JP2009079976A - Apparatus for measuring road surface strain - Google Patents

Apparatus for measuring road surface strain Download PDF

Info

Publication number
JP2009079976A
JP2009079976A JP2007248798A JP2007248798A JP2009079976A JP 2009079976 A JP2009079976 A JP 2009079976A JP 2007248798 A JP2007248798 A JP 2007248798A JP 2007248798 A JP2007248798 A JP 2007248798A JP 2009079976 A JP2009079976 A JP 2009079976A
Authority
JP
Japan
Prior art keywords
strain
road surface
thin film
flexible substrate
gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007248798A
Other languages
Japanese (ja)
Other versions
JP4260864B2 (en
Inventor
Junichi Mizukami
純一 水上
Shiyoujiyo Tsubokawa
将丈 坪川
Nagato Abe
長門 阿部
Hironobu Maehara
弘宣 前原
Shinji Kimura
真志 木村
Yoshiyasu Saito
好康 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Doro Kogyo Co Ltd
National Institute for Land and Infrastructure Management
Tokyo Sokki Kenkyujo Co Ltd
Original Assignee
Toa Doro Kogyo Co Ltd
National Institute for Land and Infrastructure Management
Tokyo Sokki Kenkyujo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Doro Kogyo Co Ltd, National Institute for Land and Infrastructure Management, Tokyo Sokki Kenkyujo Co Ltd filed Critical Toa Doro Kogyo Co Ltd
Priority to JP2007248798A priority Critical patent/JP4260864B2/en
Publication of JP2009079976A publication Critical patent/JP2009079976A/en
Application granted granted Critical
Publication of JP4260864B2 publication Critical patent/JP4260864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a strain measuring apparatus which has a structure resistant to damage on a wheel grounded area and can measure strain distribution occurring on a road surface with high precision. <P>SOLUTION: The apparatus 1 has a sensor section 6. The sensor section 6 is configured by fixing a gauge base 4 to which a resistive strain gauge 3 (or a strain-sensitive section) is fixed to the backside of a flexible substrate 2 and fixing a sheet insulating member 5 to the front side of the flexible substrate 2. The flexible substrate 2 is provided with a thin film conductor 18 which electrically communicates with a wire connecting section 14a out of wire connecting sections (tabs) 14a, 14b on the both sides of the strain-sensitive section of each resistive gauge 3 and thin film conductors 19, 20 which electrically communicate with the wire connecting section 14b. The gauge base 4 of the sensor section 6 is fixed to the road surface so that the strain gauge 3 is positioned on the wheel grounded area out of the road surface and that end sections 18b, 19b, 20b of the thin film conductors 18, 19, 20 are positioned on an area which deviates from the grounded area in the wheel width direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車、航空機など、車輪を有する移動体を走行させる路面のひずみを測定する装置に関する。   The present invention relates to an apparatus for measuring strain on a road surface on which a moving body having wheels such as an automobile and an aircraft travels.

近年、自動車や航空機などの車輪には、車体あるいは機体の大型化に伴い、接地圧の高いタイヤや、サイドウォールを補強したタイヤが多用されている。そして、このようなタイヤを使用した移動体を走行させるアスファルト舗装などの路面は、大きなひずみが発生するため損傷を受けやすく、該路面の保守・管理などのために、該路面に発生するひずみ分布を精度よく測定することが望まれている。   2. Description of the Related Art In recent years, tires with high contact pressure and tires with reinforced sidewalls are frequently used for wheels of automobiles and airplanes as the size of the vehicle body or body increases. And, road surfaces such as asphalt pavement that travels moving bodies using such tires are susceptible to damage because large strains are generated, and the strain distribution generated on the road surface for maintenance and management of the road surface, etc. It is desired to accurately measure

この場合、路面のうちの車輪の接地領域(車輪が接地し得る領域)に複数の抵抗式ひずみゲージ(以下、単にひずみゲージということがある)を貼り付けることが考えられる。   In this case, it is conceivable to attach a plurality of resistance strain gauges (hereinafter sometimes simply referred to as strain gauges) to the ground contact area of the wheel on the road surface (the area where the wheel can be grounded).

しかるに、個々のひずみゲージは、車輪の接地領域に比して微小であるので、路面に発生するひずみの分布を適切に測定するためには、多数のひずみゲージを必要とし、ひいては、それぞれのひずみゲージを測定器(多点測定器)に接続するための多数のリード線を、車輪の幅方向で該車輪の接地領域を横断させるように配線する必要がある。また、ひずみゲージを使用したひずみ測定は、リード線の抵抗値の変化の影響を補償するために、1個のひずみゲージに3本のリード線を接続する1ゲージ3線法で行なうことが一般的であり、その場合には、路面に固着するひずみゲージの個数の3倍の本数のリード線が必要となる。さらに、それらの多数のリード線を路面上に均一的に平坦に並べることは困難である。   However, since individual strain gauges are very small compared to the ground contact area of the wheel, a large number of strain gauges are required to properly measure the distribution of strain generated on the road surface. It is necessary to wire a large number of lead wires for connecting the gauge to the measuring device (multi-point measuring device) so as to cross the grounding region of the wheel in the width direction of the wheel. In addition, strain measurement using a strain gauge is generally performed by a one-gauge three-wire method in which three lead wires are connected to one strain gauge in order to compensate for the influence of changes in the resistance value of the lead wires. In such a case, the number of lead wires that is three times the number of strain gauges fixed to the road surface is required. Furthermore, it is difficult to arrange these many leads uniformly on the road surface.

このため、多数のひずみゲージを路面に貼り付けて該路面のひずみ分布を測定しようとした場合には、それらのひずみゲージに接続するリード線の束が、車輪の接地領域内で部分的に嵩高いものとなる。そして、このような場合には、そのリード線の束の上に走行中の移動体の車輪のタイヤが接地することによって、該リード線の断線が生じやすいことが本願発明者の実験により確認された。   For this reason, when a large number of strain gauges are attached to the road surface and the strain distribution of the road surface is to be measured, the bundle of lead wires connected to these strain gauges is partially bulky in the ground contact area of the wheel. It will be expensive. In such a case, it has been confirmed by experiments of the present inventor that the lead wire is likely to be disconnected when the tire of the traveling vehicle wheel is grounded on the bundle of the lead wires. It was.

その理由は次のように考えられる。すなわち、該リード線の束に車輪のタイヤが接地したときに、個々のリード線がタイヤの弾性変形に伴う引張力や圧縮力を受ける。より詳しくは、リード線の束のタイヤとの接触箇所では該リード線が車輪の幅方向で引張力を受け、タイヤの外周面の溝部では該リード線が車輪の幅方向で圧縮力を受ける。また、リード線の束が嵩高くなっているため、車輪から受ける接地荷重が該リード線の束に局所的に集中し、ひいては、上記の引張力や圧縮力が局所的に大きなものとなりやすい。この結果、リード線の束が車輪のタイヤの接地時に変形を生じやすく、ひいては、該リード線の断線が生じやすくなると考えられる。   The reason is considered as follows. That is, when a wheel tire comes in contact with the bundle of lead wires, each lead wire receives a tensile force and a compressive force accompanying elastic deformation of the tire. More specifically, the lead wire receives a tensile force in the width direction of the wheel at a contact portion of the bundle of lead wires with the tire, and the lead wire receives a compressive force in the width direction of the wheel at the groove portion on the outer peripheral surface of the tire. Further, since the bundle of lead wires is bulky, the ground load received from the wheel is locally concentrated on the bundle of lead wires, and as a result, the above-described tensile force and compressive force tend to be locally large. As a result, it is considered that the bundle of lead wires is likely to be deformed when the wheel tire is grounded, and consequently the lead wires are likely to be disconnected.

従って、このような不都合を回避しつつ、路面のひずみ分布を適切に計測するためには、車輪の接地領域で、できるだけ平坦で薄くなるような構造を採用することが望まれる。   Therefore, in order to appropriately measure the strain distribution on the road surface while avoiding such inconvenience, it is desirable to adopt a structure that is as flat and thin as possible in the ground contact area of the wheel.

一方、例えば特許文献1の図5あるいは図6に見られるように、1つのシート状のゲージベース上に、複数のひずみ受感部と、各ひずみ受感部の両端に連なる薄膜状の配線パターンとをフォトエッチングなどにより一体に形成したひずみゲージが知られている。このようなひずみゲージでは、複数のひずみ受感部とこれに導通する薄膜状の配線パターンとが1つのゲージベース上に一体に形成されるので、平坦で薄いものとなる。   On the other hand, for example, as seen in FIG. 5 or FIG. 6 of Patent Document 1, on a single sheet-like gauge base, a plurality of strain sensitive portions and a thin-film wiring pattern connected to both ends of each strain sensitive portion There is known a strain gauge that is integrally formed by photoetching or the like. In such a strain gauge, a plurality of strain sensing parts and a thin film-like wiring pattern connected to the plurality of strain sensitive parts are integrally formed on one gauge base, so that the strain gauge is flat and thin.

そこで、このようなひずみゲージを車輪の接地領域に貼り付けて、該接地領域にリード線を配線しないようにすることが考えられる。   Therefore, it is conceivable to attach such a strain gauge to the grounding area of the wheel so that no lead wire is wired in the grounding area.

しかるに、特許文献1に見られるひずみゲージでは、各ひずみ受感部の両端に連なる配線パターンが、抵抗素子であるひずみ受感部と同じ材質で一体に形成される。そして、路面のうちの車輪の接地領域は、各ひずみ受感部に比して大きな幅を有する領域であるため、その接地領域を横断するように配線パターンをゲージベース上に形成すると、個々のひずみ受感部毎の配線パターンの長さのばらつき幅が大きくなり、ひいては、それらの配線パターンの抵抗値のばらつきが大きくなる。その結果、個々のひずみ受感部毎の実質的なゲージ率あるいは感度が比較的大きくばらつくこととなり、路面のひずみ分布を精度よく計測することが困難となってしまう。
特開2003−97906号公報
However, in the strain gauge found in Patent Document 1, the wiring patterns connected to both ends of each strain sensing part are integrally formed of the same material as the strain sensing part that is a resistance element. And, since the ground contact area of the wheel on the road surface is an area having a larger width than each strain sensing part, if a wiring pattern is formed on the gauge base so as to cross the ground contact area, individual contact areas are obtained. The variation width of the length of the wiring pattern for each strain sensing part becomes large, and as a result, the variation of the resistance value of these wiring patterns becomes large. As a result, the substantial gauge factor or sensitivity of each individual strain sensing unit varies relatively, and it becomes difficult to accurately measure the strain distribution on the road surface.
JP 2003-97906 A

本発明はかかる背景に鑑みてなされたものであり、車輪の接地領域で損傷を受け難い構造で、路面に発生するひずみ分布を精度よく測定することができるひずみ測定装置を提供することを目的とする。   The present invention has been made in view of such a background, and an object thereof is to provide a strain measuring device that can measure a strain distribution generated on a road surface with high accuracy with a structure that is not easily damaged in a ground contact region of a wheel. To do.

かかる目的を達成するための本発明の路面のひずみ測定装置は、4種類の基本的態様がある。その第1の態様は、移動体の走行用の車輪を接地させる路面のひずみを測定するひずみ測定装置であって、シート状のゲージベースの表面および裏面(該ゲージベースの厚み方向の両面)のうちの一方の面に固着された複数の抵抗式ひずみゲージと、該ゲージベースとの間に前記複数の抵抗式ひずみゲージを介在させて該ゲージベースの前記一方の面に固着された単層または複層のフレキシブル基板と、該フレキシブル基板に設けられ、各抵抗式ひずみゲージの導線接続部にそれぞれ一端部が導通された複数の薄膜状導体とを備えるセンサ構造部を有し、該センサ構造部は、前記複数の抵抗式ひずみゲージが前記路面のうちの前記車輪の接地領域に位置し、且つ、該路面のひずみが前記ゲージベースを介して各抵抗式ひずみゲージに伝達されるように、該路面と前記フレキシブル基板との間に前記ゲージベースを介在させて該路面に固着され、前記複数の薄膜状導体は、それぞれの他端部が前記車輪の接地領域から該車輪の幅方向で逸脱した領域に位置するように前記フレキシブル基板に設けられていると共に、該他端部が配線を接続可能に露出されていることを特徴とする(第1発明)。   In order to achieve this object, the road surface strain measuring device of the present invention has four basic modes. The first aspect is a strain measuring device for measuring strain on a road surface that grounds a traveling wheel of a moving object, and includes a front surface and a rear surface of a sheet-like gauge base (both surfaces in the thickness direction of the gauge base). A single layer fixed to the one surface of the gauge base with a plurality of resistance strain gauges fixed to one surface of the gauge base and the plurality of resistance strain gauges interposed between the gauge base and A sensor structure comprising: a multilayer flexible substrate; and a plurality of thin film conductors provided at the flexible substrate and having one end connected to a conductive wire connecting portion of each resistance strain gauge. The plurality of resistance strain gauges are located in the ground contact area of the wheel on the road surface, and the strain on the road surface is transmitted to each resistance strain gauge via the gauge base. As described above, the gauge base is interposed between the road surface and the flexible substrate, and the thin film conductors are fixed to the road surface. It is provided on the flexible substrate so as to be located in a region deviating in the direction, and the other end is exposed so that wiring can be connected (first invention).

この第1発明によれば、センサ構造部は、シート状のゲージベースとフレキシブル基板(所謂FPC基板(フレキシブルプリント基板))との間に複数のひずみゲージを挟みこんだような構造のものであるので、全体的に薄い平板状のものとなる。そして、このセンサ構造部が、前記複数の抵抗式ひずみゲージを前記路面のうちの前記車輪の接地領域に位置させ、且つ、該路面と前記フレキシブル基板との間に前記ゲージベースを介在させて該路面に固着されるので、車輪の接地領域で路面に生じるひずみがゲージベースを介して各抵抗式ひずみゲージに伝達されるようになる。これにより、該路面に生じたひずみに応じたひずみが各抵抗式ひずみゲージに生じるようになり、該抵抗式ひずみゲージのひずみ受感部(ひずみに応じて抵抗値が変化する抵抗素子)の抵抗値変化が生じることとなる。なお、ゲージベースは、一般の抵抗式ひずみゲージの基台(ひずみ受感部となる抵抗素子を固着する基台)として使用されているものであり、該ゲージベースの表面および裏面のうちの一方の面を物体に固着したときに、該物体の表面に生じるひずみを該ゲージベースの他方の面側に伝達する機能を有する。   According to the first invention, the sensor structure has a structure in which a plurality of strain gauges are sandwiched between a sheet-like gauge base and a flexible substrate (so-called FPC substrate (flexible printed circuit board)). Therefore, it becomes a thin flat plate as a whole. Then, the sensor structure unit is configured such that the plurality of resistance strain gauges are positioned in a ground contact area of the wheel on the road surface, and the gauge base is interposed between the road surface and the flexible substrate. Since it is fixed to the road surface, the strain generated on the road surface in the ground contact area of the wheel is transmitted to each resistance type strain gauge via the gauge base. As a result, a strain corresponding to the strain generated on the road surface is generated in each resistance type strain gauge, and the resistance of the strain sensitive part of the resistance type strain gauge (resistance element whose resistance value changes according to the strain). A value change will occur. The gauge base is used as a base of a general resistance-type strain gauge (a base to which a resistance element serving as a strain sensing part is fixed), and one of the front and back surfaces of the gauge base. When the surface is fixed to the object, the strain generated on the surface of the object is transmitted to the other surface side of the gauge base.

この場合、各抵抗式ひずみゲージの導線接続部にそれぞれ一端部が導通された前記複数の薄膜状導体の他端部は露出しているので、各薄膜状導体の他端部にリード線などの配線を接続することができ、その配線を介して各抵抗式ひずみゲージを測定器に接続することで、各抵抗式ひずみゲージに生じたひずみ、ひいては、該抵抗式ひずみゲージの直下で路面に生じたひずみを、一般的なひずみ測定と同様に測定することができる。さらに、この場合、各薄膜状導体の他端部が前記車輪の接地領域から該車輪の幅方向で逸脱した領域に位置するので、各薄膜状導体の他端部に接続される配線の束に車輪が接地することはない。従って、該配線が車輪との接触によって断線するような事態が防止される。また、車輪の接地領域におけるセンサ構造部は、薄い平板状のものとなるので、走行中の移動体の車輪が接地してもその接地面が比較的広いものとなるので、該センサ構造部が車輪から受ける力が局所に集中するような事態が防止される。ひいては、該センサ構造部が車輪の接地時に損傷を受けるような事態を防止できる。   In this case, since the other end portions of the plurality of thin film conductors whose one end portions are electrically connected to the conductive wire connecting portions of the respective resistance strain gauges are exposed, lead wires or the like are connected to the other end portions of the respective thin film conductors. Wiring can be connected, and by connecting each resistance type strain gauge to the measuring instrument via the wiring, the strain generated in each resistance type strain gauge, and consequently, on the road surface immediately below the resistance type strain gauge. The strain can be measured in the same way as general strain measurement. Further, in this case, since the other end of each thin film conductor is located in a region deviating from the grounding region of the wheel in the width direction of the wheel, a bundle of wires connected to the other end of each thin film conductor is formed. The wheel never touches the ground. Therefore, a situation in which the wiring is disconnected due to contact with the wheel is prevented. In addition, since the sensor structure in the ground contact area of the wheel is a thin flat plate, the ground contact surface is relatively wide even if the wheel of the moving moving object is grounded. The situation where the force received from the wheels is concentrated locally is prevented. As a result, it is possible to prevent the sensor structure from being damaged when the wheel is grounded.

また、前記各薄膜状導体は、抵抗式ひずみゲージのひずみ受感部の比して十分に比抵抗が微小なものとなる導体(例えば銅、金、銀、アルミニウムなどの導体)であるので、それぞれの抵抗値およびそのばらつき幅が微小なものとなる。このため、各抵抗式ひずみゲージ毎の実質的なゲージ率あるいは感度をほぼ均一にすることができる。ひいては、各抵抗式ひずみゲージのひずみ受感部の抵抗値変化、ひいては、該抵抗式ひずみゲージの直下で路面に生じるひずみを精度よく測定できる。   In addition, since each of the thin film conductors is a conductor (for example, a conductor such as copper, gold, silver, or aluminum) whose specific resistance is sufficiently smaller than that of the strain sensitive part of the resistance strain gauge, Each resistance value and its variation width are very small. For this reason, the substantial gauge factor or sensitivity for each resistance type strain gauge can be made substantially uniform. As a result, it is possible to accurately measure the change in the resistance value of the strain sensing part of each resistance type strain gauge, and hence the strain generated on the road surface immediately below the resistance type strain gauge.

従って、第1発明によれば、車輪の接地領域で損傷を受け難い構造で、路面に発生するひずみ分布を精度よく測定することができる。   Therefore, according to the first aspect of the present invention, it is possible to accurately measure the strain distribution generated on the road surface with a structure that is not easily damaged in the ground contact area of the wheel.

なお、第1発明における抵抗式ひずみゲージは、前記ゲージベースよりも小さいゲージベースの表面および裏面のうちの一方の面にひずみに応じて抵抗値が変化する抵抗素子をフォトエッチングなどにより固着したものであり、一般に市販されている抵抗式ひずみゲージを使用することができる。このことは、後述する第3発明においても同様である。   The resistance strain gauge according to the first aspect of the present invention is such that a resistance element whose resistance value changes according to strain is fixed to one of the front and back surfaces of the gauge base smaller than the gauge base by photoetching or the like. In general, a commercially available resistance strain gauge can be used. The same applies to the third invention described later.

また、本発明の路面のひずみ測定装置の第2の態様は、移動体の走行用の車輪を接地させる路面のひずみを測定するひずみ測定装置であって、シート状のゲージベースの表面および裏面(該ゲージベースの厚み方向の両面)のうちの一方の面に固着された複数の抵抗式ひずみ受感部と、該ゲージベースとの間に前記複数の抵抗式ひずみ受感部を介在させて該ゲージベースの前記一方の面に固着された単層または複層のフレキシブル基板と、該フレキシブル基板に設けられ、各抵抗式ひずみ受感部の導線接続部にそれぞれ一端部が導通された複数の薄膜状導体とを備えるセンサ構造部を有し、該センサ構造部は、前記複数の抵抗式ひずみ受感部が前記路面のうちの前記車輪の接地領域に位置し、且つ、該路面のひずみが前記ゲージベースを介して各抵抗式ひずみ受感部に伝達されるように、該路面と前記フレキシブル基板との間に前記ゲージベースを介在させて該路面に固着され、前記複数の薄膜状導体は、それぞれの他端部が前記車輪の接地領域から該車輪の幅方向で逸脱した領域に位置するように前記フレキシブル基板に設けられていると共に、該他端部が配線を接続可能に露出されていることを特徴とする(第2発明)。   Moreover, the second aspect of the road surface strain measuring device of the present invention is a strain measuring device for measuring the road surface strain for grounding the traveling wheel of the moving body, and the front and back surfaces of the sheet-like gauge base ( A plurality of resistance-type strain-sensitive parts fixed to one surface of the gauge base and the plurality of resistance-type strain-sensitive parts interposed between the gauge base and the gauge base. A single-layer or multi-layer flexible substrate fixed to the one surface of the gauge base, and a plurality of thin films provided on the flexible substrate, each of which is electrically connected to the conductive wire connection portion of each resistance strain sensing portion A plurality of resistance-type strain sensing parts are located in the ground contact area of the wheel on the road surface, and the strain on the road surface is the sensor structure part. Through the gauge base The plurality of thin-film conductors are connected to the other end portions of the plurality of thin film conductors so as to be transmitted to each resistance strain sensing portion with the gauge base interposed between the road surface and the flexible substrate. Is provided on the flexible substrate so as to be located in a region deviating from the ground contact region of the wheel in the width direction of the wheel, and the other end portion is exposed so that wiring can be connected. (Second invention).

この第2発明によれば、センサ構造部は、シート状のゲージベースとフレキシブル基板との間に複数の抵抗式ひずみ受感部(ひずみに応じて抵抗値が変化する抵抗素子)を挟みこんだような構造のものであるので、第1発明と同様に全体的に薄い平板状のものとなる。そして、このセンサ構造部が、前記複数の抵抗式ひずみ受感部を前記路面のうちの前記車輪の接地領域に位置させ、且つ、該路面と前記フレキシブル基板との間に前記ゲージベースを介在させて該路面に固着されるので、車輪の接地領域で路面に生じるひずみがゲージベースを介して各抵抗式ひずみ受感部に伝達されるようになる。これにより、該路面に生じたひずみに応じたひずみが各抵抗式ひずみ受感部に生じるようになり、該抵抗式ひずみ受感部の抵抗値変化が生じることとなる。   According to the second aspect of the present invention, the sensor structure portion sandwiches a plurality of resistance type strain sensing portions (resistance elements whose resistance values change according to strain) between the sheet-like gauge base and the flexible substrate. Since it has such a structure, it becomes a thin flat plate as a whole like the first invention. And this sensor structure part has these resistance type strain sensing parts located in the ground contact area of the wheel in the road surface, and interposes the gauge base between the road surface and the flexible substrate. Therefore, the strain generated on the road surface in the ground contact area of the wheel is transmitted to each resistance type strain sensing part via the gauge base. As a result, a strain corresponding to the strain generated on the road surface is generated in each resistance-type strain-sensitive portion, and the resistance value of the resistance-type strain-sensitive portion is changed.

この場合、各抵抗式ひずみ受感部の導線接続部にそれぞれ一端部が導通された前記複数の薄膜状導体の他端部は露出しているので、第1発明と同様に、リード線などの配線を介して各抵抗式ひずみ受感部を測定器に接続することができ、ひいては、各抵抗式ひずみ受感部の直下で路面に生じたひずみを測定することができる。さらに、この場合、各薄膜状導体の他端部が、前記車輪の接地領域から該車輪の幅方向で逸脱した領域に位置するので、各薄膜状導体の他端部に接続される配線の束に車輪が接地することはない。従って、該配線が車輪との接触によって断線するような事態が防止される。また、車輪の接地領域におけるセンサ構造部は薄い平板状のものとなるので、第1発明と同様に、該センサ構造部が車輪の接地時に損傷を受けるような事態を防止できる。   In this case, since the other end portions of the plurality of thin-film conductors whose one end portions are electrically connected to the conductive wire connecting portions of the resistance-type strain sensing portions are exposed, Each resistance type strain sensitive part can be connected to a measuring instrument via wiring, and by extension, the strain generated on the road surface immediately below each resistance type strain sensitive part can be measured. Further, in this case, since the other end of each thin film conductor is located in a region deviating from the wheel ground region in the width direction of the wheel, a bundle of wires connected to the other end of each thin film conductor. The wheel never touches the ground. Therefore, a situation in which the wiring is disconnected due to contact with the wheel is prevented. Further, since the sensor structure in the ground contact area of the wheel is a thin flat plate, it is possible to prevent the sensor structure from being damaged when the wheel is grounded, as in the first invention.

また、前記各薄膜状導体は、第1発明と同様に、それぞれの抵抗値およびそのばらつき幅が微小なものとなるため、各抵抗式ひずみゲージのひずみ受感部の抵抗値変化、ひいては、該抵抗式ひずみゲージの直下で路面に生じるひずみを精度よく測定できる。   Further, each of the thin film conductors has a small resistance value and its variation width, as in the first invention, so that the change in the resistance value of the strain sensing part of each resistance strain gauge, Strain generated on the road surface directly under the resistance strain gauge can be measured with high accuracy.

