WO2017094368A1 - Multipoint-measurement strain sensor and production method for same - Google Patents
Multipoint-measurement strain sensor and production method for same Download PDFInfo
- Publication number
- WO2017094368A1 WO2017094368A1 PCT/JP2016/080579 JP2016080579W WO2017094368A1 WO 2017094368 A1 WO2017094368 A1 WO 2017094368A1 JP 2016080579 W JP2016080579 W JP 2016080579W WO 2017094368 A1 WO2017094368 A1 WO 2017094368A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- strain
- base film
- main surface
- layer
- routing circuit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/16—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
Definitions
- the present invention relates to a strain sensor for multipoint measurement and a manufacturing method thereof.
- sensors and cameras were installed on structures (concrete structures, steel structures, earth structures, grounds, etc.), and fixed types that are constantly monitored, and sensors and cameras were installed.
- structures concrete structures, steel structures, earth structures, grounds, etc.
- fixed types that are constantly monitored, and sensors and cameras were installed.
- the current mainstream is a fixed type.
- a strain sensor is installed in a concrete structure (tunnel wall surface, road surface, etc.) and a steel structure (bridge, etc.), and the secular change of the strain amount is monitored.
- Patent Document 1 discloses a multipoint measurement of a road surface strain where a traveling wheel of a moving body is grounded.
- the strain sensor 1 capable of multipoint measurement has a gauge base 4 having a plurality of resistance strain gauges 3 attached to the back surface of the flexible substrate 2, and a sheet shape on the surface of the flexible substrate 2.
- the sensor structure portion 6 is configured by bonding the insulating member (cover film) 5 (see FIGS. 20 and 21).
- the flexible substrate 2 includes a thin-film conductor (a routing circuit) 18 that conducts to the conductor connection portion 14a of the conductor connection portions (tabs) 14a and 14b at both ends of the strain sensing portion 13 of each resistance strain gauge 3.
- thin film conductors (leading circuits) 19 and 20 are provided which are electrically connected to the conductor connecting portion 14b.
- the sensor is such that the strain gauge 3 is located in the ground contact area of the wheel on the road surface, and the end portions 18b, 19b, 20b of the thin film conductors 18, 19, 20 are located in areas deviating from the ground contact area in the width direction of the wheel.
- the gauge base 4 of the part 6 is installed on the road surface.
- the flexible substrate 2 shown in FIGS. 20 and 21 has a two-layer structure including a first layer substrate 7 and a second layer substrate 8.
- a single layer flexible substrate may be used instead.
- a plurality of strain gauges 3 having a gauge base 12 and a strain sensing unit 13 are used, and these strain gauges 3 are attached to the surface of the gauge base 4.
- a plurality of strain sensitive portions 13 may be directly formed on the surface of 4 by photoetching or the like.
- the gauge lead wires 15a and 15b are connected to the tabs 14a and 14b at both ends of each strain sensing portion 13, respectively, and the conduction between the tab 14a and the thin film conductor 18 is achieved.
- the tab 14b and the thin film conductors 19 and 20 are electrically connected to each other through the gauge lead wires 15a and 15b, but instead of using the gauge lead wires 15a and 15b, the tabs It is also possible to conduct the electrical connection between 14a and the thin film conductor 18 and the electrical connection between the tab 14b and the thin film conductors 19 and 20.
- a gauge base 4 having a plurality of strain sensitive portions 13 and thin film conductors (leading circuits) 18, 19, and 20 corresponding to the strain sensitive portions 13 are provided. Displacement occurs when the flexible substrate 2 is bonded to each other, resulting in poor continuity between the conductive wire connecting portions 14a and 14b at both ends of the strain sensing portion 13 and the thin film conductors (route circuits) 18, 19, and 20 of the flexible substrate 2. There was a problem of waking up. Moreover, since there are many layer structures, there also existed a problem that material cost and by extension manufacturing cost became high.
- an object of the present invention is to provide a strain sensor for multipoint measurement and a method for manufacturing the same which can reduce a material cost without causing a conduction failure due to misalignment at the time of bonding.
- the first aspect of the present invention includes a base film, a plurality of strain sensitive portions formed on the first main surface of the base film, and the base film.
- a two-layer routing circuit formed on the first main surface corresponding to each of the strain sensitive parts and having an external connection terminal near the outer edge of the base film, and the lower layer of the routing circuit is Provided is a strain sensor for multipoint measurement which is made of the same material as that of the strain sensitive part and the upper layer of the routing circuit is made of a material whose resistance is lower than that of the strain sensitive part.
- the second aspect of the present invention is an insulating cover layer formed on the first main surface of the base film so as to cover the strain sensitive part and the routing circuit except for the external connection terminal part.
- a strain sensor for multipoint measurement according to a first aspect further comprising: a conductive terminal protective layer formed to cover the external connection terminal portion of the routing circuit.
- the 3rd aspect of this invention is a base film, the some 1st distortion
- a first routing circuit of a two-layer configuration having an external connection terminal part in the vicinity of the outer edge of the base film, A plurality of second strain sensitive portions that are axially different from each of the first strain sensitive portions, and formed on the second main surface of the base film in correspondence with the second strain sensitive portions,
- a second routing circuit having a two-layer configuration having an external connection terminal near the outer edge of the material film, and the lower layer of the first and second routing circuits is the same material as the first and second strain sensing parts
- the upper layers of the first and second routing circuits are connected to the first and second strain receivers.
- the 4th aspect of this invention is the insulating property formed in the 1st main surface of the said base film, covering the said 1st distortion
- the first cover layer, the conductive first terminal protective layer formed to cover the external connection terminal portion of the first routing circuit, and the external connection terminal portion on the second main surface of the base film Insulating second cover layer formed to cover the second strain sensing part and the second routing circuit, and conductivity formed to cover the external connection terminal part of the second routing circuit
- the fifth aspect of the present invention provides the strain sensor for multipoint measurement according to any one of the first to fourth aspects, further comprising a lead wire mounted on the external connection terminal portion.
- a sixth aspect of the present invention is a method for manufacturing the strain sensor according to the first aspect, wherein the step of laminating two metal layers on the first main surface of the base film and the etching method, Forming a conductive pattern having a two-layer configuration in the shape of a plurality of strain-sensitive portions from a metal layer, and a routing circuit having a two-layer configuration corresponding to each of the conductive patterns, and the shape of the strain-sensitive portions
- a method of manufacturing a strain sensor for multi-point measurement is provided, which includes only a conductive layer having a two-layer structure, and a step of removing the upper metal layer by an etching method to obtain the strain sensitive part.
- the seventh aspect of the present invention is the method for manufacturing the strain sensor according to the first aspect, wherein the step of laminating one metal layer on the first main surface of the base film and the etching method, Only a process of forming a plurality of strain sensitive parts from the metal layer and a conductive pattern having the shape of the routing circuit corresponding to each strain sensitive part, and a conductive pattern having the shape of the routing circuit are printed.
- a method of manufacturing a strain sensor for multipoint measurement comprising the step of laminating another metal layer by a method to obtain the routing circuit having a two-layer structure.
- an eighth aspect of the present invention is a method for manufacturing a strain sensor according to the third aspect, wherein a step of laminating two metal layers on the first main surface and the second main surface of the base film, respectively.
- the two-layered conductive pattern in the shape of a plurality of the first strain sensitive parts from the metal layer on the first main surface side by the etching method, and the first of the two-layered structure corresponding to each of the conductive patterns Forming a routing circuit, and simultaneously forming a plurality of second strain sensing portions in the shape of a plurality of second strain sensing portions from the metal layer on the second main surface side, and the two-layer configuration corresponding to each of the conductive patterns Only for the step of forming the second routing circuit and the two-layered conductive pattern in the shape of the first and second strain sensing parts, the upper metal layer is removed by etching to remove the first and second conductive circuits.
- a step of obtaining a second strain sensing part To provide a method of manufacturing a strain sensor for measuring.
- the plurality of strain sensitive portions and the routing circuits corresponding to the strain sensitive portions are provided on the same surface of the same base film. Therefore, no bonding is required for connection between the strain sensing part and the routing circuit. Accordingly, there is no conduction failure between the strain sensing part and the routing circuit due to the deviation at the time of bonding. Further, since the number of layers constituting the strain sensor can be reduced, the material cost and thus the manufacturing cost can be reduced.
- Sectional drawing which attached the lead wire to the sensor structure part of the strain sensor of 1st, 3rd embodiment of this invention Sectional drawing which shows the lamination
- Sectional drawing which shows the external shape processing process of the strain sensor of 1st, 3rd and 4th embodiment of this invention.
- the top view which shows another formation example (2nd Embodiment) of a routing circuit Sectional drawing which shows the lamination
- Sectional drawing which shows the patterning process of the strain sensor of 3rd Embodiment of this invention.
- Sectional drawing which shows the routing circuit formation process of 3rd Embodiment of this invention.
- the top view which looked at the sensor structure part of the strain sensor of 4th Embodiment of this invention from the 2nd main surface side of the base film. Sectional drawing which attached the lead wire to the sensor structure part of the strain sensor of 4th Embodiment of this invention.
- a plan view showing an example of a sensor structure of a conventional strain sensor 20 is an exploded perspective view of a part of the sensor structure shown in FIG.
- the strain sensor 31 includes a base film 34 and a plurality of resistance-type strain sensing units 33 (hereinafter referred to as the first main surface 34 a) formed on the base film 34. , Simply referred to as a strain sensitive portion 33) and formed on the first main surface 34a of the base film 34 corresponding to each strain sensitive portion 33, and external connection terminal portions 37b, 38b near the outer edge of the base film 34. And a sensor structure 36 having a two-layer routing circuit 37, 38. The entire sensor structure 36 is formed in a thin square plate shape, and the strain sensitive part 33 side of the base film 34 is in close contact with the structure. In FIG. 2, the sensor structure 36 is shown thick for the sake of illustration and explanation.
- the base film 34 is made of an insulating material such as polyester (PET), polyimide amide (AI), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyimide (PI), polytetrafluoroethylene (PTFE). And a flexible film.
- the thickness of the base film 34 is appropriately selected according to the use of the strain sensor 31. Specifically, a base film 34 having a thickness of 1 ⁇ m to 300 ⁇ m can be employed. If the thickness exceeds the upper limit, strain sensitivity decreases. This is because exceeding the lower limit tends to cause breakage during strain.
- the first main surface 34a of the base film 34 is provided with a plurality of strain sensing portions 33 as shown in FIGS.
- the strain sensitive portions 33 are arranged in a grid of 8 rows ⁇ 5 columns in plan view, and the length direction (axial direction) of the strain sensitive portions 33 is along the same direction.
- the strain sensor 31 has a reduced cross-sectional area and an increased length due to the stretching of the metal constituting the main body 33c of each strain-sensitive part 33.
- the strain amount of the object to be measured is measured by utilizing the fact that the length is reduced as the area is increased and the resistance value is reduced as a result.
- the main body 33 c of the strain sensing portion 33 is connected by a connecting portion in which a plurality of strip-like portions arranged in parallel at regular intervals extend in the width direction between ends.
- One resistor that is, the main body 33c of the strain sensing unit 33 has a zigzag shape in which a single band-like body is folded back multiple times at regular intervals. Both ends of the bent main body 33c are connected to one end portions of two-layer routing circuits 37 and 38 via wirings 33d and 33e. It is preferable that the width of the main body 33c of the strain sensing unit 33 is small so that the rate of change in resistance value can be easily detected.
- the wiring 33d of the strain sensing unit 33 has a large width so that the ratio of the resistance value of the wiring 33d to the resistance value of the entire strain sensing unit 33 is small. Further, the strain sensing unit 33 can be directly connected to the routing circuits 37 and 38 having a two-layer structure (not shown) by omitting the wirings 33d and 33e.
- each strain sensing part 33 is not particularly limited as long as the main body 33c functions as a resistor.
- An alloy, a nickel chromium alloy, a copper manganese alloy, an iron chromium alloy, etc. can be mentioned.
- a copper nickel alloy, a nickel chromium alloy, a copper manganese alloy, and an iron chromium alloy are preferable from the viewpoint of resistance value and linear expansion coefficient.
- each strain sensing part 33 is formed directly on the base film 34 as shown in FIG.
- the strain sensitive part 33 can be formed by patterning a film made of the above material by an etching method.
- the thickness of each strain sensing part 33 is preferably 0.1 ⁇ m to 100 ⁇ m. This is because when the thickness exceeds the upper limit, the strain sensitivity decreases, and when the thickness exceeds the lower limit, the film is easily broken at the time of strain.
- a plurality of routing circuits 37 and 38 having a two-layer structure are provided on the first main surface 34a of the base film 34.
- the number of the routing circuits 37 and 38 having the two-layer configuration is the same as the number of the strain sensing units 33, and each routing circuit 37 and 38 is associated with each strain sensing unit 33. ing.
- the materials of the lower layers 37L and 38L of the two-layer routing circuits 37 and 38 are the same as those of the strain sensing part 33, and the materials of the upper layers 37U and 38U are copper (Cu) and silver (Ag). Gold (Au), aluminum (Al), or the like can be used, but a conductor having a sufficiently smaller specific resistance than the strain sensing part 33 is appropriately selected. That is, the strain sensing part 33 and the lower layers 37L and 38L of the routing circuits 37 and 38 having a two-layer structure are continuously formed of the same material.
- the routing circuits 37 and 38 are directly formed on the base film 34 as shown in FIG.
- the routing circuits 37 and 38 can be formed by patterning a metal film having a two-layer structure made of the above-described material by an etching method.
- the thickness of each routing circuit 37, 38 is preferably 0.1 ⁇ m to 100 ⁇ m. This is because when the thickness exceeds the upper limit, the strain sensitivity decreases, and when the thickness exceeds the lower limit, the film is easily broken at the time of strain.
- the other end portions (external connection terminal portions) 37 b and 38 b of the routing circuits 37 and 38 are provided near one side of the base film 34.
- the routing circuits 37 and 38 extend on the first main surface of the base film 34 between the strain sensing part 33 and the external connection terminal part 37b, and between the strain sensing part 33 and the external connection terminal part 38b. Is provided. More specifically, as shown in FIG. 1, it is provided mainly extending along the length direction of the plurality of strip portions in the main body 33 c of each strain sensing portion 33. Further, the other end portions (external connection terminal portions) 37b and 38b of the routing circuits 37 and 38 are arranged in a bundle in several bundles in the longitudinal direction (vertical direction in FIG. 1) of the base film 34. Of course, all of them may be arranged in one bundle.
- the circuit 37, 38 is electrically connected to both ends of each strain sensing part 33 one by one.
- Two routing circuits may be connected to one of both ends of the strain sensing unit 33 (not shown).
- the plurality of strain sensing portions 33 and the routing circuits 37 and 38 corresponding to each strain sensing portion 33 are provided on the same surface of the same base film 34. Bonding is not required for connection between the strain sensing unit 33 and the routing circuits 37 and 38. Therefore, there is no conduction failure between the strain sensing part 33 and the routing circuits 37 and 38 due to the deviation at the time of bonding. Further, since the number of layers constituting the strain sensor 31 can be reduced, the material cost and thus the manufacturing cost can be reduced.
- each strain sensing part 33 and each routing circuit 37, 38 are provided with the exception of the external connection terminal parts 37b, 38b from the viewpoint of preventing deterioration due to oxidation, sulfurization, or migration (electric corrosion). You may make it cover with the insulating cover layer 63.
- FIG. As a method for forming the cover layer 63, a cover film such as a laminator or a hot press, or a printing method such as screen printing can be used.
- thermosetting resins such as a urethane resin, a polyamide resin, an acrylic resin, and a polyimide resin, by predetermined thickness, and making it harden
- the terminal protective layer 45 may be formed so as to cover the other end portions (external connection terminal portions) 37b and 38b of the routing circuits 37 and 38.
- As a method for forming the terminal protective layer 45 nickel base gold plating, solder plating, or the like can be used.
- a lead wire 47 such as an FPC (Flexible Printed Circuit) connected to the measuring device is mounted directly or via the terminal protective layer 45 on the external connection terminal portions 37b and 38b of the routing circuit.
- FPC Flexible Printed Circuit
- an FPC has a structure in which a plurality of wiring patterns are formed of gold-plated copper foil on a base film made of polyimide, and an unnecessary portion of each wiring pattern is covered with a coverlay made of polyimide. ing.
- an anisotropic conductive film (ACF; Anisotropic Conductive Film) or an anisotropic conductive adhesive (ACA; Anisotropic Conductive Adhesive) 46 or the like is used.
- a thermocompression bonding method using an adhesive material or the like can be used.
- the terminal protection layer 45 is provided from the viewpoint of preventing deterioration due to oxidation, sulfurization or migration of the external connection terminal portions 37b and 38b of the routing circuit.
- the external connection terminal portions 37b and 38b and the lead wire 47 are electrically connected. It has conductivity so that it can be connected.
- As a material of the terminal protective layer 45 for example, Ni base Au plating, solder plating, or the like can be used.
- a plating method is used to form the terminal protective layer 45 made of Ni base Au plating and solder plating. The plating method is also used to form the Ni layer that serves as the base of the Au plating.
- the strain sensor 31 of the present embodiment When measuring strain of a structure, for example, a concrete structure of a tunnel or a steel structure of a bridge, by the strain sensor 31 of the present embodiment, out of both surfaces in the thickness direction of the base film 34 of the sensor structure 36, The surface on the strain sensing part 33 side is made to face the structure, and the sensor structure part 36 is brought into close contact with the structure by an adhesive interposed between the sensor structure part 36 and the structure.
- the manufacturing method of the strain sensor for multipoint measurement of this embodiment is as follows. (1) a step of laminating two metal layers on the first main surface of the base film; (2) A two-layered conductive pattern in which a plurality of strain-sensitive parts are formed from a metal layer by an etching method, and a two-layered structure corresponding to the conductive pattern in the shape of the strain-sensitive parts. Forming a routing circuit; (3) The step of removing the upper metal layer by an etching method and obtaining the strain sensitive part only for the conductive pattern having a two-layer structure in the shape of the strain sensitive part is provided.
