prevents cracking or peeling of the active fuel electrode layer 13a. It is desirable to be in the range of 15 μm.
Among the fuel electrode layers, the current collecting fuel electrode layer 23 on the porous support substrate 11 side is a mixture of Ni or Ni oxide and rare earth element oxide, like the porous support substrate 11.

前記Ni或いはNi酸化物(NiOは、発電時には、通常、水素ガスにより還元されてNiとして存在する)は、NiO換算で30〜60体積%の範囲で希土類元素酸化物中に含有されているのがよい。この範囲で調整することにより、多孔質支持基板11と集電燃料極層23との熱膨張差を2×10-6(1/K)以下とすることができる。集電燃料極層23は、電流の流れを損なわないように、導電性であることが必要であり、通常、400S/cm以上の導電率を有していることが望ましい。良好な電気伝導度を有するという点から、Ni等の含量は30体積%以上が望ましい。 The Ni or Ni oxide (NiO is usually reduced by hydrogen gas and present as Ni during power generation) is contained in the rare earth element oxide in a range of 30 to 60% by volume in terms of NiO. Is good. By adjusting within this range, the difference in thermal expansion between the porous support substrate 11 and the current collecting fuel electrode layer 23 can be made 2 × 10 −6 (1 / K) or less. The current collecting fuel electrode layer 23 needs to be conductive so as not to impair the flow of current, and it is generally desirable that the current collecting fuel electrode layer 23 have a conductivity of 400 S / cm or more. From the viewpoint of having good electrical conductivity, the content of Ni or the like is desirably 30% by volume or more.

この集電燃料極層23の熱膨張係数は、通常、11.5×10-6(1/K)程度である。
また、この集電燃料極層23の厚みは、電気伝導度を向上するという点から、80μm以上であることが望ましい。
以上のように、燃料極を固体電解質13b側の活性燃料極層13aと、多孔質支持基板11側の集電燃料極層23と二層に形成した構造であれば、多孔質支持基板11側の集電燃料極層23のNiO換算でのNi量或いはNiO量を30〜60体積%の範囲内で調整することにより、発電素子13との接合性を損なうことなく、その熱膨張係数を、後述する固体電解質13bの熱膨張係数に近づけることができ、例えば両者の熱膨張差を、2×10-6/(1/K)未満とすることができる。したがって、燃料電池セル10の作製時、加熱時、冷却時において両者の熱膨張差に起因して発生する熱応力を小さくすることができるため、燃料極の割れや剥離などを抑制することができる。このため、燃料ガス(水素ガス)を流して発電を行う場合においても、多孔質支持基板11との熱膨張係数の整合性は安定に維持され、熱膨張差による割れを有効に回避することができる。
The thermal expansion coefficient of the current collecting fuel electrode layer 23 is usually about 11.5 × 10 −6 (1 / K).
In addition, the thickness of the current collecting fuel electrode layer 23 is desirably 80 μm or more from the viewpoint of improving electric conductivity.
As described above, if the fuel electrode is formed in two layers with the active fuel electrode layer 13a on the solid electrolyte 13b side and the current collecting fuel electrode layer 23 on the porous support substrate 11 side, the porous support substrate 11 side is provided. By adjusting the Ni amount or NiO amount in terms of NiO of the current collecting fuel electrode layer 23 within the range of 30 to 60% by volume, the thermal expansion coefficient is reduced without impairing the bonding property with the power generation element 13. The thermal expansion coefficient of the solid electrolyte 13b, which will be described later, can be approached. For example, the difference in thermal expansion between the two can be less than 2 × 10 −6 / (1 / K). Therefore, since the thermal stress generated due to the difference in thermal expansion between the fuel cell 10 during production, heating, and cooling can be reduced, cracking and peeling of the fuel electrode can be suppressed. . For this reason, even when fuel gas (hydrogen gas) is flowed to generate power, the consistency of the thermal expansion coefficient with the porous support substrate 11 is maintained stably, and cracks due to thermal expansion differences can be effectively avoided. it can.

(固体電解質)
固体電解質13bは、希土類またはその酸化物を固溶させたZrO2からなる安定化ZrO2からなる緻密質なセラミックスで構成されている。
ここで、固溶させる希土類元素またはその酸化物としては、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luなど、または、これらの酸化物などが挙げられ、好ましくは、Y、Yb、または、これらの酸化物が挙げられる。また、固体電解質13bは、8モル%のYが固溶している安定化ZrO2(8mol% Yttoria Stabilized Zirconia、以下、「8YSZ」という。)と熱膨張係数がほぼ等しいランタンガレート系(LaGaO3系)固体電解質を挙げることもできる。 また、固体電解質13bは、例えば、厚さが10〜100μmであり、例えば、相対密度(アルキメデス法による)が93%以上、好ましくは、95%以上の範囲に設定される。
このような固体電解質13bは、電極間の電子の橋渡しをする電解質としての機能を有すると同時に、燃料ガスまたは酸素含有ガスのリーク(ガス透過)を防止するためにガス遮断性を有している。
(Solid electrolyte)
The solid electrolyte 13b is composed of a dense ceramic made of stabilized ZrO 2 composed of ZrO 2 which was a solid solution of rare earth or an oxide thereof.
Here, as rare earth elements to be dissolved or oxides thereof, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, etc. Or these oxides etc. are mentioned, Preferably, Y, Yb, or these oxides are mentioned. The solid electrolyte 13b is a lanthanum gallate system (LaGaO 3 ) having a thermal expansion coefficient substantially equal to that of stabilized ZrO 2 (8 mol% Yttoria Stabilized Zirconia, hereinafter referred to as “8YSZ”) in which 8 mol% of Y is dissolved. System) solid electrolytes. The solid electrolyte 13b has a thickness of 10 to 100 μm, for example, and has a relative density (according to Archimedes method) of 93% or more, preferably 95% or more.
Such a solid electrolyte 13b has a function as an electrolyte for bridging electrons between electrodes, and at the same time has a gas barrier property to prevent leakage of fuel gas or oxygen-containing gas (gas permeation). .

