JP2020016484A - Temperature sensor - Google Patents

Temperature sensor Download PDF

Info

Publication number
JP2020016484A
JP2020016484A JP2018138219A JP2018138219A JP2020016484A JP 2020016484 A JP2020016484 A JP 2020016484A JP 2018138219 A JP2018138219 A JP 2018138219A JP 2018138219 A JP2018138219 A JP 2018138219A JP 2020016484 A JP2020016484 A JP 2020016484A
Authority
JP
Japan
Prior art keywords
heat
heat conductor
temperature sensor
conductor portion
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018138219A
Other languages
Japanese (ja)
Inventor
利晃 藤田
Toshiaki Fujita
利晃 藤田
峻平 鈴木
Shumpei Suzuki
峻平 鈴木
大祐 濱
Daisuke Hama
大祐 濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2018138219A priority Critical patent/JP2020016484A/en
Publication of JP2020016484A publication Critical patent/JP2020016484A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Thermistors And Varistors (AREA)

Abstract

To provide a temperature sensor which is not easily affected by heat from outside air, for example, and can make an accurate and thermally sensitive detection by an efficient heat conductivity.SOLUTION: The temperature sensor includes a heat-sensitive unit 2 and a heat conductor 4 located on the heat-sensitive unit or above the heat-sensitive unit with an insulating film 3 therebetween, the heat conductor having a larger heat conductivity than that of the heat-sensitive unit. The heat conductor includes: a first heat transfer body 4A in the shape of a plate or a block set on the heat-sensitive unit or above the heat-sensitive unit with an insulating film therebetween, the first heat transfer body having a set surface on the heat-sensitive unit side; and a second heat transfer body 4B in the shape of a plate or a block set on the opposite side to the set surface of the first heat transfer body, the second heat transfer body having a counter surface 4a to face a measurement target object S on the opposite side to the first heat transfer body and the counter surface being set to be smaller in area than the set surface of the first heat transfer body.SELECTED DRAWING: Figure 1

Description

本発明は、薄膜サーミスタ等のサーミスタ部を用いた温度センサに関する。   The present invention relates to a temperature sensor using a thermistor such as a thin film thermistor.

近年、ポリイミド樹脂等で形成された絶縁性フィルム上に薄膜状のサーミスタ部を形成したフィルム型の温度センサが開発されている。例えば、特許文献1には、絶縁性フィルムと、絶縁性フィルムの表面にサーミスタ材料でパターン形成された薄膜サーミスタ部と、薄膜サーミスタ部の上に複数の櫛部を有して互いに対向してパターン形成された一対の櫛形電極と、一対の櫛形電極に接続され絶縁性フィルムの表面にパターン形成された一対のパターン電極と、櫛形電極と薄膜サーミスタ部とを覆って絶縁性フィルム上に形成された保護膜とを備えている温度センサが開発されている。   In recent years, a film-type temperature sensor in which a thin-film thermistor portion is formed on an insulating film formed of a polyimide resin or the like has been developed. For example, Patent Literature 1 discloses that an insulating film, a thin film thermistor portion formed by patterning a surface of the insulating film with a thermistor material, and a plurality of comb portions on the thin film thermistor portion are formed so as to face each other. A pair of comb-shaped electrodes, a pair of pattern electrodes connected to the pair of comb-shaped electrodes and patterned on the surface of the insulating film, and a protection formed on the insulating film covering the comb-shaped electrode and the thin film thermistor portion. Temperature sensors having a membrane have been developed.

また、特許文献2には、端部に温度検出素子(面実装型サーミスタ素子)を熱的に接続させた熱伝導シートを備えた温度検出装置が記載されている。この温度検出装置では、熱伝導シートであるグラファイトシートの両面に断熱層を設け、グラファイトシートから輻射によって熱が放射されて温度が下がることを防いでいる。   Further, Patent Document 2 describes a temperature detection device including a heat conductive sheet having a temperature detection element (a surface-mount thermistor element) thermally connected to an end. In this temperature detecting device, a heat insulating layer is provided on both sides of a graphite sheet as a heat conductive sheet to prevent radiation from radiating heat from the graphite sheet to lower the temperature.

特開2016−138773号公報JP-A-2006-138773 特開2015−152502号公報JP-A-2015-152502

上記従来の技術には、以下の課題が残されている。
すなわち、上記特許文献1に記載の温度センサでは、薄膜サーミスタ部を採用することで高精度で高い熱応答性の温度測定を可能にしているが、より正確で高い熱応答性の温度測定の実現が要望されている。そのためには、サーミスタ部に測定対象物の熱を効率的に伝える必要があるが、サーミスタ部が外気等の熱の影響も受けてしまう問題があった。
また、特許文献2では、効率的な熱伝導をさせるために熱伝導シートを測定対象物に面接触させる必要があるが、曲面形状等を有する測定対象物では、面接触させることができない場合がある。なお、特許文献1に記載の温度センサは、柔軟性を有しているため、測定対象物の形状に合わせて温度センサを曲げて面接触させることができるが、温度センサを曲げる作業が必要になる。
さらに、特許文献2では、断熱層が両面に設けられた熱伝導シートにより発熱体の熱を温度検出素子に伝えているが、断熱層を用いても薄いシート両面からの放熱が温度検出素子への熱伝導に比べて大きくなってしまう問題があった。特に、一枚の熱伝導シートの両端部に温度検出素子と発熱体とを配するために、温度検出素子と発熱体とが大きく離れてしまい、温度検出素子と発熱体との間における熱伝導シートからの熱の放射割合がさらに大きくなって、温度を正確に検出することが難しいという不都合があった。
The following problems remain in the above-described conventional technology.
That is, in the temperature sensor described in Patent Document 1, the use of the thin-film thermistor enables high-accuracy and high-thermal-response temperature measurement, but realizes more accurate and high-thermal-response temperature measurement. Is required. For this purpose, it is necessary to efficiently transmit the heat of the object to be measured to the thermistor portion, but there is a problem that the thermistor portion is also affected by heat such as outside air.
Further, in Patent Document 2, it is necessary to bring the heat conductive sheet into surface contact with the measurement object in order to efficiently conduct heat. is there. Since the temperature sensor described in Patent Document 1 has flexibility, the temperature sensor can be bent and brought into surface contact with the shape of the measurement object, but the operation of bending the temperature sensor is required. Become.
Further, in Patent Document 2, the heat of the heating element is transmitted to the temperature detecting element by a heat conductive sheet provided with a heat insulating layer on both sides. There is a problem that the heat conduction becomes larger than the heat conduction. In particular, since the temperature detecting element and the heating element are arranged at both ends of one heat conductive sheet, the temperature detecting element and the heating element are largely separated from each other, and the heat conduction between the temperature detecting element and the heating element is large. There is an inconvenience that the rate of heat radiation from the sheet is further increased, making it difficult to accurately detect the temperature.