従って、第2発明によれば、車輪の接地領域で損傷を受け難い構造で、路面に発生するひずみ分布を精度よく測定することができる。   Therefore, according to the second aspect of the present invention, it is possible to accurately measure the strain distribution generated on the road surface with a structure that is not easily damaged in the ground contact area of the wheel.

また、本発明の路面のひずみ測定装置の第3の態様は、移動体の走行用の車輪を接地させる路面のひずみを測定するひずみ測定装置であって、単層または複層のフレキシブル基板と、該フレキシブル基板の表面および裏面のうちの一方の面に固着された複数の抵抗式ひずみゲージと、該フレキシブル基板に設けられ、各抵抗式ひずみゲージの導線接続部にそれぞれ一端部が導通された複数の薄膜状導体と、前記フレキシブル基板の一方の面および前記複数のひずみゲージを被覆するように該フレキシブル基板の一方の面に固着されたシート状絶縁部材とを備えるセンサ構造部を有し、該センサ構造部は、前記複数の抵抗式ひずみゲージが前記路面のうちの前記車輪の接地領域に位置し、且つ、該路面のひずみが前記フレキシブル基板を介して各抵抗式ひずみゲージに伝達されるように、該路面と前記シート状絶縁部材との間に前記フレキシブル基板を介在させて該路面に固着され、前記複数の薄膜状導体は、それぞれの他端部が前記車輪の接地領域から該車輪の幅方向で逸脱した領域に位置するように前記フレキシブル基板に設けられていると共に、該他端部が配線を接続可能に露出されていることを特徴とする(第3発明)。   Further, a third aspect of the road surface strain measuring device of the present invention is a strain measuring device for measuring road surface strain for grounding a traveling wheel of a moving body, and a single-layer or multi-layer flexible substrate, A plurality of resistance strain gauges fixed to one of the front surface and the back surface of the flexible substrate, and a plurality of resistance strain gauges provided on the flexible substrate, each of which is electrically connected to a conductive wire connecting portion of each resistance strain gauge. A thin film conductor and a sheet structure insulating member fixed to one surface of the flexible substrate so as to cover one surface of the flexible substrate and the plurality of strain gauges, In the sensor structure, the plurality of resistance-type strain gauges are located in a ground contact area of the wheel on the road surface, and the strain on the road surface passes through the flexible substrate. The flexible substrate is interposed between the road surface and the sheet-like insulating member so as to be transmitted to a resistance strain gauge, and is fixed to the road surface. It is provided in the flexible substrate so as to be located in a region deviating from the wheel ground contact region in the width direction of the wheel, and the other end portion is exposed so that wiring can be connected ( Third invention).

この第3発明によれば、センサ構造部は、シート状絶縁部材とフレキシブル基板との間に複数の抵抗式ひずみゲージを挟みこんだような構造のものであるので、第1発明と同様に全体的に薄い平板状のものとなる。そして、このセンサ構造部が、前記複数の抵抗式ひずみゲージを前記路面のうちの前記車輪の接地領域に位置させ、且つ、該路面と前記シート状絶縁部材との間に前記フレキシブル基板を介在させて該路面に固着されるので、車輪の接地領域で路面に生じるひずみがフレキシブル基板を介して各抵抗式ひずみゲージに伝達されるようになる。これにより、該路面に生じたひずみに応じたひずみが該抵抗式ひずみゲージに生じるようになり、該抵抗式ひずみゲージのひずみ受感部の抵抗値変化が生じることとなる。なお、フレキシブル基板は、一般にゲージベースと同様にひずみを伝達する機能を有する。   According to the third invention, the sensor structure has a structure in which a plurality of resistance strain gauges are sandwiched between the sheet-like insulating member and the flexible substrate. It will be a thin flat plate. And this sensor structure part has these resistance type strain gauges located in the earthing | grounding area | region of the said wheel among the said road surfaces, and interposes the said flexible substrate between this road surface and the said sheet-like insulating member. Thus, the strain generated on the road surface in the ground contact area of the wheel is transmitted to each resistance strain gauge via the flexible substrate. As a result, a strain corresponding to the strain generated on the road surface is generated in the resistance strain gauge, and the resistance value of the strain sensing part of the resistance strain gauge is changed. The flexible substrate generally has a function of transmitting strain in the same manner as the gauge base.

この場合、各抵抗式ひずみゲージの導線接続部にそれぞれ一端部が導通された前記複数の薄膜状導体の他端部は露出しているので、第1発明と同様に、リード線などの配線を介して各抵抗式ひずみゲージを測定器に接続することができ、ひいては、各抵抗式ひずみゲージの直下で路面に生じたひずみを測定することができる。さらに、この場合、各薄膜状導体の他端部が、前記車輪の接地領域から該車輪の幅方向で逸脱した領域に位置するので、各薄膜状導体の他端部に接続される配線の束に車輪が接地することはない。従って、該配線が車輪との接触によって断線するような事態が防止される。また、車輪の接地領域におけるセンサ構造部は薄い平板状のものとなるので、第1発明と同様に、該センサ構造部が車輪の接地時に損傷を受けるような事態を防止できる。   In this case, since the other end portions of the plurality of thin film conductors whose one end portions are electrically connected to the conductive wire connecting portions of the respective resistance strain gauges are exposed, as in the first invention, wiring such as a lead wire is provided. Each resistance strain gauge can be connected to a measuring instrument, and consequently the strain generated on the road surface immediately below each resistance strain gauge can be measured. Further, in this case, since the other end of each thin film conductor is located in a region deviating from the wheel ground region in the width direction of the wheel, a bundle of wires connected to the other end of each thin film conductor. The wheel never touches the ground. Therefore, a situation in which the wiring is disconnected due to contact with the wheel is prevented. Further, since the sensor structure in the ground contact area of the wheel is a thin flat plate, it is possible to prevent the sensor structure from being damaged when the wheel is grounded, as in the first invention.

また、前記各薄膜状導体は、第1発明と同様に、それぞれの抵抗値およびそのばらつき幅が微小なものとなるため、各抵抗式ひずみゲージのひずみ受感部の抵抗値変化、ひいては、該抵抗式ひずみゲージの直下で路面に生じるひずみを精度よく測定できる。   Further, each of the thin film conductors has a small resistance value and its variation width, as in the first invention, so that the change in the resistance value of the strain sensing part of each resistance strain gauge, Strain generated on the road surface directly under the resistance strain gauge can be measured with high accuracy.

従って、第3発明によれば、車輪の接地領域で損傷を受け難い構造で、路面に発生するひずみ分布を精度よく測定することができる。   Therefore, according to the third aspect of the present invention, the strain distribution generated on the road surface can be accurately measured with a structure that is not easily damaged in the ground contact area of the wheel.

また、本発明の路面のひずみ測定装置の第4の態様は、移動体の走行用の車輪を接地させる路面のひずみを測定するひずみ測定装置であって、シート状絶縁部材の表面および裏面のうちの一方の面に固着された複数の抵抗式ひずみ受感部と、該シート状絶縁部材との間に前記複数の抵抗式ひずみ受感部を介在させて該シート状絶縁部材の前記一方の面および前記複数の抵抗式ひずみゲージに固着された単層または複層のフレキシブル基板と、該フレキシブル基板に設けられ、各抵抗式ひずみ受感部の導線接続部にそれぞれ一端部が導通された複数の薄膜状導体とを備えるセンサ構造部を有し、該センサ構造部は、前記複数の抵抗式ひずみ受感部が前記路面のうちの前記車輪の接地領域に位置し、且つ、該路面のひずみが前記フレキシブル基板を介して各抵抗式ひずみ受感部に伝達されるように、該路面と前記シート状絶縁部材との間に前記フレキシブル基板を介在させて該路面に固着され、前記複数の薄膜状導体は、それぞれの他端部が前記車輪の接地領域から該車輪の幅方向で逸脱した領域に位置するように前記フレキシブル基板に設けられていると共に、該他端部が配線を接続可能に露出されていることを特徴とする(第4発明)。   According to a fourth aspect of the road surface strain measuring apparatus of the present invention, there is provided a strain measuring apparatus for measuring road surface strain for grounding a traveling wheel of a mobile body, and comprising a front surface and a rear surface of a sheet-like insulating member. The one surface of the sheet-like insulating member by interposing the plurality of resistance-type strain-sensitive portions between the plurality of resistance-type strain-sensitive portions fixed to one surface of the sheet and the sheet-like insulating member And a single-layer or multi-layer flexible substrate fixed to the plurality of resistance-type strain gauges, and a plurality of one-side conductive portions provided on the flexible substrate, each of which is electrically connected to the conductive wire connecting portion of each resistance-type strain sensing portion. A sensor structure comprising a thin film conductor, wherein the plurality of resistance strain sensitive parts are located in a ground contact area of the wheel on the road surface, and the road surface has a strain. Flexible substrate Via the flexible substrate interposed between the road surface and the sheet-like insulating member, and the plurality of thin-film conductors are respectively The other end of the wheel is provided in the flexible substrate so as to be located in a region deviating from the wheel contact area in the width direction of the wheel, and the other end is exposed so that wiring can be connected. (4th invention).

この第4発明によれば、センサ構造部は、シート状のゲージベースとフレキシブル基板との間に複数の抵抗式ひずみ受感部を挟みこんだような構造のものであるので、第1発明と同様に全体的に薄い平板状のものとなる。そして、このセンサ構造部が、前記複数の抵抗式ひずみ受感部を前記路面のうちの前記車輪の接地領域に位置させ、且つ、該路面と前記シート状絶縁部材との間に前記フレキシブル基板を介在させて該路面に固着されるので、第3発明と同様に、車輪の接地領域で路面に生じるひずみがフレキシブル基板を介して各抵抗式ひずみ受感部に伝達されるようになる。これにより、該路面に生じたひずみに応じたひずみが該抵抗式ひずみ受感部に生じるようになり、該抵抗式ひずみ受感部の抵抗値変化が生じることとなる。   According to the fourth invention, the sensor structure has a structure in which a plurality of resistance strain sensitive parts are sandwiched between the sheet-like gauge base and the flexible substrate. Similarly, it becomes a thin flat plate as a whole. And this sensor structure part positions the said flexible substrate between the said road surface and the said sheet-like insulating member, and the said some resistance type strain sensing part is located in the earthing | grounding area | region of the said wheel among the said road surfaces. Since it is interposed and fixed to the road surface, the strain generated on the road surface in the ground contact area of the wheel is transmitted to each resistance type strain sensing part via the flexible substrate, as in the third invention. As a result, a strain corresponding to the strain generated on the road surface is generated in the resistance-type strain-sensitive portion, and the resistance value of the resistance-type strain-sensitive portion is changed.

この場合、各抵抗式ひずみ受感部の導線接続部にそれぞれ一端部が導通された前記複数の薄膜状導体の他端部は露出しているので、第1発明と同様に、リード線などの配線を介して各抵抗式ひずみ受感部を測定器に接続することができ、ひいては、各抵抗式ひずみ受感部の直下で路面に生じたひずみを測定することができる。さらに、この場合、各薄膜状導体の他端部が、前記車輪の接地領域から該車輪の幅方向で逸脱した領域に位置するので、各薄膜状導体の他端部に接続される配線の束に車輪が接地することはない。従って、該配線が車輪との接触によって断線するような事態が防止される。また、車輪の接地領域におけるセンサ構造部は薄い平板状のものとなるので、第1発明と同様に、該センサ構造部が車輪の接地時に損傷を受けるような事態を防止できる。   In this case, since the other end portions of the plurality of thin-film conductors whose one end portions are electrically connected to the conductive wire connecting portions of the resistance-type strain sensing portions are exposed, Each resistance type strain sensitive part can be connected to a measuring instrument via wiring, and by extension, the strain generated on the road surface immediately below each resistance type strain sensitive part can be measured. Further, in this case, since the other end of each thin film conductor is located in a region deviating from the wheel ground region in the width direction of the wheel, a bundle of wires connected to the other end of each thin film conductor. The wheel never touches the ground. Therefore, a situation in which the wiring is disconnected due to contact with the wheel is prevented. Further, since the sensor structure in the ground contact area of the wheel is a thin flat plate, it is possible to prevent the sensor structure from being damaged when the wheel is grounded, as in the first invention.

また、前記各薄膜状導体は、第1発明と同様に、それぞれの抵抗値およびそのばらつき幅が微小なものとなるため、各抵抗式ひずみ受感部の抵抗値変化、ひいては、該抵抗式ひずみ受感部の直下で路面に生じるひずみを精度よく測定できる。   In addition, since each thin film conductor has a small resistance value and its variation width, as in the first invention, the resistance value change of each resistance type strain sensing part, and hence the resistance type strain. It is possible to accurately measure the strain generated on the road surface immediately below the sensing part.

従って、第4発明によれば、車輪の接地領域で損傷を受け難い構造で、路面に発生するひずみ分布を精度よく測定することができる。   Therefore, according to the fourth aspect of the invention, it is possible to accurately measure the strain distribution generated on the road surface with a structure that is not easily damaged in the ground contact area of the wheel.

補足すると、前記第3発明または第4発明における前記シート状絶縁部材は、ゲージベースであってもよいが、ひずみの伝達性が乏しい軟質のフィルム状のものであってもよい。   Supplementally, the sheet-like insulating member in the third invention or the fourth invention may be a gauge base, but may be a soft film having poor strain transmission.

前記第1発明または第2発明では、前記センサ構造部は、前記フレキシブル基板の表面および裏面のうち、前記ゲージベース側の面と反対側の面に固着された、シート状絶縁部材をさらに備えるようにしてもよい(第5発明)。   In the first invention or the second invention, the sensor structure section may further include a sheet-like insulating member fixed to a surface opposite to the surface on the gauge base side among the front surface and the back surface of the flexible substrate. You may make it (5th invention).

この第5発明によれば、フレキシブル基板の前記反対側の面にいずれかの薄膜状導体を設けられているような場合であっても、該薄膜状導体の損傷を防止したり、絶縁性を確保することができる。   According to the fifth aspect of the invention, even if any thin film conductor is provided on the opposite surface of the flexible substrate, the thin film conductor can be prevented from being damaged or insulated. Can be secured.

また、前記第3発明または第4発明では、前記センサ構造部は、前記フレキシブル基板の表面および裏面のうち、前記シート状部材側の面と反対側の面に固着されたシート状のゲージベースをさらに備えるようにしてもよい(第6発明)。   In the third or fourth aspect of the invention, the sensor structure portion includes a sheet-like gauge base fixed to a surface opposite to the surface on the sheet-like member side of the front and back surfaces of the flexible substrate. You may make it provide further (6th invention).

この第6発明によれば、フレキシブル基板は、ゲージベースを介して路面に固着されることとなるので、路面に生じるひずみが該ゲージベースおよびフレキシブル基板を介して各抵抗式ひずみゲージまたは各抵抗式ひずみ受感部に伝達されることとなる。そして、この場合、フレキシブル基板の前記反対側の面にいずれかの薄膜状導体が設けられているような場合であっても、該薄膜状導体の損傷を防止したり、絶縁性を確保することができる。   According to the sixth aspect of the invention, since the flexible substrate is fixed to the road surface via the gauge base, the strain generated on the road surface is each resistance type strain gauge or each resistance type via the gauge base and the flexible substrate. It is transmitted to the strain sensing part. In this case, even if any thin film conductor is provided on the opposite surface of the flexible substrate, damage to the thin film conductor is prevented or insulation is ensured. Can do.

前記第1〜第4発明において、各抵抗式ひずみゲージのひずみ受感部または各抵抗式ひずみ受感部の抵抗値変化(ひいては路面のひずみ)の測定は、例えば、該ひずみ受感部が1辺に組み込まれるホイートストンブリッジ回路を利用して行なうことができる。この場合、前記第1発明または第3発明においては、前記各抵抗式ひずみゲージの導線接続部に導通させる薄膜状導体は、各抵抗式ひずみゲージのひずみ受感部の一端部に設けられた導線接続部に導通させる第1の薄膜状導体と、該ひずみ受感部の他端部に設けられた導線接続部に導通させる第2の薄膜状導体および第3の薄膜状導体とからなることが望ましい(第7発明)。   In the first to fourth aspects of the invention, the strain sensitive part of each resistance strain gauge or the resistance value change of each resistive strain sensitive part (and hence the strain on the road surface) is measured, for example, by the strain sensitive part. This can be done using a Wheatstone bridge circuit built into the edge. In this case, in the first invention or the third invention, the thin film conductor to be conducted to the conductor connection portion of each resistance strain gauge is a conductor provided at one end of the strain sensing portion of each resistance strain gauge. It consists of the 1st thin film-like conductor connected to a connection part, and the 2nd thin film-like conductor and 3rd thin film-like conductor connected to the conducting wire connection part provided in the other end part of this distortion | strain sensitive part. Desirable (seventh invention).

同様に、前記第2発明または第4発明においては、前記各抵抗式ひずみ受感部に導通させる薄膜状導体は、各抵抗式ひずみ受感部の一端部に設けられた導線接続部に導通させる第1の薄膜状導体と、該抵抗式ひずみ受感部の他端部に設けられた導線接続部に導通させる第2の薄膜状導体および第3の薄膜状導体とからなることが望ましい(第8発明)。   Similarly, in the second or fourth aspect of the invention, the thin film conductor that is conducted to each of the resistance strain sensitive parts is conducted to a conductor connecting portion provided at one end of each resistance type strain sensitive part. It is desirable to comprise a first thin film conductor and a second thin film conductor and a third thin film conductor that are electrically connected to a conductive wire connecting portion provided at the other end of the resistance-type strain sensing portion. 8 invention).

これらの第7発明および第8発明によれば、各抵抗式ひずみゲージのひずみ受感部、または、各抵抗式ひずみ受感部に3つの薄膜状導体が導通されることとなるので、所謂、1ゲージ3線法によるひずみ測定を行なうことが可能となり、環境温度の変化などに起因する各薄膜状導体の抵抗値変化や、各薄膜状導体の他端部に接続される配線の抵抗値変化の影響を補償して、精度のよいひずみ測定を行うことが可能となる。   According to these seventh and eighth inventions, three thin film conductors are conducted to the strain sensitive part of each resistance type strain gauge, or to each resistance type strain sensitive part. It is possible to measure strain by the 1-gauge 3-wire method, change in resistance value of each thin film conductor due to changes in environmental temperature, and change in resistance value of wiring connected to the other end of each thin film conductor Therefore, it is possible to perform accurate strain measurement.

上記のように、各抵抗式ひずみゲージ毎、あるいは、各抵抗式ひずみ受感部毎に、第1〜第3の薄膜状導体を備える場合において、前記フレキシブル基板への前記第1〜第3の薄膜状導体の設け方は、種々様々の形態が考えられるが、例えば次のような形態で、フレキシブル基板に第1〜第3の薄膜状導体を設けることが好ましい。   As described above, when the first to third thin film conductors are provided for each resistance strain gauge or for each resistance strain sensing part, the first to third to the flexible substrate. Various ways of providing the thin film conductor are conceivable. For example, the first to third thin film conductors are preferably provided on the flexible substrate in the following manner.

すなわち、前記フレキシブル基板は、第1層基板と第2層基板とを重合してなる2層のフレキシブル基板であって、各抵抗式ひずみゲージに対応する前記第1〜第3の薄膜状導体のうち、第1の薄膜状導体が前記第1層基板の表面および裏面のうちの第2層基板側の面と反対側の面に形成されると共に、第2の薄膜状導体と第3の薄膜状導体とが、第2層基板を介して互いに対向するように該第2層基板の表面および裏面にそれぞれ形成されており、該第2の薄膜状導体と第3の薄膜状導体とが、それぞれの一端部を通って前記フレキシブル基板の厚み方向に貫通するように該フレキシブル基板に穿設されたスルーホール内に設けられた導体部材を介して導通されていることが好ましい(第9発明)。   That is, the flexible substrate is a two-layer flexible substrate obtained by polymerizing the first layer substrate and the second layer substrate, and the first to third thin film conductors corresponding to the respective resistance strain gauges. The first thin film conductor is formed on the surface of the first layer substrate on the opposite side of the surface of the first layer substrate and the second layer substrate side, and the second thin film conductor and the third thin film are formed. And the second thin film conductor and the third thin film conductor are respectively formed on the front surface and the back surface of the second layer substrate so as to face each other through the second layer substrate. It is preferable that conduction is made through a conductor member provided in a through hole formed in the flexible substrate so as to penetrate through the respective one end portions in the thickness direction of the flexible substrate (Ninth Invention). .

この第9発明によれば、第1の薄膜状導体と第2の薄膜状導体との間に前記第1層基板が介在することとなるので、該第1の薄膜状導体と第2の薄膜状導体とを第1層基板の厚み方向(フレキシブル基板の厚み方向)で部分的な重なりを生じるようなパターンでそれらの薄膜状導体を第1層基板に形成しつつ、それらの薄膜状導体の間の絶縁性を確保することができる。また、第3の薄膜状導体は、前記第2層基板を介して第2の薄膜状導体に対向しているので、該第2層基板の厚み方向(フレキシブル基板の厚み方向)で重なりつつ、それらの薄膜状導体の間の絶縁性を確保することができる。このため、第1〜第3の薄膜状導体の絶縁性を確保しつつ、フレキシブル基板の面積(厚み方向で見た面積)を必要最小限に留めることができ、ひいては、センサ構造部の面積を必要最小限に留めることができる。この結果、センサ構造部の材料費、ひいては製造コストを低減できる。また、同時に、第2の薄膜状導体と第3の薄膜状導体とを対向させ、それらの一端部を通る前記スルーホール内に設けた導体部材により第2の薄膜状導体と第3の薄膜状導体との導通を容易に確保することができる。なお、前記導体部材としては、該スルーホールの内周面に施した金属メッキや該スルーホールに充填した半田などが挙げられる。   According to the ninth aspect of the invention, since the first layer substrate is interposed between the first thin film conductor and the second thin film conductor, the first thin film conductor and the second thin film conductor are interposed. The thin-film conductors are formed on the first-layer substrate in a pattern that causes partial overlap with the thin-film conductors in the thickness direction of the first-layer substrate (thickness direction of the flexible substrate). Insulation between them can be secured. Further, since the third thin film conductor faces the second thin film conductor via the second layer substrate, the third thin film conductor overlaps in the thickness direction of the second layer substrate (thickness direction of the flexible substrate). The insulation between those thin film conductors can be ensured. For this reason, the area of the flexible substrate (area seen in the thickness direction) can be kept to a minimum while ensuring the insulating properties of the first to third thin film conductors. It can be kept to the minimum necessary. As a result, it is possible to reduce the material cost of the sensor structure, and consequently the manufacturing cost. At the same time, the second thin film conductor and the third thin film conductor are opposed to each other, and the second thin film conductor and the third thin film conductor are formed by the conductor member provided in the through hole passing through one end of the second thin film conductor and the third thin film conductor. Conductivity with the conductor can be easily secured. Examples of the conductor member include metal plating applied to the inner peripheral surface of the through hole, solder filled in the through hole, and the like.

また、前記第1発明または第3発明では、前記センサ構造部には、前記各抵抗式ひずみゲージおよび前記各薄膜状導体を避けて該センサ構造部の厚み方向に貫通する複数の貫通孔が穿設されていることが好ましい(第10発明)。同様に、前記第2発明または第4発明では、前記センサ構造部には、前記各抵抗式ひずみ受感部および前記各薄膜状導体を避けて該センサ構造部の厚み方向に貫通する複数の貫通孔が穿設されていることが好ましい(第11発明)。   In the first invention or the third invention, the sensor structure portion is provided with a plurality of through holes penetrating in the thickness direction of the sensor structure portion while avoiding the resistance strain gauges and the thin film conductors. It is preferable to be provided (10th invention). Similarly, in the second invention or the fourth invention, the sensor structure part includes a plurality of penetrations that penetrate in the thickness direction of the sensor structure part while avoiding the resistance strain sensitive parts and the thin film conductors. It is preferable that a hole is formed (11th invention).

これらの第10発明または第11発明によれば、センサ構造部を路面に接着剤により固着するような場合に、該接着剤が各貫通孔に進入可能であると共に、該接着剤に混入している気泡を該貫通孔に通すことが可能となるので、該センサ構造部と路面との間で局所的な接着剤の溜まり部が生じたり、局所的に気泡が残存するような事態を防止できる。ひいては、センサ構造部の厚み方向の両面のうちの路面側の面を該路面に均一的に固着することが可能となる。   According to these tenth or eleventh inventions, when the sensor structure is fixed to the road surface with an adhesive, the adhesive can enter each through-hole and be mixed into the adhesive. Bubbles can be passed through the through-hole, so that it is possible to prevent a situation in which a local adhesive reservoir or a bubble remains locally between the sensor structure and the road surface. . As a result, the road surface side surface of both surfaces in the thickness direction of the sensor structure can be uniformly fixed to the road surface.