(空気極層)
空気極層13cは、導電性セラミックスから形成されている。導電性セラミックスとしては、例えば、ABO3型のペロブスカイト型酸化物が挙げられ、このようなペロブスカイト型酸化物としては、例えば、遷移金属型ペロブスカイト酸化物、好ましくは、LaMnO3系酸化物、LaFeO3系酸化物、LaCoO3系酸化物など、特にAサイトにLaを有する遷移金属型ペロブスカイト酸化物を挙げることができる。さらに好ましくは、600〜1000℃程度の比較的低温での電気伝導性が高いという観点から、LaCoO3系酸化物が挙げられる。
また、前記したペロブスカイト型酸化物において、AサイトにLaおよびSrが共存してもよく、また、BサイトにFe、CoおよびMnが共存してもよい。
このような空気極層13cは、前記した式(1)の電極反応を生ずることができる。
また、空気極層13cは、その開気孔率が、例えば、20%以上、好ましくは、30〜50%の範囲に設定される。開気孔率が前記した範囲内にあれば、空気極層13cが良好なガス透過性を有することができる。
また、空気極層13cは、その厚さが、例えば、30〜100μmの範囲に設定される。前記した範囲内にあれば、空気極層13cが良好な集電性を有することができる。
(Air electrode layer)
The air electrode layer 13c is made of conductive ceramics. Examples of conductive ceramics include ABO 3 type perovskite oxides. Examples of such perovskite oxides include transition metal type perovskite oxides, preferably LaMnO 3 oxides, LaFeO 3 oxides. Examples thereof include transition metal type perovskite oxides having La at the A site, such as oxides based on oxides and LaCoO 3 oxides. More preferably, from the viewpoint of high electrical conductivity at a relatively low temperature of about 600 to 1000 ° C., a LaCoO 3 oxide is used.
In the perovskite oxide described above, La and Sr may coexist at the A site, and Fe, Co, and Mn may coexist at the B site.
Such an air electrode layer 13c can cause the electrode reaction of the above-described formula (1).
Further, the air electrode layer 13c has an open porosity of, for example, 20% or more, and preferably 30 to 50%. If the open porosity is within the above-described range, the air electrode layer 13c can have good gas permeability.
Moreover, the thickness of the air electrode layer 13c is set in a range of 30 to 100 μm, for example. If it exists in an above-described range, the air electrode layer 13c can have favorable current collection property.