本発明は、前述の課題に鑑みてなされたもので、外気等の熱の影響を受け難く、効率的な熱伝導によって正確かつ熱応答性の高い温度センサを提供することを目的とする。   The present invention has been made in view of the above-described problems, and has as its object to provide a temperature sensor that is hardly affected by heat such as outside air and has high accuracy and high thermal responsiveness by efficient heat conduction.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明に係る温度センサは、感熱部と、前記感熱部に直接又は絶縁性膜を介して設置され前記感熱部よりも大きい熱伝導率を有する熱伝導体とを備え、前記熱伝導体が、前記感熱部側に設置面を有して前記感熱部に直接又は前記絶縁性膜を介して設置された板状又はブロック状の第1熱伝導体部と、前記第1熱伝導体部の前記設置面の反対側に設置された板状又はブロック状の第2熱伝導体部とを備え、前記第2熱伝導体部が、前記第1熱伝導体部側とは反対側に測定対象物に対向させる対向面を有し、前記対向面が前記第1熱伝導体部の前記設置面よりも小さい面積に設定されていることを特徴とする。   The present invention has the following features to attain the object mentioned above. That is, a temperature sensor according to a first aspect of the present invention includes a heat-sensitive part, and a heat conductor that is installed on the heat-sensitive part directly or via an insulating film and has a higher thermal conductivity than the heat-sensitive part. A conductor having a plate-shaped or block-shaped first heat conductor portion having an installation surface on the heat-sensing portion side and installed directly on the heat-sensing portion or via the insulating film; A plate-shaped or block-shaped second heat conductor portion installed on the opposite side of the installation surface of the body portion, wherein the second heat conductor portion is opposite to the first heat conductor portion side And a facing surface facing the object to be measured, wherein the facing surface is set to have a smaller area than the installation surface of the first heat conductor portion.

この温度センサでは、第2熱伝導体部が、第1熱伝導体部側とは反対側に測定対象物に対向させる対向面を有し、対向面が第1熱伝導体部の設置面よりも小さい面積に設定されているので、第2熱伝導体部の対向面が測定対象物に線接触又は点接触しても、測定対象物の熱が第2熱伝導体部から第1熱伝導体部に伝わり、さらに第1熱伝導体部の大きい設置面から感熱部に効率的に熱を伝えることができる。
したがって、測定対象物の形状に対応させて温度センサを曲げる必要がなく、測定対象物に線接触又は点接触でも第2熱伝導体部及び第1熱伝導体部を介して効率的に測定対象物の熱を感熱部まで伝えることができることから、外気等の周囲からの熱の影響を受け難く、正確な温度測定と高い熱応答性を得ることができる。また、特許文献2のように単なるグラファイトシートのような熱伝導体シートの両端部に感熱部と測定対象物とを配置した場合に比べて、熱伝導体の対向する両面(設置面と対向面)に感熱部と測定対象物とを配置するので、感熱部への効率的な伝熱と共に、感熱部と測定対象物との距離も近くでき、熱伝導体からの熱の放射の影響を低減することができる。
In this temperature sensor, the second heat conductor portion has an opposing surface facing the measurement object on the side opposite to the first heat conductor portion side, and the opposing surface is higher than the installation surface of the first heat conductor portion. Is also set to a small area, so that even if the opposing surface of the second heat conductor section makes line contact or point contact with the measurement object, heat of the measurement object is transferred from the second heat conductor section to the first heat conduction section. The heat is transmitted to the body part, and the heat can be efficiently transmitted from the large installation surface of the first heat conductor part to the heat sensitive part.
Therefore, it is not necessary to bend the temperature sensor in accordance with the shape of the object to be measured. Since the heat of the object can be transmitted to the heat-sensitive portion, it is hardly affected by heat from the surroundings such as the outside air, and accurate temperature measurement and high thermal responsiveness can be obtained. In addition, as compared with a case where a heat-sensitive portion and a measurement object are arranged at both ends of a heat conductor sheet such as a mere graphite sheet as in Patent Document 2, both surfaces (an installation surface and an opposite surface) of the heat conductor are opposed to each other. ), The heat-sensitive part and the object to be measured are arranged, so that the distance between the heat-sensitive part and the object to be measured can be reduced as well as the efficient heat transfer to the heat-sensitive part, reducing the effect of heat radiation from the heat conductor. can do.

第2の発明に係る温度センサは、第1の発明において、前記第2熱伝導体部の熱容量が、前記第1熱伝導体部の熱容量より小さいことを特徴とする。
すなわち、この温度センサでは、第2熱伝導体部の熱容量が、前記第1熱伝導体部の熱容量より小さいので、素早く熱が第1熱伝導体部に伝わり、さらに熱応答性が向上する。
A temperature sensor according to a second invention is characterized in that, in the first invention, the heat capacity of the second heat conductor is smaller than the heat capacity of the first heat conductor.
That is, in this temperature sensor, since the heat capacity of the second heat conductor is smaller than the heat capacity of the first heat conductor, heat is quickly transmitted to the first heat conductor, and the heat responsiveness is further improved.

第3の発明に係る温度センサは、第1又は第2の発明において、前記熱伝導体が、金属で形成されていることを特徴とする。
すなわち、この温度センサでは、熱伝導体が、金属で形成されているので、大きい熱伝導率を有する金属の第2熱伝導体部及び第1熱伝導体部によって、感熱部へのより効率的な熱伝導が可能になる。
A temperature sensor according to a third invention is characterized in that, in the first or second invention, the heat conductor is formed of a metal.
That is, in this temperature sensor, since the heat conductor is formed of a metal, the second heat conductor portion and the first heat conductor portion of the metal having a large heat conductivity allow more efficient transmission to the heat-sensitive portion. Heat conduction becomes possible.

第4の発明に係る温度センサは、第1又は第2の発明において、前記第1熱伝導体部が、前記第2熱伝導体から前記設置面に向かう第1の方向の熱伝導率が前記第1の方向に直交する少なくとも一方向の熱伝導率よりも小さい異方性熱伝導体で形成され、前記第2熱伝導体部が、前記対向面から前記第1熱伝導体部に向かう第2の方向の熱伝導率が前記第2の方向に直交する少なくとも一方向の熱伝導率よりも大きい異方性熱伝導体で形成されていることを特徴とする。
すなわち、この温度センサでは、第1熱伝導体部が、第2熱伝導体から設置面に向かう第1の方向の熱伝導率が第1の方向に直交する少なくとも一方向の熱伝導率よりも小さい異方性熱伝導体で形成され、第2熱伝導体部が、対向面から第1熱伝導体部に向かう第2の方向の熱伝導率が第2の方向に直交する少なくとも一方向の熱伝導率よりも大きい異方性熱伝導体で形成されているので、測定対象物の熱を第2熱伝導体部及び第1熱伝導体部を介して誘導し感熱部に伝えることができる。
測定対象物の熱は、対向面から異方性熱伝導体の第2熱伝導体部に伝わると共に、第2の方向に優先的に誘導されて第1熱伝導体部へと伝わる。異方性熱伝導体の第1熱伝導体部に伝わった熱は、第1の方向に直交する少なくとも一方向に拡がると共に、設置面から感熱部に伝わる。このように、測定対象物の熱は、異方性熱伝導体である第2熱伝導体部から第1熱伝導体部へと誘導的に伝熱されて感熱部へより効率的に伝わる。
The temperature sensor according to a fourth aspect is the temperature sensor according to the first or second aspect, wherein the first heat conductor has a heat conductivity in a first direction from the second heat conductor toward the installation surface. The second heat conductor portion is formed of an anisotropic heat conductor smaller than the heat conductivity in at least one direction orthogonal to the first direction, and the second heat conductor portion extends from the facing surface toward the first heat conductor portion. It is characterized by being formed of an anisotropic heat conductor whose thermal conductivity in the second direction is larger than the thermal conductivity in at least one direction orthogonal to the second direction.
That is, in this temperature sensor, the first heat conductor section has a heat conductivity in a first direction from the second heat conductor toward the installation surface that is higher than a heat conductivity in at least one direction orthogonal to the first direction. The second heat conductor is formed of a small anisotropic heat conductor, and the second heat conductor has a heat conductivity in at least one direction perpendicular to the second direction in a second direction from the facing surface toward the first heat conductor. Since it is formed of an anisotropic heat conductor having a higher thermal conductivity, heat of the object to be measured can be guided through the second heat conductor portion and the first heat conductor portion and transmitted to the heat sensitive portion. .
The heat of the object to be measured is transmitted from the opposing surface to the second thermal conductor of the anisotropic thermal conductor, and is preferentially guided in the second direction and is transmitted to the first thermal conductor. The heat transmitted to the first heat conductor portion of the anisotropic heat conductor spreads in at least one direction orthogonal to the first direction, and is transmitted from the installation surface to the heat sensitive portion. As described above, the heat of the measurement target is inductively transferred from the second heat conductor portion, which is an anisotropic heat conductor, to the first heat conductor portion, and is more efficiently transferred to the heat sensitive portion.