- the manufacturing method of the strain sensor for multipoint measurement includes the steps (1) to (3) or the steps (1) to (5).
- the laminating step is a step of sequentially laminating two metal layers, that is, a first metal layer 48 and a second metal layer 49 on the first main surface 34a of the base film 34 (see FIG. 3).
- the base film 34 is a single wafer or a long one that supports the first metal layer 48 and the second metal layer 49.
- the material of the base film 34 is, for example, insulation such as polyester (PET), polyimide amide (AI), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyimide (PI), polytetrafluoroethylene (PTFE), etc.
- a film made of a sex material can be used.
- the substrate film 34 to be used may have a thickness of 1 ⁇ m to 100 ⁇ m.
- the first metal layer 48 is for forming the strain sensing part 33 and the lower layers 37L, 38L of the routing circuits 37, 38.
- the material of the first metal layer 48 is not particularly limited as long as the main body 33c of the strain sensing part 33 functions as a resistor.
- a copper nickel alloy, a nickel chromium alloy, a copper manganese alloy, and an iron chromium alloy are preferable from the viewpoint of resistance value and linear expansion coefficient.
- the method for forming the first metal layer 48 is not particularly limited.
- the first metal layer 48 can be formed by bonding a metal foil by hot pressing, a vacuum deposition method, a sputtering method, an ion plating method, a plating method, or the like.
- the second metal layer 49 is for forming the upper layers 37U, 38U of the routing circuits 37, 38.
- the material of the second metal layer 49 can be copper (Cu), silver (Ag), gold (Au), aluminum (Al), or the like, but a conductor having a sufficiently lower specific resistance than the first metal layer 48 is used. Select as appropriate.
- the method for forming the second metal layer 49 is not particularly limited, and for example, as with the second metal layer 49, for example, metal foil bonding by hot pressing, vacuum deposition, sputtering, ion plating, plating method Etc. can be formed.
- the patterning step is performed by etching using a two-layered conductive pattern having the shape of the plurality of strain sensitive portions 33 from the first metal layer 48 and the second metal layer 49 described above, and the strain sensitive portion 33.
- This is a step of forming the routing circuit 33 having a two-layer structure corresponding to each of the shaped conductive patterns (see FIG. 4).
- a resist film having a shape corresponding to the conductive pattern to be formed is stacked on the surfaces of the first metal layer 48 and the second metal layer 49, and the stacked body is immersed in an etching solution to form each conductive pattern. Thereafter, the resist film remaining on the patterned first metal layer 48 and second metal layer 49 is completely removed with a resist stripping solution to expose the entire surfaces of the first metal layer 48 and the second metal layer 49. .
- a photosensitive resin composition such as a dry film resist or a liquid resist is applied, and an electron beam or light (ultraviolet light) is applied to the photosensitive resin film through a mask. Is exposed to a predetermined shape. Next, a portion unnecessary to be brought into contact with the developer is dissolved and removed.
- the photosensitive resin includes a negative type in which an exposed part is insoluble in a developer and a positive type in which an exposed part is soluble in a developer.
- printing methods such as screen printing, can also be used.
- the strain sensitive part forming step only the two-layered conductive pattern having the shape of the strain sensitive part 33 is removed by removing the upper metal layer, that is, the second metal layer 49 by an etching method.
- the second metal layer 49 is removed by immersion in an etching solution, and a conductive pattern consisting only of the first metal layer 48, that is, the strain sensing part 33. Get. Thereafter, the remaining resist film covering the routing circuit 33 is completely removed with a resist stripping solution, and the entire surface of the routing circuit 33 is exposed.
- the formation of the resist film is the same as in the previous step.
- a plurality of strain sensitive portions 33 formed on the first main surface 34 a of the base film 34 and the first main surface 343 a of the base film 34 correspond to each strain sensitive portion 33.
- two layers of routing circuits 37 and 38 having external connection terminal portions 37b and 38b in the vicinity of the outer edge of the base film 34, and the lower layers 37L and 38L of the routing circuits 37 and 38 are subjected to strain reception. It is made of the same material as that of the sensing part 33, and the upper layers 37U and 38U of the routing circuits 37 and 38 are made of a material having a lower resistance than the strain sensing part 33.
- the base film 34 is elongate, the two or more said sensor structure parts 36 are formed continuously.
- the cover layer forming step is a step of covering the strain sensing part 33 and the routing circuits 37 and 38 with an insulating cover layer 63 except for the external connection terminal parts 37b and 38b (see FIG. 6).
- a cover film such as a laminator or a hot press, or a printing method such as screen printing can be used.
- thermosetting resins such as a urethane resin, a polyamide resin, an acrylic resin, and a polyimide resin, by predetermined thickness, and making it harden
- the routing circuits 37 and 38 excluding the strain sensing part 33 and the external connection terminal parts 37b and 38b can be protected from deterioration caused by oxidation, sulfurization or migration.
- the lead wire connection terminal protective layer forming step In the lead wire connection terminal protective layer forming step, the other end portions (external connection terminal portions) 37b and 38b of the routing circuits 37 and 38, that is, the portions that are not covered with the cover layer 63 and are exposed can be electrically connected to the lead wire 47. This is a step of covering with a new material to protect against deterioration caused by oxidation, sulfurization or migration (see FIG. 7).
- nickel base gold plating, solder plating, or the like can be used as a method for forming the terminal protective layer 45.
- the outer shape is further processed so as to be separated into individual sensor structure portions 36 (see FIG. 8). ).
- a punching press, a laser cut, etc. can be used as a method of external shape processing.
- the lead wire mounting step is a step of mounting the lead wire 47 on the external connection terminal portions 37b and 38b of the routing circuits 37 and 38 with respect to the sensor structure portion 36 via the terminal protective layer 45 (see FIGS. 1 and 2).
- a mounting method of the lead wire 47 for example, when the lead wire 47 is FPC, a thermocompression bonding method using a conductive adhesive substance such as an anisotropic conductive film or an anisotropic conductive adhesive 46 is used. it can. Note that the lead wire 47 can be directly mounted on the external connection terminal portions 37b and 38b by omitting the step of forming the terminal protective layer 45.
- a plurality of strain sensitive portions and a routing circuit corresponding to each strain sensitive portion are provided on the same surface of the same base film, thereby obtaining a strain sensor.
- a bonding step is not required for connection between the strain sensing part and the routing circuit. Accordingly, there is no conduction failure between the strain sensing part and the routing circuit due to the deviation at the time of bonding.
- the alignment accuracy between the strain sensitive portion and the routing circuit is higher. Further, since the number of layers constituting the strain sensor can be reduced, the material cost and thus the manufacturing cost can be reduced.
- This embodiment is the same as the first embodiment except that the formation directions of the routing circuits 37 and 38 are different, and a description of common parts is omitted. That is, the routing circuits 37 and 38 of the invention according to the present embodiment are provided so as to extend along the width direction of the plurality of strips in the main body 33c of each strain sensing part 33, as shown in FIG. Yes. In this case, since the circuits 37 and 38 do not hinder the stretching / compression in the length direction of the metal constituting the band-shaped portion of each strain sensing portion 33, more accurate strain measurement can be performed.
- the present embodiment is the same as the first embodiment except that the method of forming the strain sensing part and the routing circuit is different in the method of manufacturing the strain sensor for multipoint measurement, and the description of the common parts is omitted.
- the manufacturing method of the strain sensor according to the present embodiment is as follows: (1A) laminating one metal layer, that is, the first metal layer 48 on the first main surface 34a of the base film 34 (see FIG. 10); (2A) A step of forming a plurality of strain sensitive portions 33 and conductive patterns in the shape of routing circuits 37 and 38 corresponding to each strain sensitive portion 33 from the first metal layer 48 by an etching method ( FIG. 11) (3A) Steps for obtaining the routing circuits 37 and 38 having a two-layer structure by laminating another metal layer, that is, the second metal layer 49 only by using the printing method only for the conductive patterns in the shape of the routing circuits 37 and 38 (FIG. 12). Further, at least one of the steps (4), (5) and (6) described in the first embodiment may be added to the above steps (1A) to (3A).
- a strain sensor manufacturing method as in the first embodiment, a plurality of strain sensitive portions and routing circuits corresponding to the strain sensitive portions are provided on the same surface of the same base film. A strain sensor is obtained. Further, since the number of layers constituting the strain sensor can be reduced, the material cost and thus the manufacturing cost can be reduced. Further, since etching is not performed in two stages, there is an advantage that the selection range of the etchant (etching solution) is widened.
- the strain sensor 31 of the present embodiment includes a base film 34 and a plurality of first strain sensing portions formed on the first main surface 34 a of the base film 34. 133 and a first main surface 34a of the base film 34 corresponding to each first strain sensing portion 133, and having a two-layer configuration having external connection terminal portions 137b and 138b in the vicinity of the outer edge of the base film 34.
- a sensor structure 36 having first routing circuits 137 and 138 is provided.
- the sensor structure 36 is formed on the second main surface 34b of the base film 34, and a plurality of second strain sensitive parts 233 having different axial directions from the first strain sensitive parts 133, and the base film.
- a second routing circuit 237 having a two-layer structure formed on the second main surface 34b corresponding to each second strain sensing part 233 and having external connection terminal parts 237b, 238b in the vicinity of the outer edge of the base film 34. 238, and a sensor structure portion 36 having 238.
- the sensor structure part 36 is configured in a thin rectangular plate shape as a whole, and the first strain sensitive part 133 side or the second strain sensitive part 233 side of the base film 34 is in close contact with the structure.
- the sensor structure 36 is shown thick for convenience of illustration and description.
- the first strain sensing unit 133 is the same as the strain sensing unit 33 of the first embodiment, and is arranged in a grid of 8 rows ⁇ 5 columns in plan view. In both cases, the length direction (axial direction) of the strain sensing part 133 is along the same direction.
- the second strain sensing unit 233 is the same as the strain sensing unit 33 of the first embodiment, but has a grid shape of 3 rows ⁇ 8 columns in plan view. In any case, the length direction (axial direction) of the strain sensing unit 233 is orthogonal to the length direction (axial direction) of the strain sensing unit 133.
- the number of the first routing circuits 137 and 138 is the same as the number of the corresponding first strain sensing units 133, and the routing circuits are connected to the individual strain sensing units 133. 137 and 138 are associated one by one.
- the first routing circuits 137 and 138 are the same as the routing circuits 37 and 38 of the first embodiment.
- the lengths of the plurality of strip portions in the main body 233c of each strain sensing portion 133 are mainly used. It is provided extending along the direction.
- the number of second routing circuits 237 and 238 is the same as the number of the corresponding second strain sensing units 233, and each strain sensing unit 233 includes The routing circuits 237 and 238 are associated one by one.
- the second routing circuits 237 and 238 are the same as the routing circuits 37 and 38 of the first embodiment.
- the lengths of a plurality of strip portions in the main body 133c of each strain sensing portion 233 are mainly used. It extends along a direction orthogonal to the vertical direction.
- the external connection terminal portions 237b and 238b of the second routing circuits 237 and 238 can be aligned on one side when the external connection terminal portions 137b and 138b of the first routing circuits 137 and 138 are provided.
- the extending direction of the second routing circuits 237 and 238 shown in FIG. 13 is an example, and, like the routing circuits 37 and 38 of the first embodiment, a plurality of strip-like portions in the main body 233c of each strain sensing portion 233 are used. It can also be provided extending along the length direction.
- the manufacturing method of the strain sensor for multipoint measurement of this embodiment is as follows. (1B) Step of laminating two metal layers, that is, the first metal layer 48 and the second metal layer 49 in this order on the first main surface 34a and the second main surface 34b of the base film 34 ( FIG.
- the first main surface 34a of the base film except for the external connection terminal portions 137b and 138b covers the first strain sensing portion 133 and the first routing circuits 137 and 138, and has an insulating first. 1 cover layer 43 is formed, and on the other hand, the second main surface 34b is excluded from the external connection terminal portions 237b and 238b, and covers the second strain sensing portion 233 and the second routing circuits 237 and 238. Forming the second cover layer 44 (see FIG.
- a conductive first terminal protective layer 64 is formed so as to cover the external connection terminal portions 137b and 138b of the first routing circuits 137 and 138, while the external connection of the second routing circuits 237 and 238 is performed.
- a step of covering the terminal portions 237b and 238b and forming the conductive second terminal protective layer 65 (see FIG. 19).
- the method for manufacturing a strain sensor for multipoint measurement includes steps (1B) to (3B) or steps (1B) to (5B).
- the method may further include a step of mounting the lead wire 47 on the external connection terminal portions 137b, 138b, 237b, 238b of the first and second routing circuits 137, 138, 237, 238 (see FIG. 14). .
- a plurality of strain sensitive portions and routing circuits corresponding to the strain sensitive portions are provided on the same surface of the same base film.
- a strain sensor is obtained. Further, since the number of layers constituting the strain sensor can be reduced, the material cost and thus the manufacturing cost can be reduced.
- a plurality of strain sensitive portions are provided on both surfaces of the base film 34, and the direction of the strain sensitive portions is changed between the front and back sides, thereby measuring the strain amount in a plurality of directions in the measured object. can do.
- all the strain sensing portions 33 align the above-described sensing directions in one direction within the same plane.
- the present invention is not limited to this.
- two strain sensitive sections 33 in two directions may be mixed at right angles in the same plane, and further, two strain sensitive sections 33 in two right angles and 45 degrees may be mixed (not shown). )
- the direction of the plurality of strain sensing sections 33 By changing the direction of the plurality of strain sensing sections 33, the amount of strain in a plurality of directions in the object to be measured can be measured.
- the sensor structure 36 is connected to an external measuring instrument using the lead wire 47, but the external connection method is not limited to this.
- a transmission device may be provided in the sensor structure 36 and the measured output value may be wirelessly transmitted to the measuring instrument.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
[Problem] To provide a multipoint-measurement strain sensor that is without conduction defects caused by slippage during lamination and that can reduce materials costs, and to provide a production method for the multipoint-measurement strain sensor. [Solution] This multipoint-measurement strain sensor 31 comprises: a substrate film 34; a plurality of strain-sensing parts 33 that are formed on a first main surface 34a of the substrate film 34; and two-layer routing circuits 37, 38 that are formed on the first main surface 34a of the substrate film 34 to correspond to each of the stain-sensing parts 33 and that have an outer connection terminal part 37b, 38b that is near an outer edge of the substrate film 34. Lower-layer paths 37L, 38L of the routing circuits 37, 38 comprise the same material as the strain-sensing parts 33, and upper-layer paths 37U, 38U of the routing circuits 37, 38 comprise a material that has a lower resistance than the strain-sensing parts.
Description
本発明は、多点計測用のひずみセンサとその製造方法に関する。
The present invention relates to a strain sensor for multipoint measurement and a manufacturing method thereof.
高度成長期に整備された社会インフラの老朽化問題に関して、適切な維持管理手法の導入により長寿命化、維持管理・更新のトータルコストの縮減・平準化を図ることが課題となっており、センサ、IT等を活用した社会インフラの状態の効率的な把握を可能とするモニタリング技術の開発推進が期待されている。
With regard to the aging problem of social infrastructure that was developed during the high growth period, it has become a challenge to extend the service life, reduce the total cost of maintenance and renewal, and level it by introducing appropriate maintenance methods. It is expected to promote the development of monitoring technology that enables efficient understanding of the state of social infrastructure using IT.
モニタリング技術の計測形態としては、センサやカメラ等を構造物(コンクリート構造物・鋼構造物・土構造・地盤・その他)に設置した上で常時監視する固定型と、センサやカメラ等を設置した移動体(車両等)を用いて定期監視する移動型とがあるが、現在の主流は固定型である。固定型の代表例としては、コンクリート構造物(トンネル壁面・路面等)および鋼構造物(橋梁等)にひずみセンサを設置し、ひずみ量の経年変化をモニタリングするものが挙げられる。
As a measurement form of the monitoring technology, sensors and cameras were installed on structures (concrete structures, steel structures, earth structures, grounds, etc.), and fixed types that are constantly monitored, and sensors and cameras were installed. Although there is a mobile type that regularly monitors using a moving body (vehicle or the like), the current mainstream is a fixed type. As a typical example of the fixed type, a strain sensor is installed in a concrete structure (tunnel wall surface, road surface, etc.) and a steel structure (bridge, etc.), and the secular change of the strain amount is monitored.
このような固定型のモニタリング技術に用いられるひずみセンサとしては、例えば、特許文献1に移動体の走行用の車輪を接地させる路面のひずみを多点計測するものが開示されている。この多点計測可能なひずみセンサ1は、具体的には、フレキシブル基板2の裏面に、複数の抵抗式ひずみゲージ3を貼り付けたゲージベース4を貼り合せ、さらにフレキシブル基板2の表面にシート状絶縁部材(カバーフィルム)5を貼り合せることでセンサ構造部6が構成される(図20、図21参照)。フレキシブル基板2には、各抵抗式ひずみゲージ3のひずみ受感部13の両端部の導線接続部(タブ)14a,14bのうちの導線接続部14aに導通する薄膜状導体(引き回し回路)18と、導線接続部14bに導通する薄膜状導体(引き回し回路)19,20とが設けられている。ひずみゲージ3が路面のうちの車輪の接地領域に位置し、薄膜状導体18,19,20の端部18b,19b,20bが接地領域から車輪の幅方向で逸脱する領域に位置するようにセンサ部6のゲージベース4が路面に設置される。
As a strain sensor used for such a fixed type monitoring technique, for example, Patent Document 1 discloses a multipoint measurement of a road surface strain where a traveling wheel of a moving body is grounded. Specifically, the strain sensor 1 capable of multipoint measurement has a gauge base 4 having a plurality of resistance strain gauges 3 attached to the back surface of the flexible substrate 2, and a sheet shape on the surface of the flexible substrate 2. The sensor structure portion 6 is configured by bonding the insulating member (cover film) 5 (see FIGS. 20 and 21). The flexible substrate 2 includes a thin-film conductor (a routing circuit) 18 that conducts to the conductor connection portion 14a of the conductor connection portions (tabs) 14a and 14b at both ends of the strain sensing portion 13 of each resistance strain gauge 3. Further, thin film conductors (leading circuits) 19 and 20 are provided which are electrically connected to the conductor connecting portion 14b. The sensor is such that the strain gauge 3 is located in the ground contact area of the wheel on the road surface, and the end portions 18b, 19b, 20b of the thin film conductors 18, 19, 20 are located in areas deviating from the ground contact area in the width direction of the wheel. The gauge base 4 of the part 6 is installed on the road surface.