(素子間接続部材)
隣接する発電素子部13同士を直列に接続するために使用される素子間接続部材17は、一方の発電素子13の燃料極層13aと隣接する他方の発電素子13の空気極層13cとを電気的に接続するものであり、第1集電層17aと第2集電層17bとから構成され、これらは電気的に接続されている。
第1集電層17aは導電性セラミックスから形成されるが、燃料ガス(水素ガス)及び空気等の酸素含有ガスと接触するため、耐還元性、耐酸化性を有していることが必要である。このため、かかる導電性セラミックスとしては、一般に、ランタンクロマイト系のペロブスカイト型酸化物(LaCrO3系酸化物)が使用される。また、絶縁支持基板11内のガス流路12を通る燃料ガスと空気極層13cの外部を通る空気等の酸素含有ガスとのリークを防止するため、かかる導電性セラミックスは緻密質でなければならず、例えば93%以上、特に95%以上の相対密度(アルキメデス法)を有していることが好適である。なお、第1集電層17aの端面と、固体電解質13bの端面との間には、適当な接合層(例えばY23)を介在させることにより、シール性を向上させることもできる。
また、第1集電層17aとしては、金属層と、ガラスの入った金属ガラス層との二層構造としてもよい。金属層は、例えば、AgとNiの合金からなり、金属ガラス層は、Agとガラスからなる。前記金属ガラス層により、多孔質支持基板11内のガス流路12を通る燃料ガスの第2集電層へのリーク、および空気極層13cの外部を通る酸素含有ガスの前記金属層へのリークを有効に防止することができる。
一方、第2集電層17bは多孔質とされている。第2集電層17bとしては、LaCoO3系等の導電性セラミック(例えば空気極材料)、Ag−Pd等の貴金属から構成された多孔質とすることができる。第2集電材料の空気極層13cへの塗布量が少ない場合には第2集電材料が空気極層13cの気孔中に浸入し、層としては形成されない。特に、Ag−Pd等の貴金属はコスト低減のため塗布量が少ないため、空気極層13cは、空気極層材料とAg−Pd等の集電材料が混在して構成され、第2集電層は形成されない。一方、LaCoO3系等の導電性セラミックは、塗布量が多く、この場合には空気極層13c上に第2集電層が形成される。
(Element connection member)
The inter-element connection member 17 used for connecting adjacent power generating element portions 13 in series electrically connects the fuel electrode layer 13a of one power generating element 13 and the air electrode layer 13c of the other power generating element 13 adjacent to each other. The first current collecting layer 17a and the second current collecting layer 17b are electrically connected to each other.
The first current collecting layer 17a is formed from conductive ceramics, but it needs to have reduction resistance and oxidation resistance because it comes into contact with an oxygen-containing gas such as fuel gas (hydrogen gas) and air. is there. For this reason, lanthanum chromite perovskite oxides (LaCrO 3 oxides) are generally used as the conductive ceramics. In order to prevent leakage of fuel gas passing through the gas flow path 12 in the insulating support substrate 11 and oxygen-containing gas such as air passing outside the air electrode layer 13c, the conductive ceramics must be dense. For example, it is preferable to have a relative density (Archimedes method) of 93% or more, particularly 95% or more. In addition, a sealing property can also be improved by interposing an appropriate bonding layer (for example, Y 2 O 3 ) between the end face of the first current collecting layer 17a and the end face of the solid electrolyte 13b.
Moreover, as the 1st current collection layer 17a, it is good also as a two-layer structure of a metal layer and the metal glass layer containing glass. The metal layer is made of, for example, an alloy of Ag and Ni, and the metal glass layer is made of Ag and glass. Due to the metal glass layer, leakage of fuel gas through the gas flow path 12 in the porous support substrate 11 to the second current collecting layer and leakage of oxygen-containing gas through the outside of the air electrode layer 13c to the metal layer Can be effectively prevented.
On the other hand, the second current collecting layer 17b is porous. The second current collecting layer 17b can be made of a porous material composed of a conductive ceramic (for example, an air electrode material) such as LaCoO 3 and a noble metal such as Ag—Pd. When the amount of the second current collecting material applied to the air electrode layer 13c is small, the second current collecting material penetrates into the pores of the air electrode layer 13c and is not formed as a layer. In particular, since a precious metal such as Ag-Pd has a small coating amount for cost reduction, the air electrode layer 13c is configured by mixing an air electrode layer material and a current collecting material such as Ag-Pd, and the second current collecting layer. Is not formed. On the other hand, a conductive ceramic such as LaCoO 3 is applied in a large amount. In this case, the second current collecting layer is formed on the air electrode layer 13c.

(製造方法)
次に、前記した横縞型燃料電池セルの製造方法について、図3および図4を参照して、説明する。
まず、支持基板成形体41を作製する。支持基板成形体41の材料として、体積基準での平均粒径(D50)(以下、単に「平均粒径」という。)が0.1〜10.0μmのMgO粉末に、必要により熱膨張係数調整用または接合強度向上用として、Ni粉末、NiO粉末、Y23粉末、または、希土類元素安定化ジルコニア粉末(YSZ)などを所定の比率で配合して混合し、混合後の熱膨張係数が固体電解質13bのそれとほぼ一致するように調整する。この混合粉末を、ポアー剤と、セルロース系有機バインダーと、水とからなる溶媒と混合し、押し出し成形して、図3に示すように、内部にガス流路42を有する中空の板状形状で、扁平状の支持基板成形体41を作製し、これを乾燥後、900℃〜1100℃にて仮焼処理する。ガス流路の直径は、押し出し成形時に調整する。
(Production method)
Next, a method for manufacturing the horizontal stripe fuel cell described above will be described with reference to FIGS.
First, the support substrate molded body 41 is produced. As a material of the support substrate molded body 41, an MgO powder having an average particle diameter (D 50 ) (hereinafter simply referred to as “average particle diameter”) on a volume basis is 0.1 to 10.0 μm, and if necessary, a thermal expansion coefficient. Ni powder, NiO powder, Y 2 O 3 powder, rare earth element stabilized zirconia powder (YSZ), etc. are blended at a predetermined ratio and mixed for adjustment or improvement of bonding strength, and the thermal expansion coefficient after mixing Is adjusted to substantially match that of the solid electrolyte 13b. This mixed powder is mixed with a solvent composed of a pore agent, a cellulosic organic binder, and water, extruded, and formed into a hollow plate shape having a gas flow path 42 inside as shown in FIG. Then, a flat support substrate molded body 41 is prepared, dried, and calcined at 900 ° C. to 1100 ° C. The diameter of the gas channel is adjusted during extrusion.