第5の発明に係る温度センサは、第4の発明において、前記第1熱伝導体部及び前記第2の熱伝導体部が、複数のグラフェンシートを積層したグラフェン積層体であり、前記第1熱伝導体部の前記グラフェンシートの積層方向が、前記第1の方向であり、前記第2熱伝導体部の前記グラフェンシートの積層方向が、前記第2の方向に直交する少なくとも一方向であることを特徴とする。
すなわち、この温度センサでは、第1熱伝導体部のグラフェンシートの積層方向が、第1の方向であり、第2熱伝導体部のグラフェンシートの積層方向が、第2の方向に直交する少なくとも一方向であるので、グラフェンシートの積層方向に比べて前記積層方向に直交する少なくとも一方向の熱伝導率が非常に大きいグラフェン積層体によって熱をより選択的に集熱かつ誘導して感熱部に伝えることができる。
The temperature sensor according to a fifth invention is the temperature sensor according to the fourth invention, wherein the first heat conductor portion and the second heat conductor portion are a graphene laminate in which a plurality of graphene sheets are laminated. The lamination direction of the graphene sheets of the thermal conductor portion is the first direction, and the lamination direction of the graphene sheets of the second thermal conductor portion is at least one direction orthogonal to the second direction. It is characterized by the following.
That is, in this temperature sensor, the laminating direction of the graphene sheets of the first thermal conductive portion is the first direction, and the laminating direction of the graphene sheets of the second thermal conductive portion is at least orthogonal to the second direction. Since it is in one direction, heat is more selectively collected and induced by the graphene laminate having a very large thermal conductivity in at least one direction orthogonal to the lamination direction as compared with the lamination direction of the graphene sheet to the heat sensitive portion. Can tell.

第6の発明に係る温度センサは、第1から第5の発明のいずれかにおいて、前記第1熱伝導体部が、前記感熱部の前記第1熱伝導体部側の表面積よりも大きい前記設置面を有していることを特徴とする。
すなわち、この温度センサでは、第1熱伝導体部が、感熱部の第1熱伝導体部側の表面積よりも大きい設置面を有しているので、対向面で受けた測定対象物の熱を効率的に感熱部の表面全体に伝えることができる。
The temperature sensor according to a sixth aspect of the present invention is the temperature sensor according to any one of the first to fifth aspects, wherein the first heat conductor portion is larger than a surface area of the heat sensitive portion on the first heat conductor portion side. Characterized by having a surface.
That is, in this temperature sensor, since the first heat conductor has an installation surface that is larger than the surface area of the heat-sensitive portion on the first heat conductor side, the heat of the measurement object received on the opposite surface is received. The heat can be efficiently transmitted to the entire surface of the heat-sensitive part.

第7の発明に係る温度センサは、第1から第6の発明のいずれかにおいて、前記感熱部が、薄膜状に形成された薄膜サーミスタ部であることを特徴とする。
すなわち、この温度センサでは、感熱部が、薄膜状に形成された薄膜サーミスタ部であるので、大きい面積で熱伝導体からの熱を受けることができると共に、バルク型サーミスタ(チップ型サーミスタ、フレーク型サーミスタ等)に比べて熱容量が小さいため、熱応答性をより高速化することが可能になる。
A temperature sensor according to a seventh aspect is characterized in that, in any one of the first to sixth aspects, the heat-sensitive portion is a thin-film thermistor portion formed in a thin film shape.
That is, in this temperature sensor, since the heat-sensitive portion is a thin-film thermistor portion formed in a thin film shape, the heat-sensing portion can receive heat from a heat conductor in a large area, and can also receive a bulk-type thermistor (chip-type thermistor, flake-type). Thermistor) has a smaller heat capacity than that of the thermistor, so that the thermal responsiveness can be further increased.

第8の発明に係る温度センサは、第1から第7の発明のいずれかにおいて、前記感熱部が設けられた絶縁性基材と、前記対向面を除いた前記第1熱伝導体部及び前記第2熱伝導体部の周囲を囲んだ状態で前記絶縁性基材に固定され、熱伝導率が前記第1熱伝導体部及び前記第2熱伝導体部の熱伝導率よりも小さい材料で形成された低熱伝導体部とを備えていることを特徴とする。
すなわち、この温度センサでは、対向面を除いた第1熱伝導体部及び第2熱伝導体部の周囲を囲んだ状態で絶縁性基材に固定され、熱伝導率が第1熱伝導体部及び第2熱伝導体部の熱伝導率よりも小さい材料で形成された低熱伝導体部を備えているので、対向面を除いた熱伝導体の周囲から熱が熱伝導体に伝わることを低熱伝導体部が抑制することで、外気等の熱の影響をさらに抑制することができる。また、熱伝導体が設置面及び対向面以外の面から放熱することを、熱伝導体よりも断熱性が高い低熱伝導体部によって抑制することができる。
The temperature sensor according to an eighth invention is the temperature sensor according to any one of the first to seventh inventions, wherein the insulating substrate provided with the heat-sensitive portion, the first heat conductor portion excluding the facing surface, and A material that is fixed to the insulating base material in a state surrounding the periphery of the second heat conductor portion, and has a heat conductivity smaller than that of the first heat conductor portion and the second heat conductor portion. And a formed low heat conductor portion.
That is, in this temperature sensor, the first heat conductor portion and the second heat conductor portion except for the facing surface are fixed to the insulating base material in a state surrounding the first heat conductor portion and the second heat conductor portion. And a low thermal conductor portion made of a material smaller than the thermal conductivity of the second thermal conductor portion, so that heat transfer from the periphery of the thermal conductor except for the facing surface to the thermal conductor is reduced. The suppression of the conductor portion can further suppress the influence of heat such as outside air. In addition, the heat conductor radiating heat from surfaces other than the installation surface and the opposing surface can be suppressed by the low heat conductor having higher heat insulation than the heat conductor.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係る温度センサによれば、第2熱伝導体部が、第1熱伝導体部側とは反対側に測定対象物に対向させる対向面を有し、対向面が第1熱伝導体部の設置面よりも小さい面積に設定されているので、線接触や点接触でも効率的に測定対象物の熱を感熱部まで伝えることができ、外気等の周囲からの熱の影響を受け難く、正確な温度測定と高い熱応答性を得ることができる。
According to the present invention, the following effects can be obtained.
That is, according to the temperature sensor according to the present invention, the second heat conductor portion has the opposing surface facing the measurement object on the side opposite to the first heat conductor portion side, and the opposing surface is the first heat conductor portion. Since the area is set smaller than the conductor installation surface, the heat of the object to be measured can be efficiently transmitted to the heat sensitive part even by line contact or point contact, and the influence of heat from the surroundings such as outside air It is hard to receive and can obtain accurate temperature measurement and high thermal response.