なお、特許文献1には多様な実施態様が開示されており、例えば、図20、図21に示すフレキシブル基板2は第1層基板7と第2層基板8とからなる2層構造のものであるが、この代わりに単層のフレキシブル基板を使用してもよい。また、図21にはゲージベース12およびひずみ受感部13を有する複数のひずみゲージ3を使用し、これらのひずみゲージ3をゲージベース4の表面に貼り付けているが、この代わりに、ゲージベース4の表面に複数のひずみ受感部13をフォトエッチングなどにより直接的に形成してもよい。さらに、図20、図21では、各ひずみ受感部13の両端部のタブ14a,14bにそれぞれゲージリード線15a,15bを結線するようにして、タブ14aと薄膜状導体18との導通、並びに、タブ14bと薄膜状導体19,20との導通をそれらのゲージリード線15a,15bを介して行なうようにしているが、これに代えて、ゲージリード線15a,15bを使用せずに、タブ14aと薄膜状導体18との導通、並びに、タブ14bと薄膜状導体19,20との導通を行なうようにすることも可能である。
Various embodiments are disclosed in Patent Document 1. For example, the flexible substrate 2 shown in FIGS. 20 and 21 has a two-layer structure including a first layer substrate 7 and a second layer substrate 8. Alternatively, a single layer flexible substrate may be used instead. In FIG. 21, a plurality of strain gauges 3 having a gauge base 12 and a strain sensing unit 13 are used, and these strain gauges 3 are attached to the surface of the gauge base 4. A plurality of strain sensitive portions 13 may be directly formed on the surface of 4 by photoetching or the like. Further, in FIGS. 20 and 21, the gauge lead wires 15a and 15b are connected to the tabs 14a and 14b at both ends of each strain sensing portion 13, respectively, and the conduction between the tab 14a and the thin film conductor 18 is achieved. The tab 14b and the thin film conductors 19 and 20 are electrically connected to each other through the gauge lead wires 15a and 15b, but instead of using the gauge lead wires 15a and 15b, the tabs It is also possible to conduct the electrical connection between 14a and the thin film conductor 18 and the electrical connection between the tab 14b and the thin film conductors 19 and 20.
しかしながら、特許文献1に記載のひずみセンサでは、複数のひずみ受感部13を有するゲージベース4と、各ひずみ受感部13に対応する薄膜状導体(引き回し回路)18,19,20が設けられたフレキシブル基板2との貼り合せ時にズレが生じ、ひずみ受感部13の両端部の導線接続部14a,14bと、フレキシブル基板2の薄膜状導体(引き回し回路)18,19,20との導通不良を起こすという問題があった。また、層構成が多いため、材料費、ひいては製造コストが余計が高くなるという問題もあった。
However, in the strain sensor described in Patent Document 1, a gauge base 4 having a plurality of strain sensitive portions 13 and thin film conductors (leading circuits) 18, 19, and 20 corresponding to the strain sensitive portions 13 are provided. Displacement occurs when the flexible substrate 2 is bonded to each other, resulting in poor continuity between the conductive wire connecting portions 14a and 14b at both ends of the strain sensing portion 13 and the thin film conductors (route circuits) 18, 19, and 20 of the flexible substrate 2. There was a problem of waking up. Moreover, since there are many layer structures, there also existed a problem that material cost and by extension manufacturing cost became high.
したがって、本発明は、貼り合せ時のズレに起因する導通不良が起こらず、材料費を低減できる 多点計測用のひずみセンサとその製造方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a strain sensor for multipoint measurement and a method for manufacturing the same which can reduce a material cost without causing a conduction failure due to misalignment at the time of bonding.
上記の課題を解決するための手段として、本発明の第1態様は、基材フィルムと、前記基材フィルムの第1主面に形成された複数のひずみ受感部と、前記基材フィルムの第1主面に前記各ひずみ受感部に対応して形成され、前記基材フィルムの外縁付近に外部接続端子部を有する2層構成の引き回し回路と、を備え、前記引き回し回路の下層が、前記ひずみ受感部と同一材料からなり、前記引き回し回路の上層が、前記ひずみ受感部より低抵抗な材料からなる多点計測用のひずみセンサを提供する。
As a means for solving the above-mentioned problems, the first aspect of the present invention includes a base film, a plurality of strain sensitive portions formed on the first main surface of the base film, and the base film. A two-layer routing circuit formed on the first main surface corresponding to each of the strain sensitive parts and having an external connection terminal near the outer edge of the base film, and the lower layer of the routing circuit is Provided is a strain sensor for multipoint measurement which is made of the same material as that of the strain sensitive part and the upper layer of the routing circuit is made of a material whose resistance is lower than that of the strain sensitive part.
また、本発明の第2態様は、前記基材フィルムの第1主面に、前記外部接続端子部を除き、前記ひずみ受感部及び前記引き回し回路を覆って形成された絶縁性のカバー層と、前記引き回し回路の前記外部接続端子部を覆って形成された導電性の端子保護層と、をさらに備えた第1態様の多点計測用のひずみセンサを提供する。
Further, the second aspect of the present invention is an insulating cover layer formed on the first main surface of the base film so as to cover the strain sensitive part and the routing circuit except for the external connection terminal part. A strain sensor for multipoint measurement according to a first aspect, further comprising: a conductive terminal protective layer formed to cover the external connection terminal portion of the routing circuit.
また、本発明の第3態様は、基材フィルムと、前記基材フィルムの第1主面に形成された複数の第1ひずみ受感部と、前記基材フィルムの第1主面に前記各第1ひずみ受感部に対応して形成され、前記基材フィルムの外縁付近に外部接続端子部を有する2層構成の第1引き回し回路と、前記基材フィルムの第2主面に形成され、前記各第1ひずみ受感部と軸方向の異なる複数の第2ひずみ受感部と、前記基材フィルムの第2主面に前記各第2ひずみ受感部に対応して形成され、前記基材フィルムの外縁付近に外部接続端子部を有する2層構成の第2引き回し回路と、を備え、前記第1及び第2引き回し回路の下層が、前記第1及び第2ひずみ受感部と同一材料からなり、前記第1及び第2引き回し回路の上層が、前記第1及び第2ひずみ受感部より低抵抗な材料からなることを特徴とする多点計測用のひずみセンサを提供する。
Moreover, the 3rd aspect of this invention is a base film, the some 1st distortion | strain sensitivity part formed in the 1st main surface of the said base film, and each said on the 1st main surface of the said base film. Formed in correspondence with the first strain sensing part, formed on the second main surface of the base film, a first routing circuit of a two-layer configuration having an external connection terminal part in the vicinity of the outer edge of the base film, A plurality of second strain sensitive portions that are axially different from each of the first strain sensitive portions, and formed on the second main surface of the base film in correspondence with the second strain sensitive portions, A second routing circuit having a two-layer configuration having an external connection terminal near the outer edge of the material film, and the lower layer of the first and second routing circuits is the same material as the first and second strain sensing parts And the upper layers of the first and second routing circuits are connected to the first and second strain receivers. Providing strain sensor for multipoint measurement, characterized by comprising low-resistance material than the parts.
また、本発明の第4態様は、前記基材フィルムの第1主面に、前記外部接続端子部を除き、前記第1ひずみ受感部及び前記第1引き回し回路を覆って形成された絶縁性の第1カバー層と、前記第1引き回し回路の前記外部接続端子部を覆って形成された導電性の第1端子保護層と、前記基材フィルムの第2主面に、前記外部接続端子部を除き、前記第2ひずみ受感部及び前記第2引き回し回路を覆って形成された絶縁性の第2カバー層と、前記第2引き回し回路の前記外部接続端子部を覆って形成された導電性の第2端子保護層と、をさらに備えた第3態様の多点計測用のひずみセンサを提供する。
Moreover, the 4th aspect of this invention is the insulating property formed in the 1st main surface of the said base film, covering the said 1st distortion | strain sensitive part and the said 1st routing circuit except the said external connection terminal part. The first cover layer, the conductive first terminal protective layer formed to cover the external connection terminal portion of the first routing circuit, and the external connection terminal portion on the second main surface of the base film Insulating second cover layer formed to cover the second strain sensing part and the second routing circuit, and conductivity formed to cover the external connection terminal part of the second routing circuit A strain sensor for multipoint measurement according to a third aspect, further comprising: a second terminal protective layer.
また、本発明の第5態様は、前記外部接続端子部に実装されたリード線をさらに備えた第1~4態様のいずれの多点計測用のひずみセンサを提供する。
The fifth aspect of the present invention provides the strain sensor for multipoint measurement according to any one of the first to fourth aspects, further comprising a lead wire mounted on the external connection terminal portion.
また、本発明の第6態様は、第1態様のひずみセンサの製造方法であって、前記基材フィルムの第1主面に2層の金属層を積層する工程と、エッチング法にて、前記金属層から複数の前記ひずみ受感部の形状をした2層構成の導電パターンと、当該導電パターンに各々対応した2層構成の前記引き回し回路とを形成する工程と、前記ひずみ受感部の形状をした2層構成の導電パターンについてのみ、エッチング法にて上層の金属層を除去して前記ひずみ受感部を得る工程と、を備える多点計測用のひずみセンサの製造方法を提供する。
Further, a sixth aspect of the present invention is a method for manufacturing the strain sensor according to the first aspect, wherein the step of laminating two metal layers on the first main surface of the base film and the etching method, Forming a conductive pattern having a two-layer configuration in the shape of a plurality of strain-sensitive portions from a metal layer, and a routing circuit having a two-layer configuration corresponding to each of the conductive patterns, and the shape of the strain-sensitive portions A method of manufacturing a strain sensor for multi-point measurement is provided, which includes only a conductive layer having a two-layer structure, and a step of removing the upper metal layer by an etching method to obtain the strain sensitive part.
また、本発明の第7態様は、第1態様のひずみセンサの製造方法であって、前記基材フィルムの第1主面に1層の金属層を積層する工程と、エッチング法にて、前記金属層から複数の前記ひずみ受感部と、当該各ひずみ受感部に対応した前記引き回し回路の形状をした導電パターンとを形成する工程と、前記引き回し回路の形状をした導電パターンについてのみ、印刷法にて別の金属層を積層して2層構成の前記引き回し回路を得る工程と、を備える多点計測用のひずみセンサの製造方法を提供する。
Further, the seventh aspect of the present invention is the method for manufacturing the strain sensor according to the first aspect, wherein the step of laminating one metal layer on the first main surface of the base film and the etching method, Only a process of forming a plurality of strain sensitive parts from the metal layer and a conductive pattern having the shape of the routing circuit corresponding to each strain sensitive part, and a conductive pattern having the shape of the routing circuit are printed. A method of manufacturing a strain sensor for multipoint measurement, comprising the step of laminating another metal layer by a method to obtain the routing circuit having a two-layer structure.
また、本発明の第8態様は、第3態様のひずみセンサの製造方法であって、前記基材フィルムの第1主面及び第2主面に各々、2層の金属層を積層する工程と、エッチング法にて、第1主面側の金属層から複数の前記第1ひずみ受感部の形状をした2層構成の導電パターンと、当該導電パターンに各々対応した2層構成の前記第1引き回し回路とを形成すると同時に、第2主面側の金属層から複数の前記第2ひずみ受感部の形状をした2層構成の導電パターンと、当該導電パターンに各々対応した2層構成の前記第2引き回し回路とを形成する工程と、前記第1及び第2ひずみ受感部の形状をした2層構成の導電パターンについてのみ、エッチング法にて上層の金属層を除去して前記第1及び第2ひずみ受感部を得る工程と、を備える多点計測用のひずみセンサの製造方法を提供する。
Further, an eighth aspect of the present invention is a method for manufacturing a strain sensor according to the third aspect, wherein a step of laminating two metal layers on the first main surface and the second main surface of the base film, respectively. The two-layered conductive pattern in the shape of a plurality of the first strain sensitive parts from the metal layer on the first main surface side by the etching method, and the first of the two-layered structure corresponding to each of the conductive patterns Forming a routing circuit, and simultaneously forming a plurality of second strain sensing portions in the shape of a plurality of second strain sensing portions from the metal layer on the second main surface side, and the two-layer configuration corresponding to each of the conductive patterns Only for the step of forming the second routing circuit and the two-layered conductive pattern in the shape of the first and second strain sensing parts, the upper metal layer is removed by etching to remove the first and second conductive circuits. A step of obtaining a second strain sensing part, To provide a method of manufacturing a strain sensor for measuring.
本発明の多点計測用のひずみセンサとその製造方法は、上記のように複数のひずみ受感部と各ひずみ受感部に対応する引き回し回路とが同一の基材フィルムの同一面に設けられており、ひずみ受感部と引き回し回路との接続に貼り合せが不要である。したがって、貼り合せ時のズレに起因するひずみ受感部と引き回し回路との導通不良が起きない。また、ひずみセンサを構成する層数を減らせるため、材料費、ひいては製造コストを低減できる。
In the strain sensor for multipoint measurement and the manufacturing method thereof according to the present invention, as described above, the plurality of strain sensitive portions and the routing circuits corresponding to the strain sensitive portions are provided on the same surface of the same base film. Therefore, no bonding is required for connection between the strain sensing part and the routing circuit. Accordingly, there is no conduction failure between the strain sensing part and the routing circuit due to the deviation at the time of bonding. Further, since the number of layers constituting the strain sensor can be reduced, the material cost and thus the manufacturing cost can be reduced.
下記で、本発明に係る実施形態を図面に基づいてさらに詳細に説明する。なお、本発明の実施例に記載した部位や部分の寸法、材質、形状、その相対位置などは、とくに特定的な記載がない限り、この発明の範囲をそれらのみに限定する趣旨のものではなく、単なる説明例にすぎない。
Hereinafter, embodiments according to the present invention will be described in more detail with reference to the drawings. It should be noted that the dimensions, materials, shapes, relative positions, etc. of the parts and portions described in the embodiments of the present invention are not intended to limit the scope of the present invention only to those unless otherwise specified. This is just an illustrative example.
〔第一実施形態〕
<ひずみセンサ>
本実施形態のひずみセンサ31は、図1及び図2に示すように、基材フィルム34と、基材フィルム34の第1主面34aに形成された複数の抵抗式ひずみ受感部33(以下、単にひずみ受感部33という)と、基材フィルム34の第1主面34aに各ひずみ受感部33に対応して形成され、基材フィルム34の外縁付近に外部接続端子部37b,38bを有する2層構成の引き回し回路37,38と、を有するセンサ構造部36を備える。センサ構造部36は、その全体が薄い方形板状に構成されており、基材フィルム34のひずみ受感部33側が構造物に密着される。なお、図2では、図示および説明の便宜上、センサ構造部36を厚く記載している。 [First embodiment]
<Strain sensor>
As shown in FIGS. 1 and 2, thestrain sensor 31 according to the present embodiment includes a base film 34 and a plurality of resistance-type strain sensing units 33 (hereinafter referred to as the first main surface 34 a) formed on the base film 34. , Simply referred to as a strain sensitive portion 33) and formed on the first main surface 34a of the base film 34 corresponding to each strain sensitive portion 33, and external connection terminal portions 37b, 38b near the outer edge of the base film 34. And a sensor structure 36 having a two-layer routing circuit 37, 38. The entire sensor structure 36 is formed in a thin square plate shape, and the strain sensitive part 33 side of the base film 34 is in close contact with the structure. In FIG. 2, the sensor structure 36 is shown thick for the sake of illustration and explanation.
<ひずみセンサ>
本実施形態のひずみセンサ31は、図1及び図2に示すように、基材フィルム34と、基材フィルム34の第1主面34aに形成された複数の抵抗式ひずみ受感部33(以下、単にひずみ受感部33という)と、基材フィルム34の第1主面34aに各ひずみ受感部33に対応して形成され、基材フィルム34の外縁付近に外部接続端子部37b,38bを有する2層構成の引き回し回路37,38と、を有するセンサ構造部36を備える。センサ構造部36は、その全体が薄い方形板状に構成されており、基材フィルム34のひずみ受感部33側が構造物に密着される。なお、図2では、図示および説明の便宜上、センサ構造部36を厚く記載している。 [First embodiment]
<Strain sensor>
As shown in FIGS. 1 and 2, the
基材フィルム34は、ポリエステル(PET)、ポリイミドアミド(AI)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリイミド(PI)、ポリテトラフルオロエチレン(PTFE)などの絶縁性の材質から成るフィルムであり、可撓性を有する。基材フィルム34の厚さは、ひずみセンサ31の用途に応じて適宜選択される。具体的には、1μm~300μm厚の基材フィルム34を採用することができる。厚みが上限を超えるとひずみ感度が低下し。下限を超えるとひずみ時に破壊されやすくなるからである。
The base film 34 is made of an insulating material such as polyester (PET), polyimide amide (AI), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyimide (PI), polytetrafluoroethylene (PTFE). And a flexible film. The thickness of the base film 34 is appropriately selected according to the use of the strain sensor 31. Specifically, a base film 34 having a thickness of 1 μm to 300 μm can be employed. If the thickness exceeds the upper limit, strain sensitivity decreases. This is because exceeding the lower limit tends to cause breakage during strain.