次いで、燃料極層、固体電解質を作製する。まず、例えば、NiO粉末、Ni粉末と、YSZ粉末とを混合し、これにポアー剤を添加し、アクリル系バインダーとトルエンとを混合してスラリーとし、ドクターブレード法にてスラリーを塗布して乾燥し、厚さ5〜20μmの活性燃料極層テープ43aを作製する(図4(a))。
次に、活性燃料極層テープ43aと同様にして、例えば、NiO粉末、Ni粉末と、Y23などの希土類元素酸化物とを混合し、これにポアー剤を添加し、アクリル系バインダーとトルエンとを混合してスラリーとし、ドクターブレード法にてスラリーを塗布して乾燥し、厚さ80μm以上の集電燃料極層テープ43を作成する。この集電燃料極層テープ43に前記活性燃料極層テープ43aを貼り付ける(図4(b))。当該貼り合わせたテープを発電素子13の形状にあわせて切断し、絶縁部を形成する部分を打ち抜く(図4(c))。
Next, a fuel electrode layer and a solid electrolyte are produced. First, for example, NiO powder, Ni powder, and YSZ powder are mixed, a pore agent is added thereto, an acrylic binder and toluene are mixed to form a slurry, and the slurry is applied by a doctor blade method and dried. Then, an active fuel electrode layer tape 43a having a thickness of 5 to 20 μm is produced (FIG. 4A).
Next, in the same manner as the active fuel electrode layer tape 43a, for example, NiO powder, Ni powder, and rare earth element oxide such as Y 2 O 3 are mixed, a pore agent is added thereto, an acrylic binder, Toluene is mixed to form a slurry, and the slurry is applied by a doctor blade method and dried to prepare a current collecting fuel electrode layer tape 43 having a thickness of 80 μm or more. The active fuel electrode layer tape 43a is attached to the current collecting fuel electrode layer tape 43 (FIG. 4B). The bonded tape is cut in accordance with the shape of the power generating element 13, and a portion for forming an insulating portion is punched out (FIG. 4C).

その後、図4(d)に示すように、活性燃料極層テープ43aが貼り付けられた集電燃料極層テープ43を、前記仮焼した支持基板成形体41に、横縞状に貼り付ける。これを繰り返し行い、支持基板成形体41の表面に複数の集電燃料極層テープ43を貼り付ける。なお、このとき一方の集電燃料極層テープ43と、他方の集電燃料極層テープ43とは、幅3〜20mmの間隔をあけて配置する。
次に、この集電燃料極層テープ43を貼り付けた状態で乾燥し、その後、900〜1100℃の温度範囲で仮焼する(図4(d))。そして、活性燃料極層43aの第1集電層47aを形成したい部分に、マスキングテープ48を貼り付ける(図4(e))。
Thereafter, as shown in FIG. 4D, the current collecting fuel electrode layer tape 43 with the active fuel electrode layer tape 43a attached thereto is attached to the calcined support substrate molded body 41 in a horizontal stripe shape. This is repeated and a plurality of current collecting fuel electrode layer tapes 43 are attached to the surface of the support substrate molded body 41. At this time, one current collecting fuel electrode layer tape 43 and the other current collecting fuel electrode layer tape 43 are arranged with an interval of 3 to 20 mm in width.
Next, it is dried with the current collecting fuel electrode layer tape 43 applied, and then calcined in the temperature range of 900 to 1100 ° C. (FIG. 4D). Then, a masking tape 48 is attached to a portion of the active fuel electrode layer 43a where the first current collecting layer 47a is to be formed (FIG. 4E).

次に、この積層体を、8YSZにアクリル系バインダーとトルエンを加えてスラリーとした固体電解質溶液に漬けて、固体電解質溶液から取り出す。このディップにより、全面に固体電解質43bの層が塗布されるとともに、前記図4(c)で打ち抜いた空間にも絶縁体である固体電解質43bが充填される。
この状態で、1150〜1200℃、2〜4時間仮焼する。この仮焼中に、マスキングテープ48とその上に塗布された固体電解質43bの層を除去することができる。(図4(f))。
この後、1450〜1550℃で2〜8時間焼成する。
Next, this laminate is immersed in a solid electrolyte solution that is a slurry obtained by adding an acrylic binder and toluene to 8YSZ, and is taken out from the solid electrolyte solution. By this dipping, a layer of the solid electrolyte 43b is applied to the entire surface, and the space cut out in FIG. 4C is filled with the solid electrolyte 43b which is an insulator.
In this state, calcination is performed at 1150 to 1200 ° C. for 2 to 4 hours. During the calcination, the masking tape 48 and the layer of the solid electrolyte 43b applied thereon can be removed. (FIG. 4 (f)).
This is followed by firing at 1450-1550 ° C. for 2-8 hours.

次に、ランタンコバルタイト(LaCoO3)とイソプロピルアルコールとを混合したスラリーを印刷し、厚さ10〜100μmの空気極層43cを形成する。そして、950〜1150℃、2〜5時間焼き付ける(図4(g))。
そして、第1集電層47aを形成したい部分にAg/Niからなる金属層のシートを貼り付け、さらにAgとガラスを含む金属ガラス層のシートを貼り付けて(図4(g))、その後、1000〜1200℃で熱処理を行う。
最後に、第2集電層47bを所定位置に塗布して、横縞型燃料電池セル10を得ることができる(図4(i))。
Next, the slurry was mixed with lanthanum cobaltite (LaCoO 3) and isopropyl alcohol by printing, to form the air electrode layer 43c having a thickness of 10 to 100 [mu] m. Then, baking is performed at 950 to 1150 ° C. for 2 to 5 hours (FIG. 4G).
And the sheet | seat of the metal layer which consists of Ag / Ni is affixed on the part which wants to form the 1st current collection layer 47a, Furthermore, the sheet | seat of the metal glass layer containing Ag and glass is affixed (FIG.4 (g)), and then , Heat treatment is performed at 1000 to 1200 ° C.
Finally, the second current collecting layer 47b can be applied to a predetermined position to obtain the horizontal stripe fuel cell 10 (FIG. 4 (i)).