本発明に係る温度センサの第1実施形態において、温度センサを示す断面図である。FIG. 2 is a cross-sectional view illustrating the temperature sensor in the first embodiment of the temperature sensor according to the present invention. 第1実施形態において、低熱伝導体部を外した温度センサを示す下面図である。FIG. 4 is a bottom view showing the temperature sensor with the low thermal conductor removed in the first embodiment. 本発明に係る温度センサの第2実施形態において、温度センサを示す断面図である。It is sectional drawing which shows the temperature sensor in 2nd Embodiment of the temperature sensor which concerns on this invention. 第2実施形態において、グラフェンシートの積層方法が異なる3種類のグラフェン積層体を示す斜視図である。FIG. 9 is a perspective view illustrating three types of graphene laminates in which a graphene sheet is laminated differently in the second embodiment. 第2実施形態において、低熱伝導体部を外した温度センサを示す下面図である。It is a bottom view showing a temperature sensor in which a low heat conductor part was removed in a 2nd embodiment.

以下、本発明に係る温度センサにおける第1実施形態を、図1及び図2を参照しながら説明する。なお、以下の説明に用いる図面の一部では、各部を認識可能又は認識容易な大きさとするために必要に応じて縮尺を適宜変更している。   Hereinafter, a first embodiment of a temperature sensor according to the present invention will be described with reference to FIGS. In some of the drawings used in the following description, the scale is appropriately changed as necessary in order to make each part recognizable or easily recognizable.

本実施形態の温度センサ1は、図1及び図2に示すように、サーミスタ材料で形成された感熱部2と、感熱部2に絶縁性膜3を介して設置され感熱部2よりも大きい熱伝導率を有する熱伝導体4とを備えている。
上記熱伝導体4は、感熱部2側に設置面を有して感熱部2に絶縁性膜3を介して設置された板状又はブロック状の第1熱伝導体部4Aと、第1熱伝導体部4Aの設置面の反対側に設置された板状又はブロック状の第2熱伝導体部4Bとを備えている。
As shown in FIGS. 1 and 2, the temperature sensor 1 according to the present embodiment includes a heat-sensitive portion 2 formed of a thermistor material, and a heat larger than the heat-sensitive portion 2 provided on the heat-sensitive portion 2 via an insulating film 3. A heat conductor 4 having conductivity.
The heat conductor 4 includes a plate-shaped or block-shaped first heat conductor portion 4A having an installation surface on the heat-sensitive portion 2 side and installed on the heat-sensitive portion 2 with the insulating film 3 interposed therebetween. A plate-shaped or block-shaped second heat conductor portion 4B installed on the opposite side of the installation surface of the conductor portion 4A.

上記第2熱伝導体部4Bは、第1熱伝導体部4A側とは反対側に測定対象物Sに対向させる対向面4aを有し、対向面4aが第1熱伝導体部4Aの設置面よりも小さい面積に設定されている。すなわち、熱伝導体4は、矩形状の第1熱伝導体部4Aの中央部に、第1熱伝導体部4Aよりも小さい矩形状の第2熱伝導体部4Bが重なった2段形状を有している。
なお、本実施形態では、対向面4aを測定対象物Sに接触させている。
また、第2熱伝導体部4Bの熱容量は、第1熱伝導体部4Aの熱容量より小さく設定されている。本実施形態の第2熱伝導体部4Bは、第1熱伝導体部4Aよりも小さい体積に設定され、熱容量が小さくされている。
The second heat conductor portion 4B has an opposing surface 4a facing the measurement object S on a side opposite to the first heat conductor portion 4A side, and the opposing surface 4a is provided with the first heat conductor portion 4A. The area is set smaller than the surface. That is, the heat conductor 4 has a two-stage shape in which a rectangular second heat conductor portion 4B smaller than the first heat conductor portion 4A overlaps a central portion of the rectangular first heat conductor portion 4A. Have.
In this embodiment, the opposing surface 4a is in contact with the measurement target S.
Further, the heat capacity of the second heat conductor portion 4B is set smaller than the heat capacity of the first heat conductor portion 4A. The second heat conductor portion 4B of the present embodiment is set to have a smaller volume than the first heat conductor portion 4A, and has a small heat capacity.

上記熱伝導体4は、金属で形成されている。例えば、第1熱伝導体部4A及び第2熱伝導体部4Bは、それぞれ板状又はブロック状のCu,Al等で形成されている。なお、金属の熱伝導体4は、感熱部2との電気的導通を避けるため、感熱部2上に成膜した絶縁性膜3を介して感熱部2に設置している。   The heat conductor 4 is formed of a metal. For example, the first thermal conductor 4A and the second thermal conductor 4B are each formed of a plate or block of Cu, Al, or the like. The metal heat conductor 4 is provided on the heat sensitive part 2 via an insulating film 3 formed on the heat sensitive part 2 in order to avoid electrical conduction with the heat sensitive part 2.

上記第1熱伝導体部4Aは、感熱部2の第1熱伝導体部4A側の表面積よりも大きい設置面を有している。なお、本実施形態では、第1熱伝導体部4Aの設置面が、感熱部2上に設けた絶縁性膜3と同じ面積とされている。
また、本実施形態の温度センサ1は、感熱部2が設けられた絶縁性基材5と、対向面4aを除いた第1熱伝導体部4A及び第2熱伝導体部4Bの周囲を囲んだ状態で絶縁性基材5に固定され、熱伝導率が第1熱伝導体部4A及び第2熱伝導体部4Bの熱伝導率よりも小さい材料で形成された低熱伝導体部6とを備えている。
The first heat conductor portion 4A has an installation surface that is larger than the surface area of the heat sensitive portion 2 on the first heat conductor portion 4A side. In the present embodiment, the installation surface of the first heat conductor portion 4A has the same area as the insulating film 3 provided on the heat sensitive portion 2.
Further, the temperature sensor 1 of the present embodiment surrounds the periphery of the insulating base material 5 on which the heat-sensitive portion 2 is provided and the first heat conductor portion 4A and the second heat conductor portion 4B except for the facing surface 4a. And the low thermal conductor 6 formed of a material whose thermal conductivity is smaller than the thermal conductivity of the first thermal conductor 4A and the second thermal conductor 4B. Have.

上記絶縁性基材5は、絶縁性フィルムであって、例えば厚さ7.5〜125μmのポリイミド樹脂シートで形成されている。なお、絶縁性基材5としては、他にPET:ポリエチレンテレフタレート,PEN:ポリエチレンナフタレート等でも作製できる。
また、絶縁性基材5として、プリント基板やセラミックス板などを採用しても構わない。
The insulating substrate 5 is an insulating film, and is formed of, for example, a polyimide resin sheet having a thickness of 7.5 to 125 μm. The insulating substrate 5 can also be made of PET: polyethylene terephthalate, PEN: polyethylene naphthalate, or the like.
Further, a printed board, a ceramic plate, or the like may be employed as the insulating base material 5.

上記感熱部2は、薄膜状に形成された薄膜サーミスタ部である。
この感熱部2は、例えばサーミスタ特性を有するTi−Al−Nで矩形状に形成されている。特に、感熱部2は、一般式:TiAl(0.70≦y/(x+y)≦0.95、0.4≦z≦0.5、x+y+z=1)で示される金属窒化物からなり、その結晶構造が、六方晶系のウルツ鉱型の単相である。この感熱部2は、膜厚方向にc軸配向度が高い膜である。
感熱部2の膜厚は、50〜200nmであり、極薄であり、感熱部2の熱容量は極めて小さい。
The heat sensitive part 2 is a thin film thermistor formed in a thin film shape.
The heat-sensitive portion 2 is formed in a rectangular shape with, for example, Ti-Al-N having thermistor characteristics. In particular, the heat-sensitive unit 2, the general formula: Ti x Al y N z ( 0.70 ≦ y / (x + y) ≦ 0.95,0.4 ≦ z ≦ 0.5, x + y + z = 1) metal represented by nitriding And has a crystal structure of a wurtzite-type single phase of a hexagonal system. The heat sensitive portion 2 is a film having a high degree of c-axis orientation in the film thickness direction.
The thickness of the heat-sensitive part 2 is 50 to 200 nm, which is extremely thin, and the heat capacity of the heat-sensitive part 2 is extremely small.