[第1実施形態]
本発明の第1実施形態を図1〜図6を参照して説明する。図1は本実施形態の路面のひずみ測定装置1のセンサ構造部6の表面側の平面図、図2は図1のII矢視図、図3はセンサ構造部6のフレキシブル基板2の第2層基板8の表面側の平面図、図4はセンサ構造部6の裏面側の平面図、図5はセンサ構造部6の一部分の分解斜視図、図6は図1のVI−VI線断面図、図7は本実施形態のひずみ測定装置1による路面のひずみ分布の測定例を示すグラフである。なお、本実施形態は、第1発明の実施形態である。
[First Embodiment]
A first embodiment of the present invention will be described with reference to FIGS. 1 is a plan view of the surface side of the sensor structure 6 of the road surface strain measuring device 1 according to the present embodiment, FIG. 2 is a view taken along the arrow II in FIG. 1, and FIG. 3 is a second view of the flexible substrate 2 of the sensor structure 6. 4 is a plan view of the back side of the sensor structure 6, FIG. 5 is an exploded perspective view of a part of the sensor structure 6, and FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. FIG. 7 is a graph showing a measurement example of the road surface strain distribution by the strain measuring device 1 of the present embodiment. This embodiment is an embodiment of the first invention.

本実施形態のひずみ測定装置1は、フレキシブル基板2と、複数の抵抗式ひずみゲージ3(以下、単にひずみゲージ3という)と、シート状のゲージベース4と、カバーフィルム5とを有するセンサ構造部6を備える。センサ構造部6は、その全体が概ね、薄い方形板状に構成されており、図2に示すようにその厚み方向を上下方向に向けた状態で路面Aに固着される。路面Aは、自動車、航空機など、走行用の車輪を有する移動体(図示省略)を走行させる路面である。なお、図2では、図示および説明の便宜上、センサ構造部6を厚く記載しているが、その厚さは実際には約0.2mm程度である。また、路面Aにおける移動体の移動方向は、図2の紙面に垂直な方向(図1に示す2つの二点鎖線の延在方向)である。   The strain measuring apparatus 1 according to the present embodiment includes a flexible substrate 2, a plurality of resistance strain gauges 3 (hereinafter simply referred to as strain gauges 3), a sheet-like gauge base 4, and a cover film 5. 6 is provided. The entire sensor structure 6 is generally formed in a thin rectangular plate shape, and is fixed to the road surface A with its thickness direction directed vertically as shown in FIG. The road surface A is a road surface on which a moving body (not shown) having traveling wheels such as an automobile and an aircraft travels. In FIG. 2, the sensor structure 6 is shown thick for convenience of illustration and explanation, but the thickness is actually about 0.2 mm. Moreover, the moving direction of the moving body on the road surface A is a direction perpendicular to the paper surface of FIG. 2 (extending direction of two two-dot chain lines shown in FIG. 1).

フレキシブル基板2は、所謂、FPC基板(フレキシブルプリント基板)と言われるものである。本実施形態では、フレキシブル基板2は複層基板であり、方形状の第1層基板7と方形状の第2層基板8とを、それらの厚み方向で重合し、両基板7,8の間に介在させた接着剤9(図2参照)により両基板7,8を互いに貼り合わせる(固着する)ことにより構成されている。この場合、第2層基板8の横方向(図1および図2の紙面の左右方向)の寸法は、第1層基板7の横方向の寸法よりも若干大きいものとなっており、第2層基板8の一側部8a(図1および図2の左側部)が、第1層基板7の側縁(図1の左側縁)から張り出している。以下、このように張り出した第2層基板8の一側部8aを張り出し部8aという。   The flexible board 2 is a so-called FPC board (flexible printed board). In the present embodiment, the flexible substrate 2 is a multi-layer substrate, and a rectangular first layer substrate 7 and a rectangular second layer substrate 8 are polymerized in the thickness direction between them, The two substrates 7 and 8 are bonded to each other (fixed) with an adhesive 9 (see FIG. 2) interposed therebetween. In this case, the dimension of the second layer substrate 8 in the lateral direction (left and right direction in FIG. 1 and FIG. 2) is slightly larger than the dimension of the first layer substrate 7 in the lateral direction. One side 8a (the left side in FIGS. 1 and 2) of the substrate 8 protrudes from the side edge (the left side edge in FIG. 1) of the first layer substrate 7. Hereinafter, the one side portion 8a of the second layer substrate 8 protruding in this way is referred to as the protruding portion 8a.

なお、第1層基板7および第2層基板8は、ポリエステル(PET)、ポリイミドアミド(AI)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)などの絶縁性の材質から成る薄膜シート状の基板であり、可撓性を有する。   The first layer substrate 7 and the second layer substrate 8 are thin film sheets made of an insulating material such as polyester (PET), polyimide amide (AI), polyphenylene sulfide (PPS), polyether ether ketone (PEEK). The substrate is flexible.

補足すると、第1層基板7および第2層基板8を、熱可塑性のポリイミドを基材とする材質により構成した場合には、両基板7,8を熱融着によって貼り合わせることによって、フレキシブル基板2を構成することも可能である。その場合には、接着剤9は不要である。   Supplementally, when the first layer substrate 7 and the second layer substrate 8 are made of a material having a thermoplastic polyimide as a base material, the flexible substrates can be obtained by bonding the substrates 7 and 8 together by thermal fusion. 2 can also be configured. In that case, the adhesive 9 is unnecessary.

以降の本実施形態の説明では、第1層基板7の厚み方向の両面のうち、第2層基板8側の面を第1層基板7の裏面、その面と反対側の面を第1層基板7の表面またはフレキシブル基板2の表面と定義する。また、第2層基板8の厚み方向の両面のうち、第1層基板7側の面を第2層基板8の表面、その面と反対側の面を第2層基板8の裏面またはフレキシブル基板2の裏面と定義する。   In the following description of the present embodiment, of the both surfaces in the thickness direction of the first layer substrate 7, the surface on the second layer substrate 8 side is the back surface of the first layer substrate 7, and the opposite surface is the first layer. It is defined as the surface of the substrate 7 or the surface of the flexible substrate 2. Of the two layers in the thickness direction of the second layer substrate 8, the surface on the first layer substrate 7 side is the surface of the second layer substrate 8, and the opposite surface is the back surface of the second layer substrate 8 or the flexible substrate. 2 is defined as the back side.

第1層基板7の表面(フレキシブル基板2の表面)には、図1および図2に示すように、その表面を被覆するようにして、方形状のカバーフィルム5が固着されている。ただし、第1層基板7の表面のうち、第2層基板8の張り出し部8a側の側部(図1および図2の左側部)にはカバーフィルム5は固着されておらず、その側部の表面は露出している。該カバーフィルム5は、ポリエステル(PET)、ポリイミド(PA)、ポリイミドアミド(AI)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)などの絶縁性の材質から成るフィルムである。このカバーフィルム5は、前記第5発明におけるシート状絶縁部材として機能するものであり、第1層基板7の表面に固着されている後述の複数の薄膜状導体18の絶縁性を確保したり、該薄膜状導体18を保護する機能を有する。本実施形態では、カバーフィルム5は、第1層基板7の表面との間に介在させた接着剤10(図2を参照)により、第1層基板7の表面に固着されている。   As shown in FIGS. 1 and 2, a rectangular cover film 5 is fixed to the surface of the first layer substrate 7 (the surface of the flexible substrate 2) so as to cover the surface. However, the cover film 5 is not fixed to the side portion of the surface of the first layer substrate 7 on the side of the overhanging portion 8a of the second layer substrate 8 (the left side portion in FIGS. 1 and 2). The surface of is exposed. The cover film 5 is a film made of an insulating material such as polyester (PET), polyimide (PA), polyimide amide (AI), polyphenylene sulfide (PPS), polyether ether ketone (PEEK). This cover film 5 functions as a sheet-like insulating member in the fifth invention, and ensures the insulation of a plurality of thin film conductors 18 to be described later fixed to the surface of the first layer substrate 7, It has a function of protecting the thin film conductor 18. In the present embodiment, the cover film 5 is fixed to the surface of the first layer substrate 7 by an adhesive 10 (see FIG. 2) interposed between the cover film 5 and the surface of the first layer substrate 7.

補足すると、カバーフィルム5が熱融着性を有する材質から成る場合には、カバーフィルム5を第1層基板7に熱融着によって固着してもよい。その場合には、接着剤10は不要である。   Supplementally, when the cover film 5 is made of a material having heat-fusibility, the cover film 5 may be fixed to the first layer substrate 7 by heat-sealing. In that case, the adhesive 10 is unnecessary.

第2層基板8の裏面(フレキシブル基板2の裏面)には、図2および図4に示すように、その裏面を被覆するようにして、方形状のゲージベース4が固着されている。ただし、第2層基板8の裏面のうち、前記張り出し部8aには、ゲージベース4が固着されておらず、その張り出し部8aの裏面は露出している。このゲージベース4は、一般に抵抗式ひずみゲージのひずみ受感部(抵抗素子)を固着する基台(測定対象物のひずみをひずみ受感部に伝達する基台)として機能するものであり、ポリイミドやエポキシなどの材質により薄膜シート状に形成されている。そして、ゲージベース4は、第2層基板8の裏面との間に介在させた接着剤11(図2参照)により、第2層基板8の裏面に固着されている。   As shown in FIGS. 2 and 4, a square gauge base 4 is fixed to the back surface of the second layer substrate 8 (the back surface of the flexible substrate 2) so as to cover the back surface. However, of the back surface of the second layer substrate 8, the gauge base 4 is not fixed to the protruding portion 8a, and the back surface of the protruding portion 8a is exposed. This gauge base 4 generally functions as a base for fixing a strain sensitive part (resistive element) of a resistance type strain gauge (a base for transmitting strain of a measurement object to the strain sensitive part). It is formed in the shape of a thin film sheet made of a material such as epoxy. The gauge base 4 is fixed to the back surface of the second layer substrate 8 with an adhesive 11 (see FIG. 2) interposed between the gauge base 4 and the back surface of the second layer substrate 8.

この場合、ゲージベース4の厚み方向の両面のうち、第2層基板8側の面(以下、ゲージベース4の表面という)には、前記複数のひずみゲージ3があらかじめ図示しない接着剤により固着されており、それらのひずみゲージ3が、ゲージベース4と第2層基板8との間にマス目状に配置されている。   In this case, among the both surfaces of the gauge base 4 in the thickness direction, the plurality of strain gauges 3 are fixed in advance with an adhesive (not shown) on the surface on the second layer substrate 8 side (hereinafter referred to as the surface of the gauge base 4). These strain gauges 3 are arranged in a grid between the gauge base 4 and the second layer substrate 8.

各ひずみゲージ3は、単品の抵抗式ひずみゲージとして一般に市販されているものであり、図5に示すように、小面積の方形状のゲージベース12上に、Cu−Ni合金やNi−Cr合金などの材質から成る抵抗素子であるひずみ受感部13をフォトエッチングなどにより固着したものである。ひずみ受感部13の両端部には、導線接続部としてのタブ14a,14bがひずみ受感部13と一体の形成されている。そして、本実施形態では、各タブ14a,14bには、それぞれ1本のゲージリード15a,15bがあらかじめ結線されている。これらのゲージリード15a,15bは、十分に細い導線である。   Each strain gauge 3 is generally commercially available as a single resistance strain gauge. As shown in FIG. 5, a Cu-Ni alloy or a Ni-Cr alloy is formed on a small area square gauge base 12. The strain sensing part 13 which is a resistance element made of such a material is fixed by photoetching or the like. Tabs 14 a and 14 b as conductor connection portions are formed integrally with the strain sensitive portion 13 at both ends of the strain sensitive portion 13. In the present embodiment, one gauge lead 15a, 15b is connected in advance to each tab 14a, 14b. These gauge leads 15a and 15b are sufficiently thin conductors.

フレキシブル基板2の第1層基板7の表面と、第2層基板8の表面と、第2層基板8の裏面とに、それぞれ、図1、図3、図4に示す如く、フォトエッチングや印刷などによって、複数の薄膜状導体18,19,20が固着されている。なお、図1、図3、図4においては、図示の便宜上、各薄膜状導体18,19,20は、その両端部を除いて細線で示している。   Photoetching or printing on the surface of the first layer substrate 7, the surface of the second layer substrate 8, and the back surface of the second layer substrate 8 of the flexible substrate 2, as shown in FIGS. 1, 3, and 4, respectively. A plurality of thin film conductors 18, 19, and 20 are fixed to each other. 1, 3, and 4, for convenience of illustration, the thin film conductors 18, 19, and 20 are indicated by thin lines except for both ends.

これらの薄膜状導体18,19,20のそれぞれの個数は、ひずみゲージ3の個数と同数であり、個々のひずみゲージ3に、薄膜状導体18,19,20が1つずつ対応付けられている。また、これらの薄膜状導体18,19,20の材質は、銅(Cu)、銀(Ag)、金(Au)、アルミニウム(Al)など、ひずみゲージ3のひずみ受感部13よりも比抵抗が十分に小さい導体である。   The number of these thin film conductors 18, 19, 20 is the same as the number of the strain gauges 3, and one thin film conductor 18, 19, 20 is associated with each strain gauge 3. . Further, the material of these thin film conductors 18, 19, and 20 is made of copper (Cu), silver (Ag), gold (Au), aluminum (Al), or the like, more specific resistance than the strain sensitive part 13 of the strain gauge 3. Is a sufficiently small conductor.

なお、薄膜状導体18,19,20は、それぞれ、本発明における第1の薄膜状導体、第2の薄膜状導体、第3の薄膜状導体に相当するものである。   The thin film conductors 18, 19, and 20 correspond to the first thin film conductor, the second thin film conductor, and the third thin film conductor, respectively, in the present invention.

図1に示す各薄膜状導体18は、その一端部18aが、該薄膜状導体18に対応するひずみゲージ3のタブ14aの近傍位置に設けられ、他端部18bが第1層基板7の表面のうちの第2層基板8の張り出し部8a側の側部(カバーフィルム5により被覆されていない部分)に設けられて、露出している。そして、各薄膜状導体18は、その両端部18a,18bの間で第1層基板7の表面上に延在して設けられている。また、各薄膜状導体18の端部18bは、第1基板7の縦方向(図1の上下方向)にほぼ等間隔で配列されている。   Each thin film conductor 18 shown in FIG. 1 has one end 18 a provided in the vicinity of the tab 14 a of the strain gauge 3 corresponding to the thin film conductor 18, and the other end 18 b is the surface of the first layer substrate 7. Of the second layer substrate 8 is provided on the side of the protruding portion 8a side (the portion not covered with the cover film 5) and exposed. Each thin film-like conductor 18 is provided so as to extend on the surface of the first layer substrate 7 between both end portions 18a, 18b. The end portions 18b of the thin film conductors 18 are arranged at substantially equal intervals in the longitudinal direction of the first substrate 7 (vertical direction in FIG. 1).

図3に示す各薄膜状導体19は、その一端部19aが該薄膜状導体19に対応するひずみゲージ3のタブ14bの近傍位置に設けられ、他端部19bが第2層基板8の表面のうちの張り出し部8aに設けられて、露出している。そして、各薄膜状導体19は、その両端部19a,19bの間で第2層基板8の表面上に延在して設けられている。また、各薄膜状導体19の端部19bは、第2基板8の縦方向(図1の上下方向)にほぼ等間隔で配列されている。なお、薄膜状導体18と薄膜状導体19との間には、第1層基板7が介在するので、互いに絶縁されている。そこで、本実施形態では、フレキシブル基板2の厚み方向で、これらの薄膜状導体18,19を見たとき、それらの両端部を除く中間部が単一の線状に重なる(薄膜状導体19が薄膜状導体18の真下に存する)ようにそれらの薄膜状導体18,19が設けられている。   Each thin film conductor 19 shown in FIG. 3 has one end 19 a provided in the vicinity of the tab 14 b of the strain gauge 3 corresponding to the thin film conductor 19 and the other end 19 b on the surface of the second layer substrate 8. It is provided in the overhanging portion 8a and is exposed. Each thin-film conductor 19 is provided so as to extend on the surface of the second layer substrate 8 between both end portions 19a and 19b. Further, the end portions 19b of the thin film conductors 19 are arranged at substantially equal intervals in the vertical direction of the second substrate 8 (vertical direction in FIG. 1). Since the first layer substrate 7 is interposed between the thin film conductor 18 and the thin film conductor 19, they are insulated from each other. Therefore, in the present embodiment, when these thin film conductors 18 and 19 are viewed in the thickness direction of the flexible substrate 2, the intermediate portions except for both ends thereof overlap in a single line shape (the thin film conductor 19 is The thin film conductors 18 and 19 are provided so as to exist under the thin film conductor 18).

図4に示す各薄膜状導体20は、各薄膜状導体19と同様に、その一端部20aが該薄膜状導体20に対応するひずみゲージ3のタブ14bの近傍位置に設けられ、他端部20bが第2層基板8の裏面のうちの張り出し部8aに設けられて、露出している。そして、各薄膜状導体20は、その両端部20a,20bの間で第2層基板8の裏面上に延在して設けられている。この場合、同一のひずみゲージ3に対応する薄膜状導体19,20は、その全長にわたって、第2層基板8を介して互いに対向するように設けられている。従って、フレキシブル基板2の厚み方向で、これらの薄膜状導体19,20を見たとき、同一のひずみゲージ3に対応する薄膜状導体19,20は、互いに重なり合っている。従って、各ひずみゲージ3毎の3つの薄膜状導体18,19,20の中間部は、フレキシブル基板2の厚み方向で見たとき、単一の線状に重なり合っている。   Each thin-film conductor 20 shown in FIG. 4 has one end 20a provided near the tab 14b of the strain gauge 3 corresponding to the thin-film conductor 20 and the other end 20b. Is provided on the overhanging portion 8a of the back surface of the second layer substrate 8, and is exposed. Each thin film conductor 20 is provided so as to extend on the back surface of the second layer substrate 8 between both end portions 20a and 20b. In this case, the thin film conductors 19 and 20 corresponding to the same strain gauge 3 are provided so as to face each other through the second layer substrate 8 over the entire length thereof. Therefore, when these thin film conductors 19 and 20 are viewed in the thickness direction of the flexible substrate 2, the thin film conductors 19 and 20 corresponding to the same strain gauge 3 overlap each other. Accordingly, the intermediate portions of the three thin film conductors 18, 19, 20 for each strain gauge 3 overlap each other in a single line shape when viewed in the thickness direction of the flexible substrate 2.

各薄膜状導体18,19,20は、それに対応するひずみゲージ3のタブ14a,14bに次のように導通されている。すなわち、本実施形態では、フレキシブル基板2には、図5に示すように、各薄膜状導体18の一端部18aを通って該フレキシブル基板2の厚み方向に貫通するスルーホール21と、互いに対向する各薄膜状導体19,20のそれぞれの一端部19a,20aを通って該フレキシブル基板2の厚み方向に貫通するスルーホール22とが穿設されている。そして、スルーホール21には、ひずみゲージ3のタブ14aに結線されているゲージリード15aがフレキシブル基板2の裏面側から挿入されると共に半田(図示省略)が充填され、この半田により該ゲージリード15aと薄膜状導体18とが導通されている。ひいては、各ひずみゲージ3のタブ14aが該ひずみゲージ3に対応する薄膜状導体18に導通されている。   The thin film conductors 18, 19, and 20 are electrically connected to the corresponding tabs 14a and 14b of the strain gauge 3 as follows. In other words, in the present embodiment, the flexible substrate 2 is opposed to the through-hole 21 that passes through the one end portion 18a of each thin film conductor 18 in the thickness direction of the flexible substrate 2 as shown in FIG. A through hole 22 that penetrates in the thickness direction of the flexible substrate 2 is formed through the respective one end portions 19 a and 20 a of the thin film conductors 19 and 20. The through-hole 21 is filled with a solder lead (not shown) while a gauge lead 15a connected to the tab 14a of the strain gauge 3 is inserted from the back side of the flexible substrate 2, and the gauge lead 15a is filled with the solder. And the thin film conductor 18 are electrically connected. As a result, the tab 14 a of each strain gauge 3 is electrically connected to the thin film conductor 18 corresponding to the strain gauge 3.

また、スルーホール22には、図6に示すように、ひずみゲージ3のタブ14bに結線されているゲージリード15bがフレキシブル基板2の裏面側から挿入されると共に半田23が充填され、この半田23により該ゲージリード15bと薄膜状導体19,20とが導通されている。ひいては、各ひずみゲージ3のタブ14bが該ひずみゲージ3に対応する薄膜状導体19,20に導通されている。なお、半田23は、前記第9発明における導体部材に相当する。   Further, as shown in FIG. 6, a gauge lead 15 b connected to the tab 14 b of the strain gauge 3 is inserted into the through hole 22 from the back side of the flexible substrate 2 and filled with solder 23. Thus, the gauge lead 15b and the thin film conductors 19 and 20 are electrically connected. As a result, the tab 14 b of each strain gauge 3 is electrically connected to the thin film conductors 19 and 20 corresponding to the strain gauge 3. The solder 23 corresponds to the conductor member in the ninth invention.

従って、本実施形態では、各ひずみゲージ3のタブ14aには、1つの薄膜状導体18だけが導通する一方、タブ14bには、2つの薄膜状導体19,20が導通されている。タブ14bに2つの薄膜状導体19,20を導通させているのは、各ひずみゲージ3のひずみを1ゲージ3線法で計測するためである。   Therefore, in this embodiment, only one thin film conductor 18 is conducted to the tab 14a of each strain gauge 3, while two thin film conductors 19 and 20 are conducted to the tab 14b. The reason why the two thin-film conductors 19 and 20 are electrically connected to the tab 14b is to measure the strain of each strain gauge 3 by the 1-gauge 3-wire method.

また、本実施形態では、センサ構造部6には、その厚み方向で貫通する複数の貫通孔24が穿設されている。これらの貫通孔24は、各ひずみゲージ3および各薄膜状導体18,19,20を避ける位置(各ひずみゲージ3および各薄膜状導体18,19,20が存在しない位置)で穿設されている。   In the present embodiment, the sensor structure 6 is provided with a plurality of through holes 24 penetrating in the thickness direction. These through holes 24 are formed at positions where the respective strain gauges 3 and the respective thin film conductors 18, 19, 20 are avoided (positions where the respective strain gauges 3 and the respective thin film conductors 18, 19, 20 do not exist). .

以上が、センサ構造部6の構造である。なお、前記接着剤9,10,11としては、エポキシ系接着剤、フェノール系接着剤、ポリイミド系接着剤などを使用すればよい。   The above is the structure of the sensor structure 6. As the adhesives 9, 10, and 11, an epoxy adhesive, a phenol adhesive, a polyimide adhesive, or the like may be used.

本実施形態のひずみ測定装置1により路面Aのひずみを測定する場合には、図2に示すように、センサ構造部6のゲージベース4の裏面(ゲージベース4の厚み方向の両面のうち、フレキシブル基板2側の面と反対側の面)を路面Aに対面させ、該ゲージベース4と路面Aとの間に介在させた接着剤Bによりセンサ構造部6を路面Aに固着する。すなわち、フレキシブル基板2と路面Aとの間にゲージベース4を介在させるようにしてセンサ構造部6を路面Aに固着する。このとき、センサ構造部6には複数の貫通孔24が穿設されているので、センサ構造部6と路面Aとの間で局所的に接着剤Bの溜まり部が形成されたり、局所的に気泡が残存するような事態が防止される。なお、接着剤Bの種類は、前記接着剤9,10,11と同じでよい。   When the strain on the road surface A is measured by the strain measuring apparatus 1 according to the present embodiment, as shown in FIG. 2, the back surface of the gauge base 4 of the sensor structure 6 (the flexible surface of both surfaces in the thickness direction of the gauge base 4 is flexible). The surface opposite to the substrate 2 side) is made to face the road surface A, and the sensor structure 6 is fixed to the road surface A by the adhesive B interposed between the gauge base 4 and the road surface A. That is, the sensor structure 6 is fixed to the road surface A so that the gauge base 4 is interposed between the flexible substrate 2 and the road surface A. At this time, since a plurality of through holes 24 are formed in the sensor structure 6, a reservoir of the adhesive B is locally formed between the sensor structure 6 and the road surface A or locally. The situation where bubbles remain is prevented. The type of the adhesive B may be the same as that of the adhesives 9, 10, and 11.

このようにセンサ構造部6を路面Aに固着することにより、各ひずみゲージ3の直下の箇所で路面Aに生じるひずみがゲージベース4および該ひずみゲージ3のゲージベース12を介して該ひずみゲージ3のひずみ受感部13に伝達され、そのひずみに応じたひずみ受感部13の抵抗値変化が生じるようになる。   By fixing the sensor structure portion 6 to the road surface A in this way, the strain generated on the road surface A at a location immediately below each strain gauge 3 is transmitted to the strain gauge 3 via the gauge base 4 and the gauge base 12 of the strain gauge 3. The resistance value of the strain sensing unit 13 is changed according to the strain.