基材フィルム34の第1主面34aには、図1、図2に示すように、複数のひずみ受感部33が設けられている。このひずみ受感部33は、平面視において8行×5列のマス目状に配置され、いずれもひずみ受感部33の長さ方向(軸方向)が同一方向に沿っている。
The first main surface 34a of the base film 34 is provided with a plurality of strain sensing portions 33 as shown in FIGS. The strain sensitive portions 33 are arranged in a grid of 8 rows × 5 columns in plan view, and the length direction (axial direction) of the strain sensitive portions 33 is along the same direction.
ひずみセンサ31は、各ひずみ受感部33の本体33cを構成する金属の延伸により断面積が減少するとともに長さが大きくなり、その結果抵抗値が大きくなることと、逆に金属の圧縮により断面積が増大するとともに長さが小さくなり、その結果抵抗値が小さくなることとを利用して被測定物の歪量を測定する。
The strain sensor 31 has a reduced cross-sectional area and an increased length due to the stretching of the metal constituting the main body 33c of each strain-sensitive part 33. The strain amount of the object to be measured is measured by utilizing the fact that the length is reduced as the area is increased and the resistance value is reduced as a result.
ひずみ受感部33の本体33cは、図1中の部分拡大図からわかるように、平行に一定の間隔で配設された複数の帯状部が端部同士で幅方向に延伸する連結部で連結された1つの抵抗体である。つまり、ひずみ受感部33の本体33cは、一本の帯状体を一定間隔で複数回折り返したジグザグ形状を有する。屈曲した本体33cの両端には配線33d,33eを介して2層構成の引き回し回路37,38の一端部に接続されている。このひずみ受感部33の本体33cは、抵抗値の変化率を検出し易いように幅が小さい方が好ましい。一方、ひずみ受感部33の配線33dは、ひずみ受感部33全体の抵抗値に対する配線33dでの抵抗値の割合が小さくなるように幅が大きい方が好ましい。また、ひずみ受感部33は、上記配線33d,33eを省略して、直接、2層構成の引き回し回路37,38に接続することもできる(図示せず)。
As can be seen from the partially enlarged view in FIG. 1, the main body 33 c of the strain sensing portion 33 is connected by a connecting portion in which a plurality of strip-like portions arranged in parallel at regular intervals extend in the width direction between ends. One resistor. That is, the main body 33c of the strain sensing unit 33 has a zigzag shape in which a single band-like body is folded back multiple times at regular intervals. Both ends of the bent main body 33c are connected to one end portions of two-layer routing circuits 37 and 38 via wirings 33d and 33e. It is preferable that the width of the main body 33c of the strain sensing unit 33 is small so that the rate of change in resistance value can be easily detected. On the other hand, it is preferable that the wiring 33d of the strain sensing unit 33 has a large width so that the ratio of the resistance value of the wiring 33d to the resistance value of the entire strain sensing unit 33 is small. Further, the strain sensing unit 33 can be directly connected to the routing circuits 37 and 38 having a two-layer structure (not shown) by omitting the wirings 33d and 33e.
各ひずみ受感部33の材料は、本体33cが抵抗体として機能するものであれば特に限定されず、例えば白金、アルミニウム、ニッケル、タングステン、鉄、金、銀、銅、パラジウム、クロム、銅ニッケル合金、ニッケルクロム合金、銅マンガン合金、鉄クロム合金等を挙げることができる。とくに、抵抗値及び線膨張係数等から銅ニッケル合金、ニッケルクロム合金、銅マンガン合金、鉄クロム合金が好ましい。また、本発明において、各ひずみ受感部33は、図2に示すように、基材フィルム34上に直接形成される。ひずみ受感部33は、上記材料からなる膜をエッチング法にてパターニングして形成することができる。各ひずみ受感部33の厚さは、0.1μm~100μmとするのが好ましい。厚みが上限を超えるとひずみ感度が低下し、下限を超えるとひずみ時に破壊されやすくなるからである。
The material of each strain sensing part 33 is not particularly limited as long as the main body 33c functions as a resistor. For example, platinum, aluminum, nickel, tungsten, iron, gold, silver, copper, palladium, chromium, copper nickel An alloy, a nickel chromium alloy, a copper manganese alloy, an iron chromium alloy, etc. can be mentioned. In particular, a copper nickel alloy, a nickel chromium alloy, a copper manganese alloy, and an iron chromium alloy are preferable from the viewpoint of resistance value and linear expansion coefficient. In the present invention, each strain sensing part 33 is formed directly on the base film 34 as shown in FIG. The strain sensitive part 33 can be formed by patterning a film made of the above material by an etching method. The thickness of each strain sensing part 33 is preferably 0.1 μm to 100 μm. This is because when the thickness exceeds the upper limit, the strain sensitivity decreases, and when the thickness exceeds the lower limit, the film is easily broken at the time of strain.
また、基材フィルム34の第1主面34aには、図1、図2に示すように、2層構成の引き回し回路37,38も複数設けられている。
Further, as shown in FIGS. 1 and 2, a plurality of routing circuits 37 and 38 having a two-layer structure are provided on the first main surface 34a of the base film 34.
これらの2層構成の引き回し回路37,38のそれぞれの個数は、ひずみ受感部33の個数と同数であり、個々のひずみ受感部33に、引き回し回路37,38が1つずつ対応付けられている。また、これらの2層構成の引き回し回路37,38の下層37L,38Lの材料は、ひずみ受感部33と同一材料であり、上層37U,38Uの材料は、銅(Cu)、銀(Ag)、金(Au)、アルミニウム(Al)などを用いることができるが、ひずみ受感部33よりも比抵抗が十分に小さい導体を適宜選択する。すなわち、ひずみ受感部33と2層構成の引き回し回路37,38の下層37L,38Lとは同一材料で連続して形成されている。
また、本発明において、引き回し回路37,38は、図2に示すように、基材フィルム34上に直接形成される。引き回し回路37,38は、上記材料からなる2層構成の金属膜をエッチング法にてパターニングして形成することができる。各引き回し回路37,38の厚さは、0.1μm~100μmとするのが好ましい。厚みが上限を超えるとひずみ感度が低下し、下限を超えるとひずみ時に破壊されやすくなるからである。 The number of therouting circuits 37 and 38 having the two-layer configuration is the same as the number of the strain sensing units 33, and each routing circuit 37 and 38 is associated with each strain sensing unit 33. ing. The materials of the lower layers 37L and 38L of the two-layer routing circuits 37 and 38 are the same as those of the strain sensing part 33, and the materials of the upper layers 37U and 38U are copper (Cu) and silver (Ag). Gold (Au), aluminum (Al), or the like can be used, but a conductor having a sufficiently smaller specific resistance than the strain sensing part 33 is appropriately selected. That is, the strain sensing part 33 and the lower layers 37L and 38L of the routing circuits 37 and 38 having a two-layer structure are continuously formed of the same material.
In the present invention, therouting circuits 37 and 38 are directly formed on the base film 34 as shown in FIG. The routing circuits 37 and 38 can be formed by patterning a metal film having a two-layer structure made of the above-described material by an etching method. The thickness of each routing circuit 37, 38 is preferably 0.1 μm to 100 μm. This is because when the thickness exceeds the upper limit, the strain sensitivity decreases, and when the thickness exceeds the lower limit, the film is easily broken at the time of strain.
また、本発明において、引き回し回路37,38は、図2に示すように、基材フィルム34上に直接形成される。引き回し回路37,38は、上記材料からなる2層構成の金属膜をエッチング法にてパターニングして形成することができる。各引き回し回路37,38の厚さは、0.1μm~100μmとするのが好ましい。厚みが上限を超えるとひずみ感度が低下し、下限を超えるとひずみ時に破壊されやすくなるからである。 The number of the
In the present invention, the
引き回し回路37,38の他端部(外部接続端子部)37b,38bは、基材フィルム34の一辺付近に設けられている。そして、各引き回し回路37,38は、ひずみ受感部33と外部接続端子部37bの間、ひずみ受感部33と外部接続端子部38bの間で基材フィルム34の第1主面上に延在して設けられている。より具体的には、図1に示すように、主として各ひずみ受感部33の本体33cにおける複数の帯状部の長さ方向に沿って延在して設けられている。また、引き回し回路37,38の他端部(外部接続端子部)37b,38bは、基材フィルム34の縦方向(図1の上下方向)においていくつかの束に集約して配列されている。もちろん、すべてを1つの束に集約して配置しても構わない。
The other end portions (external connection terminal portions) 37 b and 38 b of the routing circuits 37 and 38 are provided near one side of the base film 34. The routing circuits 37 and 38 extend on the first main surface of the base film 34 between the strain sensing part 33 and the external connection terminal part 37b, and between the strain sensing part 33 and the external connection terminal part 38b. Is provided. More specifically, as shown in FIG. 1, it is provided mainly extending along the length direction of the plurality of strip portions in the main body 33 c of each strain sensing portion 33. Further, the other end portions (external connection terminal portions) 37b and 38b of the routing circuits 37 and 38 are arranged in a bundle in several bundles in the longitudinal direction (vertical direction in FIG. 1) of the base film 34. Of course, all of them may be arranged in one bundle.
なお、本実施形態では、各ひずみ受感部33の両端には、1つずつ引き回し回路37,38が導通されているが、3線式結線法にて温度影響を補償する場合には、各ひずみ受感部33の両端のうち一方には2つの引き回し回路が導通されてもよい(図示せず)。
In this embodiment, the circuit 37, 38 is electrically connected to both ends of each strain sensing part 33 one by one. However, when the temperature effect is compensated by the three-wire connection method, Two routing circuits may be connected to one of both ends of the strain sensing unit 33 (not shown).
以上のようなセンサ構造部36は、複数のひずみ受感部33と各ひずみ受感部33に対応する引き回し回路37,38とが同一の基材フィルム34の同一面に設けられているので、ひずみ受感部33と引き回し回路37,38との接続に貼り合せが不要となる。したがって、貼り合せ時のズレに起因するひずみ受感部33と引き回し回路37,38との導通不良が起きない。
また、ひずみセンサ31を構成する層数を減らせるため、材料費、ひいては製造コストを低減できる。 In thesensor structure 36 as described above, the plurality of strain sensing portions 33 and the routing circuits 37 and 38 corresponding to each strain sensing portion 33 are provided on the same surface of the same base film 34. Bonding is not required for connection between the strain sensing unit 33 and the routing circuits 37 and 38. Therefore, there is no conduction failure between the strain sensing part 33 and the routing circuits 37 and 38 due to the deviation at the time of bonding.
Further, since the number of layers constituting thestrain sensor 31 can be reduced, the material cost and thus the manufacturing cost can be reduced.
また、ひずみセンサ31を構成する層数を減らせるため、材料費、ひいては製造コストを低減できる。 In the
Further, since the number of layers constituting the
また、上記したセンサ構造部36は、その他の層をさらに有していてもよい。
例えば、各ひずみ受感部33および各引き回し回路37,38は、酸化、硫化またはマイグレーション(電蝕)による劣化防止の観点から、図2に示すように、外部接続端子部37b,38bを除き、絶縁性のカバー層63で覆うようにしてもよい。カバー層63の形成方法としては、ラミネータ、熱プレスなどのカバーフィルムの貼合や、スクリーン印刷などの印刷法を用いることができる。 Moreover, the above-describedsensor structure 36 may further include other layers.
For example, as shown in FIG. 2, eachstrain sensing part 33 and each routing circuit 37, 38 are provided with the exception of the external connection terminal parts 37b, 38b from the viewpoint of preventing deterioration due to oxidation, sulfurization, or migration (electric corrosion). You may make it cover with the insulating cover layer 63. FIG. As a method for forming the cover layer 63, a cover film such as a laminator or a hot press, or a printing method such as screen printing can be used.
例えば、各ひずみ受感部33および各引き回し回路37,38は、酸化、硫化またはマイグレーション(電蝕)による劣化防止の観点から、図2に示すように、外部接続端子部37b,38bを除き、絶縁性のカバー層63で覆うようにしてもよい。カバー層63の形成方法としては、ラミネータ、熱プレスなどのカバーフィルムの貼合や、スクリーン印刷などの印刷法を用いることができる。 Moreover, the above-described
For example, as shown in FIG. 2, each
カバー層63の形成方法としてカバーフィルムを貼合する場合、カバーフィルムは基材フィルム34と同様の材料を採用することができる。また、カバー層63の形成方法として印刷する場合、例えば、ウレタン樹脂、ポリアミド樹脂、アクリル樹脂、ポリイミド樹脂などの熱硬化型樹脂を所定厚みで塗布し、硬化させることにより形成することができる。
When a cover film is bonded as a method for forming the cover layer 63, the same material as the base film 34 can be used for the cover film. Moreover, when printing as a formation method of the cover layer 63, it can form by apply | coating thermosetting resins, such as a urethane resin, a polyamide resin, an acrylic resin, and a polyimide resin, by predetermined thickness, and making it harden | cure, for example.
各引き回し回路37,38の他端部(外部接続端子部)37b,38bを覆って、端子保護層45が形成されてもよい。端子保護層45の形成方法としては、ニッケル下地金メッキや、半田メッキなどを用いることができる。
The terminal protective layer 45 may be formed so as to cover the other end portions (external connection terminal portions) 37b and 38b of the routing circuits 37 and 38. As a method for forming the terminal protective layer 45, nickel base gold plating, solder plating, or the like can be used.
以上が、センサ構造部36の構造である。
The above is the structure of the sensor structure 36.
引き回し回路の外部接続端子部37b,38bには、直接又は端子保護層45を介して、計測機器に接続するFPC(フレキシブル配線基板:Flexible Printed Circuit)などのリード線47が実装される。
A lead wire 47 such as an FPC (Flexible Printed Circuit) connected to the measuring device is mounted directly or via the terminal protective layer 45 on the external connection terminal portions 37b and 38b of the routing circuit.
FPCは、一般に、ポリイミドからなる基材フィルム上に、金メッキされた銅箔で複数の配線パターンが構成されると共に、各配線パターンの露出不要部分はポリイミドからなるカバーレイで覆われた構成となっている。
In general, an FPC has a structure in which a plurality of wiring patterns are formed of gold-plated copper foil on a base film made of polyimide, and an unnecessary portion of each wiring pattern is covered with a coverlay made of polyimide. ing.
リード線47の実装方法としては、例えば、リード線47がFPCの場合には異方性導電フィルム(ACF;Anisotropic Conductive Film)または異方性導電接着剤(ACA;Anisotropic Conductive Adhesive)46などの伝導性接着物質などを使用した熱圧着法を用いることができる。
As a mounting method of the lead wire 47, for example, when the lead wire 47 is FPC, an anisotropic conductive film (ACF; Anisotropic Conductive Film) or an anisotropic conductive adhesive (ACA; Anisotropic Conductive Adhesive) 46 or the like is used. A thermocompression bonding method using an adhesive material or the like can be used.
端子保護層45は、引き回し回路の外部接続端子部37b,38bの酸化、硫化またはマイグレーションによる劣化防止の観点から設けられるものであり、外部接続端子部37b,38bとリード線47とが電気的に接続可能なように導電性を有している。端子保護層45の材料としては、例えば、Ni下地Au鍍金ヤ半田鍍金などを用いることができる。Ni下地Au鍍金、半田鍍金からなる端子保護層45の形成には、鍍金法が用いられる。なお、Au鍍金の下地となるNi層の形成にも鍍金法が用いられる。
The terminal protection layer 45 is provided from the viewpoint of preventing deterioration due to oxidation, sulfurization or migration of the external connection terminal portions 37b and 38b of the routing circuit. The external connection terminal portions 37b and 38b and the lead wire 47 are electrically connected. It has conductivity so that it can be connected. As a material of the terminal protective layer 45, for example, Ni base Au plating, solder plating, or the like can be used. A plating method is used to form the terminal protective layer 45 made of Ni base Au plating and solder plating. The plating method is also used to form the Ni layer that serves as the base of the Au plating.
本実施形態のひずみセンサ31により構造物、例えばトンネルのコンクリート構造物や橋梁の鋼構造物等のひずみを測定する場合には、センサ構造部36の基材フィルム34の厚み方向の両面のうち、ひずみ受感部33側の面を構造物に対面させ、該センサ構造部36と構造物との間に介在させた接着剤によりセンサ構造部36を構造物に密着する。
When measuring strain of a structure, for example, a concrete structure of a tunnel or a steel structure of a bridge, by the strain sensor 31 of the present embodiment, out of both surfaces in the thickness direction of the base film 34 of the sensor structure 36, The surface on the strain sensing part 33 side is made to face the structure, and the sensor structure part 36 is brought into close contact with the structure by an adhesive interposed between the sensor structure part 36 and the structure.
前記構成を有するひずみチセンサを得る方法を、以下に詳しく説明する。
<ひずみセンサの製造方法>
本実施形態の多点計測用のひずみセンサの製造方法は、
(1)上記基材フィルムの第1主面に2層の金属層を積層する工程と、
(2)エッチング法にて、金属層から複数の上記ひずみ受感部の形状をした2層構成の導電パターンと、当該ひずみ受感部の形状をした導電パターンに各々対応した2層構成の上記引き回し回路とを形成する工程と、
(3)ひずみ受感部の形状をした2層構成の導電パターンについてのみ、エッチング法にて上層の金属層を除去して上記ひずみ受感部を得る工程と、を備える。 A method for obtaining a strain sensor having the above configuration will be described in detail below.
<Manufacturing method of strain sensor>
The manufacturing method of the strain sensor for multipoint measurement of this embodiment is as follows.
(1) a step of laminating two metal layers on the first main surface of the base film;
(2) A two-layered conductive pattern in which a plurality of strain-sensitive parts are formed from a metal layer by an etching method, and a two-layered structure corresponding to the conductive pattern in the shape of the strain-sensitive parts. Forming a routing circuit;
(3) The step of removing the upper metal layer by an etching method and obtaining the strain sensitive part only for the conductive pattern having a two-layer structure in the shape of the strain sensitive part is provided.