また、本実施形態の温度センサ1は、感熱部2の上にパターン形成された一対の対向電極7と、一対の対向電極7に接続され絶縁性基材5にパターン形成された一対のパターン配線8とを備えている。
上記一対の対向電極7は、感熱部2の上に互いに対向して櫛型状にパターン形成された櫛型電極であり、複数の櫛部7aを有している。
In addition, the temperature sensor 1 of the present embodiment includes a pair of opposing electrodes 7 pattern-formed on the heat-sensitive portion 2 and a pair of pattern wirings connected to the pair of opposing electrodes 7 and patterned on the insulating substrate 5. 8 is provided.
The pair of opposing electrodes 7 are comb-shaped electrodes which are formed on the heat-sensitive portion 2 so as to face each other in a comb shape, and have a plurality of comb portions 7a.

上記絶縁性基材5は、帯状に延在し、感熱部2は、絶縁性基材5の一端側に配されている。
一対のパターン配線8は、絶縁性基材5に沿って延在していると共に絶縁性基材5の他端側に配された一対のパッド部8aを他端に有している。
上記パッド部8aは、リード線等を接続するために絶縁性基材5の中央部のパターン配線8よりも幅広に形成された端子部である。
上記絶縁性膜3は、一対の対向電極7と共に感熱部2を覆ってポリイミド樹脂等で矩形状に形成された保護膜である。
The insulating base member 5 extends in a belt shape, and the heat-sensitive portion 2 is disposed on one end side of the insulating base member 5.
The pair of pattern wirings 8 extend along the insulating base material 5 and have a pair of pad portions 8 a arranged on the other end side of the insulating base material 5 at the other end.
The pad portion 8a is a terminal portion formed to be wider than the pattern wiring 8 at the central portion of the insulating base material 5 for connecting a lead wire or the like.
The insulating film 3 is a protective film formed of a polyimide resin or the like in a rectangular shape so as to cover the heat-sensitive portion 2 together with the pair of counter electrodes 7.

上記対向電極7及びパターン配線8は、感熱部2及び絶縁性基材5の上に形成された膜厚5〜100nmのCr又はNiCrの接合層と、該接合層上にAu等の貴金属で膜厚50〜200nm形成された電極層とを有している。
上記低熱伝導体部6は、熱伝導体4の周囲を囲んだ状態で絶縁性基材5を上下で挟んで取り付けられた樹脂ケースである。なお、樹脂封止によって低熱伝導体部6を設けても構わない。
The counter electrode 7 and the pattern wiring 8 are formed of a 5 to 100 nm-thick bonding layer of Cr or NiCr formed on the heat-sensitive portion 2 and the insulating base material 5, and a film of a noble metal such as Au is formed on the bonding layer. And an electrode layer having a thickness of 50 to 200 nm.
The low thermal conductor portion 6 is a resin case that is attached so as to sandwich the insulating base material 5 up and down while surrounding the thermal conductor 4. Note that the low thermal conductor 6 may be provided by resin sealing.

このように本実施形態の温度センサ1では、第2熱伝導体部4Bが、第1熱伝導体部4A側とは反対側に測定対象物Sに対向させる対向面4aを有し、対向面4aが第1熱伝導体部4Aの設置面よりも小さい面積に設定されているので、第2熱伝導体部4Bの対向面4aが測定対象物Sに線接触又は点接触しても、測定対象物Sの熱が第1熱伝導体部4Aから第2熱伝導体部4Bに伝わり、さらに第2熱伝導体部4Bの大きい設置面から感熱部2に効率的に熱を伝えることができる。   As described above, in the temperature sensor 1 of the present embodiment, the second heat conductor portion 4B has the facing surface 4a facing the measurement object S on the side opposite to the first heat conductor portion 4A side, and the facing surface Since the surface 4a is set to have a smaller area than the installation surface of the first heat conductor portion 4A, even if the opposing surface 4a of the second heat conductor portion 4B makes line contact or point contact with the measurement object S, the measurement is performed. The heat of the object S is transmitted from the first heat conductor portion 4A to the second heat conductor portion 4B, and furthermore, heat can be efficiently transmitted from the large installation surface of the second heat conductor portion 4B to the heat sensitive portion 2. .

したがって、測定対象物Sの形状に対応させて温度センサ1を曲げる必要がなく、線接触又は点接触でも第2熱伝導体部4B及び第1熱伝導体部4Aを介して効率的に測定対象物Sの熱を感熱部2まで伝えることができることから、外気等の周囲からの熱の影響を受け難く、正確な温度測定と高い熱応答性を得ることができる。
特に、熱伝導体4が、金属で形成されているので、大きい熱伝導率を有する金属の第2熱伝導体部4B及び第1熱伝導体部4Aによって、感熱部2へのより効率的な熱伝導が可能になる。
Therefore, it is not necessary to bend the temperature sensor 1 according to the shape of the measurement target S, and the measurement target can be efficiently made via the second heat conductor portion 4B and the first heat conductor portion 4A even in line contact or point contact. Since the heat of the object S can be transmitted to the heat-sensitive portion 2, it is hardly affected by heat from the surroundings such as outside air, and accurate temperature measurement and high thermal responsiveness can be obtained.
In particular, since the heat conductor 4 is formed of a metal, the second heat conductor portion 4B and the first heat conductor portion 4A made of metal having a large heat conductivity allow more efficient heat transfer to the heat sensitive portion 2. Heat conduction becomes possible.

また、特許文献2のように単なるグラファイトシートのような熱伝導体シートの両端部に感熱部と測定対象物とを配置した場合に比べて、熱伝導体4の対向する両面(設置面と対向面4a)に感熱部2と測定対象物Sとを配置するので、感熱部2への効率的な伝熱と共に、感熱部2と測定対象物Sとの距離も近くでき、熱伝導体4からの熱の放射の影響を低減することができる。   Also, compared to a case where a heat-sensitive portion and a measurement object are arranged at both ends of a heat conductor sheet such as a mere graphite sheet as in Patent Document 2, both surfaces of the heat conductor 4 opposed to each other (facing the installation surface). Since the heat-sensitive part 2 and the measuring object S are arranged on the surface 4a), the distance between the heat-sensitive part 2 and the measuring object S can be shortened together with the efficient heat transfer to the heat-sensitive part 2, and the heat conductor 4 Can reduce the effect of heat radiation.