ここで、本実施形態では、路面Aのうちの、移動体の車輪の接地領域(移動体が走行するときにその車輪が接地し得る領域)は、例えば図1に示す2つの二点鎖線の間の領域である。そして、センサ構造部6を路面Aに固着するに際しては、該センサ構造部6に備えた複数(本実施形態では14個)のひずみゲージ3が、車輪の接地領域内に位置し、且つ、フレキシブル基板2の各薄膜状導体18,19,20の他端部18b,19b,20bが、いずれも接地領域から車輪の幅方向(図1に示す二点鎖線の間隔方向)で逸脱した領域に位置するようにして、センサ構造部6が路面Aに固着される。従って、各薄膜状導体18,19,20の端部18b,19b,20bに、移動体の車輪が接地することがないようにセンサ構造部6が路面Aに固着されている。   Here, in the present embodiment, the grounding area of the wheel of the moving body (the area where the wheel can be grounded when the moving body travels) in the road surface A is, for example, two two-dot chain lines shown in FIG. It is an area between. When the sensor structure 6 is fixed to the road surface A, a plurality of (14 in this embodiment) strain gauges 3 provided in the sensor structure 6 are located in the ground contact area of the wheel and are flexible. The other end portions 18b, 19b, and 20b of the thin film conductors 18, 19, and 20 of the substrate 2 are all located in a region that deviates from the grounding region in the width direction of the wheel (interval direction of the two-dot chain line shown in FIG. 1). Thus, the sensor structure 6 is fixed to the road surface A. Accordingly, the sensor structure 6 is fixed to the road surface A so that the wheels of the moving body do not come into contact with the ends 18b, 19b, 20b of the thin film conductors 18, 19, 20, respectively.

そして、各薄膜状導体18,19,20の端部18b,19b,20bには、各々、図示を省略するリード線が半田付けなどにより接続され、それらのリード線が図示を省略する測定器に接続される。さらに、その測定器によって、各ひずみゲージ3毎に、該ひずみゲージ3の直下で路面Aに生じるひずみが1ゲージ3線法により測定される。これにより、車輪の接地領域における路面Aのひずみ分布が測定されることとなる。   Then, lead wires (not shown) are connected to the end portions 18b, 19b, 20b of the respective thin film conductors 18, 19, 20 by soldering or the like, and these lead wires serve as measuring instruments (not shown). Connected. Further, for each strain gauge 3, the strain generated on the road surface A immediately below the strain gauge 3 is measured by the measuring instrument by the 1 gauge 3-wire method. Thereby, the strain distribution on the road surface A in the ground contact area of the wheel is measured.

この場合、リード線を接続する各膜状導体部18,19,20の他端部18b,19b,20bは、車輪の接地領域から逸脱しているので、該リード線を、該接地領域内を通過しないように配線することができる。このため、車輪の接地領域内でセンサ構造部6に車輪が接地しても、該車輪が各膜状導体部18,19,20の端部18b,19b,20bに接続されたリード線に接地することがなく、該リード線の断線を防止できる。   In this case, the other end portions 18b, 19b, 20b of the respective film-like conductor portions 18, 19, 20 that connect the lead wires deviate from the grounding region of the wheel. It can be wired so that it does not pass. For this reason, even if the wheel is grounded to the sensor structure 6 within the grounding area of the wheel, the wheel is grounded to the lead wire connected to the end portions 18b, 19b, and 20b of the respective film-like conductor portions 18, 19, and 20. Therefore, disconnection of the lead wire can be prevented.

また、車輪の接地領域におけるセンサ構造部6は、十分に薄い平板状のものとなっている。さらに、センサ構造部6は、その裏面(ゲージベース4の裏面)のほぼ全体にわたって、均一的に路面Aに接着させることができる。このため、該センサ構造部6に車輪が接地しても、該車輪からセンサ構造部6に作用する力が該センサ構造部6の局所に集中して該センサ構造部6が破損したり、該センサ構造部6が折れ曲がって該センサ構造部6が破損するような事態を防止できる。   Further, the sensor structure 6 in the wheel contact area is a sufficiently thin flat plate. Furthermore, the sensor structure 6 can be uniformly adhered to the road surface A over substantially the entire back surface (the back surface of the gauge base 4). For this reason, even if a wheel contacts the sensor structure 6, the force acting on the sensor structure 6 from the wheel concentrates locally on the sensor structure 6, and the sensor structure 6 is damaged, It is possible to prevent a situation in which the sensor structure 6 is bent and the sensor structure 6 is damaged.

また、各薄膜状導体部18,19,20は銅など、比抵抗が十分に小さい導体により構成されているので、それぞれの抵抗値のばらつきは微小なものとなる。このため、各ひずみゲージ3毎に、実質的なゲージ率あるいは感度を、ほぼ同等にすることができ、それらのひずみゲージ3による路面Aのひずみ分布を精度よく測定することができる。   Moreover, since each thin film-like conductor part 18,19,20 is comprised with the conductors whose specific resistance is sufficiently small, such as copper, the dispersion | variation in each resistance value becomes a minute thing. For this reason, the substantial gauge factor or sensitivity can be made substantially equal for each strain gauge 3, and the strain distribution on the road surface A by these strain gauges 3 can be measured with high accuracy.

図7は、そのひずみ分布の測定結果の一例を示している。この例は、前記接地領域内において、航空機の車輪をセンサ構造部6に接地させた場合のひずみ分布の測定結果の例である。なお、図7のX軸は、車輪の幅方向での路面Aの位置を示す座標軸、Y軸は、車輪の進行方向での路面Aの位置を示す座標軸である。この場合、センサ構造部6には、最大で910kNの接地荷重が作用するが、センサ構造部6の破損等の不都合を生じることなく、路面Aに発生したひずみ分布を測定することができた。なお、自動車の車輪のセンサ構造部6に接地させた場合でも、支障なく路面Aのひずみ分布を測定できる。   FIG. 7 shows an example of the measurement result of the strain distribution. This example is an example of a measurement result of strain distribution when an aircraft wheel is grounded to the sensor structure 6 in the ground contact area. 7 is a coordinate axis indicating the position of the road surface A in the width direction of the wheel, and the Y axis is a coordinate axis indicating the position of the road surface A in the traveling direction of the wheel. In this case, although a maximum ground load of 910 kN acts on the sensor structure 6, the strain distribution generated on the road surface A could be measured without causing inconvenience such as breakage of the sensor structure 6. Even when the vehicle wheel sensor structure 6 is grounded, the strain distribution on the road surface A can be measured without hindrance.

また、本実施形態のセンサ構造部6では、薄膜状導体18と薄膜状導体19との間には、第1層基板7が介在し、また、薄膜状導体19と薄膜状導体20との間には、第2層基板8が介在するので、フレキシブル基板3の厚み方向で見て、それらの薄膜状導体18,19,20に重なりを持たせることができる。このため、本実施形態では、前記したように、各ひずみゲージ3毎の3つの薄膜状導体18,19,20は、それらの両端部を除く中間部がフレキシブル基板2の厚み方向で単一の線状に重なり合うように設けられている。この結果、フレキシブル基板3の厚み方向で見た面積を必要最小限に留めることができる。ひいては、センサ構造部6の厚み方向で見た面積を必要最小限に留めることができ、センサ構造部6の構成要素の材料費を低減できる。また、薄膜状導体18,19,20の中間部がフレキシブル基板2の厚み方向で重なり合うことで、周囲環境からもたらされる電磁誘導ノイズの影響を少なくすることができる。
[第2実施形態]
次に、本発明の第2実施形態を図8および図9を参照して説明する。図8は本実施形態のひずみ測定装置のセンサ構造部28に用いるゲージベースおよびひずみ受感部を示す平面図、図9は該センサ構造部28の部分断面図(図6と同様の断面図)である。なお、本実施形態におけるひずみ測定装置は、第1実施形態のものとセンサ構造部28の一部の構造だけが相違するので、その相違する部分を中心に説明し、第1実施形態のセンサ構造部6と同一の構成要素については第1実施形態と同一の参照符号を付し、詳細な説明を省略する。また、本実施形態は、第2発明の実施形態である。
In the sensor structure 6 of the present embodiment, the first layer substrate 7 is interposed between the thin film conductor 18 and the thin film conductor 19, and between the thin film conductor 19 and the thin film conductor 20. Since the second layer substrate 8 is interposed, the thin film conductors 18, 19, and 20 can be overlapped when viewed in the thickness direction of the flexible substrate 3. For this reason, in the present embodiment, as described above, the three thin film conductors 18, 19, 20 for each strain gauge 3 have a single intermediate portion excluding their both ends in the thickness direction of the flexible substrate 2. It is provided so as to overlap linearly. As a result, the area seen in the thickness direction of the flexible substrate 3 can be kept to the minimum necessary. As a result, the area of the sensor structure 6 viewed in the thickness direction can be kept to the minimum necessary, and the material cost of the components of the sensor structure 6 can be reduced. In addition, since the intermediate portions of the thin film conductors 18, 19, and 20 overlap in the thickness direction of the flexible substrate 2, the influence of electromagnetic induction noise caused by the surrounding environment can be reduced.
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a plan view showing a gauge base and a strain sensing unit used in the sensor structure 28 of the strain measuring device of this embodiment, and FIG. 9 is a partial cross-sectional view of the sensor structure 28 (cross-sectional view similar to FIG. 6). It is. The strain measuring device according to the present embodiment is different from that of the first embodiment only in a part of the structure of the sensor structure portion 28. Therefore, the difference will be mainly described, and the sensor structure of the first embodiment will be described. The same components as those of the unit 6 are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted. Moreover, this embodiment is an embodiment of the second invention.

前記第1実施形態のセンサ構造部6では、ゲージベース12およびひずみ受感部13を有する複数のひずみゲージ3を使用し、これらのひずみゲージ3をゲージベース4の表面に固着するようにした。これに対して、本実施形態では、ゲージベース4の表面に、図8に示すように、複数のひずみ受感部13(抵抗式ひずみ受感部)をフォトエッチングなどにより直接的に固着するようにした。これらのひずみ受感部13は、第1実施形態のセンサ構造部6のひずみゲージ3と同じ配列で、ゲージベース4の表面に配置されている。また、各ひずみ受感部13の両端部のタブ14a,14bには、第1実施形態のセンサ構造部6のひずみゲージ3と同様に、各一本のゲージリード15a,15bが結線されている。   In the sensor structure section 6 of the first embodiment, a plurality of strain gauges 3 having the gauge base 12 and the strain sensing section 13 are used, and these strain gauges 3 are fixed to the surface of the gauge base 4. On the other hand, in this embodiment, as shown in FIG. 8, a plurality of strain sensitive portions 13 (resistance strain sensitive portions) are directly fixed to the surface of the gauge base 4 by photoetching or the like. I made it. These strain sensing parts 13 are arranged on the surface of the gauge base 4 in the same arrangement as the strain gauges 3 of the sensor structure part 6 of the first embodiment. In addition, one gauge lead 15a, 15b is connected to each of the tabs 14a, 14b at both ends of each strain sensing part 13 in the same manner as the strain gauge 3 of the sensor structure part 6 of the first embodiment. .

そして、本実施形態のセンサ構造部28においては、このように複数のひずみ受感部13が固着されたゲージベース4が、図9に示す如く、フレキシブル基板2の裏面(第2層基板8の裏面)との間にひずみ受感部13を介在させて、接着剤11により該フレキシブル基板2の裏面に固着されている。なお、各ひずみ受感部13のタブ14aと該ひずみ受感部13に対応する薄膜状導体18との導通形態、並びに、各ひずみ受感部13のタブ14bと該ひずみ受感部13に対応する薄膜状導体19,20との導通形態は、第1実施形態と全く同じである。   And in the sensor structure part 28 of this embodiment, the gauge base 4 to which the plurality of strain sensing parts 13 are fixed in this way is formed on the back surface of the flexible substrate 2 (the second layer substrate 8) as shown in FIG. The back surface of the flexible substrate 2 is fixed to the back surface of the flexible substrate 2 with an adhesive 11 interposed therebetween. In addition, it corresponds to the conduction form between the tab 14a of each strain sensing part 13 and the thin film conductor 18 corresponding to the strain sensing part 13, and the tab 14b of each strain sensing part 13 and the strain sensing part 13. The conducting mode with the thin film conductors 19 and 20 is exactly the same as in the first embodiment.

以上説明した以外のセンサ構造部28の構造は、第1実施形態のセンサ構造部6の構造と同じである。そして、路面Aのひずみ分布を測定する場合には、第1実施形態のセンサ構造部6と同様に、ひずみ受感部29が車輪の接地領域内に位置し、且つフレキシブル基板2の各薄膜状導体18,19,20のそれぞれの端部18b,19b,20bが該接地領域から車輪の幅方向で逸脱するようにして、センサ構造部28のゲージベース4が路面Aに接着剤Bを介して固着される。さらに、各薄膜状導体18,19,20のそれぞれの他端部18b,19b,20bが、それぞれに接続されるリード線(図示省略)を介して測定器に接続され、この状態で、ひずみ分布の測定が第1実施形態と同様に行なわれる。   The structure of the sensor structure portion 28 other than that described above is the same as the structure of the sensor structure portion 6 of the first embodiment. And when measuring the strain distribution of the road surface A, the strain sensing part 29 is located in the grounding area | region of a wheel similarly to the sensor structure part 6 of 1st Embodiment, and each thin film-like of the flexible substrate 2 is used. The gauge base 4 of the sensor structure 28 is attached to the road surface A via the adhesive B so that the respective end portions 18b, 19b, 20b of the conductors 18, 19, 20 deviate from the grounding region in the width direction of the wheel. It is fixed. Further, the other end portions 18b, 19b, and 20b of the respective thin film conductors 18, 19, and 20 are connected to a measuring instrument through lead wires (not shown) connected thereto, and in this state, strain distribution is performed. Are measured in the same manner as in the first embodiment.

かかる本実施形態においても、フレキシブル基板2の各薄膜状導体18,19,20のそれぞれの他端部18b,19b,20bに接続するリード線の断線や、車輪の接地領域におけるセンサ構造部28の損傷を生じることなく、該接地領域における路面Aのひずみ分布を適正に測定することができる。
[第3実施形態]
次に、本発明の第3実施形態を図10および図11を参照して説明する。図10は本実施形態のひずみ測定装置のセンサ構造部35の一部分の分解斜視図(図5と同様の分解斜視図)、図11は該センサ構造部35の部分断面図(図6と同様の断面図)である。なお、本実施形態におけるひずみ測定装置は、第1実施形態のものとセンサ構造部35の一部の構造だけが相違するので、その相違する部分を中心に説明し、第1実施形態のセンサ構造部6と同一の構成要素については第1実施形態と同一の参照符号を付し、詳細な説明を省略する。また、本実施形態は、前記第3発明の実施形態である。
Also in this embodiment, disconnection of the lead wires connected to the other end portions 18b, 19b, and 20b of the respective thin film conductors 18, 19, and 20 of the flexible substrate 2 and the sensor structure portion 28 in the grounding region of the wheel. It is possible to appropriately measure the strain distribution of the road surface A in the ground contact region without causing damage.
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIGS. FIG. 10 is an exploded perspective view of a part of the sensor structure 35 of the strain measuring device of the present embodiment (an exploded perspective view similar to FIG. 5), and FIG. 11 is a partial cross-sectional view of the sensor structure 35 (similar to FIG. 6). FIG. The strain measuring device according to the present embodiment differs from that of the first embodiment only in a part of the structure of the sensor structure 35. Therefore, the difference will be mainly described, and the sensor structure of the first embodiment will be described. The same components as those of the unit 6 are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted. The present embodiment is an embodiment of the third invention.

前記第1実施形態のセンサ構造部6では、フレキシブル基板2の裏面側でゲージベース4の表面に複数のひずみゲージ3が固着されている。これに対して本実施形態のセンサ構造部35では、図10および図11に示すように、各ひずみゲージ3をフレキシブル基板2の表面側に配置し、該フレキシブル基板2の表面(第1層基板7の表面)に図示しない接着剤により固着するようにした。なお、図10および図11では、1つのひずみゲージ3だけが図示されているが、実際には、複数(本実施形態では、第1実施形態のセンサ構造部6のひずみゲージ3の個数と同数)のひずみゲージ3がセンサ構造部35に備えられている。そして、これらのひずみゲージ3は、第1実施形態のセンサ構造部6のひずみゲージ3と同様の配列で、フレキシブル基板2の表面に固着されている。さらに、フレキシブル基板2の表面には、該表面との間に前記薄膜状導体18(ただし他端部18bを除く)およびひずみゲージ3を介在させて接着剤10により(あるいは熱融着により)、シート状絶縁部材としてのカバーフィルム5が固着され、このカバーフィルム5により各ひずみゲージ3が被覆されている。   In the sensor structure 6 of the first embodiment, a plurality of strain gauges 3 are fixed to the surface of the gauge base 4 on the back side of the flexible substrate 2. On the other hand, in the sensor structure portion 35 of the present embodiment, as shown in FIGS. 10 and 11, each strain gauge 3 is arranged on the surface side of the flexible substrate 2, and the surface of the flexible substrate 2 (first layer substrate). 7) and an adhesive (not shown). 10 and FIG. 11, only one strain gauge 3 is shown, but actually, in the present embodiment (in this embodiment, the same number as the number of strain gauges 3 of the sensor structure section 6 of the first embodiment). ) Is provided in the sensor structure 35. These strain gauges 3 are fixed to the surface of the flexible substrate 2 in the same arrangement as the strain gauges 3 of the sensor structure section 6 of the first embodiment. Further, on the surface of the flexible substrate 2, the thin film conductor 18 (excluding the other end portion 18b) and the strain gauge 3 are interposed between the surface and the adhesive 10 (or by thermal fusion), A cover film 5 as a sheet-like insulating member is fixed, and each strain gauge 3 is covered with the cover film 5.

また、各ひずみゲージ3のタブ14a,14bには、第1実施形態と同様に各一本のゲージリード15a,15bが結線されている。そして、各ひずみゲージ3のタブ14aに結線されたゲージリード15aが、該ひずみゲージ3に対応する薄膜状導体18の一端部18aを通るスルーホール21にフレキシブル基板2の表面側から挿入され、該スルーホール21に充填された半田(図示省略)によりタブ14aが薄膜状導体18に導通されている。また、各ひずみゲージ3のタブ14bに結線されたゲージリード15bが、該ひずみゲージ3に対応する薄膜状導体19,20の一端部19a,20aを通るスルーホール22にフレキシブル基板2の表面側から挿入され、該スルーホール22に充填された半田23によりタブ14bが薄膜状導体19,20に導通されている。   Further, one gauge lead 15a, 15b is connected to the tabs 14a, 14b of each strain gauge 3 in the same manner as in the first embodiment. Then, the gauge lead 15a connected to the tab 14a of each strain gauge 3 is inserted from the surface side of the flexible substrate 2 into the through hole 21 passing through the one end portion 18a of the thin film conductor 18 corresponding to the strain gauge 3, The tab 14 a is electrically connected to the thin film conductor 18 by solder (not shown) filled in the through hole 21. Further, the gauge lead 15b connected to the tab 14b of each strain gauge 3 is inserted into the through hole 22 passing through the one end portions 19a and 20a of the thin film conductors 19 and 20 corresponding to the strain gauge 3 from the surface side of the flexible substrate 2. The tab 14 b is electrically connected to the thin film conductors 19 and 20 by the solder 23 inserted and filled in the through hole 22.

なお、図示は省略するが、センサ構造部35には、第1実施形態のセンサ構造部6と同様に、その厚み方向で貫通する複数の貫通孔が穿設されている。   In addition, although illustration is abbreviate | omitted, the several through-hole penetrated in the thickness direction is drilled in the sensor structure part 35 similarly to the sensor structure part 6 of 1st Embodiment.

以上説明した以外のセンサ構造部35の構造は、第1実施形態のセンサ構造部6の構造と同じである。そして、路面Aのひずみ分布を測定する場合には、第1実施形態のセンサ構造部6と同様に、ひずみゲージ3が車輪の接地領域内に位置し、且つフレキシブル基板2の各薄膜状導体18,19,20のそれぞれの他端部18b,19b,20bが該接地領域から車輪の幅方向で逸脱するようにして、センサ構造部35のゲージベース4が路面Aに接着剤Bを介して固着される。すなわち、シート状絶縁部材としてのカバーフィルム5と路面Aとの間にフレキシブル基板2が介在するようにして路面Aにセンサ構造部35が固着されている。さらに、各薄膜状導体18,19,20のそれぞれの他端部18b,19b,20bが、それぞれに接続されるリード線(図示省略)を介して測定器に接続され、この状態で、ひずみ分布の測定が第1実施形態と同様に行なわれる。なお、この場合には、各ひずみゲージ3と路面Aとの間にゲージベース4およびフレキシブル基板2が介在するので、路面Aに生じるひずみは、ゲージベース4、フレキシブル基板2、およびゲージベース12を介してひずみゲージ3のひずみ受感部13に伝達されることとなる。   The structure of the sensor structure 35 other than that described above is the same as the structure of the sensor structure 6 of the first embodiment. Then, when measuring the strain distribution on the road surface A, the strain gauge 3 is located in the grounding region of the wheel and the thin film conductors 18 of the flexible substrate 2 are the same as the sensor structure portion 6 of the first embodiment. , 19 and 20, the gauge base 4 of the sensor structure 35 is fixed to the road surface A with an adhesive B so that the other end portions 18 b, 19 b and 20 b of the respective contact portions deviate from the ground contact area in the width direction of the wheel. Is done. That is, the sensor structure 35 is fixed to the road surface A so that the flexible substrate 2 is interposed between the cover film 5 as the sheet-like insulating member and the road surface A. Further, the other end portions 18b, 19b, and 20b of the respective thin film conductors 18, 19, and 20 are connected to a measuring instrument through lead wires (not shown) connected thereto, and in this state, strain distribution is performed. Are measured in the same manner as in the first embodiment. In this case, since the gauge base 4 and the flexible substrate 2 are interposed between each strain gauge 3 and the road surface A, the strain generated on the road surface A is applied to the gauge base 4, the flexible substrate 2, and the gauge base 12. Then, it is transmitted to the strain sensing part 13 of the strain gauge 3.

かかる本実施形態においても、フレキシブル基板2の各薄膜状導体18,19,20のそれぞれの端部18b,19b,20bに接続するリード線の断線や、車輪の接地領域におけるセンサ構造部35の損傷を生じることなく、該接地領域における路面Aのひずみ分布を適正に測定することができる。   Also in this embodiment, disconnection of the lead wires connected to the respective end portions 18b, 19b, 20b of the respective thin film conductors 18, 19, 20 of the flexible substrate 2 and damage to the sensor structure portion 35 in the grounding region of the wheel. Thus, it is possible to appropriately measure the strain distribution of the road surface A in the ground contact region.

なお、本実施形態では、フレキシブル基板2を第1実施形態のセンサ構造部6のものと同じにしたため、各薄膜状導体18の一端部18aを通るスルーホール21を備えているが、そのスルーホール21を省略し、各ひずみゲージ3のタブ14aに結線されたゲージリード15aを該ひずみゲージ3に対応する薄膜状導体18の一端部18aに直接的に半田付けするようにしてもよい。   In this embodiment, since the flexible substrate 2 is the same as that of the sensor structure portion 6 of the first embodiment, the through-hole 21 passing through the one end portion 18a of each thin film conductor 18 is provided. 21 may be omitted, and the gauge lead 15 a connected to the tab 14 a of each strain gauge 3 may be soldered directly to one end portion 18 a of the thin film conductor 18 corresponding to the strain gauge 3.

また、本実施形態において、カバーフィルム5の代わりに、ゲージベース4と同様のゲージベースを使用して、そのゲージベースの裏面(フレキシブル基板2側の面)にひずみゲージ3を固着した上で、該ゲージベースおよびひずみゲージ3を接着剤によりフレキシブル基板2の表面に固着するようにしてもよい。
[第4実施形態]
次に、本発明の第4実施形態を図12および図13を参照して説明する。図2は本実施形態のひずみ測定装置のセンサ構造部40の一部分の分解斜視図(図5と同様の分解斜視図)、図12は該センサ構造部40の部分断面図(図6と同様の断面図)である。なお、本実施形態におけるひずみ測定装置は、第3実施形態のものとセンサ構造部40の一部の構造だけが相違するので、その相違する部分を中心に説明し、第3実施形態のセンサ構造部35と同一の構成要素については第3実施形態と同一の参照符号を付し、詳細な説明を省略する。また、本実施形態は、前記第4発明の実施形態である。
In the present embodiment, instead of the cover film 5, a gauge base similar to the gauge base 4 is used, and the strain gauge 3 is fixed to the back surface of the gauge base (the surface on the flexible substrate 2 side). The gauge base and the strain gauge 3 may be fixed to the surface of the flexible substrate 2 with an adhesive.
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described with reference to FIGS. 2 is an exploded perspective view of a part of the sensor structure 40 of the strain measuring device of the present embodiment (an exploded perspective view similar to FIG. 5), and FIG. 12 is a partial cross-sectional view of the sensor structure 40 (similar to FIG. 6). FIG. In addition, since the strain measuring apparatus in this embodiment is different from that of the third embodiment only in a part of the structure of the sensor structure section 40, the difference will be mainly described, and the sensor structure of the third embodiment will be described. The same components as those of the unit 35 are denoted by the same reference numerals as those of the third embodiment, and detailed description thereof is omitted. The present embodiment is an embodiment of the fourth invention.