<ひずみセンサの製造方法>
本実施形態の多点計測用のひずみセンサの製造方法は、
(1)上記基材フィルムの第1主面に2層の金属層を積層する工程と、
(2)エッチング法にて、金属層から複数の上記ひずみ受感部の形状をした2層構成の導電パターンと、当該ひずみ受感部の形状をした導電パターンに各々対応した2層構成の上記引き回し回路とを形成する工程と、
(3)ひずみ受感部の形状をした2層構成の導電パターンについてのみ、エッチング法にて上層の金属層を除去して上記ひずみ受感部を得る工程と、を備える。 A method for obtaining a strain sensor having the above configuration will be described in detail below.
<Manufacturing method of strain sensor>
The manufacturing method of the strain sensor for multipoint measurement of this embodiment is as follows.
(1) a step of laminating two metal layers on the first main surface of the base film;
(2) A two-layered conductive pattern in which a plurality of strain-sensitive parts are formed from a metal layer by an etching method, and a two-layered structure corresponding to the conductive pattern in the shape of the strain-sensitive parts. Forming a routing circuit;
(3) The step of removing the upper metal layer by an etching method and obtaining the strain sensitive part only for the conductive pattern having a two-layer structure in the shape of the strain sensitive part is provided.
また、ひずみ受感部及び引き回し回路の酸化、硫化またはマイグレーションによる劣化防止のためには、
(4)上記基材フィルムの第1主面に、上記外部接続端子部を除き、上記ひずみ受感部及び上記引き回し回路を覆って絶縁性のカバー層を形成する工程と、
(5)上記引き回し回路の上記外部接続端子部を覆って導電性の端子保護層を形成する工程と、をさらに備えていてもよい。 In addition, in order to prevent deterioration due to oxidation, sulfurization or migration of the strain sensing part and the routing circuit,
(4) A step of forming an insulating cover layer on the first main surface of the base film, excluding the external connection terminal portion, covering the strain sensitive portion and the routing circuit;
(5) The method may further include a step of covering the external connection terminal portion of the routing circuit and forming a conductive terminal protective layer.
(4)上記基材フィルムの第1主面に、上記外部接続端子部を除き、上記ひずみ受感部及び上記引き回し回路を覆って絶縁性のカバー層を形成する工程と、
(5)上記引き回し回路の上記外部接続端子部を覆って導電性の端子保護層を形成する工程と、をさらに備えていてもよい。 In addition, in order to prevent deterioration due to oxidation, sulfurization or migration of the strain sensing part and the routing circuit,
(4) A step of forming an insulating cover layer on the first main surface of the base film, excluding the external connection terminal portion, covering the strain sensitive portion and the routing circuit;
(5) The method may further include a step of covering the external connection terminal portion of the routing circuit and forming a conductive terminal protective layer.
また、本実施形態の多点計測用のひずみセンサの製造方法は、工程(1)~(3)又は工程(1)~(5)の後に、
(6)引き回し回路の外部接続端子部にリード線を実装する工程、をさらに備えていてもよい。 In addition, the manufacturing method of the strain sensor for multipoint measurement according to this embodiment includes the steps (1) to (3) or the steps (1) to (5).
(6) You may further provide the process of mounting a lead wire in the external connection terminal part of a routing circuit.
(6)引き回し回路の外部接続端子部にリード線を実装する工程、をさらに備えていてもよい。 In addition, the manufacturing method of the strain sensor for multipoint measurement according to this embodiment includes the steps (1) to (3) or the steps (1) to (5).
(6) You may further provide the process of mounting a lead wire in the external connection terminal part of a routing circuit.
(1.積層工程)
積層工程は、基材フィルム34の第1主面34aに2層の金属層、すなわち第1金属層48、第2金属層49を順次積層する工程である(図3参照)。 (1. Lamination process)
The laminating step is a step of sequentially laminating two metal layers, that is, afirst metal layer 48 and a second metal layer 49 on the first main surface 34a of the base film 34 (see FIG. 3).
積層工程は、基材フィルム34の第1主面34aに2層の金属層、すなわち第1金属層48、第2金属層49を順次積層する工程である(図3参照)。 (1. Lamination process)
The laminating step is a step of sequentially laminating two metal layers, that is, a
基材フィルム34は、第1金属層48及び第2金属層49を支持する枚葉又は長尺のものである。基材フィルム34の材料は、例えば、ポリエステル(PET)、ポリイミドアミド(AI)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリイミド(PI)、ポリテトラフルオロエチレン(PTFE)などの絶縁性の材質から成るフィルムを用いることができる。使用する基材フィルム34の厚みは、1μm~100μmのものを採用することができる。
The base film 34 is a single wafer or a long one that supports the first metal layer 48 and the second metal layer 49. The material of the base film 34 is, for example, insulation such as polyester (PET), polyimide amide (AI), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyimide (PI), polytetrafluoroethylene (PTFE), etc. A film made of a sex material can be used. The substrate film 34 to be used may have a thickness of 1 μm to 100 μm.
第1金属層48は、ひずみ受感部33と引き回し回路37,38の下層37L,38Lとを形成するためのものである。第1金属層48の材料としては、ひずみ受感部33の本体33cが抵抗体として機能するものであれば特に限定されず、例えば、白金、アルミニウム、ニッケル、タングステン、鉄、金、銀、銅、パラジウム、クロム、銅ニッケル合金、ニッケルクロム合金、銅マンガン合金、鉄クロム合金等を挙げることができる。とくに、抵抗値及び線膨張係数等から銅ニッケル合金、ニッケルクロム合金、銅マンガン合金、鉄クロム合金が好ましい。
第1金属層48を形成する方法は特に限定されず、例えば、熱プレスによる金属箔の貼合や、真空蒸着法、スパッタリング法、イオンプレーティング法、鍍金法などで形成することができる。 Thefirst metal layer 48 is for forming the strain sensing part 33 and the lower layers 37L, 38L of the routing circuits 37, 38. The material of the first metal layer 48 is not particularly limited as long as the main body 33c of the strain sensing part 33 functions as a resistor. For example, platinum, aluminum, nickel, tungsten, iron, gold, silver, copper , Palladium, chromium, copper nickel alloy, nickel chromium alloy, copper manganese alloy, iron chromium alloy and the like. In particular, a copper nickel alloy, a nickel chromium alloy, a copper manganese alloy, and an iron chromium alloy are preferable from the viewpoint of resistance value and linear expansion coefficient.
The method for forming thefirst metal layer 48 is not particularly limited. For example, the first metal layer 48 can be formed by bonding a metal foil by hot pressing, a vacuum deposition method, a sputtering method, an ion plating method, a plating method, or the like.
第1金属層48を形成する方法は特に限定されず、例えば、熱プレスによる金属箔の貼合や、真空蒸着法、スパッタリング法、イオンプレーティング法、鍍金法などで形成することができる。 The
The method for forming the
第2金属層49は、引き回し回路37,38の上層37U,38Uを形成するためのものである。第2金属層49の材料は、銅(Cu)、銀(Ag)、金(Au)アルミニウム(Al)などを用いることができるが、第1金属層48よりも比抵抗が十分に小さい導体を適宜選択する。
第2金属層49を形成する方法は特に限定されず、第2金属層49と同様に、例えば、熱プレスによる金属箔の貼合や、真空蒸着法、スパッタリング法、イオンプレーティング法、鍍金法などで形成することができる。 Thesecond metal layer 49 is for forming the upper layers 37U, 38U of the routing circuits 37, 38. The material of the second metal layer 49 can be copper (Cu), silver (Ag), gold (Au), aluminum (Al), or the like, but a conductor having a sufficiently lower specific resistance than the first metal layer 48 is used. Select as appropriate.
The method for forming thesecond metal layer 49 is not particularly limited, and for example, as with the second metal layer 49, for example, metal foil bonding by hot pressing, vacuum deposition, sputtering, ion plating, plating method Etc. can be formed.
第2金属層49を形成する方法は特に限定されず、第2金属層49と同様に、例えば、熱プレスによる金属箔の貼合や、真空蒸着法、スパッタリング法、イオンプレーティング法、鍍金法などで形成することができる。 The
The method for forming the
(2.パターニング工程)
パターニング工程は、エッチング法にて、上記した第1金属層48及び第2金属層49から複数の上記ひずみ受感部33の形状をした2層構成の導電パターンと、当該ひずみ受感部33の形状をした導電パターンに各々対応した2層構成の上記引き回し回路33とを形成する工程である(図4参照)。
例えば、形成する導電パターンに応じた形状のレジスト膜を上記した第1金属層48及び第2金属層49表面に積層し、その積層体をエッチング液に浸漬して各々の導電パターンを形成する。その後、パターン化された第1金属層48及び第2金属層49上に残存するレジスト膜をレジスト剥離液でもって全て剥離し、第1金属層48及び第2金属層49の表面全体を露出させる。 (2. Patterning process)
The patterning step is performed by etching using a two-layered conductive pattern having the shape of the plurality of strainsensitive portions 33 from the first metal layer 48 and the second metal layer 49 described above, and the strain sensitive portion 33. This is a step of forming the routing circuit 33 having a two-layer structure corresponding to each of the shaped conductive patterns (see FIG. 4).
For example, a resist film having a shape corresponding to the conductive pattern to be formed is stacked on the surfaces of thefirst metal layer 48 and the second metal layer 49, and the stacked body is immersed in an etching solution to form each conductive pattern. Thereafter, the resist film remaining on the patterned first metal layer 48 and second metal layer 49 is completely removed with a resist stripping solution to expose the entire surfaces of the first metal layer 48 and the second metal layer 49. .
パターニング工程は、エッチング法にて、上記した第1金属層48及び第2金属層49から複数の上記ひずみ受感部33の形状をした2層構成の導電パターンと、当該ひずみ受感部33の形状をした導電パターンに各々対応した2層構成の上記引き回し回路33とを形成する工程である(図4参照)。
例えば、形成する導電パターンに応じた形状のレジスト膜を上記した第1金属層48及び第2金属層49表面に積層し、その積層体をエッチング液に浸漬して各々の導電パターンを形成する。その後、パターン化された第1金属層48及び第2金属層49上に残存するレジスト膜をレジスト剥離液でもって全て剥離し、第1金属層48及び第2金属層49の表面全体を露出させる。 (2. Patterning process)
The patterning step is performed by etching using a two-layered conductive pattern having the shape of the plurality of strain
For example, a resist film having a shape corresponding to the conductive pattern to be formed is stacked on the surfaces of the
レジスト膜を導電パターンに応じた形状に形成するには、例えば、ドライフィルムレジストや液体レジスト等の感光性樹脂組成物を塗布し、感光性樹脂膜にマスクを介して電子ビームや光(紫外線)を照射して所定の形状に露光する。次いで、現像液に接触させることに不要な部分が溶解除去される。感光性樹脂には、露光部分が現像液に対して不溶性となるネガ型と、露光部分が現像液に対して可溶性となるポジ型とがある。
また、レジスト膜を導電パターンに応じた形状に形成するには、スクリーン印刷などの印刷法を用いることもできる。 In order to form the resist film in a shape corresponding to the conductive pattern, for example, a photosensitive resin composition such as a dry film resist or a liquid resist is applied, and an electron beam or light (ultraviolet light) is applied to the photosensitive resin film through a mask. Is exposed to a predetermined shape. Next, a portion unnecessary to be brought into contact with the developer is dissolved and removed. The photosensitive resin includes a negative type in which an exposed part is insoluble in a developer and a positive type in which an exposed part is soluble in a developer.
Moreover, in order to form a resist film in the shape according to a conductive pattern, printing methods, such as screen printing, can also be used.
また、レジスト膜を導電パターンに応じた形状に形成するには、スクリーン印刷などの印刷法を用いることもできる。 In order to form the resist film in a shape corresponding to the conductive pattern, for example, a photosensitive resin composition such as a dry film resist or a liquid resist is applied, and an electron beam or light (ultraviolet light) is applied to the photosensitive resin film through a mask. Is exposed to a predetermined shape. Next, a portion unnecessary to be brought into contact with the developer is dissolved and removed. The photosensitive resin includes a negative type in which an exposed part is insoluble in a developer and a positive type in which an exposed part is soluble in a developer.
Moreover, in order to form a resist film in the shape according to a conductive pattern, printing methods, such as screen printing, can also be used.
(3.ひずみ受感部形成工程)
ひずみ受感部形成工程は、ひずみ受感部33の形状をした2層構成の導電パターンについてのみ、エッチング法にて上層の金属層、すなわち第2金属層49を除去して上記ひずみ受感部33を得る工程である(図5参照)。
例えば、前工程で得た引き回し回路33をレジスト膜で覆った後に、エッチング液に浸漬して第2金属層49を除去し、第1金属層48のみからなる導電パターン、すなわちひずみ受感部33を得る。その後、引き回し回路33を覆って残存するレジスト膜をレジスト剥離液でもって全て剥離し、引き回し回路33の表面全体を露出させる。
レジスト膜の形成については、前工程と同様である。 (3. Strain sensitive part formation process)
In the strain sensitive part forming step, only the two-layered conductive pattern having the shape of the strainsensitive part 33 is removed by removing the upper metal layer, that is, the second metal layer 49 by an etching method. This is a step of obtaining 33 (see FIG. 5).
For example, after therouting circuit 33 obtained in the previous step is covered with a resist film, the second metal layer 49 is removed by immersion in an etching solution, and a conductive pattern consisting only of the first metal layer 48, that is, the strain sensing part 33. Get. Thereafter, the remaining resist film covering the routing circuit 33 is completely removed with a resist stripping solution, and the entire surface of the routing circuit 33 is exposed.
The formation of the resist film is the same as in the previous step.
ひずみ受感部形成工程は、ひずみ受感部33の形状をした2層構成の導電パターンについてのみ、エッチング法にて上層の金属層、すなわち第2金属層49を除去して上記ひずみ受感部33を得る工程である(図5参照)。
例えば、前工程で得た引き回し回路33をレジスト膜で覆った後に、エッチング液に浸漬して第2金属層49を除去し、第1金属層48のみからなる導電パターン、すなわちひずみ受感部33を得る。その後、引き回し回路33を覆って残存するレジスト膜をレジスト剥離液でもって全て剥離し、引き回し回路33の表面全体を露出させる。
レジスト膜の形成については、前工程と同様である。 (3. Strain sensitive part formation process)
In the strain sensitive part forming step, only the two-layered conductive pattern having the shape of the strain
For example, after the
The formation of the resist film is the same as in the previous step.
上記の工程を経ることにより、基材フィルム34の第1主面34aに形成された複数のひずみ受感部33と、基材フィルム34の第1主面343aに各ひずみ受感部33に対応して形成され、基材フィルム34の外縁付近に外部接続端子部37b,38bを有する2層構成の引き回し回路37,38と、を備え、引き回し回路37,38の下層37L,38Lが、ひずみ受感部33と同一材料からなり、引き回し回路37,38の上層37U,38Uが、ひずみ受感部33より低抵抗な材料からなるものが得られる。
なお、基材フィルム34が長尺の場合、二以上の上記センサ構造部36を連続して形成する。 By passing through the above steps, a plurality of strainsensitive portions 33 formed on the first main surface 34 a of the base film 34 and the first main surface 343 a of the base film 34 correspond to each strain sensitive portion 33. And two layers of routing circuits 37 and 38 having external connection terminal portions 37b and 38b in the vicinity of the outer edge of the base film 34, and the lower layers 37L and 38L of the routing circuits 37 and 38 are subjected to strain reception. It is made of the same material as that of the sensing part 33, and the upper layers 37U and 38U of the routing circuits 37 and 38 are made of a material having a lower resistance than the strain sensing part 33.
In addition, when thebase film 34 is elongate, the two or more said sensor structure parts 36 are formed continuously.
なお、基材フィルム34が長尺の場合、二以上の上記センサ構造部36を連続して形成する。 By passing through the above steps, a plurality of strain
In addition, when the
(4.カバー層形成工程)
カバー層形成工程は、上記ひずみ受感部33及び上記引き回し回路37,38を、上記外部接続端子部37b,38bを除き、絶縁性のカバー層63で覆う工程である(図6参照)。
カバー層63の形成方法としては、ラミネータ、熱プレスなどのカバーフィルムの貼合や、スクリーン印刷などの印刷法を用いることができる。 (4. Cover layer forming step)
The cover layer forming step is a step of covering thestrain sensing part 33 and the routing circuits 37 and 38 with an insulating cover layer 63 except for the external connection terminal parts 37b and 38b (see FIG. 6).
As a method for forming thecover layer 63, a cover film such as a laminator or a hot press, or a printing method such as screen printing can be used.
カバー層形成工程は、上記ひずみ受感部33及び上記引き回し回路37,38を、上記外部接続端子部37b,38bを除き、絶縁性のカバー層63で覆う工程である(図6参照)。
カバー層63の形成方法としては、ラミネータ、熱プレスなどのカバーフィルムの貼合や、スクリーン印刷などの印刷法を用いることができる。 (4. Cover layer forming step)
The cover layer forming step is a step of covering the
As a method for forming the
カバー層63の形成方法としてカバーフィルムを貼合する場合、カバーフィルムは基材フィルム34と同様の材料を採用することができる。また、カバー層63の形成方法として印刷する場合、例えば、ウレタン樹脂、ポリアミド樹脂、アクリル樹脂、ポリイミド樹脂などの熱硬化型樹脂を所定厚みで塗布し、硬化させることにより形成することができる。
When a cover film is bonded as a method for forming the cover layer 63, the same material as the base film 34 can be used for the cover film. Moreover, when printing as a formation method of the cover layer 63, it can form by apply | coating thermosetting resins, such as a urethane resin, a polyamide resin, an acrylic resin, and a polyimide resin, by predetermined thickness, and making it harden | cure, for example.