また、第2熱伝導体部4Bの熱容量が、第1熱伝導体部4Aの熱容量より小さいので、素早く熱が第1熱伝導体部4Aに伝わり、さらに熱応答性が向上する。
また、第1熱伝導体部4Aが、感熱部2の第1熱伝導体部4A側の表面積よりも大きい設置面を有しているので、対向面4aで受けた測定対象物Sの熱を効率的に感熱部2の表面全体に伝えることができる。
また、感熱部2が、薄膜状に形成された薄膜サーミスタ部であるので、大きい面積で熱伝導体4からの熱を受けることができると共に、バルク型サーミスタに比べて熱容量が小さいため、熱応答性をより高速化することが可能になる。
Further, since the heat capacity of the second heat conductor part 4B is smaller than the heat capacity of the first heat conductor part 4A, heat is quickly transmitted to the first heat conductor part 4A, and the heat responsiveness is further improved.
Further, since the first heat conductor portion 4A has an installation surface that is larger than the surface area of the heat sensitive portion 2 on the first heat conductor portion 4A side, the heat of the measurement target S received on the opposing surface 4a is reduced. The heat can be transmitted to the entire surface of the heat-sensitive part 2 efficiently.
Further, since the heat-sensitive portion 2 is a thin-film thermistor portion formed in a thin-film shape, it can receive heat from the heat conductor 4 in a large area, and has a smaller heat capacity than a bulk-type thermistor. Speed can be further increased.

さらに、対向面4aを除いた第1熱伝導体部4A及び第2熱伝導体部4Bの周囲を囲んだ状態で絶縁性基材5に固定され、熱伝導率が第1熱伝導体部4A及び第2熱伝導体部4Bの熱伝導率よりも小さい材料で形成された低熱伝導体部6を備えているので、対向面4aを除いた熱伝導体4の周囲から熱が熱伝導体4に伝わることを低熱伝導体部6が抑制することで、外気等の熱の影響をさらに抑制することができる。また、熱伝導体4が設置面及び対向面4a以外の面から放熱することを、熱伝導体4よりも断熱性が高い低熱伝導体部6によって抑制することができる。   Furthermore, it is fixed to the insulating base material 5 in a state surrounding the first heat conductor portion 4A and the second heat conductor portion 4B except for the opposing surface 4a, and has a heat conductivity of the first heat conductor portion 4A. And the low thermal conductor 6 formed of a material smaller than the thermal conductivity of the second thermal conductor 4B, so that heat from the periphery of the thermal conductor 4 excluding the facing surface 4a Is suppressed by the low thermal conductor portion 6, the influence of heat such as outside air can be further suppressed. Further, the heat conduction of the heat conductor 4 from the surface other than the installation surface and the facing surface 4a can be suppressed by the low heat conductor portion 6 having higher heat insulation than the heat conductor 4.

次に、本発明に係る温度センサの第2実施形態について、図3から図5を参照して以下に説明する。なお、以下の実施形態の説明において、上記実施形態において説明した同一の構成要素には同一の符号を付し、その説明は省略する。   Next, a second embodiment of the temperature sensor according to the present invention will be described below with reference to FIGS. In the following description of the embodiment, the same components as those described in the above embodiment will be denoted by the same reference numerals, and description thereof will be omitted.

第2実施形態と第1実施形態との異なる点は、第1実施形態では、熱伝導体4が金属で形成されているのに対し、第2実施形態の温度センサ21では、図3から図5に示すように、熱伝導体24が異方性熱伝導体で形成されている点である。
すなわち、第2実施形態では、第1熱伝導体部24Aが、第2熱伝導体部24Bから設置面に向かう第1の方向D1の熱伝導率が第1の方向D1に直交する少なくとも一方向の熱伝導率よりも小さい異方性熱伝導体で形成され、第2熱伝導体部24Bが、対向面24aから第1熱伝導体部24Aに向かう第2の方向D2の熱伝導率が第2の方向D2に直交する少なくとも一方向の熱伝導率よりも大きい異方性熱伝導体で形成されている。
なお、本実施形態では、第1熱伝導体部24Aの厚さ方向が、第1の方向D1となっていると共に、第2熱伝導体部24Bの厚さ方向が、第2の方向D2となっている。
The difference between the second embodiment and the first embodiment is that, in the first embodiment, the heat conductor 4 is formed of metal, whereas in the temperature sensor 21 of the second embodiment, FIG. As shown in FIG. 5, the heat conductor 24 is formed of an anisotropic heat conductor.
That is, in the second embodiment, the first thermal conductor 24A has at least one direction in which the thermal conductivity in the first direction D1 from the second thermal conductor 24B to the installation surface is orthogonal to the first direction D1. Is formed of an anisotropic heat conductor smaller than the heat conductivity of the second heat conductor portion 24B. The second heat conductor portion 24B has a heat conductivity in the second direction D2 from the facing surface 24a toward the first heat conductor portion 24A. It is formed of an anisotropic heat conductor having a thermal conductivity larger than at least one direction perpendicular to the second direction D2.
In the present embodiment, the thickness direction of the first heat conductor portion 24A is the first direction D1, and the thickness direction of the second heat conductor portion 24B is the second direction D2. Has become.

上記第1熱伝導体部24A及び第2熱伝導体部24Bは、図4に示すように、複数のグラフェンシート(グラフェン板)24bを積層したグラフェン積層体であり、第1熱伝導体部24Aのグラフェンシート24bの積層方向が、第1の方向D1であり、第2熱伝導体部24Bのグラフェンシート24bの積層方向が、第2の方向D2に直交する少なくとも一方向である。本実施形態では、図4に示すように、板状又はブロック状に積層されたグラフェン積層体の第1熱伝導体部24A及び第2熱伝導体部24Bを採用している。   As shown in FIG. 4, the first heat conductor portion 24A and the second heat conductor portion 24B are a graphene laminate in which a plurality of graphene sheets (graphene plates) 24b are laminated, and the first heat conductor portion 24A The lamination direction of the graphene sheet 24b is the first direction D1, and the lamination direction of the graphene sheet 24b of the second heat conductor portion 24B is at least one direction orthogonal to the second direction D2. In the present embodiment, as shown in FIG. 4, a first heat conductor portion 24A and a second heat conductor portion 24B of a graphene laminate stacked in a plate shape or a block shape are employed.

上記異方性熱伝導体は、熱伝導率の異方性が高く、特にグラフェン積層体では、図4に示すように、グラフェンシート24bの面、すなわちXY面内がその垂直方向に対して10倍以上大きい熱伝導率を有している。
本実施形態では、第1熱伝導体部24Aとして、図2の(a)に示すように、グラフェンシート24bの面、すなわちXY面が設置面に対して平行に積層されたグラフェン積層体を採用している。また、第2熱伝導体部24Bとして、図2の(b)(c)に示すように、グラフェンシート24bの面が設置面に対して垂直に積層されたグラフェン積層体を採用している。
The anisotropic heat conductor has a high anisotropy in thermal conductivity. In particular, in the case of a graphene laminate, as shown in FIG. It has a thermal conductivity more than twice as large.
In the present embodiment, as shown in FIG. 2A, a graphene laminate in which the surface of the graphene sheet 24b, that is, the XY surface is laminated parallel to the installation surface, is employed as the first heat conductor portion 24A. are doing. Further, as shown in FIGS. 2B and 2C, a graphene laminate in which the surface of the graphene sheet 24b is laminated perpendicular to the installation surface is employed as the second heat conductor portion 24B.

なお、図2の(b)と図2の(c)との第2熱伝導体部24Bは、対向面24aから第1熱伝導体部24Aに向かう第2の方向D2(対向面24aに対して垂直な方向)を軸にして向きを互いに90°回転させたものであり、グラフェンシート24bの面が設置面に対して垂直であればどちらの向きで設置しても構わない。
また、グラフェン積層体の熱伝導体24は、電気伝導率も大きいため、感熱部2との電気的導通を避けるため、感熱部2上に成膜した絶縁性膜3を介して感熱部2に設置している。また、熱伝導体24は、絶縁性膜3に接触状態に設置されるが、例えば熱伝導性の高い接着剤で絶縁性膜3に接着固定しても構わない。
Note that the second heat conductor portion 24B in FIG. 2B and FIG. 2C has a second direction D2 from the opposing surface 24a toward the first heat conductor portion 24A (with respect to the opposing surface 24a). The direction of the graphene sheet 24b is rotated by 90 ° with respect to the vertical direction), and the graphene sheet 24b may be installed in any direction as long as the surface is perpendicular to the installation surface.
Further, since the thermal conductor 24 of the graphene laminate has a large electric conductivity, the thermal conductor 24 is connected to the heat-sensitive part 2 via the insulating film 3 formed on the heat-sensitive part 2 in order to avoid electrical conduction with the heat-sensitive part 2. Has been installed. The heat conductor 24 is placed in contact with the insulating film 3, but may be fixed to the insulating film 3 with an adhesive having high heat conductivity, for example.