なお、前記した各層の積層方法については、テープ積層、ペースト印刷、ディップ、および、スプレー吹きつけのいずれの積層法を用いてもよい。好ましくは、積層時の乾燥工程が短時間であり、工程の短時間化の観点から、ディップにより各層を積層する。   In addition, about the lamination | stacking method of each above-mentioned layer, you may use any lamination method of tape lamination | stacking, paste printing, dip, and spray spraying. Preferably, the drying process at the time of lamination is short, and each layer is laminated by dipping from the viewpoint of shortening the process.

(他の実施形態)
前記した一実施形態では、前記多孔質支持基板11の幅方向の両端のガス流路12の直径を該ガス流路12より中心側に位置するガス流路12の直径よりも小さくする構成としたが、図5に示すように、端から中心側にいくほど直径が大きくなるようにしてもよい。これにより、セルにおける部分的な強度差を小さくすることができる。また、本実施形態の構成とすることにより、前記した一実施形態と同様の効果が得られる。なお、図5は、両端のガス流路12に隣接するガス流路12のみを中心側の直径よりも小さくした例であるが、これに限定されることはない。また、このとき、両端のガス流路12を除く中心側のガス流路12の直径Lを、前記多孔質支持基板11の厚みTに対し37%以上65%以下の範囲で大きくすることが好ましいことはいうまでもない。
(Other embodiments)
In the above-described embodiment, the diameter of the gas flow path 12 at both ends in the width direction of the porous support substrate 11 is configured to be smaller than the diameter of the gas flow path 12 located on the center side of the gas flow path 12. However, as shown in FIG. 5, the diameter may be increased from the end toward the center. Thereby, the partial intensity | strength difference in a cell can be made small. Further, by adopting the configuration of the present embodiment, the same effects as those of the above-described one embodiment can be obtained. FIG. 5 shows an example in which only the gas flow path 12 adjacent to the gas flow paths 12 at both ends is made smaller than the diameter on the center side, but is not limited thereto. At this time, it is preferable to increase the diameter L of the gas flow path 12 on the center side excluding the gas flow paths 12 at both ends within a range of 37% to 65% with respect to the thickness T of the porous support substrate 11. Needless to say.

以上、本発明の実施の形態を説明したが、本発明は、前記の形態に限定されるものではない。例えば、前記の例ではガス流路12の断面は円形としたが、略円形あるいは楕円形としてもよい。多孔質支持基板11は、多孔質で絶縁体であればその材質は問わない。さらに、上記形態では、活性燃料極層13aと集電燃料極層23を有する場合について説明したが、活性燃料極層13aだけの場合であっても、同様の効果を有する。その他、本発明の範囲内で種々の変更を施すことが可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments. For example, in the above example, the gas channel 12 has a circular cross section, but it may be substantially circular or elliptical. The material of the porous support substrate 11 is not limited as long as it is porous and is an insulator. Furthermore, although the case where the active fuel electrode layer 13a and the current collecting fuel electrode layer 23 are provided has been described in the above embodiment, the same effect can be obtained even when only the active fuel electrode layer 13a is provided. In addition, various modifications can be made within the scope of the present invention.

以下、実施例および比較例を挙げて、本発明の横縞型燃料電池セルをさらに詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。   Hereinafter, the horizontal stripe fuel cell of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

上記した製造方法により、図1に示すような燃料電池セル10を作製し、その強度について調べた。
前記燃料電池セル10は、図6(a)、(b)に示すように、幅40mm、厚さ(T)2.8mm、長さ200mmの多孔質支持基板11に、ガス流路12を17個設けた。前記ガス流路12の直径Lは、両端部が1.1mm、両端部以外は1.3mmであった。また、前記ガス流路12と多孔質支持基板11表面との最近接距離Mは両端部で0.85mm、両端部以外では0.75mmであった。
多孔質支持基板11は、平板部11aの幅方向長さが37.2mm、半割円柱部11bの幅方向長さが1.4mmであり、両端部のガス流路12は、平板部11aと半割円柱部11bに跨って存在しており、17個のガス流路12の中心位置間は一定間隔2.325mmとされている。
前記燃料電池セル10の幅方向(ガス流路12の配列方向)の強度分布を調べるために、図6(a)に示すように、幅方向に端から中心までを5領域に分けてそれぞれの領域での強度を調べた。なお、強度は50MPa以上であることを燃料電池セル10として適正な基準値とした。すなわち、50MPa未満であると、縦割れの生じる確率が非常に高まる。
強度は、下記の方法にて測定した。すなわち、図6(a)に示す破線部分でセル長さ方向にカットし、長さ30mmのテストピースを作製し、JIS1601に基く3点曲げ強度試験(島津製作所(製)オートグラフ)で測定した。測定結果を、表1に示した。
この燃料電池セル10を実施例1とし、前記LとMを表1に示す値とした以外、上記実施例と同様にして燃料電池セルを作製し、評価し、表1に記載した。
なお、表1の実施例5については支持基板の厚さを2mmとし、実施例6については支持基板の厚さを3.5mmとした。

