JP2009079840A - Boiler device - Google Patents

Boiler device Download PDF

Info

Publication number
JP2009079840A
JP2009079840A JP2007249913A JP2007249913A JP2009079840A JP 2009079840 A JP2009079840 A JP 2009079840A JP 2007249913 A JP2007249913 A JP 2007249913A JP 2007249913 A JP2007249913 A JP 2007249913A JP 2009079840 A JP2009079840 A JP 2009079840A
Authority
JP
Japan
Prior art keywords
economizer
exhaust gas
heat transfer
flow direction
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007249913A
Other languages
Japanese (ja)
Inventor
Takahiro Marumoto
隆弘 丸本
Yoshihiro Shimogoori
嘉大 下郡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2007249913A priority Critical patent/JP2009079840A/en
Publication of JP2009079840A publication Critical patent/JP2009079840A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boiler device capable of keeping the inlet gas temperature of a denitration device constant regardless of a variation in a boiler load. <P>SOLUTION: This boiler device is characterized by individually arranging dampers 7 and 22 for adjusting a gas flow rate on the downstream side of a first economizer 24 and a second economizer 23, by arranging the first economizer 24 constituted of a first heat transfer tube much in a hear absorption quantity per the unit length and the second economizer 23 constituted of a second heat transfer tube little in the heat absorption quantity per the unit length, in the direction crossing with the flowing direction of exhaust gas, in a rear flue part 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はボイラ装置に係り、特に後部煙道部のガス流路が排ガス流れ方向に沿って複数に分割され、その分割されたガス流路に節炭器が設置されるボイラ装置に関する。   The present invention relates to a boiler device, and more particularly to a boiler device in which a gas flow path of a rear flue is divided into a plurality along the exhaust gas flow direction, and a economizer is installed in the divided gas flow path.

ボイラ排ガス中の窒素酸化物を低減するために、節炭器のガス流れ方向下流側に脱硝装置が設置されている。通常、脱硝装置入口のガス温度は、ボイラの定格負荷条件において、脱硝装置に使用されている触媒の活性が最も高くなるように設計される。しかし、ボイラ起動時や低負荷時には脱硝装置入口のガス温度が低いため、触媒の活性が下がり、脱硝性能が低下する。   In order to reduce nitrogen oxides in boiler exhaust gas, a denitration device is installed downstream of the economizer in the gas flow direction. Usually, the gas temperature at the inlet of the denitration apparatus is designed so that the activity of the catalyst used in the denitration apparatus is the highest under the rated load conditions of the boiler. However, since the gas temperature at the inlet of the denitration device is low when the boiler is activated or when the load is low, the activity of the catalyst is lowered and the denitration performance is degraded.

このため従来、図5に示すような構成のボイラ装置が提案されている(特開昭61−250405号公報)。図中の1は後部煙道部、2は再熱器、3は過熱器、4は節炭器、5は隔壁、6は流量調整ダンパA、7は流量調整ダンパB、8はバイパス煙道、9はバイパスダンパである。   For this reason, conventionally, a boiler apparatus having a structure as shown in FIG. 5 has been proposed (Japanese Patent Laid-Open No. 61-250405). In the figure, 1 is a rear flue section, 2 is a reheater, 3 is a superheater, 4 is a economizer, 5 is a partition, 6 is a flow adjustment damper A, 7 is a flow adjustment damper B, and 8 is a bypass flue. , 9 are bypass dampers.

ボイラ起動時や低負荷時に、節炭器4の排ガス流れ方向上流側から高温の排ガスを抜き出し、バイパス煙道8を流通させて、脱硝装置入口のガス温度を上昇させる工夫がされていた。   At the time of boiler start-up or low load, high temperature exhaust gas is extracted from the upstream side in the exhaust gas flow direction of the economizer 4, and the bypass flue 8 is circulated to increase the gas temperature at the inlet of the denitration device.

また、この公報には図6に示すように、バイパス煙道8を設ける代わりに、後部煙道部を複数のガス流路に分割(ガスA、ガスB、ガスCに対応)し、それぞれのガスを混合平均化させるガス混合器10を設けて、脱硝装置入口のガス温度を制御する工夫がなされている。図中の11は灰ホッパである。   In addition, as shown in FIG. 6, in this publication, instead of providing the bypass flue 8, the rear flue is divided into a plurality of gas flow paths (corresponding to gas A, gas B, and gas C), A gas mixer 10 for mixing and averaging gases is provided to control the gas temperature at the inlet of the denitration apparatus. 11 in the figure is an ash hopper.