上記の工程を経ることにより、酸化、硫化またはマイグレーションに起因する劣化からひずみ受感部33及び外部接続端子部37b,38bを除く引き回し回路37,38を守ることができる。
By passing through the above steps, the routing circuits 37 and 38 excluding the strain sensing part 33 and the external connection terminal parts 37b and 38b can be protected from deterioration caused by oxidation, sulfurization or migration.
(5.リード線接続端子の保護層形成工程)
リード線接続端子の保護層形成工程は 各引き回し回路37,38の他端部(外部接続端子部)37b,38b、すなわち上記カバー層63で覆われず露出する部分を、リード線47と導通可能な材料で覆って、酸化、硫化またはマイグレーションに起因する劣化から保護する工程である(図7参照
)。
端子保護層45の形成方法としては、ニッケル下地金メッキや、半田メッキなどを用いることができる。 (5. Lead wire connection terminal protective layer forming step)
In the lead wire connection terminal protective layer forming step, the other end portions (external connection terminal portions) 37b and 38b of therouting circuits 37 and 38, that is, the portions that are not covered with the cover layer 63 and are exposed can be electrically connected to the lead wire 47. This is a step of covering with a new material to protect against deterioration caused by oxidation, sulfurization or migration (see FIG. 7).
As a method for forming the terminalprotective layer 45, nickel base gold plating, solder plating, or the like can be used.
リード線接続端子の保護層形成工程は 各引き回し回路37,38の他端部(外部接続端子部)37b,38b、すなわち上記カバー層63で覆われず露出する部分を、リード線47と導通可能な材料で覆って、酸化、硫化またはマイグレーションに起因する劣化から保護する工程である(図7参照
)。
端子保護層45の形成方法としては、ニッケル下地金メッキや、半田メッキなどを用いることができる。 (5. Lead wire connection terminal protective layer forming step)
In the lead wire connection terminal protective layer forming step, the other end portions (external connection terminal portions) 37b and 38b of the
As a method for forming the terminal
なお、基材フィルム34が長尺の場合には、二以上のセンサ構造部36を連続して形成しているので、さらに個々のセンサ構造部36に分離するように外形加工する(図8参照)。
外形加工の方法としては、打ち抜きプレスやレーザーカットなどを用いることができる。 In addition, when thebase film 34 is long, since two or more sensor structure portions 36 are continuously formed, the outer shape is further processed so as to be separated into individual sensor structure portions 36 (see FIG. 8). ).
A punching press, a laser cut, etc. can be used as a method of external shape processing.
外形加工の方法としては、打ち抜きプレスやレーザーカットなどを用いることができる。 In addition, when the
A punching press, a laser cut, etc. can be used as a method of external shape processing.
(6.リード線実装工程)
リード線実装工程は、センサ構造部36について、引き回し回路37,38の外部接続端子部37b,38bに端子保護層45を介してリード線47を実装する工程である(図1、図2参照)。
リード線47の実装方法としては、例えば、リード線47がFPCの場合には異方性導電フィルムまたは異方性導電接着剤46などの伝導性接着物質などを使用した熱圧着法を用いることができる。
なお、前記端子保護層45を形成する工程を省略して、外部接続端子部37b,38bに直接、リード線47を実装することもできる。 (6. Lead wire mounting process)
The lead wire mounting step is a step of mounting thelead wire 47 on the external connection terminal portions 37b and 38b of the routing circuits 37 and 38 with respect to the sensor structure portion 36 via the terminal protective layer 45 (see FIGS. 1 and 2). .
As a mounting method of thelead wire 47, for example, when the lead wire 47 is FPC, a thermocompression bonding method using a conductive adhesive substance such as an anisotropic conductive film or an anisotropic conductive adhesive 46 is used. it can.
Note that thelead wire 47 can be directly mounted on the external connection terminal portions 37b and 38b by omitting the step of forming the terminal protective layer 45.
リード線実装工程は、センサ構造部36について、引き回し回路37,38の外部接続端子部37b,38bに端子保護層45を介してリード線47を実装する工程である(図1、図2参照)。
リード線47の実装方法としては、例えば、リード線47がFPCの場合には異方性導電フィルムまたは異方性導電接着剤46などの伝導性接着物質などを使用した熱圧着法を用いることができる。
なお、前記端子保護層45を形成する工程を省略して、外部接続端子部37b,38bに直接、リード線47を実装することもできる。 (6. Lead wire mounting process)
The lead wire mounting step is a step of mounting the
As a mounting method of the
Note that the
このようなひずみセンサの製造方法によれば、複数のひずみ受感部と各ひずみ受感部に対応する引き回し回路とが同一の基材フィルムの同一面に設けられてひずみセンサが得られるため、ひずみ受感部と引き回し回路との接続に貼り合せ工程が不要となる。したがって、貼り合せ時のズレに起因するひずみ受感部と引き回し回路との導通不良が起きない。
特に基材フィルム両面の導電パターンのパターニング工程において、エッチングのレジスト膜の形成に感光性樹脂の露光・現像を行なう場合、ひずみ受感部と引き回し回路との位置合わせ精度がより高いものとなる。
また、ひずみセンサを構成する層数を減らせるため、材料費、ひいては製造コストを低減できる。 According to such a method for manufacturing a strain sensor, a plurality of strain sensitive portions and a routing circuit corresponding to each strain sensitive portion are provided on the same surface of the same base film, thereby obtaining a strain sensor. A bonding step is not required for connection between the strain sensing part and the routing circuit. Accordingly, there is no conduction failure between the strain sensing part and the routing circuit due to the deviation at the time of bonding.
In particular, in the patterning process of the conductive pattern on both surfaces of the base film, when exposure / development of the photosensitive resin is performed for forming the resist film for etching, the alignment accuracy between the strain sensitive portion and the routing circuit is higher.
Further, since the number of layers constituting the strain sensor can be reduced, the material cost and thus the manufacturing cost can be reduced.
特に基材フィルム両面の導電パターンのパターニング工程において、エッチングのレジスト膜の形成に感光性樹脂の露光・現像を行なう場合、ひずみ受感部と引き回し回路との位置合わせ精度がより高いものとなる。
また、ひずみセンサを構成する層数を減らせるため、材料費、ひいては製造コストを低減できる。 According to such a method for manufacturing a strain sensor, a plurality of strain sensitive portions and a routing circuit corresponding to each strain sensitive portion are provided on the same surface of the same base film, thereby obtaining a strain sensor. A bonding step is not required for connection between the strain sensing part and the routing circuit. Accordingly, there is no conduction failure between the strain sensing part and the routing circuit due to the deviation at the time of bonding.
In particular, in the patterning process of the conductive pattern on both surfaces of the base film, when exposure / development of the photosensitive resin is performed for forming the resist film for etching, the alignment accuracy between the strain sensitive portion and the routing circuit is higher.
Further, since the number of layers constituting the strain sensor can be reduced, the material cost and thus the manufacturing cost can be reduced.
〔第二実施形態〕
本実施形態は、引き回し回路37,38の形成方向が異なる以外は第一実施形態と同じであり、共通部分についての説明は省略する。
すなわち、本実施形態に係る発明の引き回し回路37,38は、図9に示すように、各ひずみ受感部33の本体33cにおける複数の帯状部の幅方向に沿って延在して設けられている。この場合、各ひずみ受感部33の上記帯状部を構成する金属の長さ方向での延伸/圧縮を引き回し回路37,38が阻害しないため、より高精度のひずみ測定を行うことができる。 [Second Embodiment]
This embodiment is the same as the first embodiment except that the formation directions of therouting circuits 37 and 38 are different, and a description of common parts is omitted.
That is, therouting circuits 37 and 38 of the invention according to the present embodiment are provided so as to extend along the width direction of the plurality of strips in the main body 33c of each strain sensing part 33, as shown in FIG. Yes. In this case, since the circuits 37 and 38 do not hinder the stretching / compression in the length direction of the metal constituting the band-shaped portion of each strain sensing portion 33, more accurate strain measurement can be performed.
本実施形態は、引き回し回路37,38の形成方向が異なる以外は第一実施形態と同じであり、共通部分についての説明は省略する。
すなわち、本実施形態に係る発明の引き回し回路37,38は、図9に示すように、各ひずみ受感部33の本体33cにおける複数の帯状部の幅方向に沿って延在して設けられている。この場合、各ひずみ受感部33の上記帯状部を構成する金属の長さ方向での延伸/圧縮を引き回し回路37,38が阻害しないため、より高精度のひずみ測定を行うことができる。 [Second Embodiment]
This embodiment is the same as the first embodiment except that the formation directions of the
That is, the
〔第三実施形態〕
本実施形態は、多点計測用のひずみセンサの製造方法において、ひずみ受感部及び引き回し回路の形成方法が異なる以外は第一実施形態と同じであり、共通部分についての説明は省略する。 [Third embodiment]
The present embodiment is the same as the first embodiment except that the method of forming the strain sensing part and the routing circuit is different in the method of manufacturing the strain sensor for multipoint measurement, and the description of the common parts is omitted.
本実施形態は、多点計測用のひずみセンサの製造方法において、ひずみ受感部及び引き回し回路の形成方法が異なる以外は第一実施形態と同じであり、共通部分についての説明は省略する。 [Third embodiment]
The present embodiment is the same as the first embodiment except that the method of forming the strain sensing part and the routing circuit is different in the method of manufacturing the strain sensor for multipoint measurement, and the description of the common parts is omitted.
<ひずみセンサの製造方法>
具体的には、本実施形態の係るひずみセンサの製造方法は、
(1A)上記基材フィルム34の第1主面34aに1層の金属層、すなわち第1金属層48を積層する工程(図10参照)と、
(2A)エッチング法にて、第1金属層48から複数のひずみ受感部33と、当該各ひずみ受感部33に対応した引き回し回路37,38の形状をした導電パターンとを形成する工程(図11参照)と、
(3A)引き回し回路37,38の形状をした導電パターンについてのみ、印刷法にて別の金属層、すなわち第2金属層49を積層して2層構成の引き回し回路37,38を得る工程(図12参照)と、を備える。
また、上記工程(1A)~(3A)に、第一実施形態で述べた工程(4)(5)及び工程(6)のうち少なくとも一方を加えてもよい。 <Manufacturing method of strain sensor>
Specifically, the manufacturing method of the strain sensor according to the present embodiment is as follows:
(1A) laminating one metal layer, that is, thefirst metal layer 48 on the first main surface 34a of the base film 34 (see FIG. 10);
(2A) A step of forming a plurality of strainsensitive portions 33 and conductive patterns in the shape of routing circuits 37 and 38 corresponding to each strain sensitive portion 33 from the first metal layer 48 by an etching method ( FIG. 11)
(3A) Steps for obtaining therouting circuits 37 and 38 having a two-layer structure by laminating another metal layer, that is, the second metal layer 49 only by using the printing method only for the conductive patterns in the shape of the routing circuits 37 and 38 (FIG. 12).
Further, at least one of the steps (4), (5) and (6) described in the first embodiment may be added to the above steps (1A) to (3A).
具体的には、本実施形態の係るひずみセンサの製造方法は、
(1A)上記基材フィルム34の第1主面34aに1層の金属層、すなわち第1金属層48を積層する工程(図10参照)と、
(2A)エッチング法にて、第1金属層48から複数のひずみ受感部33と、当該各ひずみ受感部33に対応した引き回し回路37,38の形状をした導電パターンとを形成する工程(図11参照)と、
(3A)引き回し回路37,38の形状をした導電パターンについてのみ、印刷法にて別の金属層、すなわち第2金属層49を積層して2層構成の引き回し回路37,38を得る工程(図12参照)と、を備える。
また、上記工程(1A)~(3A)に、第一実施形態で述べた工程(4)(5)及び工程(6)のうち少なくとも一方を加えてもよい。 <Manufacturing method of strain sensor>
Specifically, the manufacturing method of the strain sensor according to the present embodiment is as follows:
(1A) laminating one metal layer, that is, the
(2A) A step of forming a plurality of strain
(3A) Steps for obtaining the
Further, at least one of the steps (4), (5) and (6) described in the first embodiment may be added to the above steps (1A) to (3A).
このようなひずみセンサの製造方法によれば、第一実施形態と同じく、複数のひずみ受感部と各ひずみ受感部に対応する引き回し回路とが同一の基材フィルムの同一面に設けられてひずみセンサが得られる。また、ひずみセンサを構成する層数を減らせるため、材料費、ひいては製造コストを低減できる。
また、2段階でエッチングを行なわないので、エッチャント(エッチング液)の選択の幅が広がるというメリットがある。 According to such a strain sensor manufacturing method, as in the first embodiment, a plurality of strain sensitive portions and routing circuits corresponding to the strain sensitive portions are provided on the same surface of the same base film. A strain sensor is obtained. Further, since the number of layers constituting the strain sensor can be reduced, the material cost and thus the manufacturing cost can be reduced.
Further, since etching is not performed in two stages, there is an advantage that the selection range of the etchant (etching solution) is widened.
また、2段階でエッチングを行なわないので、エッチャント(エッチング液)の選択の幅が広がるというメリットがある。 According to such a strain sensor manufacturing method, as in the first embodiment, a plurality of strain sensitive portions and routing circuits corresponding to the strain sensitive portions are provided on the same surface of the same base film. A strain sensor is obtained. Further, since the number of layers constituting the strain sensor can be reduced, the material cost and thus the manufacturing cost can be reduced.
Further, since etching is not performed in two stages, there is an advantage that the selection range of the etchant (etching solution) is widened.
〔第四実施形態〕
本実施形態は、多点計測用のひずみセンサとの製造方法において、ひずみ受感部及び引き回し回路が基材フィルムの両面に形成される以外は第一実施形態と同じであり、共通部分についての説明は省略する。 [Fourth embodiment]
This embodiment is the same as the first embodiment except that the strain sensing part and the routing circuit are formed on both surfaces of the base film in the manufacturing method with the strain sensor for multipoint measurement. Description is omitted.
本実施形態は、多点計測用のひずみセンサとの製造方法において、ひずみ受感部及び引き回し回路が基材フィルムの両面に形成される以外は第一実施形態と同じであり、共通部分についての説明は省略する。 [Fourth embodiment]
This embodiment is the same as the first embodiment except that the strain sensing part and the routing circuit are formed on both surfaces of the base film in the manufacturing method with the strain sensor for multipoint measurement. Description is omitted.
<ひずみセンサ>
本実施形態のひずみセンサ31は、図1、図13及び図14に示すように、基材フィルム34と、基材フィルム34の第1主面34aに形成された複数の第1ひずみ受感部133と、基材フィルム34の第1主面34aに各第1ひずみ受感部133に対応して形成され、基材フィルム34の外縁付近に外部接続端子部137b,138bを有する2層構成の第1引き回し回路137,138と、を有するセンサ構造部36を備える。
また、このセンサ構造部36は、基材フィルム34の第2主面34bに形成され、各第1ひずみ受感部133と軸方向の異なる複数の第2ひずみ受感部233と、基材フィルム34の第2主面34bに各第2ひずみ受感部233に対応して形成され、基材フィルム34の外縁付近に外部接続端子部237b,238bを有する2層構成の第2引き回し回路237,238と、を有するセンサ構造部36を有する。 <Strain sensor>
As shown in FIGS. 1, 13, and 14, thestrain sensor 31 of the present embodiment includes a base film 34 and a plurality of first strain sensing portions formed on the first main surface 34 a of the base film 34. 133 and a first main surface 34a of the base film 34 corresponding to each first strain sensing portion 133, and having a two-layer configuration having external connection terminal portions 137b and 138b in the vicinity of the outer edge of the base film 34. A sensor structure 36 having first routing circuits 137 and 138 is provided.
Thesensor structure 36 is formed on the second main surface 34b of the base film 34, and a plurality of second strain sensitive parts 233 having different axial directions from the first strain sensitive parts 133, and the base film. 34, a second routing circuit 237 having a two-layer structure formed on the second main surface 34b corresponding to each second strain sensing part 233 and having external connection terminal parts 237b, 238b in the vicinity of the outer edge of the base film 34. 238, and a sensor structure portion 36 having 238.
本実施形態のひずみセンサ31は、図1、図13及び図14に示すように、基材フィルム34と、基材フィルム34の第1主面34aに形成された複数の第1ひずみ受感部133と、基材フィルム34の第1主面34aに各第1ひずみ受感部133に対応して形成され、基材フィルム34の外縁付近に外部接続端子部137b,138bを有する2層構成の第1引き回し回路137,138と、を有するセンサ構造部36を備える。
また、このセンサ構造部36は、基材フィルム34の第2主面34bに形成され、各第1ひずみ受感部133と軸方向の異なる複数の第2ひずみ受感部233と、基材フィルム34の第2主面34bに各第2ひずみ受感部233に対応して形成され、基材フィルム34の外縁付近に外部接続端子部237b,238bを有する2層構成の第2引き回し回路237,238と、を有するセンサ構造部36を有する。 <Strain sensor>
As shown in FIGS. 1, 13, and 14, the
The
センサ構造部36は、その全体が薄い方形板状に構成されており、基材フィルム34の第1ひずみ受感部133側又は第2ひずみ受感部233側が構造物に密着される。なお、図14では、図示および説明の便宜上、センサ構造部36を厚く記載している。
The sensor structure part 36 is configured in a thin rectangular plate shape as a whole, and the first strain sensitive part 133 side or the second strain sensitive part 233 side of the base film 34 is in close contact with the structure. In FIG. 14, the sensor structure 36 is shown thick for convenience of illustration and description.
図1、図14に示すように、第1ひずみ受感部133は、第一実施形態のひずみ受感部33と同じものであり、平面視において8行×5列のマス目状に配置され、いずれもひずみ受感部133の長さ方向(軸方向)が同一方向に沿っている。
As shown in FIG. 1 and FIG. 14, the first strain sensing unit 133 is the same as the strain sensing unit 33 of the first embodiment, and is arranged in a grid of 8 rows × 5 columns in plan view. In both cases, the length direction (axial direction) of the strain sensing part 133 is along the same direction.