前記第3実施形態のセンサ構造部35では、ゲージベース12およびひずみ受感部13を有する複数のひずみゲージ3を使用した。これに対して、本実施形態のセンサ構造部40では、図12および図13に示すように、第3実施形態のセンサ構造部35に備えたカバーフィルム5の代わりに、これと同じ形状のシート状絶縁部材としてのゲージベース41を備えると共に、このゲージベース41の厚み方向の両面のうちのフレキシブル基板2側の面(裏面)に、前記第2実施形態のゲージベース4と同様に、複数のひずみ受感部13(抵抗式ひずみ受感部13)をフォトエッチングなどにより直接的に固着するようにした。そして、このようにひずみ受感部13を固着したゲージベース41を、フレキシブル基板2の表面との間にひずみ受感部13を介在させて、接着剤10によりフレキシブル基板2の表面に固着するようにした。   In the sensor structure part 35 of the third embodiment, a plurality of strain gauges 3 having the gauge base 12 and the strain sensing part 13 are used. On the other hand, in the sensor structure portion 40 of the present embodiment, as shown in FIGS. 12 and 13, instead of the cover film 5 provided in the sensor structure portion 35 of the third embodiment, a sheet having the same shape as this A gauge base 41 is provided as an insulating member, and a plurality of surfaces (back surface) on the flexible substrate 2 side in the thickness direction of the gauge base 41 are similar to the gauge base 4 of the second embodiment. The strain sensitive part 13 (resistive strain sensitive part 13) is directly fixed by photoetching or the like. Then, the gauge base 41 to which the strain sensitive portion 13 is fixed in this way is fixed to the surface of the flexible substrate 2 by the adhesive 10 with the strain sensitive portion 13 interposed between the gauge base 41 and the surface of the flexible substrate 2. I made it.

なお、図12および図13では、1つのひずみ受感部13だけが図示されているが、実際には、複数(本実施形態では、第3実施形態のセンサ構造部35のひずみゲージ3の個数と同数)のひずみ受感部13がゲージベース41に固着されている。これらのひずみ受感部13の配列は、第3実施形態におけるひずみゲージ3の配列と同じである。また、各ひずみ受感部13の両端部のタブ14a,14bには、第3実施形態と同様に各一本のゲージリード15a,15bが結線されている。そして、各ひずみ受感部13のタブ14aと該ひずみ受感部13に対応する薄膜状導体18との導通形態、並びに、各ひずみ受感部13のタブ14bと該ひずみ受感部13に対応する薄膜状導体19,20との導通形態は、第3実施形態と全く同じである。   In FIG. 12 and FIG. 13, only one strain sensing unit 13 is illustrated. However, actually, in the present embodiment, the number of strain gauges 3 in the sensor structure unit 35 of the third embodiment is plural (in this embodiment, The same number of strain sensing parts 13 are fixed to the gauge base 41. The arrangement of the strain sensing units 13 is the same as the arrangement of the strain gauges 3 in the third embodiment. In addition, one gauge lead 15a, 15b is connected to each of the tabs 14a, 14b at both ends of each strain sensing part 13 as in the third embodiment. And the conduction | electrical_connection form of the tab 14a of each distortion | strain sensitivity part 13 and the thin film-like conductor 18 corresponding to this distortion | strain sensitivity part 13, and the tab 14b of each distortion | strain sensitivity part 13 and this distortion | strain sensitivity part 13 respond | correspond. The conducting form with the thin film conductors 19 and 20 is exactly the same as in the third embodiment.

補足すると、ゲージベース41は、前記カバーフィルム5と同様に、フレキシブル基板2の表面の各薄膜状導体18の端部18bを除いて、該フレキシブル基板2の表面のほぼ全体を被覆している。また、図示は省略するが、センサ構造部40には、ゲージベース41を含めて、その厚み方向で貫通する複数の貫通孔が第3実施形態のセンサ構造部35と同様に穿設されている。   Supplementally, the gauge base 41 covers almost the entire surface of the flexible substrate 2 except for the end portions 18 b of the respective thin film conductors 18 on the surface of the flexible substrate 2, similarly to the cover film 5. Although not shown in the drawings, the sensor structure 40 includes a plurality of through holes penetrating in the thickness direction including the gauge base 41 in the same manner as the sensor structure 35 of the third embodiment. .

以上説明した以外のセンサ構造部40の構造は、第3実施形態のセンサ構造部35の構造と同じである。そして、路面Aのひずみ分布を測定する場合には、ひずみ受感部13が車輪の接地領域内に位置し、且つフレキシブル基板2の各薄膜状導体18,19,20のそれぞれの他端部18b,19b,20bが該接地領域から車輪の幅方向で逸脱するようにして、センサ構造部40のゲージベース4が路面Aに接着剤Bを介して固着される。すなわち、シート状絶縁部材としてのゲージベース41と路面Aとの間にフレキシブル基板2が介在するようにして路面Aにセンサ構造部40が固着される。さらに、各薄膜状導体18,19,20のそれぞれの端部18b,19b,20bが、それぞれに接続されるリード線(図示省略)を介して測定器に接続され、この状態で、ひずみ分布の測定が第3実施形態と同様に行なわれる。なお、この場合には、各ひずみ受感部13と路面Aとの間にゲージベース4およびフレキシブル基板2が介在するので、路面Aに生じるひずみは、ゲージベース4およびフレキシブル基板2を介して各ひずみ受感部13に伝達されることとなる。   The structure of the sensor structure 40 other than that described above is the same as the structure of the sensor structure 35 of the third embodiment. When measuring the strain distribution on the road surface A, the strain sensing unit 13 is located in the grounding region of the wheel, and the other end portions 18b of the thin film conductors 18, 19, and 20 of the flexible substrate 2 are used. , 19b, 20b deviate from the ground contact area in the width direction of the wheel, and the gauge base 4 of the sensor structure 40 is fixed to the road surface A via the adhesive B. That is, the sensor structure 40 is fixed to the road surface A so that the flexible substrate 2 is interposed between the gauge base 41 as a sheet-like insulating member and the road surface A. Furthermore, the respective end portions 18b, 19b, 20b of the respective thin film conductors 18, 19, 20 are connected to a measuring instrument through lead wires (not shown) connected thereto, and in this state, the strain distribution is reduced. Measurement is performed in the same manner as in the third embodiment. In this case, since the gauge base 4 and the flexible substrate 2 are interposed between each strain sensing part 13 and the road surface A, the strain generated on the road surface A is changed through the gauge base 4 and the flexible substrate 2. It is transmitted to the strain sensing unit 13.

かかる本実施形態においても、フレキシブル基板2の各薄膜状導体18,19,20のそれぞれの端部18b,19b,20bに接続するリード線の断線や、車輪の接地領域におけるセンサ構造部40の損傷を生じることなく、該接地領域における路面Aのひずみ分布を適正に測定することができる。   Also in this embodiment, disconnection of the lead wires connected to the respective end portions 18b, 19b, 20b of the respective thin film conductors 18, 19, 20 of the flexible substrate 2 and damage to the sensor structure portion 40 in the grounding region of the wheel. Thus, it is possible to appropriately measure the strain distribution of the road surface A in the ground contact region.

なお、本実施形態では、フレキシブル基板2を第1実施形態のセンサ構造部6のものと同じにしたため、各薄膜状導体18の端部18aを通るスルーホール21を備えているが、そのスルーホール21を省略し、各ひずみ受感部13のタブ14aに結線されたゲージリード15aを該ひずみ受感部13に対応する薄膜状導体18の一端部18aに直接的に半田付けするようにしてもよい。   In this embodiment, since the flexible substrate 2 is the same as that of the sensor structure portion 6 of the first embodiment, the through-hole 21 passing through the end portion 18a of each thin film conductor 18 is provided. 21 is omitted, and the gauge lead 15a connected to the tab 14a of each strain sensing part 13 is directly soldered to one end 18a of the thin film conductor 18 corresponding to the strain sensing part 13. Good.

次に、前記各実施形態に関するいくつかの変形態様を説明する。   Next, some modified modes related to the above embodiments will be described.

[変形態様1]
前記各実施形態では、フレキシブル基板2は、第1層基板7が第2層基板8よりも上側(路面Aから離れる側)に存するように各センサ構造部6,28,35,40に組み込まれているが、該フレキシブル基板2の上下を反転させ、第1層基板7が第2層基板8の下側(路面Aに近づく側)に存するように各センサ構造部6,28,35,40に組み込んでもよい。
[Modification 1]
In each of the embodiments described above, the flexible substrate 2 is incorporated in each of the sensor structures 6, 28, 35, and 40 so that the first layer substrate 7 is located above the second layer substrate 8 (the side away from the road surface A). However, the upper and lower sides of the flexible substrate 2 are turned upside down, and the sensor structure parts 6, 28, 35, 40 are arranged so that the first layer substrate 7 is located below the second layer substrate 8 (side approaching the road surface A). It may be incorporated into.

この場合、第1実施形態または第2実施形態において、フレキシブル基板2の上下を反転させた場合には、各薄膜状導体18の一端部18aを通るスルーホール21を省略し、前記各タブ14aに結線されたゲージリード15aを直接的に薄膜状導体18の一端部18aに半田付けしてもよい。   In this case, in the first embodiment or the second embodiment, when the flexible substrate 2 is turned upside down, the through hole 21 passing through the one end portion 18a of each thin film conductor 18 is omitted, and each tab 14a is provided with the tab 14a. The connected gauge lead 15 a may be directly soldered to the one end portion 18 a of the thin film conductor 18.

[変形態様2]
前記各実施形態では、スルーホール22が薄膜状導体19,20のそれぞれの一端部19a,20aを通るように設けられているが、薄膜状導体19,20の一端部19a,20aの近傍で、フレキシブル基板2の基体(薄膜状導体18,19,20が存在しない部分)にスルーホールを穿設するようにしてもよい。この場合、例えば第1実施形態または第2実施形態においてゲージリード15bを薄膜状導体19,20に導通させるためには、第1層基板7および第2層基板8を貼り合わせる前に、ゲージリード15bの中間部を第2層基板8の裏面側で薄膜状導体20の一端部20aに半田付けした後に、該ゲージリード15bの先端部を第2層基板8のスルーホールを介して該第2層基板8の表面側にスルーホールを介して突出させて、該2層基板8の表面側の薄膜状導体19の一端部19aに半田付けするようにすればよい。また、例えば第3実施形態または第4実施形態においてゲージリード15bを薄膜状導体19,20に導通させるためには、第1層基板7および第2層基板8を貼り合わせる前に、ゲージリード15bの第1層基板7のスルーホールに通した後に、該ゲージリード15bの中間部を第2層基板8の表面側で薄膜状導体19の一端部19aに半田付けし、さらに、該ゲージリード15bの先端部を第2層基板8のスルーホールを介して該第2層基板8の裏面側に突出させて、薄膜状導体20の一端部20aに半田付けするようにすればよい。
[Modification 2]
In each of the embodiments, the through hole 22 is provided so as to pass through the respective one end portions 19a and 20a of the thin film conductors 19 and 20, but in the vicinity of the one end portions 19a and 20a of the thin film conductors 19 and 20, You may make it drill a through hole in the base | substrate (the part in which the thin film-like conductors 18, 19, and 20 do not exist) of the flexible substrate 2. FIG. In this case, for example, in order to make the gauge lead 15b conductive to the thin film conductors 19 and 20 in the first embodiment or the second embodiment, the gauge lead 15b is bonded before the first layer substrate 7 and the second layer substrate 8 are bonded together. After the intermediate portion of 15b is soldered to the one end portion 20a of the thin film conductor 20 on the back surface side of the second layer substrate 8, the tip portion of the gauge lead 15b is connected to the second layer substrate 8 through the second hole. What is necessary is just to make it protrude to the surface side of the layer board | substrate 8 through a through hole, and to solder to the one end part 19a of the thin film-like conductor 19 of the surface side of this 2 layer board | substrate 8. For example, in order to make the gauge lead 15b conductive to the thin film conductors 19 and 20 in the third embodiment or the fourth embodiment, the gauge lead 15b is bonded before the first layer substrate 7 and the second layer substrate 8 are bonded together. After passing through the through hole of the first layer substrate 7, the intermediate portion of the gauge lead 15b is soldered to one end portion 19a of the thin film conductor 19 on the surface side of the second layer substrate 8, and the gauge lead 15b It is only necessary to project the tip of the second layer substrate 8 through the through hole of the second layer substrate 8 to the back side of the second layer substrate 8 and solder it to the one end portion 20a of the thin film conductor 20.

上記と同様に、第1実施形態および第2実施形態では、スルーホール21についても、薄膜状導体18の一端部18aの近傍で、フレキシブル基板2の基体(薄膜状導体18,19,20が存在しない部分)に穿設するようにして、このスルーホールに通したゲージリード15aの先端部を薄膜状導体18の一端部18aに半田付けするようにしてもよい。なお、第3および第4実施形態では、ゲージリード15aを通すスルーホールは不要である。   Similarly to the above, in the first embodiment and the second embodiment, the base of the flexible substrate 2 (the thin film conductors 18, 19, 20 are also present in the vicinity of the one end 18a of the thin film conductor 18 in the through hole 21. The tip of the gauge lead 15a that has passed through this through hole may be soldered to the one end 18a of the thin film conductor 18 so as to be drilled in the portion that is not. In the third and fourth embodiments, a through hole for passing the gauge lead 15a is not necessary.

[変形態様3]
前記第1実施形態または第2実施形態において、例えば、各スルーホール22の内周面に、薄膜状導体19,20に導通する金属メッキ(半田メッキなど)を施しておき、フレキシブル基板2の裏面側でゲージリード15bを該金属メッキに半田付けするようにしてもよい。同様に、各スルホール21の内周面に、薄膜状導体18に導通する金属メッキ(半田メッキなど)を施しておき、フレキシブル基板2の裏面側でゲージリード15aを該金属メッキに半田付けするようにしてもよい。
[Modification 3]
In the first embodiment or the second embodiment, for example, the inner peripheral surface of each through hole 22 is subjected to metal plating (such as solder plating) that conducts to the thin film conductors 19 and 20, and the back surface of the flexible substrate 2. On the side, the gauge lead 15b may be soldered to the metal plating. Similarly, metal plating (solder plating or the like) that conducts to the thin film conductor 18 is applied to the inner peripheral surface of each through hole 21, and the gauge lead 15 a is soldered to the metal plating on the back surface side of the flexible substrate 2. It may be.

上記と同様に、前記第3実施形態または第4実施形態において、各スルーホール22の内周面に薄膜状導体19,20に導通する金属メッキ(半田メッキなど)を施しておき、フレキシブル基板2の表面側でゲージリード15bを該金属メッキに半田付けするようにしてもよい。なお、第3実施形態または第4実施形態においては、ゲージリード15aを薄膜状導体18に直接的に半田付けできるので、スルーホール21を備えた場合であっても、該スルーホール21の内周面に上記の如き金属メッキを施すことは省略してもよい。   Similarly to the above, in the third embodiment or the fourth embodiment, the inner peripheral surface of each through-hole 22 is subjected to metal plating (such as solder plating) that conducts to the thin-film conductors 19 and 20, and the flexible substrate 2. The gauge lead 15b may be soldered to the metal plating on the surface side. In the third embodiment or the fourth embodiment, the gauge lead 15a can be directly soldered to the thin film conductor 18, so that even if the through hole 21 is provided, the inner circumference of the through hole 21 can be reduced. Applying metal plating as described above to the surface may be omitted.

[変形態様4]
前記各実施形態では、各ひずみ受感部13の両端部のタブ14a,14bにそれぞれゲージリード15a,15bを結線するようにして、タブ14aと薄膜状導体18との導通、並びに、タブ14bと薄膜状導体19,20との導通をそれらのゲージリード15a,15bを介して行なうようにした。これに代えて、ゲージリード15a,15bを使用せずに、タブ14aと薄膜状導体18との導通、並びに、タブ14bと薄膜状導体19,20との導通を行なうようにすることも可能である。
[Modification 4]
In each of the embodiments described above, the gauge leads 15a and 15b are connected to the tabs 14a and 14b at both ends of each strain sensing part 13, respectively, and the conduction between the tab 14a and the thin film conductor 18 and the tab 14b and Conduction with the thin film conductors 19 and 20 is performed through the gauge leads 15a and 15b. Instead of this, without using the gauge leads 15a and 15b, it is also possible to conduct the conduction between the tab 14a and the thin film conductor 18 and conduct the conduction between the tab 14b and the thin film conductors 19 and 20. is there.

その一例を図14の断面図を参照して説明する。図14は、前記第1実施形態において、タブ14bと薄膜状導体19,20とをゲージリード15bを使用せずに導通される場合の例を代表的に示す断面図(図6と同様の断面図)である。   One example will be described with reference to the cross-sectional view of FIG. 14 is a cross-sectional view representatively showing an example in which the tab 14b and the thin film conductors 19 and 20 are electrically connected without using the gauge lead 15b in the first embodiment (the same cross section as FIG. 6). Figure).

この例では、ひずみゲージ3を固着したゲージベース4をフレキシブル基板2の裏面に接着剤11により固着するときに、各ひずみ受感部13のタブ14bを前記スルーホール22の箇所で薄膜状導体20の一端部20aに接触させる。なお、このとき、タブ14bの箇所には、接着剤11を塗布しないようにしておく。そして、ゲージベース4をフレキシブル基板2の裏面に固着した後に、各スルーホール22に半田23を充填し、この半田23によりタブ14bを薄膜状導体19,20に導通させる。   In this example, when the gauge base 4 to which the strain gauge 3 is fixed is fixed to the back surface of the flexible substrate 2 with the adhesive 11, the tab 14 b of each strain sensitive portion 13 is attached to the thin film conductor 20 at the location of the through hole 22. Is brought into contact with one end 20a. At this time, the adhesive 11 is not applied to the tab 14b. After the gauge base 4 is fixed to the back surface of the flexible substrate 2, each through hole 22 is filled with solder 23, and the tab 14 b is electrically connected to the thin film conductors 19 and 20 by the solder 23.

図示は省略するが、各ひずみ受感部13のタブ14aと薄膜状導体18との導通も上記と同様に行なうことができる。この場合には、タブ14aを、前記スルーホール21の箇所でフレキシブル基板2の裏面に接触させる。そして、ゲージベース4をフレキシブル基板2の裏面に固着した後に、スルーホール21に半田を充填し、この半田によりタブ14aを薄膜状導体18に導通させればよい。   Although illustration is omitted, conduction between the tab 14a of each strain sensing part 13 and the thin film conductor 18 can be performed in the same manner as described above. In this case, the tab 14 a is brought into contact with the back surface of the flexible substrate 2 at the location of the through hole 21. Then, after the gauge base 4 is fixed to the back surface of the flexible substrate 2, the through hole 21 is filled with solder, and the tab 14 a is electrically connected to the thin film conductor 18 by this solder.

第2〜第4実施形態においても、上記と同様に、ゲージリード15a,15bを使用せずに、タブ14aと薄膜状導体18との導通、並びに、タブ14bと薄膜状導体19,20との導通を行なうようにすることが可能である。ただし、第3実施形態においては、カバーフィルム5の代わりに、ゲージベースを使用し、このゲージベースの裏面にひずみゲージ3を固着しておく。   In the second to fourth embodiments, similarly to the above, without using the gauge leads 15a and 15b, the conduction between the tab 14a and the thin film conductor 18 and the connection between the tab 14b and the thin film conductors 19 and 20 are achieved. It is possible to conduct. However, in the third embodiment, a gauge base is used instead of the cover film 5, and the strain gauge 3 is fixed to the back surface of the gauge base.

なお、各実施形態において、各スルーホール21,22の内周面などに施した半田メッキや導電性接着剤を使用することで、ゲージリード15a,15bを使用せずに、タブ14aと薄膜状導体18との導通、並びに、タブ14bと薄膜状導体19,20との導通を行なうようにすることも可能である。   In each embodiment, by using solder plating or conductive adhesive applied to the inner peripheral surfaces of the through holes 21 and 22, the tab 14 a and the thin film can be formed without using the gauge leads 15 a and 15 b. It is also possible to conduct the conductor 18 and conduct the conduction between the tab 14b and the thin film conductors 19 and 20.

[変形態様5]
前記各実施形態では、フレキシブル基板2は、2層構造のものであるが、例えば3層構造のものでもよい。例えば図15の分解斜視図に示すように、薄膜状導体18を表面に固着した第1層基板51と薄膜状導体18を表面に固着した第2層基板52と、薄膜状導体20を裏面に固着した第3層基板53とを、第2層基板52が第1層基板51と第3層基板53との間に挟み込まれるようにして相互に貼り合わせることで構成される3層構造のフレキシブル基板54をフレキシブル基板2の代わりに使用してもよい。なお、図15では、前記図5と同様に、1つのひずみゲージ3もしくはひずみ受感部13に対応する薄膜状導体18,19,20の一部分を図示している。
[Modification 5]
In each of the embodiments, the flexible substrate 2 has a two-layer structure, but may have a three-layer structure, for example. For example, as shown in the exploded perspective view of FIG. 15, the first layer substrate 51 with the thin film conductor 18 fixed to the surface, the second layer substrate 52 with the thin film conductor 18 fixed to the surface, and the thin film conductor 20 on the back surface. A flexible three-layer structure in which the fixed third-layer substrate 53 is bonded to each other so that the second-layer substrate 52 is sandwiched between the first-layer substrate 51 and the third-layer substrate 53. The substrate 54 may be used instead of the flexible substrate 2. In FIG. 15, as in FIG. 5, a part of the thin film conductors 18, 19, 20 corresponding to one strain gauge 3 or the strain sensing part 13 is illustrated.

補足すると、薄膜状導体20は、第3層基板53の表面に固着するようにしてもよい。   Supplementally, the thin film conductor 20 may be fixed to the surface of the third layer substrate 53.

[変形態様6]
また、フレキシブル基板2の代わりに、例えば図16の斜視図に示すような単層のフレキシブル基板56を使用してもよい。このフレキシブル基板56は、その表面に薄膜状導体18および薄膜状導体19を固着し、裏面に薄膜状導体20を固着したものである。なお、図16では、前記図5と同様に、1つのひずみゲージ3もしくはひずみ受感部13に対応する薄膜状導体18,19,20の一部分を図示している。
[Modification 6]
Further, instead of the flexible substrate 2, for example, a single-layer flexible substrate 56 as shown in a perspective view of FIG. 16 may be used. This flexible substrate 56 has a thin film conductor 18 and a thin film conductor 19 fixed to its front surface and a thin film conductor 20 fixed to its back surface. In FIG. 16, as in FIG. 5, a part of the thin film conductors 18, 19, 20 corresponding to one strain gauge 3 or the strain sensing part 13 is illustrated.

補足すると、このフレキシブル基板56では、薄膜状導体19,20がフレキシブル基板56の同一の面(表面)に固着されるので、それらの薄膜状導体19,20が相互に接触しないように、薄膜状導体19,20のパターンを構成する必要がある。   Supplementally, in the flexible substrate 56, the thin film conductors 19 and 20 are fixed to the same surface (front surface) of the flexible substrate 56, so that the thin film conductors 19 and 20 are not in contact with each other. It is necessary to configure the pattern of the conductors 19 and 20.

[変形態様7]
あるいは、例えば図17に示すような単層のフレキシブル基板60を使用してもよい。なお、図17は、フレキシブル基板60を使用したセンサ構造部61の一部分の分解斜視図を示している。そのフレキシブル基板60では、その表面(フレキシブル基板60の厚み方向の両面のうちの一方の面)にのみ、薄膜状導体18,19,20が固着されている。
[Modification 7]
Alternatively, for example, a single-layer flexible substrate 60 as shown in FIG. 17 may be used. FIG. 17 is an exploded perspective view of a part of the sensor structure 61 using the flexible substrate 60. In the flexible substrate 60, the thin film conductors 18, 19, and 20 are fixed only on the surface (one surface of both surfaces in the thickness direction of the flexible substrate 60).

このようなフレキシブル基板60を使用した場合には、例えば次のようにしてセンサ構造部を構成できる。その場合の例を図17を参照して説明する。なお、この例は、前記第3発明の一実施形態となる例である。   When such a flexible substrate 60 is used, for example, the sensor structure can be configured as follows. An example in that case will be described with reference to FIG. This example is an example of an embodiment of the third invention.

図17に示す例は、ひずみゲージ3を使用した例であり、前記第3実施形態と同様に、各ひずみゲージ3がフレキシブル基板60の表面に図示しない接着剤を介して固着される。なお、図17では、前記図5と同様に1つのひずみゲージ3と、それに対応する薄膜状導体18,19,20の一部分だけを図示しているが、実際には、複数のひずみゲージ3がフレキシブル基板60の表面に、前記図1に示したものと同様の配列で固着される。そして、薄膜状導体18,19,20は、個々のひずみゲージ3毎に設けられ、それらが、各ひずみゲージ3の近傍位置から、フレキシブル基板60の一側部まで適当なパターンで延在している。   The example shown in FIG. 17 is an example in which the strain gauge 3 is used, and each strain gauge 3 is fixed to the surface of the flexible substrate 60 via an adhesive (not shown) as in the third embodiment. In FIG. 17, only one strain gauge 3 and a part of the thin film conductors 18, 19 and 20 corresponding thereto are shown in the same manner as in FIG. It is fixed to the surface of the flexible substrate 60 in the same arrangement as that shown in FIG. The thin film conductors 18, 19, and 20 are provided for each individual strain gauge 3, and they extend in an appropriate pattern from the vicinity of each strain gauge 3 to one side of the flexible substrate 60. Yes.