Figure 2009081113
A fuel battery cell 10 as shown in FIG. 1 was produced by the above-described manufacturing method, and its strength was examined.
As shown in FIGS. 6 (a) and 6 (b), the fuel cell 10 has 17 gas flow paths 12 on a porous support substrate 11 having a width of 40 mm, a thickness (T) of 2.8 mm, and a length of 200 mm. Provided. The diameter L of the gas flow path 12 was 1.1 mm at both ends, and 1.3 mm except for both ends. Further, the closest distance M between the gas flow path 12 and the surface of the porous support substrate 11 was 0.85 mm at both ends, and 0.75 mm at other than both ends.
The porous support substrate 11 has a flat plate portion 11a having a width direction length of 37.2 mm and a half cylinder portion 11b having a width direction length of 1.4 mm. It exists across the half cylinder part 11b, and the interval between the center positions of the 17 gas flow paths 12 is set to a constant interval of 2.325 mm.
In order to investigate the intensity distribution in the width direction of the fuel cell 10 (the arrangement direction of the gas flow paths 12), as shown in FIG. 6 (a), each region is divided into five regions from the end to the center in the width direction. The intensity in the area was examined. In addition, the intensity | strength was 50 Mpa or more was made into the appropriate reference value as the fuel cell 10. That is, if it is less than 50 MPa, the probability of occurrence of vertical cracks is greatly increased.
The strength was measured by the following method. That is, the cell was cut in the cell length direction at the broken line portion shown in FIG. 6A, a test piece having a length of 30 mm was produced, and measured by a three-point bending strength test (Shimadzu Corporation Autograph) based on JIS1601. . The measurement results are shown in Table 1.
A fuel cell was prepared and evaluated in the same manner as in the above Example, except that this fuel cell 10 was Example 1, and L and M were values shown in Table 1. Table 1 shows the results.
In addition, about Example 5 of Table 1, the thickness of the support substrate was 2 mm, and about Example 6, the thickness of the support substrate was 3.5 mm.
Figure 2009081113

表1に示すように、本発明の範囲内の燃料電池セル10は、多孔質支持基板11の幅方向の強度分布が比較的平坦であり、強度差が10.3MPa以下であった。しかもすべての領域で58MPa以上を確保していた(実施例1〜6)。
これに対して、ガス流路12の直径をすべて同一とした比較例1〜3では、ガス流路12の直径を1.0mmおよび1.2mmとした場合(比較例1、2)、強度は高まるが強度分布はばらつきが生じ、それぞれ強度差が14.7MPaおよび16MPaを示し、セル内において強度差が大きい部分があり、その境界部分で割れが発生することが判る。ガス流路12の直径を1.4mmとした場合(比較例3)、強度分布は比較的平坦となるが、端部での強度が50MPaを下回った。なお、比較例1,2ではガス流路12の直径が燃料電池セル10の厚さTに対して、それぞれ36%および42%であり、ガスの供給を十分できないおそれがある。
As shown in Table 1, in the fuel cell 10 within the scope of the present invention, the strength distribution in the width direction of the porous support substrate 11 was relatively flat, and the strength difference was 10.3 MPa or less. Moreover, 58 MPa or more was ensured in all regions (Examples 1 to 6).
On the other hand, in Comparative Examples 1 to 3 in which all the diameters of the gas flow path 12 are the same, when the diameter of the gas flow path 12 is 1.0 mm and 1.2 mm (Comparative Examples 1 and 2), the strength is Although the strength distribution increases, the strength distribution varies, and the difference in strength is 14.7 MPa and 16 MPa, respectively, and there is a portion where the strength difference is large in the cell, and it can be seen that cracking occurs at the boundary portion. When the diameter of the gas channel 12 was 1.4 mm (Comparative Example 3), the strength distribution was relatively flat, but the strength at the end was less than 50 MPa. In Comparative Examples 1 and 2, the diameter of the gas flow path 12 is 36% and 42% with respect to the thickness T of the fuel cell 10, respectively.