また、図13、図14に示すように、第2ひずみ受感部233は、第一実施形態のひずみ受感部33と同じものであるが、平面視において3行×8列のマス目状に配置され、いずれもひずみ受感部233の長さ方向(軸方向)がひずみ受感部133の長さ方向(軸方向)と直交している。
As shown in FIGS. 13 and 14, the second strain sensing unit 233 is the same as the strain sensing unit 33 of the first embodiment, but has a grid shape of 3 rows × 8 columns in plan view. In any case, the length direction (axial direction) of the strain sensing unit 233 is orthogonal to the length direction (axial direction) of the strain sensing unit 133.
このように、基材フィルム34の両面に各々、複数のひずみ受感部を設け、表裏でひずみ受感部の向きを変えることにより、被測定物における複数の方向の歪量を測定することができる。
In this way, by providing a plurality of strain sensitive portions on both sides of the base film 34 and changing the direction of the strain sensitive portions on the front and back, it is possible to measure the strain amount in a plurality of directions in the object to be measured. it can.
図1、図14に示すように、第1引き回し回路137,138のそれぞれの個数は、対応する第1ひずみ受感部133の個数と同数であり、個々のひずみ受感部133に、引き回し回路137,138が1つずつ対応付けられている。第1引き回し回路137,138は、第一実施形態の引き回し回路37,38と同じものであり、図1に示すように、主として各ひずみ受感部133の本体233cにおける複数の帯状部の長さ方向に沿って延在して設けられている。
As shown in FIGS. 1 and 14, the number of the first routing circuits 137 and 138 is the same as the number of the corresponding first strain sensing units 133, and the routing circuits are connected to the individual strain sensing units 133. 137 and 138 are associated one by one. The first routing circuits 137 and 138 are the same as the routing circuits 37 and 38 of the first embodiment. As shown in FIG. 1, the lengths of the plurality of strip portions in the main body 233c of each strain sensing portion 133 are mainly used. It is provided extending along the direction.
また、図13、図14に示すように、第2引き回し回路237,238のそれぞれの個数は、対応する第2ひずみ受感部233の個数と同数であり、個々のひずみ受感部233に、引き回し回路237,238が1つずつ対応付けられている。第2引き回し回路237,238は、第一実施形態の引き回し回路37,38と同じものであるが、図13に示す例では、主として各ひずみ受感部233の本体133cにおける複数の帯状部の長さ方向とは直交する方向に沿って延在して設けられいる。そのため、第2引き回し回路237,238の外部接続端子部237b,238bを、第1引き回し回路137,138の外部接続端子部137b,138b設けたと一辺に揃えることができる。
なお、図13に示す第2引き回し回路237,238の延長方向は一例であり、第一実施形態の引き回し回路37,38と同様に、各ひずみ受感部233の本体233cにおける複数の帯状部の長さ方向に沿って延在して設けることもできる。 As shown in FIGS. 13 and 14, the number of second routing circuits 237 and 238 is the same as the number of the corresponding second strain sensing units 233, and each strain sensing unit 233 includes The routing circuits 237 and 238 are associated one by one. The second routing circuits 237 and 238 are the same as the routing circuits 37 and 38 of the first embodiment. However, in the example shown in FIG. 13, the lengths of a plurality of strip portions in the main body 133c of each strain sensing portion 233 are mainly used. It extends along a direction orthogonal to the vertical direction. Therefore, the external connection terminal portions 237b and 238b of the second routing circuits 237 and 238 can be aligned on one side when the external connection terminal portions 137b and 138b of the first routing circuits 137 and 138 are provided.
Note that the extending direction of the second routing circuits 237 and 238 shown in FIG. 13 is an example, and, like the routing circuits 37 and 38 of the first embodiment, a plurality of strip-like portions in the main body 233c of each strain sensing portion 233 are used. It can also be provided extending along the length direction.
なお、図13に示す第2引き回し回路237,238の延長方向は一例であり、第一実施形態の引き回し回路37,38と同様に、各ひずみ受感部233の本体233cにおける複数の帯状部の長さ方向に沿って延在して設けることもできる。 As shown in FIGS. 13 and 14, the number of
Note that the extending direction of the
前記構成を有するひずみチセンサを得る方法を、以下に説明する。
<ひずみセンサの製造方法>
本実施形態の多点計測用のひずみセンサの製造方法は、
(1B)上記基材フィルム34の第1主面34a及び第2主面34bに各々、2層の金属層、、すなわち第1金属層48及び第2金属層49をこの順で積層する工程(図15参照)と、
(2B)エッチング法にて、第1主面34a側の第1金属層48及び第2金属層49から複数の上記第1ひずみ受感部133の形状をした2層構成の導電パターンと、当該導電パターンに各々対応した2層構成の上記第1引き回し回路137,138とを形成すると同時に、第2主面34b側の第1金属層48及び第2金属層49から複数の上記第2ひずみ受感部233の形状をした2層構成の導電パターンと、当該導電パターンに各々対応した2層構成の上記第2引き回し回路237,238とを形成する工程(図16参照)と、
(2B)上記第1及び第2ひずみ受感部133,233の形状をした2層構成の導電パターンについてのみ、エッチング法にて上層の金属層、すなわち第2金属層49を除去して上記第1及び第2ひずみ受感部133,233を得る工程(図17参照)と、を備える。 A method for obtaining a strain sensor having the above configuration will be described below.
<Manufacturing method of strain sensor>
The manufacturing method of the strain sensor for multipoint measurement of this embodiment is as follows.
(1B) Step of laminating two metal layers, that is, thefirst metal layer 48 and the second metal layer 49 in this order on the first main surface 34a and the second main surface 34b of the base film 34 ( FIG. 15)
(2B) a conductive pattern having a two-layer configuration in which thefirst metal layer 48 and the second metal layer 49 on the first main surface 34a side are formed into a plurality of the first strain sensing portions 133 by the etching method; The first routing circuits 137 and 138 having a two-layer structure corresponding to the respective conductive patterns are formed, and at the same time, a plurality of the second strain receiving circuits are formed from the first metal layer 48 and the second metal layer 49 on the second main surface 34b side. Forming a conductive pattern having a two-layer configuration in the shape of the sensitive portion 233 and the second routing circuits 237 and 238 having a two-layer configuration corresponding to the conductive pattern, respectively (see FIG. 16);
(2B) The upper metal layer, that is, thesecond metal layer 49 is removed by an etching method only for the two-layered conductive pattern in the shape of the first and second strain sensing parts 133, 233, and the second metal layer 49 is removed. And a step of obtaining the first and second strain sensing parts 133, 233 (see FIG. 17).
<ひずみセンサの製造方法>
本実施形態の多点計測用のひずみセンサの製造方法は、
(1B)上記基材フィルム34の第1主面34a及び第2主面34bに各々、2層の金属層、、すなわち第1金属層48及び第2金属層49をこの順で積層する工程(図15参照)と、
(2B)エッチング法にて、第1主面34a側の第1金属層48及び第2金属層49から複数の上記第1ひずみ受感部133の形状をした2層構成の導電パターンと、当該導電パターンに各々対応した2層構成の上記第1引き回し回路137,138とを形成すると同時に、第2主面34b側の第1金属層48及び第2金属層49から複数の上記第2ひずみ受感部233の形状をした2層構成の導電パターンと、当該導電パターンに各々対応した2層構成の上記第2引き回し回路237,238とを形成する工程(図16参照)と、
(2B)上記第1及び第2ひずみ受感部133,233の形状をした2層構成の導電パターンについてのみ、エッチング法にて上層の金属層、すなわち第2金属層49を除去して上記第1及び第2ひずみ受感部133,233を得る工程(図17参照)と、を備える。 A method for obtaining a strain sensor having the above configuration will be described below.
<Manufacturing method of strain sensor>
The manufacturing method of the strain sensor for multipoint measurement of this embodiment is as follows.
(1B) Step of laminating two metal layers, that is, the
(2B) a conductive pattern having a two-layer configuration in which the
(2B) The upper metal layer, that is, the
また、ひずみ受感部及び引き回し回路の酸化、硫化またはマイグレーションに起因する劣化防止のためには、
(4B)上記基材フィルムの第1主面34aに、上記外部接続端子部137b,138bを除き、上記第1ひずみ受感部133及び上記第1引き回し回路137,138を覆って絶縁性の第1カバー層43を形成し、他方、第2主面34bに、上記外部接続端子部237b,238bを除き、上記第2ひずみ受感部233及び上記第2引き回し回路237,238を覆って絶縁性の第2カバー層44を形成する工程(図18参照)と、
(5B)上記第1引き回し回路137,138の上記外部接続端子部137b,138bを覆って導電性の第1端子保護層64を形成し、他方、上記第2引き回し回路237,238の上記外部接続端子部237b,238bを覆って導電性の第2端子保護層65を形成する工程(図19参照)と、をさらに備えていてもよい。 In addition, in order to prevent deterioration due to oxidation, sulfurization or migration of the strain sensing part and the routing circuit,
(4B) The firstmain surface 34a of the base film except for the external connection terminal portions 137b and 138b, covers the first strain sensing portion 133 and the first routing circuits 137 and 138, and has an insulating first. 1 cover layer 43 is formed, and on the other hand, the second main surface 34b is excluded from the external connection terminal portions 237b and 238b, and covers the second strain sensing portion 233 and the second routing circuits 237 and 238. Forming the second cover layer 44 (see FIG. 18),
(5B) A conductive first terminalprotective layer 64 is formed so as to cover the external connection terminal portions 137b and 138b of the first routing circuits 137 and 138, while the external connection of the second routing circuits 237 and 238 is performed. A step of covering the terminal portions 237b and 238b and forming the conductive second terminal protective layer 65 (see FIG. 19).
(4B)上記基材フィルムの第1主面34aに、上記外部接続端子部137b,138bを除き、上記第1ひずみ受感部133及び上記第1引き回し回路137,138を覆って絶縁性の第1カバー層43を形成し、他方、第2主面34bに、上記外部接続端子部237b,238bを除き、上記第2ひずみ受感部233及び上記第2引き回し回路237,238を覆って絶縁性の第2カバー層44を形成する工程(図18参照)と、
(5B)上記第1引き回し回路137,138の上記外部接続端子部137b,138bを覆って導電性の第1端子保護層64を形成し、他方、上記第2引き回し回路237,238の上記外部接続端子部237b,238bを覆って導電性の第2端子保護層65を形成する工程(図19参照)と、をさらに備えていてもよい。 In addition, in order to prevent deterioration due to oxidation, sulfurization or migration of the strain sensing part and the routing circuit,
(4B) The first
(5B) A conductive first terminal
また、本実施形態の多点計測用のひずみセンサの製造方法は、工程(1B)~(3B)又は工程(1B)~(5B)の後に、
(6B)第1及び第2引き回し回路137,138,237,238の外部接続端子部137b,138b,237b,238bにリード線47を実装する工程(図14参照)、をさらに備えていてもよい。 In addition, the method for manufacturing a strain sensor for multipoint measurement according to the present embodiment includes steps (1B) to (3B) or steps (1B) to (5B).
(6B) The method may further include a step of mounting thelead wire 47 on the external connection terminal portions 137b, 138b, 237b, 238b of the first and second routing circuits 137, 138, 237, 238 (see FIG. 14). .
(6B)第1及び第2引き回し回路137,138,237,238の外部接続端子部137b,138b,237b,238bにリード線47を実装する工程(図14参照)、をさらに備えていてもよい。 In addition, the method for manufacturing a strain sensor for multipoint measurement according to the present embodiment includes steps (1B) to (3B) or steps (1B) to (5B).
(6B) The method may further include a step of mounting the
このようなひずみセンサの製造方法によれば、第一実施形態と同じく、複数のひずみ受感部と各ひずみ受感部に対応する引き回し回路とが同一の基材フィルムの同一面に設けられてひずみセンサが得られる。また、ひずみセンサを構成する層数を減らせるため、材料費、ひいては製造コストを低減できる。
また、上述のように、基材フィルム34の両面に各々、複数のひずみ受感部を設け、表裏でひずみ受感部の向きを変えることにより、被測定物における複数の方向の歪量を測定することができる。 According to such a strain sensor manufacturing method, as in the first embodiment, a plurality of strain sensitive portions and routing circuits corresponding to the strain sensitive portions are provided on the same surface of the same base film. A strain sensor is obtained. Further, since the number of layers constituting the strain sensor can be reduced, the material cost and thus the manufacturing cost can be reduced.
In addition, as described above, a plurality of strain sensitive portions are provided on both surfaces of thebase film 34, and the direction of the strain sensitive portions is changed between the front and back sides, thereby measuring the strain amount in a plurality of directions in the measured object. can do.
また、上述のように、基材フィルム34の両面に各々、複数のひずみ受感部を設け、表裏でひずみ受感部の向きを変えることにより、被測定物における複数の方向の歪量を測定することができる。 According to such a strain sensor manufacturing method, as in the first embodiment, a plurality of strain sensitive portions and routing circuits corresponding to the strain sensitive portions are provided on the same surface of the same base film. A strain sensor is obtained. Further, since the number of layers constituting the strain sensor can be reduced, the material cost and thus the manufacturing cost can be reduced.
In addition, as described above, a plurality of strain sensitive portions are provided on both surfaces of the
[その他の実施形態]
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 [Other Embodiments]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is not limited to the configuration of the embodiment described above, but is defined by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims. The
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 [Other Embodiments]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is not limited to the configuration of the embodiment described above, but is defined by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims. The
上記実施形態のひずみセンサ31を構成するセンサ構造部36においては、図1、図13に示すように、全てのひずみ受感部33が、上述した受感方向を同一面内において1方向に揃えて配置されているが、これに限定しない。例えば、同一面内において直角に2方向のひずみ受感部33が混在していてもよいし、さらには直角2方向と45度方向のひずみ受感部33が混在していてもよい(図示せず)。複数のひずみ受感部33の向きを変えることにより、被測定物における複数の方向の歪量を測定することができる。
In the sensor structure portion 36 constituting the strain sensor 31 of the above embodiment, as shown in FIGS. 1 and 13, all the strain sensing portions 33 align the above-described sensing directions in one direction within the same plane. However, the present invention is not limited to this. For example, two strain sensitive sections 33 in two directions may be mixed at right angles in the same plane, and further, two strain sensitive sections 33 in two right angles and 45 degrees may be mixed (not shown). ) By changing the direction of the plurality of strain sensing sections 33, the amount of strain in a plurality of directions in the object to be measured can be measured.
また、上記実施形態のひずみセンサ31においては、リード線47を用いてセンサ構造部36を外部の計測器と接続しているが、外部接続方法はこれに限定されない。例えば、センサ構造部36に送信装置を設け、計測された出力値を計測器まで無線伝送してもよい。
In the strain sensor 31 of the above embodiment, the sensor structure 36 is connected to an external measuring instrument using the lead wire 47, but the external connection method is not limited to this. For example, a transmission device may be provided in the sensor structure 36 and the measured output value may be wirelessly transmitted to the measuring instrument.