この場合、各ひずみゲージ3のひずみ受感部13の両端部のタブ14a,14bには、それぞれゲージリード15a,15bが結線されていることに加えて、さらに3本目のゲージリード15cがタブ14bに結線されている。そして、ゲージリード15a,15b,15cはそれぞれ薄膜状導体18,19、20の一端部18a,19a,20aに半田付けされる。これにより、タブ14aが薄膜状導体18に導通されると共に、タブ14bが薄膜状導体19,20に導通される。   In this case, in addition to the gauge leads 15a and 15b being connected to the tabs 14a and 14b at both ends of the strain sensing part 13 of each strain gauge 3, the third gauge lead 15c is further connected to the tab 14b. It is connected to. The gauge leads 15a, 15b, and 15c are soldered to the one end portions 18a, 19a, and 20a of the thin film conductors 18, 19, and 20, respectively. As a result, the tab 14 a is electrically connected to the thin film conductor 18, and the tab 14 b is electrically connected to the thin film conductors 19 and 20.

このように、フレキシブル基板60の表面に複数のひずみゲージ3を固着し、且つ、各ひずみゲージ3毎のゲージリード15a,15b,15cをそれぞれ該ひずみゲージ3に対応する薄膜状導体18,19,20に接続した状態で、シート状絶縁部材としてのカバーフィルム5を接着剤により、あるいは熱融着によりフレキシブル基板60の表面(ただし、各薄膜状導体18,19,20の他端部の箇所は除く)に固着することにより、センサ構造部61が構成される。なお、センサ構造部61には、前記各実施形態と同様に、該センサ構造部61の厚み方向で貫通する複数の貫通孔(図示省略)が穿設される。   As described above, the plurality of strain gauges 3 are fixed to the surface of the flexible substrate 60, and the gauge leads 15a, 15b, and 15c for each strain gauge 3 are respectively attached to the thin film conductors 18, 19,. The cover film 5 as a sheet-like insulating member is connected to the surface of the flexible substrate 60 by an adhesive or by heat fusion (however, the other end portions of the thin film conductors 18, 19, 20 are The sensor structure portion 61 is configured by being fixed to (except). The sensor structure 61 is provided with a plurality of through holes (not shown) penetrating in the thickness direction of the sensor structure 61 as in the above embodiments.

このようにセンサ構造部61を構成した場合には、フレキシブル基板60を、その裏面と路面Aとの間に介在させた接着剤により路面Aに固着することで、該路面Aのひずみが、フレキシブル基板60を介して各ひずみゲージ3に伝達されるようになる。この場合において、フレキシブル基板60に固着した各ひずみゲージ3が車輪の接地領域に位置し、且つ、各薄膜状度体18,19,20の他端部が、該接地領域から車輪の幅方向で逸脱した領域に位置するように、フレキシブル基板60が路面Aに固着される。なお、この場合、フレキシブル基板60と路面Aとの間にゲージベースを介在させる必要はない。   When the sensor structure portion 61 is configured in this way, the strain on the road surface A is flexible by fixing the flexible substrate 60 to the road surface A with an adhesive interposed between the back surface and the road surface A. It is transmitted to each strain gauge 3 through the substrate 60. In this case, each strain gauge 3 fixed to the flexible substrate 60 is positioned in the ground contact area of the wheel, and the other end portions of the thin film-like bodies 18, 19, and 20 extend from the ground contact area in the width direction of the wheel. Flexible substrate 60 is fixed to road surface A so as to be located in the deviated region. In this case, it is not necessary to interpose the gauge base between the flexible substrate 60 and the road surface A.

そして、図示は省略するが、各薄膜状導体18,19,20の他端部を、これに接続したリード線を介して測定器に接続することによって、前記各実施形態と同様に、路面Aのひずみ分布(車輪の接地領域でのひずみ分布)を測定できる。   And although illustration is abbreviate | omitted, by connecting the other end part of each thin film-like conductor 18, 19, 20 to a measuring device via the lead wire connected to this, road surface A is similar to each said embodiment. The strain distribution (strain distribution in the wheel contact area) can be measured.

補足すると、カバーフィルム5の代わりに、ゲージベースをフレキシブル基板60の表面に接着剤により固着するようにしてもよい。この場合には、そのゲージベースの厚み方向の両面のうちの路面Aに固着するようにして、路面Aのひずみが該ゲージベースを介して各ひずみゲージ3に伝達されるようにしてもよい。このようにすれば、前記第1発明の一実施形態が構成される。   Supplementally, the gauge base may be fixed to the surface of the flexible substrate 60 with an adhesive instead of the cover film 5. In this case, the strain of the road surface A may be transmitted to each strain gauge 3 via the gauge base so as to be fixed to the road surface A of both surfaces in the thickness direction of the gauge base. In this way, one embodiment of the first invention is configured.

また、上記フレキシブル基板60を使用した場合、例えば次のようにしてセンサ構造部を構成することもできる。その場合の例を図18を参照して説明する。なお、図18はこの例におけるセンサ構造部の一部分の斜視図である。また、この例は、前記第4発明または第2発明の一実施形態となる例である。   Further, when the flexible substrate 60 is used, for example, the sensor structure can be configured as follows. An example in that case will be described with reference to FIG. FIG. 18 is a perspective view of a part of the sensor structure in this example. Moreover, this example is an example which is one embodiment of the fourth invention or the second invention.

図18に示す例は、シート状のゲージベース65の厚み方向の両面のうちの一方の面(ここでは裏面とする)に、前記第2実施形態のゲージベース4と同様に、フォトエッチングなどにより固着した複数のひずみ受感部13を備える例である。この例では、図17のものと同様に、各ひずみ受感部13の両端部のタブ14a,14bには、それぞれゲージリード15a,15bが結線されていることに加えて、さらに3本目のゲージリード15cがタブ14bに結線されている。そして、ゲージリード15a,15b,15cはそれぞれ薄膜状導体18,19、20の一端部18a,19a,20aに半田付けされる。そして、フレキシブル基板60の表面に、該フレキシブル基板60との間に各ひずみ受感部13を介在させて、ゲージベース65の裏面が接着剤により固着され、これにより、センサ構造部66が構成される。なお、センサ構造部66には、前記各実施形態と同様に、該センサ構造部66の厚み方向で貫通する複数の貫通孔(図示省略)が穿設される。   In the example shown in FIG. 18, the sheet-like gauge base 65 is subjected to photoetching or the like on one side (here, the back side) of both sides in the thickness direction, like the gauge base 4 of the second embodiment. It is an example provided with the some distortion | strain sensitive part 13 which adhered. In this example, as in FIG. 17, in addition to the fact that the gauge leads 15a and 15b are respectively connected to the tabs 14a and 14b at both ends of each strain sensing part 13, a third gauge is also provided. The lead 15c is connected to the tab 14b. The gauge leads 15a, 15b, and 15c are soldered to the one end portions 18a, 19a, and 20a of the thin film conductors 18, 19, and 20, respectively. Then, the back surface of the gauge base 65 is fixed to the surface of the flexible substrate 60 with an adhesive, with each strain sensing portion 13 being interposed between the flexible substrate 60 and the sensor structure portion 66. The The sensor structure 66 is provided with a plurality of through holes (not shown) penetrating in the thickness direction of the sensor structure 66 as in the above embodiments.

このようにセンサ構造部66を構成した場合には、フレキシブル基板60を、その裏面と路面Aとの間に介在させた接着剤により路面Aに固着することで、該路面Aのひずみが、フレキシブル基板60を介して各ひずみ受感部13に伝達されるようになる。このようにすることにより、前記第4発明の一実施形態が構成される。あるいは、ゲージベース65を、その表面と路面Aとの間に介在させた接着剤により路面Aに固着することで、該路面Aのひずみが、ゲージベース65を介して各ひずみ受感部13に伝達されるようになる。このようにすることにより、前記第2発明の一実施形態が構成される。   When the sensor structure portion 66 is configured in this manner, the flexible substrate 60 is fixed to the road surface A with an adhesive interposed between the back surface and the road surface A, so that the distortion of the road surface A is flexible. It is transmitted to each strain sensing part 13 through the substrate 60. In this way, one embodiment of the fourth invention is configured. Alternatively, by fixing the gauge base 65 to the road surface A with an adhesive interposed between the surface and the road surface A, the strain of the road surface A is applied to each strain sensing unit 13 via the gauge base 65. Be transmitted. In this way, one embodiment of the second invention is configured.

なお、いずれの場合において、各ひずみ受感部13が車輪の接地領域に位置し、且つ、各薄膜状導体18,19,20の他端部が、該接地領域から車輪の幅方向で逸脱した領域に位置するように、フレキシブル基板60が路面Aに固着される。   In any case, each strain sensing part 13 is located in the grounding area of the wheel, and the other end of each thin film conductor 18, 19, 20 deviates from the grounding area in the width direction of the wheel. The flexible substrate 60 is fixed to the road surface A so as to be located in the region.

そして、図示は省略するが、各薄膜状導体18,19,20の他端部を、これに接続したリード線を介して測定器に接続することによって、前記各実施形態と同様に、路面Aのひずみ分布(車輪の接地領域でのひずみ分布)を測定できる。   And although illustration is abbreviate | omitted, by connecting the other end part of each thin film-like conductor 18, 19, 20 to a measuring device via the lead wire connected to this, road surface A is similar to each said embodiment. The strain distribution (strain distribution in the wheel contact area) can be measured.

なお、各薄膜状導体18,19,20の一端部18a,19a,20aを通ってフレキシブル基板60の厚み方向に貫通するスルーホールを形成しておき、それぞれのスルーホールにゲージリード15a,15b,15cを挿入し、該スルーホールにフレキシブル基板60の裏面側から半田を充填するようにしてもよい。その場合、フレキシブル基板60の裏面には、カバーフィルムや、ゲージベースのようなシート状絶縁部材を固着して、スルーホールを被覆しておくことが望ましい。   In addition, through holes penetrating in the thickness direction of the flexible substrate 60 through the one end portions 18a, 19a, 20a of the respective thin film conductors 18, 19, 20 are formed, and the gauge leads 15a, 15b, 15c may be inserted and the through hole may be filled with solder from the back side of the flexible substrate 60. In that case, it is desirable that a cover film or a sheet-like insulating member such as a gauge base is fixed to the back surface of the flexible substrate 60 to cover the through holes.

また、ゲージリード15a,15b,15cを使用せずに、ひずみ受感部13のタブ14aを薄膜状導体18に導通させると共に、タブ14bを薄膜状導体19,20に導通させるようにしてセンサ構造部を構成することも可能である。その例を図19の分解斜視図を参照して説明する。   Further, without using the gauge leads 15a, 15b, 15c, the tab 14a of the strain sensing part 13 is electrically connected to the thin film conductor 18, and the tab 14b is electrically connected to the thin film conductors 19, 20. It is also possible to configure the part. An example will be described with reference to an exploded perspective view of FIG.

図19を参照して、前記図18に示したゲージベース65に固着した各ひずみ受感部13のタブ14aに導電性接着剤70を塗布しておくと共に、タブ14bに導電性接着剤71を塗布しておく。この場合、ゲージベース65の裏面(図19では上面)をフレキシブル基板60の表面に重ねたときに、導電性接着剤70が薄膜状導体18に接触し、導電性接着剤71が薄膜状導体19,20の両者に接触するようにそれらの導電性接着剤70,71をそれぞれタブ14a,14bに塗布しておく。また、各薄膜状導体18,19,20の一端部18a,19a,19bにもそれぞれ導電性接着剤72a,72b,72cを塗布しておく。そして、ゲージベース65の裏面のうちの導電性接着剤70,71の箇所以外の箇所に接着剤(図示省略)を塗布し、該ゲージベース65の裏面をフレキシブル基板60の表面に重ね合わせる。この状態で、熱プレスによって、ゲージベース65とフレキシブル基板60とをそれらの厚み方向で互いに押圧しつつ加熱する。これにより、ゲージベース65側の導電性接着剤70をフレキシブル基板60側の導電性接着剤72aに導通・接合させると共に、ゲージベース65側の導電性接着剤71をフレキシブル基板60側の導電性接着剤72b,72cに導通・接合させ、同時に、ゲージベース65をフレキシブル基板60に接着する。   Referring to FIG. 19, a conductive adhesive 70 is applied to the tab 14a of each strain sensing part 13 fixed to the gauge base 65 shown in FIG. 18, and a conductive adhesive 71 is applied to the tab 14b. Apply. In this case, when the back surface (upper surface in FIG. 19) of the gauge base 65 is overlapped on the surface of the flexible substrate 60, the conductive adhesive 70 contacts the thin film conductor 18, and the conductive adhesive 71 contacts the thin film conductor 19. , 20 are applied to the tabs 14a, 14b, respectively, so as to be in contact with both of them. Conductive adhesives 72a, 72b, 72c are also applied to the one end portions 18a, 19a, 19b of the thin film conductors 18, 19, 20 respectively. Then, an adhesive (not shown) is applied to a portion of the back surface of the gauge base 65 other than the conductive adhesives 70 and 71, and the back surface of the gauge base 65 is overlaid on the surface of the flexible substrate 60. In this state, the gauge base 65 and the flexible substrate 60 are heated while being pressed against each other in the thickness direction by hot pressing. As a result, the conductive adhesive 70 on the gauge base 65 side is electrically connected and joined to the conductive adhesive 72a on the flexible substrate 60 side, and the conductive adhesive 71 on the gauge base 65 side is electrically bonded to the flexible substrate 60 side. The gauge base 65 is bonded to the flexible substrate 60 at the same time as being electrically connected and bonded to the agents 72b and 72c.

これによって、タブ14aが薄膜状導体18に導通すると同時に、タブ14bが薄膜状導体19,20に導通することとなる。   As a result, the tab 14 a is electrically connected to the thin film conductor 18, and at the same time, the tab 14 b is electrically connected to the thin film conductors 19 and 20.

なお、図19の例では、ゲージベース65にひずみ受感部13を直接的に固着した例を示しているが、ゲージベース65にひずみゲージを固着した場合でも、上記と同様のセンサ構造部を構成することが可能である。   In the example of FIG. 19, an example in which the strain sensing unit 13 is directly fixed to the gauge base 65 is shown, but even when the strain gauge is fixed to the gauge base 65, the sensor structure unit similar to the above is provided. It is possible to configure.

本発明の第1実施形態のひずみ測定装置のセンサ構造部の表面側の平面図。The top view of the surface side of the sensor structure part of the distortion | strain measuring apparatus of 1st Embodiment of this invention. 図1のII矢視図。II arrow line view of FIG. 図1に示すセンサ構造部に備えたフレキシブル基板の第2層基板の表面側の平面図。The top view of the surface side of the 2nd layer board | substrate of the flexible substrate with which the sensor structure part shown in FIG. 1 was equipped. 図1に示すセンサ構造部の裏面側の平面図。The top view of the back surface side of the sensor structure part shown in FIG. 図1に示すセンサ構造部の一部分の分解斜視図。The disassembled perspective view of a part of sensor structure part shown in FIG. 図1のVI−VI線断面図。FIG. 5 is a cross-sectional view taken along line VI-VI in FIG. 1. 第1実施形態のひずみ測定装置による路面のひずみ分布の測定例を示すグラフ。The graph which shows the example of a measurement of the strain distribution of the road surface by the strain measuring apparatus of 1st Embodiment. 本発明の第2実施形態のひずみ測定装置のセンサ構造部に用いるゲージベースおよびひずみ受感部を示す平面図。The top view which shows the gauge base and strain sensing part which are used for the sensor structure part of the distortion | strain measuring apparatus of 2nd Embodiment of this invention. 第2実施形態のセンサ構造部の部分断面図。The fragmentary sectional view of the sensor structure part of a 2nd embodiment. 本発明の第3実施形態のひずみ測定装置のセンサ構造部の一部分の分解斜視図。The disassembled perspective view of a part of sensor structure part of the strain measuring device of the third embodiment of the present invention. 第3実施形態のセンサ構造部の部分断面図。The fragmentary sectional view of the sensor structure part of a 3rd embodiment. 本発明の第4実施形態のひずみ測定装置のセンサ構造部の一部分の分解斜視図。The disassembled perspective view of a part of sensor structure part of the strain measuring device of the fourth embodiment of the present invention. 第4実施形態のセンサ構造部の部分断面図。The fragmentary sectional view of the sensor structure part of a 4th embodiment. 本発明の実施形態の変形態様に関するセンサ構造部の部分断面図。The fragmentary sectional view of the sensor structure part regarding the deformation | transformation aspect of embodiment of this invention. 本発明の実施形態の変形態様に関するフレキシブル基板の一部分の分解斜視図。The disassembled perspective view of a part of flexible substrate regarding the deformation | transformation aspect of embodiment of this invention. 本発明の実施形態の変形態様に関するフレキシブル基板の一部分の斜視図。The perspective view of the part of flexible substrate regarding the deformation | transformation aspect of embodiment of this invention. 本発明の実施形態の変形態様に関するセンサ構造部の一部分の分解斜視図。The disassembled perspective view of a part of sensor structure part regarding the deformation | transformation aspect of embodiment of this invention. 本発明の実施形態の変形態様に関するセンサ構造部の一部分の分解斜視図。The disassembled perspective view of a part of sensor structure part regarding the deformation | transformation aspect of embodiment of this invention. 本発明の実施形態の変形態様に関するセンサ構造部の一部分の分解斜視図。The disassembled perspective view of a part of sensor structure part regarding the deformation | transformation aspect of embodiment of this invention.

符号の説明Explanation of symbols

1…ひずみ測定装置、2,54,56,60…フレキシブル基板、3…ひずみゲージ、4,41,65…ゲージベース(シート状絶縁部材)、5…カバーフィルム(シート状絶縁部材)、6,28,35,40,61,66…センサ構造部、7…第1層基板、8…第2層基板、14a,14b…タブ(導線接続部)、18,19,20…薄膜状導体、22…スルーホール、23…半田(導体部材)。   DESCRIPTION OF SYMBOLS 1 ... Strain measuring apparatus 2,54,56,60 ... Flexible board, 3 ... Strain gauge, 4,41,65 ... Gauge base (sheet-like insulating member), 5 ... Cover film (sheet-like insulating member), 6, 28, 35, 40, 61, 66 ... sensor structure, 7 ... first layer substrate, 8 ... second layer substrate, 14a, 14b ... tab (conductor connection portion), 18, 19, 20 ... thin film conductor, 22 ... through hole, 23 ... solder (conductor member).

また、本発明の路面のひずみ測定装置に関連する参考発明としての第3の態様は、移動体の走行用の車輪を接地させる路面のひずみを測定するひずみ測定装置であって、単層または複層のフレキシブル基板と、該フレキシブル基板の表面および裏面のうちの一方の面に固着された複数の抵抗式ひずみゲージと、該フレキシブル基板に設けられ、各抵抗式ひずみゲージの導線接続部にそれぞれ一端部が導通された複数の薄膜状導体と、前記フレキシブル基板の一方の面および前記複数のひずみゲージを被覆するように該フレキシブル基板の一方の面に固着されたシート状絶縁部材とを備えるセンサ構造部を有し、該センサ構造部は、前記複数の抵抗式ひずみゲージが前記路面のうちの前記車輪の接地領域に位置し、且つ、該路面のひずみが前記フレキシブル基板を介して各抵抗式ひずみゲージに伝達されるように、該路面と前記シート状絶縁部材との間に前記フレキシブル基板を介在させて該路面に固着され、前記複数の薄膜状導体は、それぞれの他端部が前記車輪の接地領域から該車輪の幅方向で逸脱した領域に位置するように前記フレキシブル基板に設けられていると共に、該他端部が配線を接続可能に露出されていることを特徴とする(第3発明)。 The third aspect of the reference invention relating to the road surface of the strain measurement equipment of the present invention, there is provided a strain measuring device for measuring the strain of the road surface to the ground wheels for traveling of the moving body, a single-layer or A multilayer flexible substrate, a plurality of resistance strain gauges fixed to one of the front and back surfaces of the flexible substrate, and provided on the flexible substrate, each of the resistance strain gauges at the conductor connection portion A sensor comprising a plurality of thin-film conductors whose one ends are electrically connected, and a sheet-like insulating member fixed to one surface of the flexible substrate so as to cover one surface of the flexible substrate and the plurality of strain gauges. A plurality of resistive strain gauges are located in the ground contact area of the wheel on the road surface, and the road surface strain is The plurality of thin film conductors are fixed to the road surface with the flexible substrate interposed between the road surface and the sheet-like insulating member so as to be transmitted to each resistance strain gauge via the rexible substrate. Each of the other end portions is provided on the flexible substrate so as to be located in a region deviating from the wheel ground contact region in the width direction of the wheel, and the other end portion is exposed so that wiring can be connected. (3rd invention).

また、本発明の路面のひずみ測定装置に関連する参考発明としての第4の態様は、移動体の走行用の車輪を接地させる路面のひずみを測定するひずみ測定装置であって、シート状絶縁部材の表面および裏面のうちの一方の面に固着された複数の抵抗式ひずみ受感部と、該シート状絶縁部材との間に前記複数の抵抗式ひずみ受感部を介在させて該シート状絶縁部材の前記一方の面および前記複数の抵抗式ひずみゲージに固着された単層または複層のフレキシブル基板と、該フレキシブル基板に設けられ、各抵抗式ひずみ受感部の導線接続部にそれぞれ一端部が導通された複数の薄膜状導体とを備えるセンサ構造部を有し、該センサ構造部は、前記複数の抵抗式ひずみ受感部が前記路面のうちの前記車輪の接地領域に位置し、且つ、該路面のひずみが前記フレキシブル基板を介して各抵抗式ひずみ受感部に伝達されるように、該路面と前記シート状絶縁部材との間に前記フレキシブル基板を介在させて該路面に固着され、前記複数の薄膜状導体は、それぞれの他端部が前記車輪の接地領域から該車輪の幅方向で逸脱した領域に位置するように前記フレキシブル基板に設けられていると共に、該他端部が配線を接続可能に露出されていることを特徴とする(第4発明)。 The fourth aspect of the reference invention relating to the road surface of the strain measurement equipment of the present invention, there is provided a strain measuring device for measuring the strain of the road surface to the ground wheels for traveling of the moving body, the sheet-like insulation The sheet-like sheet is formed by interposing the plurality of resistance-type strain-sensitive parts between the plurality of resistance-type strain-sensitive parts fixed to one of the front and back surfaces of the member and the sheet-like insulating member. A single-layer or multi-layer flexible substrate fixed to the one surface of the insulating member and the plurality of resistance strain gauges, and one end of each of the resistance strain sensing portions provided on the conductive wire connecting portion. A plurality of thin-film conductors that are electrically connected to each other, and the sensor structure is configured such that the plurality of resistance-type strain sensing portions are located in a ground contact region of the wheel on the road surface, And the strain on the road The plurality of thin films are fixed to the road surface with the flexible substrate interposed between the road surface and the sheet-like insulating member, so that each of the plurality of thin film is transmitted to the resistance strain sensitive parts via the flexible substrate. The conductive conductors are provided on the flexible substrate so that the other end portions thereof are located in regions deviating from the wheel grounding region in the width direction of the wheel, and the other end portions can be connected to wiring. It is exposed (4th invention).

かかる目的を達成するための本発明の路面のひずみ測定装置を説明する前に、本発明の路面のひずみ測定装置に関連する4種類の態様の参考発明を説明しておく。その第1の態様は、移動体の走行用の車輪を接地させる路面のひずみを測定するひずみ測定装置であって、シート状のゲージベースの表面および裏面(該ゲージベースの厚み方向の両面)のうちの一方の面に固着された複数の抵抗式ひずみゲージと、該ゲージベースとの間に前記複数の抵抗式ひずみゲージを介在させて該ゲージベースの前記一方の面に固着された複層のフレキシブル基板と、該フレキシブル基板に設けられ、各抵抗式ひずみゲージの導線接続部にそれぞれ一端部が導通された複数の薄膜状導体とを備えるセンサ構造部を有し、該センサ構造部は、前記複数の抵抗式ひずみゲージが前記路面のうちの前記車輪の接地領域に位置し、且つ、該路面のひずみが前記ゲージベースを介して各抵抗式ひずみゲージに伝達されるように、該路面と前記フレキシブル基板との間に前記ゲージベースを介在させて該路面に固着され、前記複数の薄膜状導体は、それぞれの他端部が前記車輪の接地領域から該車輪の幅方向で逸脱した領域に位置するように前記フレキシブル基板に設けられていると共に、該他端部が配線を接続可能に露出されていることを特徴とする(第1発明)。 Before describing the road surface strain measuring apparatus of the present invention for achieving the above object, reference inventions of four types relating to the road surface strain measuring apparatus of the present invention will be described . The first aspect is a strain measuring device for measuring strain on a road surface that grounds a traveling wheel of a moving object, and includes a front surface and a rear surface of a sheet-like gauge base (both surfaces in the thickness direction of the gauge base). A plurality of resistance-type strain gauges fixed to one surface of the gauge base, and a plurality of resistance-type strain gauges interposed between the gauge bases and a multilayer layer fixed to the one surface of the gauge base. A sensor board comprising: a flexible board; and a plurality of thin film conductors provided at the flexible board and each having one end connected to a conductive wire connecting part of each resistance strain gauge. A plurality of resistance strain gauges are located in the ground contact region of the wheel of the road surface, and the strain of the road surface is transmitted to each resistance strain gauge via the gauge base, The gauge base is interposed between the road surface and the flexible substrate, and is fixed to the road surface. Each of the plurality of thin film conductors deviates from the ground contact area of the wheel in the width direction of the wheel. It is provided on the flexible substrate so as to be located in the region, and the other end is exposed so that wiring can be connected (first invention).