本発明の横縞型燃料電池セルの一実施形態を示す一部破断斜視図である。It is a partially broken perspective view showing one embodiment of a horizontal stripe type fuel cell of the present invention. 図1の横縞型燃料電池セルのセルスタックを示す縦断面図である。It is a longitudinal cross-sectional view which shows the cell stack of the horizontal stripe type fuel cell of FIG. 本発明の横縞型燃料電池セルに用いる支持基板成形体の断面図である。It is sectional drawing of the support substrate molded object used for the horizontal stripe type fuel battery cell of this invention. 本発明の燃料電池セルの製造工程図である。It is a manufacturing-process figure of the fuel battery cell of this invention. 本発明の横縞型燃料電池セルの他の実施形態の端面を示す説明図である。It is explanatory drawing which shows the end surface of other embodiment of the horizontal stripe type fuel cell of this invention. (a)は図1の燃料電池セルの端面を示す説明図、(b)は(a)の端面の一部を示す説明図である。(A) is explanatory drawing which shows the end surface of the fuel battery cell of FIG. 1, (b) is explanatory drawing which shows a part of end surface of (a). 従来の燃料電池セルの構造を示す一部破断斜視図である。It is a partially broken perspective view which shows the structure of the conventional fuel cell.

符号の説明Explanation of symbols

10 燃料電池セル
11 多孔質支持基板
12 ガス流路
13 発電素子(13a:活性燃料極層、13b:固体電解質、13c:空気極層)
17 素子間接続部材(17a:第1集電層、17b:第2集電層)
23 集電燃料極層
DESCRIPTION OF SYMBOLS 10 Fuel cell 11 Porous support substrate 12 Gas flow path 13 Electric power generation element (13a: Active fuel electrode layer, 13b: Solid electrolyte, 13c: Air electrode layer)
17 Inter-element connection member (17a: first current collecting layer, 17b: second current collecting layer)
23 Current collector fuel electrode layer

Claims (6)

幅方向に3つ以上のガス流路を内部に備えた電気絶縁性の多孔質支持基板の表面に、内側電極、固体電解質および外側電極が順次積層された発電素子を複数並設し、前記発電素子の内側電極と、該発電素子に隣接する他の発電素子の外側電極とが電気的に接続されている横縞型燃料電池セルであって、前記多孔質支持基板の幅方向の両端にあるガス流路の直径が該ガス流路より中心側に位置する他のガス流路の直径よりも小さいことを特徴とする横縞型燃料電池セル。   A plurality of power generation elements in which an inner electrode, a solid electrolyte, and an outer electrode are sequentially stacked are arranged in parallel on the surface of an electrically insulating porous support substrate having three or more gas flow paths in the width direction. A horizontally-striped fuel cell in which an inner electrode of an element and an outer electrode of another power generation element adjacent to the power generation element are electrically connected, and gas at both ends in the width direction of the porous support substrate A horizontal-striped fuel cell, wherein the diameter of the flow path is smaller than the diameter of another gas flow path located closer to the center than the gas flow path. 前記多孔質支持基板の幅方向の中心側に位置する他のガス流路の直径が、前記多孔質支持基板の厚みに対し37%以上65%以下であることを特徴とする請求項1記載の横縞型燃料電池セル。   2. The diameter of another gas channel located on the center side in the width direction of the porous support substrate is 37% or more and 65% or less with respect to the thickness of the porous support substrate. Horizontal stripe fuel cell. 前記多孔質支持基板の幅方向の両端にあるガス流路の直径が、前記多孔質支持基板の厚みに対し34%以上50%以下であることを特徴とする請求項1または2記載の横縞型燃料電池セル。   The horizontal stripe type according to claim 1 or 2, wherein the diameter of the gas flow path at both ends in the width direction of the porous support substrate is 34% or more and 50% or less with respect to the thickness of the porous support substrate. Fuel cell. 前記多孔質支持基板の厚みが2.0mm以上3.5mm以下であることを特徴とする請求項1〜3のいずれかに記載の横縞型燃料電池セル。   The horizontal stripe fuel cell according to any one of claims 1 to 3, wherein the porous support substrate has a thickness of 2.0 mm to 3.5 mm. 前記発電素子は前記多孔質支持基板の幅方向の両端にあるガス流路より中心側に配設されていることを特徴とする請求項1〜4のいずれかに記載の横縞型燃料電池セル。   The horizontal stripe fuel cell according to any one of claims 1 to 4, wherein the power generation element is disposed closer to the center than a gas flow path at both ends in the width direction of the porous support substrate. 請求項1〜5のいずれかに記載の横縞型燃料電池セルを収納容器内に複数収容してなることを特徴とする燃料電池。   A fuel cell comprising a plurality of horizontally-striped fuel cells according to claim 1 in a storage container.
JP2007251344A 2007-09-27 2007-09-27 Horizontal stripe fuel cell and fuel cell Active JP5179131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007251344A JP5179131B2 (en) 2007-09-27 2007-09-27 Horizontal stripe fuel cell and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007251344A JP5179131B2 (en) 2007-09-27 2007-09-27 Horizontal stripe fuel cell and fuel cell

Publications (2)

Publication Number Publication Date
JP2009081113A true JP2009081113A (en) 2009-04-16
JP5179131B2 JP5179131B2 (en) 2013-04-10

Family

ID=40655694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007251344A Active JP5179131B2 (en) 2007-09-27 2007-09-27 Horizontal stripe fuel cell and fuel cell

Country Status (1)