1,31 ひずみセンサ
2 フレキシブル基板
3 ひずみゲージ
4 ゲージベース
5 カバーフィルム
6,36センサ構造部
7 第1層基板
8 第2層基板
13,33 ひずみ受感部
133 第1ひずみ受感部
233 第1ひずみ受感部
14a,14b タブ(導線接続部)
18,19,20,37,38 引き回し回路
137,138 第1引き回し回路
237,238 第2引き回し回路
2 スルーホール
23 半田(導体部材)
33c,133c,233c 本体
33d,33e,133d,133e,233d,233e 配線
34 基材フィルム
34a 第1主面
34b 第2主面
37b,38b,137b,138b,237b,238b 外部接続端子部
43 第1カバー層
44 第2カバー層
45 端子保護層
46 異方導電接着剤
47 リード線
48 第1金属層
49 第2金属層
63 カバー層
64 第1端子保護層
65 第2端子保護層 DESCRIPTION OF SYMBOLS 1,31 Strain sensor 2 Flexible board 3 Strain gauge 4 Gauge base 5 Cover film 6, 36 Sensor structure part 7 1st layer board 8 2nd layer board | substrates 13, 33 Strain sensitive part 133 1st strain sensitive part 233 1st Strain sensitive parts 14a, 14b Tab (conductor connection part)
18, 19, 20, 37, 38Routing circuits 137, 138 First routing circuits 237, 238 Second routing circuit 2 Through hole 23 Solder (conductor member)
33c, 133c, 233c Main body 33d, 33e, 133d, 133e, 233d, 233e Wiring 34 Base film 34a First main surface 34b Second main surface 37b, 38b, 137b, 138b, 237b, 238b External connection terminal 43 first Cover layer 44 Second cover layer 45 Terminal protective layer 46 Anisotropic conductive adhesive 47 Lead wire 48 First metal layer 49 Second metal layer 63 Cover layer 64 First terminal protective layer 65 Second terminal protective layer
2 フレキシブル基板
3 ひずみゲージ
4 ゲージベース
5 カバーフィルム
6,36センサ構造部
7 第1層基板
8 第2層基板
13,33 ひずみ受感部
133 第1ひずみ受感部
233 第1ひずみ受感部
14a,14b タブ(導線接続部)
18,19,20,37,38 引き回し回路
137,138 第1引き回し回路
237,238 第2引き回し回路
2 スルーホール
23 半田(導体部材)
33c,133c,233c 本体
33d,33e,133d,133e,233d,233e 配線
34 基材フィルム
34a 第1主面
34b 第2主面
37b,38b,137b,138b,237b,238b 外部接続端子部
43 第1カバー層
44 第2カバー層
45 端子保護層
46 異方導電接着剤
47 リード線
48 第1金属層
49 第2金属層
63 カバー層
64 第1端子保護層
65 第2端子保護層 DESCRIPTION OF
18, 19, 20, 37, 38
33c, 133c, 233c
Claims (8)
- 基材フィルムと、
前記基材フィルムの第1主面に形成された複数のひずみ受感部と、
前記基材フィルムの第1主面に前記各ひずみ受感部に対応して形成され、前記基材フィルムの外縁付近に外部接続端子部を有する2層構成の引き回し回路と、を備え、
前記引き回し回路の下層が、前記ひずみ受感部と同一材料からなり、
前記引き回し回路の上層が、前記ひずみ受感部より低抵抗な材料からなる多点計測用のひずみセンサ。 A base film;
A plurality of strain sensitive parts formed on the first main surface of the base film;
A two-layer routing circuit formed on the first main surface of the base film corresponding to each strain-sensitive part and having an external connection terminal part near the outer edge of the base film;
The lower layer of the routing circuit is made of the same material as the strain sensing part,
A strain sensor for multipoint measurement, wherein an upper layer of the routing circuit is made of a material having a resistance lower than that of the strain sensing part. - 前記基材フィルムの第1主面に、前記外部接続端子部を除き、前記ひずみ受感部及び前記引き回し回路を覆って形成された絶縁性のカバー層と、
前記引き回し回路の前記外部接続端子部を覆って形成された導電性の端子保護層と、をさらに備えた請求項1の多点計測用のひずみセンサ。 An insulating cover layer formed on the first main surface of the base film, excluding the external connection terminal portion, covering the strain sensitive portion and the routing circuit;
The strain sensor for multipoint measurement according to claim 1, further comprising a conductive terminal protective layer formed to cover the external connection terminal portion of the routing circuit. - 基材フィルムと、
前記基材フィルムの第1主面に形成された複数の第1ひずみ受感部と、
前記基材フィルムの第1主面に前記各第1ひずみ受感部に対応して形成され、前記基材フィルムの外縁付近に外部接続端子部を有する2層構成の第1引き回し回路と、
前記基材フィルムの第2主面に形成され、前記各第1ひずみ受感部と軸方向の異なる複数の第2ひずみ受感部と、
前記基材フィルムの第2主面に前記各第2ひずみ受感部に対応して形成され、前記基材フィルムの外縁付近に外部接続端子部を有する2層構成の第2引き回し回路と、を備え、
前記第1及び第2引き回し回路の下層が、前記第1及び第2ひずみ受感部と同一材料からなり、
前記第1及び第2引き回し回路の上層が、前記第1及び第2ひずみ受感部より低抵抗な材料からなる多点計測用のひずみセンサ。 A base film;
A plurality of first strain sensing parts formed on the first main surface of the base film;
A first routing circuit having a two-layer structure formed on the first main surface of the base film in correspondence with each of the first strain sensitive parts and having an external connection terminal near the outer edge of the base film;
A plurality of second strain sensitive portions formed on the second main surface of the base film and having different axial directions from the first strain sensitive portions,
A second routing circuit having a two-layer structure formed on the second main surface of the base film in correspondence with each of the second strain sensing parts and having an external connection terminal near the outer edge of the base film. Prepared,
The lower layer of the first and second routing circuits is made of the same material as the first and second strain sensing parts,
A strain sensor for multipoint measurement, wherein an upper layer of the first and second routing circuits is made of a material having a resistance lower than that of the first and second strain sensing units. - 前記基材フィルムの第1主面に、前記外部接続端子部を除き、前記第1ひずみ受感部及び前記第1引き回し回路を覆って形成された絶縁性の第1カバー層と、
前記第1引き回し回路の前記外部接続端子部を覆って形成された導電性の第1端子保護層と、
前記基材フィルムの第2主面に、前記外部接続端子部を除き、前記第2ひずみ受感部及び前記第2引き回し回路を覆って形成された絶縁性の第2カバー層と、
前記第2引き回し回路の前記外部接続端子部を覆って形成された導電性の第2端子保護層と、をさらに備えた請求項3の多点計測用のひずみセンサ。 An insulating first cover layer formed on the first main surface of the base film, excluding the external connection terminal portion, covering the first strain sensitive portion and the first routing circuit,
A conductive first terminal protective layer formed to cover the external connection terminal portion of the first routing circuit;
An insulating second cover layer formed on the second main surface of the base film, excluding the external connection terminal portion, covering the second strain sensitive portion and the second routing circuit;
The strain sensor for multipoint measurement according to claim 3, further comprising a conductive second terminal protective layer formed to cover the external connection terminal portion of the second routing circuit. - 前記外部接続端子部に実装されたリード線をさらに備えた請求項1~4のいずれかの多点計測用のひずみセンサ。 The strain sensor for multipoint measurement according to any one of claims 1 to 4, further comprising a lead wire mounted on the external connection terminal portion.
- 請求項1のひずみセンサの製造方法であって、
前記基材フィルムの第1主面に2層の金属層を積層する工程と、
エッチング法にて、前記金属層から複数の前記ひずみ受感部の形状をした2層構成の導電パターンと、当該ひずみ受感部の形状をした導電パターンに各々対応した2層構成の前記き回し回路とを形成する工程と、
前記ひずみ受感部の形状をした2層構成の導電パターンについてのみ、エッチング法にて上層の金属層を除去して前記ひずみ受感部を得る工程と、を備える多点計測用のひずみセンサの製造方法。 A method for manufacturing a strain sensor according to claim 1, comprising:
Laminating two metal layers on the first main surface of the base film;
Etching is used to form a two-layered conductive pattern in the shape of a plurality of strain-sensitive parts from the metal layer, and the two-layered structure corresponding to the conductive pattern in the shape of the strain-sensitive parts. Forming a circuit;
A strain sensor for multipoint measurement comprising a step of removing the upper metal layer by an etching method to obtain the strain sensitive part only for a conductive pattern having a two-layer structure having the shape of the strain sensitive part. Production method. - 請求項1のひずみセンサの製造方法であって、
前記基材フィルムの第1主面に1層の金属層を積層する工程と、
エッチング法にて、前記金属層から複数のひずみ受感部と、当該各ひずみ受感部に対応した前記引き回し回路の形状をした導電パターンとを形成する工程と、
前記引き回し回路の形状をした導電パターンについてのみ、印刷法にて別の金属層を積層して2層構成の前記引き回し回路を得る工程と、を備える多点計測用のひずみセンサの製造方法。 A method for manufacturing a strain sensor according to claim 1, comprising:
Laminating one metal layer on the first main surface of the base film;
Forming a plurality of strain sensitive portions from the metal layer and an electrically conductive pattern in the shape of the routing circuit corresponding to each strain sensitive portion by an etching method;
A method of manufacturing a strain sensor for multipoint measurement comprising: only a conductive pattern having a shape of the routing circuit, and obtaining a routing circuit having a two-layer structure by laminating another metal layer by a printing method. - 請求項3のひずみセンサの製造方法であって、
前記基材フィルムの第1主面及び第2主面に各々、2層の金属層を積層する工程と、
エッチング法にて、第1主面側の金属層から複数の前記第1ひずみ受感部の形状をした2層構成の導電パターンと、当該導電パターンに各々対応した2層構成の前記第1引き回し回路とを形成すると同時に、第2主面側の金属層から複数の前記第2ひずみ受感部の形状をした2層構成の導電パターンと、当該導電パターンに各々対応した2層構成の前記第2引き回し回路とを形成する工程と、
前記第1及び第2ひずみ受感部の形状をした2層構成の導電パターンについてのみ、エッチング法にて上層の金属層を除去して前記第1及び第2ひずみ受感部を得る工程と、を備える多点計測用のひずみセンサの製造方法。 A method of manufacturing a strain sensor according to claim 3,
Laminating two metal layers on each of the first main surface and the second main surface of the base film;
A two-layered conductive pattern in which a plurality of first strain sensitive portions are formed from a metal layer on the first main surface side by an etching method, and the first routing of a two-layer configuration corresponding to each of the conductive patterns. Forming a circuit, and simultaneously forming a plurality of second strain sensing portions in the shape of a plurality of the second strain sensing portions from the metal layer on the second main surface side, and the second layer configuration corresponding to each of the conductive patterns. Forming a two routing circuit;
Only for the two-layered conductive pattern in the shape of the first and second strain sensitive portions, the step of removing the upper metal layer by an etching method to obtain the first and second strain sensitive portions; The manufacturing method of the strain sensor for multipoint measurement provided with.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015234432A JP2017101983A (en) | 2015-12-01 | 2015-12-01 | Distortion sensor for multi-point measurement and method for manufacturing the same |
JP2015-234432 | 2015-12-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017094368A1 true WO2017094368A1 (en) | 2017-06-08 |
Family
ID=58796965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/080579 WO2017094368A1 (en) | 2015-12-01 | 2016-10-14 | Multipoint-measurement strain sensor and production method for same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017101983A (en) |
WO (1) | WO2017094368A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3671107A1 (en) * | 2018-12-19 | 2020-06-24 | Universität Wien | Strain gauge curvature measurement tool for 3d precision position control of thin foils |
CN112955724A (en) * | 2018-10-23 | 2021-06-11 | 美蓓亚三美株式会社 | Accelerator pedal, steering system, 6-axis sensor, engine, bumper, and the like |
US11087905B2 (en) | 2017-10-31 | 2021-08-10 | Minebea Mitsumi Inc. | Strain gauge |
JP2022008536A (en) * | 2018-08-28 | 2022-01-13 | ミネベアミツミ株式会社 | Battery pack |
US11454488B2 (en) | 2017-09-29 | 2022-09-27 | Minebea Mitsumi Inc. | Strain gauge with improved stability |
US11543308B2 (en) | 2017-09-29 | 2023-01-03 | Minebea Mitsumi Inc. | Strain gauge |
US11542590B2 (en) | 2017-09-29 | 2023-01-03 | Minebea Mitsumi Inc. | Strain gauge |
US11543309B2 (en) | 2017-12-22 | 2023-01-03 | Minebea Mitsumi Inc. | Strain gauge and sensor module |
US11692806B2 (en) | 2017-09-29 | 2023-07-04 | Minebea Mitsumi Inc. | Strain gauge with improved stability |
US20230268318A1 (en) * | 2022-02-18 | 2023-08-24 | Micron Technology, Inc. | Methods and assemblies for measurement and prediction of package and die strength |
US11747225B2 (en) | 2018-04-05 | 2023-09-05 | Minebea Mitsumi Inc. | Strain gauge with improved stability and stress reduction |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019066313A (en) * | 2017-09-29 | 2019-04-25 | ミネベアミツミ株式会社 | Strain gauge |
JP2019078726A (en) | 2017-10-27 | 2019-05-23 | ミネベアミツミ株式会社 | Strain gauge and sensor module |
JP2019090723A (en) * | 2017-11-15 | 2019-06-13 | ミネベアミツミ株式会社 | Strain gauge |
JP7021912B2 (en) * | 2017-11-15 | 2022-02-17 | ミネベアミツミ株式会社 | Strain gauge |
JP2019090724A (en) | 2017-11-15 | 2019-06-13 | ミネベアミツミ株式会社 | Strain gauge |
JP2019090722A (en) | 2017-11-15 | 2019-06-13 | ミネベアミツミ株式会社 | Strain gauge |
JP7194254B2 (en) * | 2017-11-15 | 2022-12-21 | ミネベアミツミ株式会社 | strain gauge |
JP2019095338A (en) * | 2017-11-24 | 2019-06-20 | ミネベアミツミ株式会社 | Strain gauge and sensor module |
JP7021922B2 (en) * | 2017-12-04 | 2022-02-17 | ミネベアミツミ株式会社 | Strain gauge |
JP2019120555A (en) * | 2017-12-28 | 2019-07-22 | ミネベアミツミ株式会社 | Strain gauge, sensor module |
JP2019132790A (en) * | 2018-02-02 | 2019-08-08 | ミネベアミツミ株式会社 | Strain gauge |
JP2019174387A (en) | 2018-03-29 | 2019-10-10 | ミネベアミツミ株式会社 | Strain gauge |
JP2019184284A (en) * | 2018-04-03 | 2019-10-24 | ミネベアミツミ株式会社 | Strain gauge |
JP7008618B2 (en) | 2018-08-28 | 2022-01-25 | ミネベアミツミ株式会社 | Battery pack |
JP2022072606A (en) * | 2020-10-30 | 2022-05-17 | 日東電工株式会社 | Strain sensor and laminate |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57201908U (en) * | 1981-06-19 | 1982-12-22 | ||
JPS6197737U (en) * | 1984-12-01 | 1986-06-23 | ||
JPH05141907A (en) * | 1991-09-24 | 1993-06-08 | Tokyo Electric Co Ltd | Strain sensor, manufacture thereof, and load cell scale using strain sensor |
JPH09269258A (en) * | 1996-04-01 | 1997-10-14 | Tec Corp | Load cell |
JP2000111368A (en) * | 1998-10-08 | 2000-04-18 | Nippon Soken Inc | Device and method for simultaneously measuring pressure, strain, and temperature and thin-film sensor |
-
2015
- 2015-12-01 JP JP2015234432A patent/JP2017101983A/en active Pending
-
2016
- 2016-10-14 WO PCT/JP2016/080579 patent/WO2017094368A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57201908U (en) * | 1981-06-19 | 1982-12-22 | ||
JPS6197737U (en) * | 1984-12-01 | 1986-06-23 | ||
JPH05141907A (en) * | 1991-09-24 | 1993-06-08 | Tokyo Electric Co Ltd | Strain sensor, manufacture thereof, and load cell scale using strain sensor |
JPH09269258A (en) * | 1996-04-01 | 1997-10-14 | Tec Corp | Load cell |
JP2000111368A (en) * | 1998-10-08 | 2000-04-18 | Nippon Soken Inc | Device and method for simultaneously measuring pressure, strain, and temperature and thin-film sensor |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11692806B2 (en) | 2017-09-29 | 2023-07-04 | Minebea Mitsumi Inc. | Strain gauge with improved stability |
US11543308B2 (en) | 2017-09-29 | 2023-01-03 | Minebea Mitsumi Inc. | Strain gauge |
US11702730B2 (en) | 2017-09-29 | 2023-07-18 | Minebea Mitsumi Inc. | Strain gauge |
US11542590B2 (en) | 2017-09-29 | 2023-01-03 | Minebea Mitsumi Inc. | Strain gauge |
US11454488B2 (en) | 2017-09-29 | 2022-09-27 | Minebea Mitsumi Inc. | Strain gauge with improved stability |
US11087905B2 (en) | 2017-10-31 | 2021-08-10 | Minebea Mitsumi Inc. | Strain gauge |
US11543309B2 (en) | 2017-12-22 | 2023-01-03 | Minebea Mitsumi Inc. | Strain gauge and sensor module |
US11747225B2 (en) | 2018-04-05 | 2023-09-05 | Minebea Mitsumi Inc. | Strain gauge with improved stability and stress reduction |
JP7189293B2 (en) | 2018-08-28 | 2022-12-13 | ミネベアミツミ株式会社 | battery pack |
JP2022008536A (en) * | 2018-08-28 | 2022-01-13 | ミネベアミツミ株式会社 | Battery pack |
CN112955724A (en) * | 2018-10-23 | 2021-06-11 | 美蓓亚三美株式会社 | Accelerator pedal, steering system, 6-axis sensor, engine, bumper, and the like |
US11774303B2 (en) | 2018-10-23 | 2023-10-03 | Minebea Mitsumi Inc. | Accelerator, steering wheel, six-axis sensor, engine, bumper and the like |
EP3671107A1 (en) * | 2018-12-19 | 2020-06-24 | Universität Wien | Strain gauge curvature measurement tool for 3d precision position control of thin foils |
US20230268318A1 (en) * | 2022-02-18 | 2023-08-24 | Micron Technology, Inc. | Methods and assemblies for measurement and prediction of package and die strength |
Also Published As
Publication number | Publication date |
---|---|
JP2017101983A (en) | 2017-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017094368A1 (en) | Multipoint-measurement strain sensor and production method for same | |
JP6198804B2 (en) | Strain sensor for multipoint measurement and its manufacturing method | |
US9291543B1 (en) | PC board mount corrosion sensitive sensor | |
US9024203B2 (en) | Embedded printed circuit board and method for manufacturing same | |
JP6276658B2 (en) | Substrate with film thickness measuring function and method for measuring film thickness of insulating layer | |
JP2010165780A (en) | Method of manufacturing thin film resistance element | |
JP2015506465A5 (en) | ||
US7551452B2 (en) | Printed circuit board | |
JP2014153089A (en) | Metal corrosion detection method, corrosion detection device, and manufacturing method thereof | |
US11443877B2 (en) | Strain sensor resistor | |
CN105723815A (en) | Printed circuit board with at least one integrated precision resistor | |
KR101333412B1 (en) | Wired circuit board and production method thereof | |
JP2001118701A (en) | Low-resistance resistor for detecting current and its manufacturing method | |
CN113167662B (en) | Device with integrated circuit and sensor and method of forming the same | |
JP4394432B2 (en) | Method for manufacturing printed circuit board holding sheet | |
JP4586413B2 (en) | Fuel cell | |
US11895776B2 (en) | Flexible printed wiring board, joined body, pressure sensor and mass flow controller | |
WO2020213243A1 (en) | Production method for sulfidation detection sensor | |
JP4542608B2 (en) | Manufacturing method of current detection resistor | |
JP2020521975A (en) | Strain gauges and metal strips with such strain gauges | |
JP2005164469A (en) | Resistance apparatus for detecting electric current and its manufacturing method | |
JP2015145881A (en) | Pressure sensor | |
KR101237962B1 (en) | Multi-function sensor and manufacturing method thereof | |
JP6923615B2 (en) | How to manufacture a resistor | |
JP7461441B2 (en) | Resistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16870308 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16870308 Country of ref document: EP Kind code of ref document: A1 |