また、本発明の路面のひずみ測定装置に関連する参考発明としての第2の態様は、移動体の走行用の車輪を接地させる路面のひずみを測定するひずみ測定装置であって、シート状のゲージベースの表面および裏面(該ゲージベースの厚み方向の両面)のうちの一方の面に固着された複数の抵抗式ひずみ受感部と、該ゲージベースとの間に前記複数の抵抗式ひずみ受感部を介在させて該ゲージベースの前記一方の面に固着された複層のフレキシブル基板と、該フレキシブル基板に設けられ、各抵抗式ひずみ受感部の導線接続部にそれぞれ一端部が導通された複数の薄膜状導体とを備えるセンサ構造部を有し、該センサ構造部は、前記複数の抵抗式ひずみ受感部が前記路面のうちの前記車輪の接地領域に位置し、且つ、該路面のひずみが前記ゲージベースを介して各抵抗式ひずみ受感部に伝達されるように、該路面と前記フレキシブル基板との間に前記ゲージベースを介在させて該路面に固着され、前記複数の薄膜状導体は、それぞれの他端部が前記車輪の接地領域から該車輪の幅方向で逸脱した領域に位置するように前記フレキシブル基板に設けられていると共に、該他端部が配線を接続可能に露出されていることを特徴とする(第2発明)。 A second aspect as a reference invention related to the road surface strain measuring device of the present invention is a strain measuring device for measuring a road surface strain in which a traveling wheel of a moving body is grounded. A plurality of resistance strain sensitive sections fixed to one of the front surface and the back surface (both surfaces in the thickness direction of the gauge base), and the plurality of resistance strain sensitive sections between the gauge base A multi- layer flexible substrate fixed to the one surface of the gauge base with a portion interposed therebetween, and one end portion of each flexible strain-sensitive portion provided on the flexible substrate, and one end portion thereof being electrically connected to the resistance strain sensing portion. A plurality of thin film conductors, wherein the plurality of resistance strain sensitive parts are located in a ground contact area of the wheel of the road surface, and the road surface The strain is The plurality of thin-film conductors are fixed to the road surface with the gauge base interposed between the road surface and the flexible substrate so that the resistance-type strain sensing parts are transmitted through the base. The other end of the wheel is provided in the flexible substrate so as to be located in a region deviating from the wheel contact area in the width direction of the wheel, and the other end is exposed so that wiring can be connected. (2nd invention).

また、本発明の路面のひずみ測定装置に関連する参考発明としての第3の態様は、移動体の走行用の車輪を接地させる路面のひずみを測定するひずみ測定装置であって、複層のフレキシブル基板と、該フレキシブル基板の表面および裏面のうちの一方の面に固着された複数の抵抗式ひずみゲージと、該フレキシブル基板に設けられ、各抵抗式ひずみゲージの導線接続部にそれぞれ一端部が導通された複数の薄膜状導体と、前記フレキシブル基板の一方の面および前記複数のひずみゲージを被覆するように該フレキシブル基板の一方の面に固着されたシート状絶縁部材とを備えるセンサ構造部を有し、該センサ構造部は、前記複数の抵抗式ひずみゲージが前記路面のうちの前記車輪の接地領域に位置し、且つ、該路面のひずみが前記フレキシブル基板を介して各抵抗式ひずみゲージに伝達されるように、該路面と前記シート状絶縁部材との間に前記フレキシブル基板を介在させて該路面に固着され、前記複数の薄膜状導体は、それぞれの他端部が前記車輪の接地領域から該車輪の幅方向で逸脱した領域に位置するように前記フレキシブル基板に設けられていると共に、該他端部が配線を接続可能に露出されていることを特徴とする(第3発明)。 A third aspect as a reference invention related to the road surface strain measuring device of the present invention is a strain measuring device for measuring road surface strain for grounding a traveling wheel of a moving body, and is a multi- layer flexible device. A substrate, a plurality of resistance strain gauges fixed to one of the front surface and the back surface of the flexible substrate, and one end portion of each of the resistance strain gauges connected to the conductive wire connection portion provided on the flexible substrate. A sensor structure comprising a plurality of thin film conductors and a sheet-like insulating member fixed to one surface of the flexible substrate so as to cover one surface of the flexible substrate and the plurality of strain gauges. In the sensor structure, the plurality of resistance strain gauges are located in the ground contact area of the wheel on the road surface, and the road surface strain is The flexible substrate is interposed between the road surface and the sheet-like insulating member so as to be transmitted to each resistance strain gauge through the substrate, and the thin film conductors are respectively fixed to the road surface. The other end of the wheel is provided in the flexible substrate so as to be located in a region deviating from the wheel contact area in the width direction of the wheel, and the other end is exposed so that wiring can be connected. (3rd invention).

また、本発明の路面のひずみ測定装置に関連する参考発明としての第4の態様は、移動体の走行用の車輪を接地させる路面のひずみを測定するひずみ測定装置であって、シート状絶縁部材の表面および裏面のうちの一方の面に固着された複数の抵抗式ひずみ受感部と、該シート状絶縁部材との間に前記複数の抵抗式ひずみ受感部を介在させて該シート状絶縁部材の前記一方の面および前記複数の抵抗式ひずみゲージに固着された複層のフレキシブル基板と、該フレキシブル基板に設けられ、各抵抗式ひずみ受感部の導線接続部にそれぞれ一端部が導通された複数の薄膜状導体とを備えるセンサ構造部を有し、該センサ構造部は、前記複数の抵抗式ひずみ受感部が前記路面のうちの前記車輪の接地領域に位置し、且つ、該路面のひずみが前記フレキシブル基板を介して各抵抗式ひずみ受感部に伝達されるように、該路面と前記シート状絶縁部材との間に前記フレキシブル基板を介在させて該路面に固着され、前記複数の薄膜状導体は、それぞれの他端部が前記車輪の接地領域から該車輪の幅方向で逸脱した領域に位置するように前記フレキシブル基板に設けられていると共に、該他端部が配線を接続可能に露出されていることを特徴とする(第4発明)。 Further, a fourth aspect as a reference invention related to the road surface strain measuring device of the present invention is a strain measuring device for measuring a road surface strain for grounding a traveling wheel of a moving body, and is a sheet-like insulating member The sheet-like insulation by interposing the plurality of resistance-type strain-sensitive parts between the plurality of resistance-type strain-sensitive parts fixed to one of the front and back surfaces of the sheet and the sheet-like insulating member A multi- layer flexible substrate fixed to the one surface of the member and the plurality of resistance strain gauges, and one end portion of each flexible strain sensing portion being connected to the conductive wire connection portion of the resistance strain sensing portion. A plurality of thin film conductors, wherein the plurality of resistance-type strain sensing units are located in a ground contact area of the wheel of the road surface, and the road surface The strain of The plurality of thin film conductors are fixed to the road surface with the flexible substrate interposed between the road surface and the sheet-like insulating member so as to be transmitted to each resistance-type strain sensing part via the kibble substrate. Are provided on the flexible substrate so that each other end portion is located in a region deviating from the wheel ground contact region in the width direction of the wheel, and the other end portion is exposed so that wiring can be connected. (4th invention).

次に本願の請求項1、2に係わる本発明の路面のひずみ測定装置を説明する。前記第1〜第4発明において、各抵抗式ひずみゲージのひずみ受感部または各抵抗式ひずみ受感部の抵抗値変化(ひいては路面のひずみ)の測定は、例えば、該ひずみ受感部が1辺に組み込まれるホイートストンブリッジ回路を利用して行なうことができる。この場合、本願の請求項1に係る本発明としての路面のひずみ測定装置は、前記第1発明の発明特定事項に加えて、さらに前記各抵抗式ひずみゲージの導線接続部に導通させる薄膜状導体は、各抵抗式ひずみゲージのひずみ受感部の一端部に設けられた導線接続部に導通させる第1の薄膜状導体と、該ひずみ受感部の他端部に設けられた導線接続部に導通させる第2の薄膜状導体および第3の薄膜状導体とからなり、前記フレキシブル基板は、第1層基板と第2層基板とを重合してなる2層のフレキシブル基板であって、各抵抗式ひずみゲージに対応する前記第1〜第3の薄膜状導体のうち、第1の薄膜状導体が前記第1層基板の表面および裏面のうちの第2層基板側の面と反対側の面に形成されると共に、第2の薄膜状導体と第3の薄膜状導体とが、第2層基板を介して互いに対向するように該第2層基板の表面および裏面にそれぞれ形成されており、該第2の薄膜状導体と第3の薄膜状導体とが、それぞれの一端部を通って前記フレキシブル基板の厚み方向に貫通するように該フレキシブル基板に穿設されたスルーホール内に設けられた導体部材を介して導通されており、前記各抵抗式ひずみゲージに対応する第1〜第3の薄膜状導体のうち、第1の薄膜状導体と第2の薄膜状導体とは、第1の薄膜状導体及び第2の薄膜状導体のそれぞれの両端部を除く中間部が前記フレキシブル基板の厚み方向において単一の線状に重なり合うように設けられ、第2の薄膜状導体と第3の薄膜状導体とは、それぞれの全長にわたって前記フレキシブル基板の厚み方向において単一の線状に重なり合うように設けられていることを特徴とするものである(第7発明)。 Next, the road surface strain measuring apparatus of the present invention according to claims 1 and 2 of the present application will be described. Prior Symbol first to fourth invention, the measurement of the resistance change of the strain sensing part or each resistive strain sensitive portion of the resistive strain gauge (and thus distortion of the road), for example, the strain sensing part is This can be done by using a Wheatstone bridge circuit incorporated on one side. In this case, the road surface strain measuring device according to the first aspect of the present invention is a thin film conductor that conducts to the conductive wire connecting portion of each of the resistance strain gauges in addition to the specific matters of the first invention. Are connected to a first thin-film conductor to be connected to a conductive wire connecting portion provided at one end of the strain sensitive portion of each resistance strain gauge, and a conductive wire connecting portion provided to the other end of the strain sensitive portion. It consists of a second thin film conductor and a third thin film conductor to be conducted, and the flexible substrate is a two-layer flexible substrate obtained by polymerizing a first layer substrate and a second layer substrate, and each resistor Of the first to third thin film conductors corresponding to the strain gauge, the first thin film conductor is the surface on the opposite side of the surface of the first layer substrate and the back surface of the first layer substrate on the second layer substrate side. And the second thin film conductor and the third thin film Are formed on the front surface and the back surface of the second layer substrate so as to face each other with the second layer substrate therebetween, and the second thin film conductor and the third thin film conductor are respectively Is connected through a conductor member provided in a through hole drilled in the flexible substrate so as to penetrate through the flexible substrate in the thickness direction, and corresponds to each of the resistance strain gauges. Among the first to third thin-film conductors, the first thin-film conductor and the second thin-film conductor are intermediate portions except for both ends of the first thin-film conductor and the second thin-film conductor. The second thin film conductor and the third thin film conductor are single in the thickness direction of the flexible substrate over the entire length. Heavy And it is characterized in that is provided to fit Ri (seventh invention).

同様に、本願の請求項2に係る本発明としての路面のひずみ測定装置は、前記第2発明の発明特定事項に加えて、さらに前記各抵抗式ひずみ受感部に導通させる薄膜状導体は、各抵抗式ひずみ受感部の一端部に設けられた導線接続部に導通させる第1の薄膜状導体と、該抵抗式ひずみ受感部の他端部に設けられた導線接続部に導通させる第2の薄膜状導体および第3の薄膜状導体とからなり、前記フレキシブル基板は、第1層基板と第2層基板とを重合してなる2層のフレキシブル基板であって、各抵抗式ひずみ受感部に対応する前記第1〜第3の薄膜状導体のうち、第1の薄膜状導体が前記第1層基板の表面および裏面のうちの第2層基板側の面と反対側の面に形成されると共に、第2の薄膜状導体と第3の薄膜状導体とが、第2層基板を介して互いに対向するように該第2層基板の表面および裏面にそれぞれ形成されており、該第2の薄膜状導体と第3の薄膜状導体とが、それぞれの一端部を通って前記フレキシブル基板の厚み方向に貫通するように該フレキシブル基板に穿設されたスルーホール内に設けられた導体部材を介して導通されており、前記各抵抗式ひずみ受感部に対応する第1〜第3の薄膜状導体のうち、第1の薄膜状導体と第2の薄膜状導体とは、第1の薄膜状導体及び第2の薄膜状導体のそれぞれの両端部を除く中間部が前記フレキシブル基板の厚み方向において単一の線状に重なり合うように設けられ、第2の薄膜状導体と第3の薄膜状導体とは、それぞれの全長にわたって前記フレキシブル基板の厚み方向において単一の線状に重なり合うように設けられていることを特徴とするものである(第8発明)。 Similarly, in addition to the invention specific matter of the second invention, the road surface strain measuring device according to the second aspect of the present invention further includes a thin-film conductor that is electrically connected to each of the resistance-type strain sensing parts. A first thin film-like conductor that conducts to a conductor connecting portion provided at one end of each resistance strain sensing portion, and a first conductor that conducts to a conductor connecting portion provided at the other end of the resistance strain sensing portion. The flexible substrate is a two-layer flexible substrate obtained by polymerizing a first layer substrate and a second layer substrate, and each resistance type strain receiving device. Of the first to third thin film conductors corresponding to the sensitive part, the first thin film conductor is on the surface opposite to the surface on the second layer substrate side of the front and back surfaces of the first layer substrate. And the second thin film conductor and the third thin film conductor form the second layer substrate. The second thin-film conductor and the third thin-film conductor are respectively formed on the front and back surfaces of the second layer substrate so as to face each other, and the flexible substrate passes through one end of each of the flexible substrate. Are connected through a conductor member provided in a through hole formed in the flexible substrate so as to penetrate in the thickness direction, and the first to third corresponding to each of the resistance strain sensitive parts. Among the thin-film conductors, the first thin-film conductor and the second thin-film conductor are the thickness of the flexible substrate at the intermediate portion excluding both ends of the first thin-film conductor and the second thin-film conductor. The second thin-film conductor and the third thin-film conductor are overlapped in a single line in the thickness direction of the flexible substrate over their entire length. Provided It is characterized in that there (eighth invention).

これらの第7発明(請求項1に係る発明)および第8発明(請求項2に係る発明)によれば、前記第1発明、第2発明の作用効果を奏することに加えて、各抵抗式ひずみゲージのひずみ受感部、または、各抵抗式ひずみ受感部に3つの薄膜状導体が導通されることとなるので、所謂、1ゲージ3線法によるひずみ測定を行なうことが可能となり、環境温度の変化などに起因する各薄膜状導体の抵抗値変化や、各薄膜状導体の他端部に接続される配線の抵抗値変化の影響を補償して、精度のよいひずみ測定を行うことが可能となる。 According to the seventh invention (the invention according to claim 1) and the eighth invention (the invention according to claim 2), in addition to the effects of the first invention and the second invention , each resistance type Since three thin-film conductors are connected to the strain-sensitive part of the strain gauge or each resistance-type strain-sensitive part, it is possible to perform strain measurement by the so-called 1-gauge three-wire method. It is possible to perform accurate strain measurement by compensating for the effect of changes in the resistance value of each thin film conductor due to temperature changes and the resistance value change of the wiring connected to the other end of each thin film conductor. It becomes possible.

また、第7発明および第8発明によれば、第1の薄膜状導体と第2の薄膜状導体との間に前記第1層基板が介在することとなるので、該第1の薄膜状導体と第2の薄膜状導体とを第1層基板の厚み方向(フレキシブル基板の厚み方向)で部分的な重なりを生じるようなパターンでそれらの薄膜状導体を第1層基板に形成しつつ、それらの薄膜状導体の間の絶縁性を確保することができる。また、第3の薄膜状導体は、前記第2層基板を介して第2の薄膜状導体に対向しているので、該第2層基板の厚み方向(フレキシブル基板の厚み方向)で重なりつつ、それらの薄膜状導体の間の絶縁性を確保することができる。このため、第1〜第3の薄膜状導体の絶縁性を確保しつつ、フレキシブル基板の面積(厚み方向で見た面積)を必要最小限に留めることができ、ひいては、センサ構造部の面積を必要最小限に留めることができる。この結果、センサ構造部の材料費、ひいては製造コストを低減できる。また、同時に、第2の薄膜状導体と第3の薄膜状導体とを対向させ、それらの一端部を通る前記スルーホール内に設けた導体部材により第2の薄膜状導体と第3の薄膜状導体との導通を容易に確保することができる。また、第1〜第3の薄膜状導体の中間部がフレキシブル基板の厚み方向で重なり合うことで、電磁誘導ノイズの影響を少なくすることができる。なお、前記導体部材としては、該スルーホールの内周面に施した金属メッキや該スルーホールに充填した半田などが挙げられる。 According to the seventh and eighth inventions , since the first layer substrate is interposed between the first thin film conductor and the second thin film conductor, the first thin film conductor And the second thin film conductor are formed on the first layer substrate in a pattern that causes a partial overlap in the thickness direction of the first layer substrate (thickness direction of the flexible substrate). Insulation between the thin film conductors can be ensured. Further, since the third thin film conductor faces the second thin film conductor via the second layer substrate, the third thin film conductor overlaps in the thickness direction of the second layer substrate (thickness direction of the flexible substrate). The insulation between those thin film conductors can be ensured. For this reason, the area of the flexible substrate (area seen in the thickness direction) can be kept to a minimum while ensuring the insulating properties of the first to third thin film conductors. It can be kept to the minimum necessary. As a result, it is possible to reduce the material cost of the sensor structure, and consequently the manufacturing cost. At the same time, the second thin film conductor and the third thin film conductor are opposed to each other, and the second thin film conductor and the third thin film conductor are formed by the conductor member provided in the through hole passing through one end of the second thin film conductor and the third thin film conductor. Conductivity with the conductor can be easily secured . Moreover, the influence of electromagnetic induction noise can be reduced because the intermediate part of the 1st-3rd thin film-like conductor overlaps in the thickness direction of a flexible substrate. Na us, as the conductive member, such as a solder filled in the metal plating and the through-hole was subjected to the inner peripheral surface of the through hole and the like.

[第1実施形態]
本発明の第1実施形態を図1〜図6を参照して説明する。図1は本実施形態の路面のひずみ測定装置1のセンサ構造部6の表面側の平面図、図2は図1のII矢視図、図3はセンサ構造部6のフレキシブル基板2の第2層基板8の表面側の平面図、図4はセンサ構造部6の裏面側の平面図、図5はセンサ構造部6の一部分の分解斜視図、図6は図1のVI−VI線断面図、図7は本実施形態のひずみ測定装置1による路面のひずみ分布の測定例を示すグラフである。なお、本実施形態は、第1発明の実施形態である。より詳しくは、本実施形態は、本願の請求項1に係る発明(第7発明)の実施形態である。
[First Embodiment]
A first embodiment of the present invention will be described with reference to FIGS. 1 is a plan view of the surface side of the sensor structure 6 of the road surface strain measuring device 1 according to the present embodiment, FIG. 2 is a view taken along the arrow II in FIG. 1, and FIG. 3 is a second view of the flexible substrate 2 of the sensor structure 6. 4 is a plan view of the back side of the sensor structure 6, FIG. 5 is an exploded perspective view of a part of the sensor structure 6, and FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. FIG. 7 is a graph showing a measurement example of the road surface strain distribution by the strain measuring device 1 of the present embodiment. This embodiment is an embodiment of the first invention . More specifically, this embodiment is an embodiment of the invention (seventh invention) according to claim 1 of the present application.

また、スルーホール22には、図6に示すように、ひずみゲージ3のタブ14bに結線されているゲージリード15bがフレキシブル基板2の裏面側から挿入されると共に半田23が充填され、この半田23により該ゲージリード15bと薄膜状導体19,20とが導通されている。ひいては、各ひずみゲージ3のタブ14bが該ひずみゲージ3に対応する薄膜状導体19,20に導通されている。なお、半田23は、前記第7発明における導体部材に相当する。 Further, as shown in FIG. 6, a gauge lead 15 b connected to the tab 14 b of the strain gauge 3 is inserted into the through hole 22 from the back side of the flexible substrate 2 and filled with solder 23. Thus, the gauge lead 15b and the thin film conductors 19 and 20 are electrically connected. As a result, the tab 14 b of each strain gauge 3 is electrically connected to the thin film conductors 19 and 20 corresponding to the strain gauge 3. The solder 23 corresponds to the conductor member in the seventh invention .

また、本実施形態のセンサ構造部6では、薄膜状導体18と薄膜状導体19との間には、第1層基板7が介在し、また、薄膜状導体19と薄膜状導体20との間には、第2層基板8が介在するので、フレキシブル基板3の厚み方向で見て、それらの薄膜状導体18,19,20に重なりを持たせることができる。このため、本実施形態では、前記したように、各ひずみゲージ3毎の3つの薄膜状導体18,19,20は、それらの両端部を除く中間部がフレキシブル基板2の厚み方向で単一の線状に重なり合うように設けられている。この結果、フレキシブル基板3の厚み方向で見た面積を必要最小限に留めることができる。ひいては、センサ構造部6の厚み方向で見た面積を必要最小限に留めることができ、センサ構造部6の構成要素の材料費を低減できる。また、薄膜状導体18,19,20の中間部がフレキシブル基板2の厚み方向で重なり合うことで、周囲環境からもたらされる電磁誘導ノイズの影響を少なくすることができる。
[第2実施形態]
次に、本発明の第2実施形態を図8および図9を参照して説明する。図8は本実施形態のひずみ測定装置のセンサ構造部28に用いるゲージベースおよびひずみ受感部を示す平面図、図9は該センサ構造部28の部分断面図(図6と同様の断面図)である。なお、本実施形態におけるひずみ測定装置は、第1実施形態のものとセンサ構造部28の一部の構造だけが相違するので、その相違する部分を中心に説明し、第1実施形態のセンサ構造部6と同一の構成要素については第1実施形態と同一の参照符号を付し、詳細な説明を省略する。また、本実施形態は、第2発明の実施形態である。より詳しくは、本実施形態は、本願の請求項2に係る発明(第8発明)の実施形態である。
In the sensor structure 6 of the present embodiment, the first layer substrate 7 is interposed between the thin film conductor 18 and the thin film conductor 19, and between the thin film conductor 19 and the thin film conductor 20. Since the second layer substrate 8 is interposed, the thin film conductors 18, 19, and 20 can be overlapped when viewed in the thickness direction of the flexible substrate 3. For this reason, in the present embodiment, as described above, the three thin film conductors 18, 19, 20 for each strain gauge 3 have a single intermediate portion excluding their both ends in the thickness direction of the flexible substrate 2. It is provided so as to overlap linearly. As a result, the area seen in the thickness direction of the flexible substrate 3 can be kept to the minimum necessary. As a result, the area of the sensor structure 6 viewed in the thickness direction can be kept to the minimum necessary, and the material cost of the components of the sensor structure 6 can be reduced. In addition, since the intermediate portions of the thin film conductors 18, 19, and 20 overlap in the thickness direction of the flexible substrate 2, the influence of electromagnetic induction noise caused by the surrounding environment can be reduced.
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a plan view showing a gauge base and a strain sensing unit used in the sensor structure 28 of the strain measuring device of this embodiment, and FIG. 9 is a partial cross-sectional view of the sensor structure 28 (cross-sectional view similar to FIG. 6). It is. The strain measuring device according to the present embodiment is different from that of the first embodiment only in a part of the structure of the sensor structure portion 28. Therefore, the difference will be mainly described, and the sensor structure of the first embodiment will be described. The same components as those of the unit 6 are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted. Moreover, this embodiment is an embodiment of the second invention . More specifically, this embodiment is an embodiment of the invention according to claim 2 of the present application (eighth invention).

かかる本実施形態においても、フレキシブル基板2の各薄膜状導体18,19,20のそれぞれの他端部18b,19b,20bに接続するリード線の断線や、車輪の接地領域におけるセンサ構造部28の損傷を生じることなく、該接地領域における路面Aのひずみ分布を適正に測定することができる。
[第3実施形態]
次に、前記参考発明に係る第3実施形態を図10および図11を参照して説明する。図10は本実施形態のひずみ測定装置のセンサ構造部35の一部分の分解斜視図(図5と同様の分解斜視図)、図11は該センサ構造部35の部分断面図(図6と同様の断面図)である。なお、本実施形態におけるひずみ測定装置は、第1実施形態のものとセンサ構造部35の一部の構造だけが相違するので、その相違する部分を中心に説明し、第1実施形態のセンサ構造部6と同一の構成要素については第1実施形態と同一の参照符号を付し、詳細な説明を省略する。また、本実施形態は、前記第3発明の実施形態である。
Also in this embodiment, disconnection of the lead wires connected to the other end portions 18b, 19b, and 20b of the respective thin film conductors 18, 19, and 20 of the flexible substrate 2 and the sensor structure portion 28 in the grounding region of the wheel. It is possible to appropriately measure the strain distribution of the road surface A in the ground contact region without causing damage.
[Third Embodiment]
Next, a third embodiment according to the reference invention will be described with reference to FIGS. FIG. 10 is an exploded perspective view of a part of the sensor structure 35 of the strain measuring device of the present embodiment (an exploded perspective view similar to FIG. 5), and FIG. 11 is a partial cross-sectional view of the sensor structure 35 (similar to FIG. 6). FIG. The strain measuring device according to the present embodiment differs from that of the first embodiment only in a part of the structure of the sensor structure 35. Therefore, the difference will be mainly described, and the sensor structure of the first embodiment will be described. The same components as those of the unit 6 are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted. The present embodiment is an embodiment of the third invention.