Country Link
JP (1) JP5179131B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129269A (en) * 2008-11-26 2010-06-10 Kyocera Corp Fuel battery cell, fuel battery cell stack device, fuel battery module, and fuel battery device
JP2010257744A (en) * 2009-04-24 2010-11-11 Kyocera Corp Lateral stripe type fuel cell stack, method for manufacturing the same, and fuel cell
JP2011113690A (en) * 2009-11-25 2011-06-09 Kyocera Corp Single fuel cell, single fuel cell stack device, fuel cell module, and fuel cell device
JP5753930B1 (en) * 2014-06-05 2015-07-22 日本碍子株式会社 Fuel cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282072A (en) * 2002-03-25 2003-10-03 Kyocera Corp Fuel battery cell and manufacturing method of the same, cell stack, and fuel battery
JP2004178817A (en) * 2002-11-22 2004-06-24 Kyocera Corp Cell of fuel cell and fuel cell
JP2004220875A (en) * 2003-01-14 2004-08-05 Mitsubishi Heavy Ind Ltd Fuel battery cell, fuel battery equipped with same, and manufacturing method of fuel battery cell
JP2004253279A (en) * 2003-02-20 2004-09-09 Kyocera Corp Fuel cell
JP2004355916A (en) * 2003-05-28 2004-12-16 Kyocera Corp Fuel battery cell and fuel battery
JP2006236674A (en) * 2005-02-23 2006-09-07 Kyocera Corp Unit fuel cell, fuel cell stack and fuel cell using it
JP2007095566A (en) * 2005-09-29 2007-04-12 Kyocera Corp Lateral stripe type fuel battery cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282072A (en) * 2002-03-25 2003-10-03 Kyocera Corp Fuel battery cell and manufacturing method of the same, cell stack, and fuel battery
JP2004178817A (en) * 2002-11-22 2004-06-24 Kyocera Corp Cell of fuel cell and fuel cell
JP2004220875A (en) * 2003-01-14 2004-08-05 Mitsubishi Heavy Ind Ltd Fuel battery cell, fuel battery equipped with same, and manufacturing method of fuel battery cell
JP2004253279A (en) * 2003-02-20 2004-09-09 Kyocera Corp Fuel cell
JP2004355916A (en) * 2003-05-28 2004-12-16 Kyocera Corp Fuel battery cell and fuel battery
JP2006236674A (en) * 2005-02-23 2006-09-07 Kyocera Corp Unit fuel cell, fuel cell stack and fuel cell using it
JP2007095566A (en) * 2005-09-29 2007-04-12 Kyocera Corp Lateral stripe type fuel battery cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129269A (en) * 2008-11-26 2010-06-10 Kyocera Corp Fuel battery cell, fuel battery cell stack device, fuel battery module, and fuel battery device
JP2010257744A (en) * 2009-04-24 2010-11-11 Kyocera Corp Lateral stripe type fuel cell stack, method for manufacturing the same, and fuel cell
JP2011113690A (en) * 2009-11-25 2011-06-09 Kyocera Corp Single fuel cell, single fuel cell stack device, fuel cell module, and fuel cell device
JP5753930B1 (en) * 2014-06-05 2015-07-22 日本碍子株式会社 Fuel cell

Also Published As

Publication number Publication date
JP5179131B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
JP5175527B2 (en) Cell stack and fuel cell
JP5132878B2 (en) Fuel cell, fuel cell stack and fuel cell
JP5175461B2 (en) Horizontally-striped fuel cell and fuel cell
JP4718959B2 (en) Horizontal stripe fuel cell
JP5080951B2 (en) Horizontal stripe fuel cell stack and fuel cell
JP5118865B2 (en) Horizontally-striped fuel cell and method for producing the same
JP4741815B2 (en) Cell stack and fuel cell
JP5192702B2 (en) Horizontally-striped fuel cell, cell stack, and fuel cell
JP5444022B2 (en) Horizontally-striped solid oxide fuel cell stack and fuel cell
JP5192723B2 (en) Horizontally-striped fuel cell and fuel cell
JP5241663B2 (en) Solid electrolyte fuel cell stack, bundle and fuel cell
JP5417543B1 (en) Horizontal stripe fuel cell
JP4851692B2 (en) Solid electrolyte fuel cell stack, bundle and fuel cell
JP5281950B2 (en) Horizontally-striped fuel cell stack, manufacturing method thereof, and fuel cell
JP5132879B2 (en) Horizontal stripe fuel cell and fuel cell
JP5179131B2 (en) Horizontal stripe fuel cell and fuel cell
JP2005093241A (en) Solid oxide fuel cell
JP4465175B2 (en) Solid electrolyte fuel cell
JP2007250368A (en) Lateral stripe type fuel cell and fuel cell
JP5179153B2 (en) Horizontally-striped fuel cell, cell stack, and fuel cell
JP5449076B2 (en) Fuel cell
JP5437152B2 (en) Horizontally-striped solid oxide fuel cell stack and fuel cell
JP5401405B2 (en) Horizontally Striped Solid Oxide Fuel Cell Stack, Horizontally Striped Solid Oxide Fuel Cell Bundle, and Fuel Cell
JP4925574B2 (en) Fuel cell and fuel cell
JP5198108B2 (en) Horizontally-striped solid oxide fuel cell stack and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130109

R150 Certificate of patent or registration of utility model

Ref document number: 5179131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350