このように第2実施形態の温度センサ21では、第1熱伝導体部24Aが、第2熱伝導体24Bから設置面に向かう第1の方向D1の熱伝導率が第1の方向D1に直交する少なくとも一方向の熱伝導率よりも小さい異方性熱伝導体で形成され、第2熱伝導体部24Bが、対向面4aから第1熱伝導体部24Aに向かう第2の方向D2の熱伝導率が第2の方向D2に直交する少なくとも一方向の熱伝導率よりも大きい異方性熱伝導体で形成されているので、測定対象物Sの熱を第2熱伝導体部24B及び第1熱伝導体部24Aを介して誘導し感熱部2に伝えることができる。   As described above, in the temperature sensor 21 of the second embodiment, the first heat conductor portion 24A has a heat conductivity in the first direction D1 from the second heat conductor 24B to the installation surface orthogonal to the first direction D1. The second heat conductor 24B is formed of an anisotropic heat conductor that is smaller than at least one direction of heat conductivity, and the heat conduction in the second direction D2 from the facing surface 4a to the first heat conductor 24A. Since the conductive material is formed of an anisotropic heat conductor whose conductivity is larger than the thermal conductivity in at least one direction orthogonal to the second direction D2, the heat of the measurement target S is transferred to the second heat conductor portion 24B and the second heat conductor portion 24B. The heat can be guided to the heat-sensitive part 2 through the first heat conductor part 24A.

すなわち、測定対象物Sの熱は、対向面4aから異方性熱伝導体の第2熱伝導体部24Bに伝わると共に、第2の方向D2に優先的に誘導されて第1熱伝導体部24Aへと伝わる。異方性熱伝導体の第1熱伝導体部24Aに伝わった熱は、第1の方向D1に直交する少なくとも一方向に拡がると共に、設置面から感熱部2に伝わる。このように、測定対象物Sの熱は、異方性熱伝導体である第2熱伝導体部24Bから第1熱伝導体部24Aへと誘導的に伝熱されて感熱部2へより効率的に伝わる。   That is, the heat of the measurement target S is transmitted from the opposing surface 4a to the second heat conductor portion 24B of the anisotropic heat conductor, and is preferentially induced in the second direction D2 to be in the first heat conductor portion. It is transmitted to 24A. The heat transmitted to the first heat conductor portion 24A of the anisotropic heat conductor spreads in at least one direction orthogonal to the first direction D1, and is transmitted to the heat sensitive portion 2 from the installation surface. As described above, the heat of the measurement target S is inductively transferred from the second heat conductor portion 24B, which is an anisotropic heat conductor, to the first heat conductor portion 24A, and is more efficiently transmitted to the heat sensitive portion 2. It is transmitted.

さらに、第1熱伝導体部24Aのグラフェンシート24bの積層方向が、第1の方向D1であり、第2熱伝導体部24Bのグラフェンシート24bの積層方向が、第2の方向D2に直交する少なくとも一方向であるので、グラフェンシート24bの積層方向に比べて前記積層方向に直交する少なくとも一方向の熱伝導率が非常に大きいグラフェン積層体によって熱をより選択的に集熱かつ誘導して感熱部2に伝えることができる。   Furthermore, the laminating direction of the graphene sheet 24b of the first thermal conductor 24A is the first direction D1, and the laminating direction of the graphene sheet 24b of the second thermal conductor 24B is orthogonal to the second direction D2. Since the graphene sheet has at least one direction, the graphene laminate has a very high thermal conductivity in at least one direction perpendicular to the lamination direction compared to the lamination direction of the graphene sheets 24b, so that heat is more selectively collected and induced, and heat is received. Part 2 can be communicated.

なお、本発明の技術範囲は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiments, and various changes can be made without departing from the spirit of the present invention.

例えば、上述したように、薄膜サーミスタで形成された感熱部を採用することが好ましいが、感熱部としてバルク型サーミスタを採用しても構わない。この場合、パターン配線を形成した絶縁性基材などの基板実装だけでなく、バルク型サーミスタに電極線のみを接続したものでも構わない。   For example, as described above, it is preferable to use a heat sensitive part formed of a thin film thermistor, but a bulk type thermistor may be used as the heat sensitive part. In this case, not only the substrate mounting such as an insulating base material on which the pattern wiring is formed but also a type in which only the electrode wires are connected to the bulk type thermistor may be used.

また、第1実施形態の第1熱伝導体部及び第2熱伝導体部が同じ金属で形成されている場合は、第1熱伝導体部と第2熱伝導体部とが一体となった凸型形状の熱伝導体としても構わない。
また、第2実施形態の異方性熱伝導体として、グラフェンシートを積層したグラフェン積層体を採用したが、他の異方性熱伝導体として、グラフェン粉やBN(窒化ホウ素)等をフィラーとして含有した熱伝導性に異方性があるプラスチック基板、又は熱伝導性に異方性のある金属繊維(Al,Ni,Zn等)などを採用しても構わない。
なお、異方性熱伝導体が全体として絶縁性を有していれば、絶縁性膜を介在させずに感熱部に直接設置しても構わない。
In the case where the first heat conductor and the second heat conductor of the first embodiment are formed of the same metal, the first heat conductor and the second heat conductor are integrated. The heat conductor may have a convex shape.
Further, a graphene laminate in which graphene sheets are laminated is employed as the anisotropic heat conductor of the second embodiment, but graphene powder, BN (boron nitride), or the like is used as a filler as another anisotropic heat conductor. A plastic substrate having anisotropy in thermal conductivity or a metal fiber (Al, Ni, Zn, or the like) having anisotropy in thermal conductivity may be employed.
Note that as long as the anisotropic heat conductor has insulating properties as a whole, the anisotropic heat conductor may be directly installed on the heat-sensitive portion without an insulating film.