また、本実施形態において、カバーフィルム5の代わりに、ゲージベース4と同様のゲージベースを使用して、そのゲージベースの裏面(フレキシブル基板2側の面)にひずみゲージ3を固着した上で、該ゲージベースおよびひずみゲージ3を接着剤によりフレキシブル基板2の表面に固着するようにしてもよい。
[第4実施形態]
次に、前記参考発明に係る第4実施形態を図12および図13を参照して説明する。図2は本実施形態のひずみ測定装置のセンサ構造部40の一部分の分解斜視図(図5と同様の分解斜視図)、図12は該センサ構造部40の部分断面図(図6と同様の断面図)である。なお、本実施形態におけるひずみ測定装置は、第3実施形態のものとセンサ構造部40の一部の構造だけが相違するので、その相違する部分を中心に説明し、第3実施形態のセンサ構造部35と同一の構成要素については第3実施形態と同一の参照符号を付し、詳細な説明を省略する。また、本実施形態は、前記第4発明の実施形態である。
In the present embodiment, instead of the cover film 5, a gauge base similar to the gauge base 4 is used, and the strain gauge 3 is fixed to the back surface of the gauge base (the surface on the flexible substrate 2 side). The gauge base and the strain gauge 3 may be fixed to the surface of the flexible substrate 2 with an adhesive.
[Fourth Embodiment]
Next, a fourth embodiment according to the reference invention will be described with reference to FIGS. 2 is an exploded perspective view of a part of the sensor structure 40 of the strain measuring device of the present embodiment (an exploded perspective view similar to FIG. 5), and FIG. 12 is a partial cross-sectional view of the sensor structure 40 (similar to FIG. 6). FIG. In addition, since the strain measuring apparatus in this embodiment is different from that of the third embodiment only in a part of the structure of the sensor structure section 40, the difference will be mainly described, and the sensor structure of the third embodiment will be described. The same components as those of the unit 35 are denoted by the same reference numerals as those of the third embodiment, and detailed description thereof is omitted. The present embodiment is an embodiment of the fourth invention.

Claims (11)

移動体の走行用の車輪を接地させる路面のひずみを測定するひずみ測定装置であって、
シート状のゲージベースの表面および裏面のうちの一方の面に固着された複数の抵抗式ひずみゲージと、該ゲージベースとの間に前記複数の抵抗式ひずみゲージを介在させて該ゲージベースの前記一方の面に固着された単層または複層のフレキシブル基板と、該フレキシブル基板に設けられ、各抵抗式ひずみゲージの導線接続部にそれぞれ一端部が導通された複数の薄膜状導体とを備えるセンサ構造部を有し、
該センサ構造部は、前記複数の抵抗式ひずみゲージが前記路面のうちの前記車輪の接地領域に位置し、且つ、該路面のひずみが前記ゲージベースを介して各抵抗式ひずみゲージに伝達されるように、該路面と前記フレキシブル基板との間に前記ゲージベースを介在させて該路面に固着され、
前記複数の薄膜状導体は、それぞれの他端部が前記車輪の接地領域から該車輪の幅方向で逸脱した領域に位置するように前記フレキシブル基板に設けられていると共に、該他端部が配線を接続可能に露出されていることを特徴とする路面のひずみ測定装置。
A strain measuring device that measures strain on a road surface that grounds a traveling wheel of a moving object,
A plurality of resistance strain gauges fixed to one of the front and back surfaces of the sheet-like gauge base, and the plurality of resistance strain gauges interposed between the gauge base and the gauge base. A sensor comprising a single-layer or multi-layer flexible substrate fixed to one surface, and a plurality of thin-film conductors provided on the flexible substrate, each of which is electrically connected to a conductive wire connection portion of each resistance strain gauge. Having a structure,
In the sensor structure, the plurality of resistance strain gauges are located in a ground contact area of the wheel on the road surface, and the strain on the road surface is transmitted to each resistance strain gauge via the gauge base. As described above, the gauge base is interposed between the road surface and the flexible substrate, and is fixed to the road surface,
The plurality of thin film conductors are provided on the flexible substrate so that the other end portions thereof are located in regions deviating from the wheel ground region in the width direction of the wheel, and the other end portions are wired. The road surface strain measuring device is exposed to be connectable.
移動体の走行用の車輪を接地させる路面のひずみを測定するひずみ測定装置であって、
シート状のゲージベースの表面および裏面のうちの一方の面に固着された複数の抵抗式ひずみ受感部と、該ゲージベースとの間に前記複数の抵抗式ひずみ受感部を介在させて該ゲージベースの前記一方の面に固着された単層または複層のフレキシブル基板と、該フレキシブル基板に設けられ、各抵抗式ひずみ受感部の導線接続部にそれぞれ一端部が導通された複数の薄膜状導体とを備えるセンサ構造部を有し、
該センサ構造部は、前記複数の抵抗式ひずみ受感部が前記路面のうちの前記車輪の接地領域に位置し、且つ、該路面のひずみが前記ゲージベースを介して各抵抗式ひずみ受感部に伝達されるように、該路面と前記フレキシブル基板との間に前記ゲージベースを介在させて該路面に固着され、
前記複数の薄膜状導体は、それぞれの他端部が前記車輪の接地領域から該車輪の幅方向で逸脱した領域に位置するように前記フレキシブル基板に設けられていると共に、該他端部が配線を接続可能に露出されていることを特徴とする路面のひずみ測定装置。
A strain measuring device that measures strain on a road surface that grounds a traveling wheel of a moving object,
A plurality of resistance strain sensitive parts fixed to one of the front and back surfaces of a sheet-like gauge base, and the plurality of resistance type strain sensitive parts interposed between the gauge bases A single-layer or multi-layer flexible substrate fixed to the one surface of the gauge base, and a plurality of thin films provided on the flexible substrate, each of which is electrically connected to the conductive wire connection portion of each resistance strain sensing portion A sensor structure comprising a conductor,
In the sensor structure, the plurality of resistance-type strain sensing units are located in a ground contact area of the wheel on the road surface, and each of the resistance-type strain sensing units has a strain on the road surface via the gauge base. So that the gauge base is interposed between the road surface and the flexible substrate, and is fixed to the road surface,
The plurality of thin film conductors are provided on the flexible substrate so that the other end portions thereof are located in regions deviating from the wheel ground region in the width direction of the wheel, and the other end portions are wired. The road surface strain measuring device is exposed to be connectable.
移動体の走行用の車輪を接地させる路面のひずみを測定するひずみ測定装置であって、
単層または複層のフレキシブル基板と、該フレキシブル基板の表面および裏面のうちの一方の面に固着された複数の抵抗式ひずみゲージと、該フレキシブル基板に設けられ、各抵抗式ひずみゲージの導線接続部にそれぞれ一端部が導通された複数の薄膜状導体と、前記フレキシブル基板の一方の面および前記複数のひずみゲージを被覆するように該フレキシブル基板の一方の面に固着されたシート状絶縁部材とを備えるセンサ構造部を有し、
該センサ構造部は、前記複数の抵抗式ひずみゲージが前記路面のうちの前記車輪の接地領域に位置し、且つ、該路面のひずみが前記フレキシブル基板を介して各抵抗式ひずみゲージに伝達されるように、該路面と前記シート状絶縁部材との間に前記フレキシブル基板を介在させて該路面に固着され、
前記複数の薄膜状導体は、それぞれの他端部が前記車輪の接地領域から該車輪の幅方向で逸脱した領域に位置するように前記フレキシブル基板に設けられていると共に、該他端部が配線を接続可能に露出されていることを特徴とする路面のひずみ測定装置。
A strain measuring device that measures strain on a road surface that grounds a traveling wheel of a moving object,
Single-layer or multiple-layer flexible substrate, a plurality of resistance strain gauges fixed to one of the front and back surfaces of the flexible substrate, and a conductive wire connection of each resistance strain gauge provided on the flexible substrate A plurality of thin-film conductors, each of which is electrically connected at one end, and a sheet-like insulating member fixed to one surface of the flexible substrate so as to cover one surface of the flexible substrate and the plurality of strain gauges. Having a sensor structure with
In the sensor structure, the plurality of resistance strain gauges are located in a ground contact area of the wheel on the road surface, and the strain on the road surface is transmitted to each resistance strain gauge via the flexible substrate. As described above, the flexible substrate is interposed between the road surface and the sheet-like insulating member, and is fixed to the road surface,
The plurality of thin film conductors are provided on the flexible substrate so that the other end portions thereof are located in regions deviating from the wheel ground region in the width direction of the wheel, and the other end portions are wired. The road surface strain measuring device is exposed to be connectable.
移動体の走行用の車輪を接地させる路面のひずみを測定するひずみ測定装置であって、
シート状絶縁部材の表面および裏面のうちの一方の面に固着された複数の抵抗式ひずみ受感部と、該シート状絶縁部材との間に前記複数の抵抗式ひずみ受感部を介在させて該シート状絶縁部材の前記一方の面および前記複数の抵抗式ひずみゲージに固着された単層または複層のフレキシブル基板と、該フレキシブル基板に設けられ、各抵抗式ひずみ受感部の導線接続部にそれぞれ一端部が導通された複数の薄膜状導体とを備えるセンサ構造部を有し、
該センサ構造部は、前記複数の抵抗式ひずみ受感部が前記路面のうちの前記車輪の接地領域に位置し、且つ、該路面のひずみが前記フレキシブル基板を介して各抵抗式ひずみ受感部に伝達されるように、該路面と前記シート状絶縁部材との間に前記フレキシブル基板を介在させて該路面に固着され、
前記複数の薄膜状導体は、それぞれの他端部が前記車輪の接地領域から該車輪の幅方向で逸脱した領域に位置するように前記フレキシブル基板に設けられていると共に、該他端部が配線を接続可能に露出されていることを特徴とする路面のひずみ測定装置。
A strain measuring device that measures strain on a road surface that grounds a traveling wheel of a moving object,
A plurality of resistance strain sensitive portions fixed to one of the front and back surfaces of the sheet-like insulating member, and the plurality of resistance strain sensitive portions interposed between the sheet-like insulating members. A single-layer or multi-layer flexible substrate fixed to the one surface of the sheet-like insulating member and the plurality of resistance-type strain gauges, and a conductor connection portion of each resistance-type strain-sensitive portion provided on the flexible substrate. Each having a plurality of thin film conductors having one end conductive to each other,
In the sensor structure, the plurality of resistance-type strain sensing units are located in a ground contact area of the wheel on the road surface, and the strain on the road surface is each resistance-type strain sensing unit via the flexible substrate. So that the flexible substrate is interposed between the road surface and the sheet-like insulating member, and is fixed to the road surface,
The plurality of thin film conductors are provided on the flexible substrate so that the other end portions thereof are located in regions deviating from the wheel ground region in the width direction of the wheel, and the other end portions are wired. The road surface strain measuring device is exposed to be connectable.
請求項1または2記載の路面のひずみ測定装置において、前記センサ構造部は、前記フレキシブル基板の表面および裏面のうち、前記ゲージベース側の面と反対側の面に固着されたシート状絶縁部材をさらに備えることを特徴とする路面のひずみ測定装置。   3. The road surface strain measuring device according to claim 1 or 2, wherein the sensor structure portion includes a sheet-like insulating member fixed to a surface opposite to the surface on the gauge base side of the front surface and the back surface of the flexible substrate. A road surface strain measuring device further comprising: 請求項3または4記載の路面のひずみ測定装置において、前記センサ構造部は、前記フレキシブル基板の表面および裏面のうち、前記シート状部材側の面と反対側の面に固着されたシート状のゲージベースをさらに備えることを特徴とする路面のひずみ測定装置。   5. The road surface strain measuring device according to claim 3, wherein the sensor structure portion is a sheet-like gauge fixed to a surface opposite to the surface on the sheet-like member side of the front and back surfaces of the flexible substrate. A road surface strain measuring device further comprising a base. 請求項1または3記載の路面のひずみ測定装置において、前記各抵抗式ひずみゲージの導線接続部に導通させる薄膜状導体は、各抵抗式ひずみゲージのひずみ受感部の一端部に設けられた導線接続部に導通させる第1の薄膜状導体と、該ひずみ受感部の他端部に設けられた導線接続部に導通させる第2の薄膜状導体および第3の薄膜状導体とからなることを特徴とする路面のひずみ測定装置。   4. The road surface strain measuring device according to claim 1 or 3, wherein the thin film conductor to be conducted to the conductive wire connecting portion of each resistive strain gauge is a conductive wire provided at one end of the strain sensing portion of each resistive strain gauge. It consists of the 1st thin film-like conductor connected to a connection part, and the 2nd thin film-like conductor and 3rd thin film-like conductor connected to the conducting wire connection part provided in the other end part of this distortion | strain sensitive part. A characteristic road surface strain measuring device. 請求項2または4記載の路面のひずみ測定装置において、前記各抵抗式ひずみ受感部に導通させる薄膜状導体は、各抵抗式ひずみ受感部の一端部に設けられた導線接続部に導通させる第1の薄膜状導体と、該抵抗式ひずみ受感部の他端部に設けられた導線接続部に導通させる第2の薄膜状導体および第3の薄膜状導体とからなることを特徴とする路面のひずみ測定装置。   5. The road surface strain measuring device according to claim 2, wherein the thin film conductor to be conducted to each of the resistance type strain sensing parts is conducted to a conductor connecting portion provided at one end of each resistance type strain sensing part. It comprises a first thin film conductor, and a second thin film conductor and a third thin film conductor that are electrically connected to a conductive wire connecting portion provided at the other end of the resistance type strain sensing portion. Road surface strain measurement device. 請求項7または8記載の路面のひずみ測定装置において、前記フレキシブル基板は、第1層基板と第2層基板とを重合してなる2層のフレキシブル基板であって、各抵抗式ひずみゲージに対応する前記第1〜第3の薄膜状導体のうち、第1の薄膜状導体が前記第1層基板の表面および裏面のうちの第2層基板側の面と反対側の面に形成されると共に、第2の薄膜状導体と第3の薄膜状導体とが、第2層基板を介して互いに対向するように該第2層基板の表面および裏面にそれぞれ形成されており、
該第2の薄膜状導体と第3の薄膜状導体とが、それぞれの一端部を通って前記フレキシブル基板の厚み方向に貫通するように該フレキシブル基板に穿設されたスルーホール内に設けられた導体部材を介して導通されていることを特徴とする路面のひずみ測定装置。
9. The road surface strain measuring apparatus according to claim 7 or 8, wherein the flexible substrate is a two-layer flexible substrate obtained by polymerizing a first layer substrate and a second layer substrate, and corresponds to each resistance strain gauge. Among the first to third thin film conductors, the first thin film conductor is formed on the surface opposite to the surface on the second layer substrate side of the front surface and the back surface of the first layer substrate. The second thin film conductor and the third thin film conductor are respectively formed on the front surface and the back surface of the second layer substrate so as to face each other through the second layer substrate,
The second thin film conductor and the third thin film conductor are provided in through holes formed in the flexible substrate so as to penetrate through the respective one end portions in the thickness direction of the flexible substrate. A road surface strain measuring device, wherein the device is electrically connected via a conductor member.
請求項1または3記載の路面のひずみ測定装置において、前記センサ構造部には、前記各抵抗式ひずみゲージおよび前記各薄膜状導体を避けて該センサ構造部の厚み方向に貫通する複数の貫通孔が穿設されていることを特徴とする路面のひずみ測定装置。   4. The road surface strain measuring apparatus according to claim 1 or 3, wherein the sensor structure portion includes a plurality of through-holes penetrating in a thickness direction of the sensor structure portion while avoiding the resistance strain gauges and the thin film conductors. A road surface strain measuring device, wherein: 請求項2または4記載の路面のひずみ測定装置において、前記センサ構造部には、前記各抵抗式ひずみ受感部および前記各薄膜状導体を避けて該センサ構造部の厚み方向に貫通する複数の貫通孔が穿設されていることを特徴とする路面のひずみ測定装置。   5. The road surface strain measuring device according to claim 2, wherein the sensor structure portion includes a plurality of penetrating through the sensor structure portion in a thickness direction avoiding the resistance strain sensitive portions and the thin film conductors. A road surface strain measuring device having a through hole.
JP2007248798A 2007-09-26 2007-09-26 Road strain measurement device Active JP4260864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007248798A JP4260864B2 (en) 2007-09-26 2007-09-26 Road strain measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007248798A JP4260864B2 (en) 2007-09-26 2007-09-26 Road strain measurement device

Publications (2)

Publication Number Publication Date
JP2009079976A true JP2009079976A (en) 2009-04-16
JP4260864B2 JP4260864B2 (en) 2009-04-30

Family

ID=40654840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007248798A Active JP4260864B2 (en) 2007-09-26 2007-09-26 Road strain measurement device

Country Status (1)

Country Link
JP (1) JP4260864B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181189A (en) * 2011-02-08 2012-09-20 Nok Corp Sensor module
CN104713470A (en) * 2015-03-31 2015-06-17 中国飞机强度研究所 Strain gauge measuring wire connecting method
CN105371744A (en) * 2015-11-02 2016-03-02 武汉理工大学 High ductility cement base strain transducer
RU2611894C1 (en) * 2015-12-16 2017-03-01 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Piezoconverter
CN108291798A (en) * 2015-12-01 2018-07-17 Nissha株式会社 Multimetering strain transducer and its manufacturing method
CN110618168A (en) * 2018-06-20 2019-12-27 现代自动车株式会社 Device and method for detecting damage of vehicle and vehicle
JP2020085613A (en) * 2018-11-22 2020-06-04 ムネカタインダストリアルマシナリー株式会社 Strain sensor array and method for manufacturing the same
CN117090562A (en) * 2023-09-07 2023-11-21 大庆石油管理局有限公司 Abnormality monitoring system of tower type pumping unit and manufacturing method of components of abnormality monitoring system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108939A (en) * 1984-11-01 1986-05-27 Kyowa Dengiyou:Kk Detector for measuring pressure distribution
JPS6472022A (en) * 1987-09-14 1989-03-16 Agency Ind Science Techn Pressure sensor
JPH05215705A (en) * 1991-07-31 1993-08-24 Hughes Aircraft Co Circuit compatible with monitoring and inspection of structural integrity
JPH06347316A (en) * 1993-06-11 1994-12-22 Komatsu Ltd Tire wheel load measuring apparatus
EP0695935A1 (en) * 1994-06-09 1996-02-07 PIRELLI COORDINAMENTO PNEUMATICI S.p.A. Device for detecting the distribution of a specific pressure in the groundcontacting area of a motor-vehicle tyre, and detection method carried out thereby
JP2003097906A (en) * 2001-09-27 2003-04-03 Tokyo Sokki Kenkyusho Co Ltd Strain gauge and method for measuring strain
JP2003119717A (en) * 2001-10-18 2003-04-23 Mitsui Chemicals Inc Pavement diagnosing sheet and pavement nondestruction diagnosing method
JP2003270067A (en) * 2001-02-16 2003-09-25 K-Tech Devices Corp Stress sensor
JP2004264311A (en) * 2004-06-04 2004-09-24 Tokyo Sokki Kenkyusho Co Ltd Multipoint strain measuring system
WO2006003467A1 (en) * 2004-07-07 2006-01-12 Wheelright Limited Vehicle tyre checking system
JP2006242797A (en) * 2005-03-04 2006-09-14 Matsushita Electric Ind Co Ltd Distortion sensor and its manufacturing method
JP2007240378A (en) * 2006-03-09 2007-09-20 Tokyo Sokki Kenkyusho Co Ltd Strain/temperature measurement method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108939A (en) * 1984-11-01 1986-05-27 Kyowa Dengiyou:Kk Detector for measuring pressure distribution
JPS6472022A (en) * 1987-09-14 1989-03-16 Agency Ind Science Techn Pressure sensor
JPH05215705A (en) * 1991-07-31 1993-08-24 Hughes Aircraft Co Circuit compatible with monitoring and inspection of structural integrity
JPH06347316A (en) * 1993-06-11 1994-12-22 Komatsu Ltd Tire wheel load measuring apparatus
EP0695935A1 (en) * 1994-06-09 1996-02-07 PIRELLI COORDINAMENTO PNEUMATICI S.p.A. Device for detecting the distribution of a specific pressure in the groundcontacting area of a motor-vehicle tyre, and detection method carried out thereby
JP2003270067A (en) * 2001-02-16 2003-09-25 K-Tech Devices Corp Stress sensor
JP2003097906A (en) * 2001-09-27 2003-04-03 Tokyo Sokki Kenkyusho Co Ltd Strain gauge and method for measuring strain
JP2003119717A (en) * 2001-10-18 2003-04-23 Mitsui Chemicals Inc Pavement diagnosing sheet and pavement nondestruction diagnosing method
JP2004264311A (en) * 2004-06-04 2004-09-24 Tokyo Sokki Kenkyusho Co Ltd Multipoint strain measuring system
WO2006003467A1 (en) * 2004-07-07 2006-01-12 Wheelright Limited Vehicle tyre checking system
JP2006242797A (en) * 2005-03-04 2006-09-14 Matsushita Electric Ind Co Ltd Distortion sensor and its manufacturing method
JP2007240378A (en) * 2006-03-09 2007-09-20 Tokyo Sokki Kenkyusho Co Ltd Strain/temperature measurement method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181189A (en) * 2011-02-08 2012-09-20 Nok Corp Sensor module
CN104713470A (en) * 2015-03-31 2015-06-17 中国飞机强度研究所 Strain gauge measuring wire connecting method
CN105371744A (en) * 2015-11-02 2016-03-02 武汉理工大学 High ductility cement base strain transducer
CN108291798A (en) * 2015-12-01 2018-07-17 Nissha株式会社 Multimetering strain transducer and its manufacturing method
US10190864B2 (en) 2015-12-01 2019-01-29 Nissha Co., Ltd. Multipoint-measurement strain sensor and method for producing the same
TWI717422B (en) * 2015-12-01 2021-02-01 日商日寫股份有限公司 Strain sensor for multi-point measurement and manufacturing method thereof
RU2611894C1 (en) * 2015-12-16 2017-03-01 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Piezoconverter
CN110618168A (en) * 2018-06-20 2019-12-27 现代自动车株式会社 Device and method for detecting damage of vehicle and vehicle
JP2020085613A (en) * 2018-11-22 2020-06-04 ムネカタインダストリアルマシナリー株式会社 Strain sensor array and method for manufacturing the same
CN117090562A (en) * 2023-09-07 2023-11-21 大庆石油管理局有限公司 Abnormality monitoring system of tower type pumping unit and manufacturing method of components of abnormality monitoring system
CN117090562B (en) * 2023-09-07 2024-05-14 大庆石油管理局有限公司 Abnormality monitoring system of tower type pumping unit and manufacturing method of components of abnormality monitoring system

Also Published As

Publication number Publication date
JP4260864B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP4260864B2 (en) Road strain measurement device
US7094061B1 (en) Printed circuit board with integral strain gage
CN108291798B (en) Multimetering strain transducer and its manufacturing method
CN101287329B (en) Display device
WO2017094368A1 (en) Multipoint-measurement strain sensor and production method for same
US20030052867A1 (en) Capacitive input device
JP2004525360A (en) Electronic pressure-sensitive transducer device and manufacturing method thereof
CN110352337B (en) Strain body and force sensor provided with same
EP3054275B1 (en) Sensor module and method for producing sensor module
US6512445B1 (en) Strain-sensitive resistor
CN112703567A (en) Strain sensing resistor
JP2004521501A (en) Combined body composed of planar conductor members
JP3036262B2 (en) Bending sensor
US10690559B1 (en) Pressure sensor array and the method of making
US20230040761A1 (en) Temperature sensor and method of manufacturing temperature sensor
CN105358945B (en) A kind of flexible circuit interface for deformeter
WO2018154898A1 (en) Elastic body and force sensor provided with said elastic body
CN108780787A (en) Component load-bearing part with integrated strain gauge
JP2017096863A (en) Crack occurrence detection system of structure, and strain sensor used for the same
JP2018138890A (en) Strain body and force sensor having the strain body
CN1157595C (en) Compensating element for a sensor
JP2009025098A (en) Thermal flow sensor
EP1503452B1 (en) Electrical connector for connecting electrical units, electrical device, and production metod for producing electrical device
JP2020016484A (en) Temperature sensor
JP2005164469A (en) Resistance apparatus for detecting electric current and its manufacturing method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080916

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4260864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180220

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250