1,21…温度センサ、2…感熱部、3…絶縁性膜、4,24…熱伝導体、4A,24A…第1熱伝導体部、4B,24B…第2熱伝導体部、4a,24a…対向面、5…絶縁性基材、6…低熱伝導体部、24b…グラフェンシート、D1…第1の方向、D2…第2の方向、S…測定対象物   1, 21 ... temperature sensor, 2 ... heat sensitive part, 3 ... insulating film, 4, 24 ... heat conductor, 4A, 24A ... first heat conductor part, 4B, 24B ... second heat conductor part, 4a, 24a: facing surface, 5: insulating base material, 6: low thermal conductor, 24b: graphene sheet, D1: first direction, D2: second direction, S: object to be measured

Claims (8)

感熱部と、
前記感熱部に直接又は絶縁性膜を介して設置され前記感熱部よりも大きい熱伝導率を有する熱伝導体とを備え、
前記熱伝導体が、前記感熱部側に設置面を有して前記感熱部に直接又は前記絶縁性膜を介して設置された板状又はブロック状の第1熱伝導体部と、
前記第1熱伝導体部の前記設置面の反対側に設置された板状又はブロック状の第2熱伝導体部とを備え、
前記第2熱伝導体部が、前記第1熱伝導体部側とは反対側に測定対象物に対向させる対向面を有し、前記対向面が前記第1熱伝導体部の前記設置面よりも小さい面積に設定されていることを特徴とする温度センサ。
Heat sensitive part,
A heat conductor that is installed directly or via an insulating film on the heat-sensitive portion and has a higher thermal conductivity than the heat-sensitive portion,
The heat conductor, a plate-shaped or block-shaped first heat conductor portion having an installation surface on the heat-sensitive portion side and installed directly or via the insulating film on the heat-sensitive portion,
A plate-shaped or block-shaped second heat conductor portion installed on the opposite side of the installation surface of the first heat conductor portion,
The second heat conductor portion has a facing surface facing the measurement object on a side opposite to the first heat conductor portion side, and the facing surface is higher than the installation surface of the first heat conductor portion. The temperature sensor is also set to a small area.
請求項1に記載の温度センサにおいて、
前記第2熱伝導体部の熱容量が、前記第1熱伝導体部の熱容量より小さいことを特徴とする温度センサ。
The temperature sensor according to claim 1,
The heat sensor according to claim 1, wherein a heat capacity of the second heat conductor is smaller than a heat capacity of the first heat conductor.
請求項1又は2に記載の温度センサにおいて、
前記熱伝導体が、金属で形成されていることを特徴とする温度センサ。
The temperature sensor according to claim 1 or 2,
A temperature sensor, wherein the heat conductor is formed of a metal.
請求項1又は2に記載の温度センサにおいて、
前記第1熱伝導体部が、前記第2熱伝導体部から前記設置面に向かう第1の方向の熱伝導率が前記第1の方向に直交する少なくとも一方向の熱伝導率よりも小さい異方性熱伝導体で形成され、
前記第2熱伝導体部が、前記対向面から前記第1熱伝導体部に向かう第2の方向の熱伝導率が前記第2の方向に直交する少なくとも一方向の熱伝導率よりも大きい異方性熱伝導体で形成されていることを特徴とする温度センサ。
The temperature sensor according to claim 1 or 2,
The first heat conductor portion is different in that a heat conductivity in a first direction from the second heat conductor portion toward the installation surface is smaller than a heat conductivity in at least one direction orthogonal to the first direction. Formed of an isotropic heat conductor,
The second thermal conductor has a difference that a thermal conductivity in a second direction from the facing surface toward the first thermal conductor is larger than a thermal conductivity in at least one direction orthogonal to the second direction. A temperature sensor formed of an isotropic heat conductor.
請求項4に記載の温度センサにおいて、
前記第1熱伝導体部及び前記第2の熱伝導体部が、複数のグラフェンシートを積層したグラフェン積層体であり、
前記第1熱伝導体部の前記グラフェンシートの積層方向が、前記第1の方向であり、
前記第2熱伝導体部の前記グラフェンシートの積層方向が、前記第2の方向に直交する少なくとも一方向であることを特徴とする温度センサ。
The temperature sensor according to claim 4,
The first heat conductor portion and the second heat conductor portion are a graphene laminate in which a plurality of graphene sheets are laminated,
The lamination direction of the graphene sheets of the first heat conductor portion is the first direction,
The temperature sensor, wherein a direction in which the graphene sheets are stacked in the second heat conductor portion is at least one direction orthogonal to the second direction.
請求項1から5のいずれか一項に記載の温度センサにおいて、
前記第1熱伝導体部が、前記感熱部の前記第1熱伝導体部側の表面積よりも大きい前記設置面を有していることを特徴とする温度センサ。
The temperature sensor according to any one of claims 1 to 5,
The temperature sensor, wherein the first heat conductor section has the installation surface that is larger than a surface area of the heat sensitive section on the first heat conductor section side.
請求項1から6のいずれか一項に記載の温度センサにおいて、
前記感熱部が、薄膜状に形成された薄膜サーミスタ部であることを特徴とする温度センサ。
The temperature sensor according to any one of claims 1 to 6,
The temperature sensor is characterized in that the heat-sensitive portion is a thin-film thermistor portion formed in a thin film shape.
請求項1から7のいずれか一項に記載の温度センサにおいて、
前記感熱部が設けられた絶縁性基材と、
前記対向面を除いた前記第1熱伝導体部及び前記第2熱伝導体部の周囲を囲んだ状態で前記絶縁性基材に固定され、熱伝導率が前記第1熱伝導体部及び前記第2熱伝導体部の熱伝導率よりも小さい材料で形成された低熱伝導体部とを備えていることを特徴とする温度センサ。
The temperature sensor according to any one of claims 1 to 7,
An insulating base material provided with the heat-sensitive portion,
The first heat conductor portion and the second heat conductor portion excluding the facing surface are fixed to the insulating base in a state surrounding the first heat conductor portion and the second heat conductor portion. A low thermal conductor formed of a material smaller than the thermal conductivity of the second thermal conductor.
JP2018138219A 2018-07-24 2018-07-24 Temperature sensor Pending JP2020016484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018138219A JP2020016484A (en) 2018-07-24 2018-07-24 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018138219A JP2020016484A (en) 2018-07-24 2018-07-24 Temperature sensor

Publications (1)

Publication Number Publication Date
JP2020016484A true JP2020016484A (en) 2020-01-30

Family

ID=69581355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018138219A Pending JP2020016484A (en) 2018-07-24 2018-07-24 Temperature sensor

Country Status (1)

Country Link
JP (1) JP2020016484A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2151195A1 (en) * 2021-09-29 2023-03-30 Sht Smart High Tech Ab Laminated graphene-based thermally conductive film and pad and method for manufacturing the film and pad

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2151195A1 (en) * 2021-09-29 2023-03-30 Sht Smart High Tech Ab Laminated graphene-based thermally conductive film and pad and method for manufacturing the film and pad
WO2023055272A1 (en) * 2021-09-29 2023-04-06 Sht Smart High-Tech Ab Laminated graphene-based thermally conductive film and pad and method for manufacturing the film and pad
SE545194C2 (en) * 2021-09-29 2023-05-09 Sht Smart High Tech Ab Laminated graphene-based thermally conductive film and pad and method for manufacturing the film and pad

Similar Documents

Publication Publication Date Title
JP5892368B2 (en) Infrared sensor
JP5651930B2 (en) Temperature sensor
JP2011033479A (en) Temperature sensor
SE461177B (en) DEVICE FOR Saturation of thermal properties of a test substance
JP3223716B2 (en) Thermistor sensor
JP2014182073A (en) Heat flow sensor
JP2020016484A (en) Temperature sensor
JP2008002896A5 (en)
JP2020016483A (en) Temperature sensor
US9970802B2 (en) Thermal-type flow-rate sensor
JP6256690B2 (en) Non-contact temperature sensor
JP2011033358A (en) Temperature sensor
JP7205770B2 (en) Composite sensor
TWM446327U (en) Temperature sensing device of contact type
JP6422007B2 (en) Non-contact temperature sensor
JP6880484B2 (en) Temperature sensor
JP6536059B2 (en) Humidity sensor
JP5779487B2 (en) Pressure sensor module
US11828661B2 (en) Core body thermometer
JP7341595B2 (en) flow sensor
JP2013072821A (en) Infrared sensor
CN113945295B (en) Flexible thermopile sensor and method of making same
CN220606110U (en) Heating plate of film type integrated temperature sensor
WO2019181717A1 (en) Infrared sensor device
JP2016148542A (en) Temperature sensor