さらに別の技術として特開昭62−98116号公報に示される例では図7に示すように、ボイラ煙道部1内に分割壁14を設置し、主ダクト12と節炭器4が設置されていないバイパスダクト13を設け、それの上流側に設置された流量調整ダンパ19により、ボイラ起動時や低負荷時の脱硝装置入口のガス温度低下を抑制する工夫がなされている。図中の15は排ガス温度検出器、16は温度調整計、17は温度設定器、18はダンパ駆動装置である。   In another example disclosed in Japanese Patent Laid-Open No. 62-98116, as shown in FIG. 7, a dividing wall 14 is installed in the boiler flue section 1, and the main duct 12 and the economizer 4 are installed. A bypass duct 13 that is not installed is provided, and a device for suppressing a decrease in gas temperature at the inlet of the denitration apparatus when the boiler is activated or at a low load is devised by a flow rate adjustment damper 19 installed upstream thereof. In the figure, 15 is an exhaust gas temperature detector, 16 is a temperature adjuster, 17 is a temperature setter, and 18 is a damper drive device.

また特開昭63−148010号公報に示される例では図8に示すように、2つに区分された後部煙道部1に設置される節炭器20と節炭器21の管群ピッチを異ならせることで、ガス温度調整する工夫がなされている。   In the example shown in Japanese Patent Laid-Open No. 63-148010, as shown in FIG. 8, the pipe group pitch of the economizer 20 and economizer 21 installed in the rear flue section 1 divided into two is set. By making it different, the device which adjusts gas temperature is made | formed.

さらに特開平8−82405号公報に示される例では図9に示すように、後部煙道部1の再熱器2側の流路に設置された節炭器20を分割壁14で2分割し、それぞれの節炭器20に流通させるガス量を、下流の流量調整ダンパ6と流量調整ダンパ22で制御することで、ガス温度調整する工夫がなされている。
特開昭61−25405号公報 特開昭62−098116号公報 特開昭63−148010号公報 特開平08−082405号公報
Further, in the example shown in JP-A-8-82405, as shown in FIG. 9, the economizer 20 installed in the flow path on the reheater 2 side of the rear flue section 1 is divided into two by the dividing wall 14. The gas temperature is adjusted by controlling the amount of gas flowing through each economizer 20 with the downstream flow rate adjustment damper 6 and the flow rate adjustment damper 22.
JP 61-25405 A JP-A-62-098116 JP 63-148010 A Japanese Patent Laid-Open No. 08-082405

上述した従来例においては、次のような問題があった。すなわち、図5で示したバイパス煙道8を有する構造では、節炭器4を通過した低温ガスと、節炭器4をバイパスしてバイパス煙道8を流通した高温ガスの混合状態が悪く、脱硝装置入口まで高温ガスと低温ガスが分離した状態となる。このため、脱硝装置入口のガス温度を所定の値に調整するために、多量の高温ガスを、節炭器バイパス煙道8を通じてバイパスさせる必要があり、バイパス煙道8の大型化が必要であった。   The conventional example described above has the following problems. That is, in the structure having the bypass flue 8 shown in FIG. 5, the mixed state of the low temperature gas that has passed through the economizer 4 and the high temperature gas that has bypassed the economizer 4 and circulated through the bypass flue 8 is poor. The high temperature gas and the low temperature gas are separated up to the denitration apparatus inlet. For this reason, in order to adjust the gas temperature at the inlet of the NOx removal device to a predetermined value, it is necessary to bypass a large amount of high-temperature gas through the economizer bypass flue 8, and the bypass flue 8 needs to be enlarged. It was.

図6に示した後部煙道部を複数のガス流路に分割し、それぞれのガスA、B、Cを混合平均化させるガス混合器10を設ける構造では、ガスの流路を細分化する必要があるため、構造が非常に複雑となり、設備コストが増大する。また、ガス流路が狭まる構造となるため、圧力損失が増大し、運転コストが増大する。   In the structure in which the rear flue portion shown in FIG. 6 is divided into a plurality of gas flow paths and the gas mixer 10 for mixing and averaging the respective gases A, B, and C is provided, it is necessary to subdivide the gas flow paths. Therefore, the structure becomes very complicated and the equipment cost increases. Further, since the gas flow path is narrowed, the pressure loss increases and the operation cost increases.

図7に示す構成では、定格負荷条件において、バイパスダクト13にガスが流れないように、すなわち、熱回収量を低下させないように、バイパスダクト13の上流側に設置された流量調整ダンパ19を閉止する必要がある。しかし、流量調整ダンパ19を閉止すると、その上部に灰が堆積し、固着するという問題あり、最悪の場合、流量調整ダンパ19の開閉操作ができなくなることがある。また、後部煙道部1内に伝熱に寄与しないバイパスダクト13を設けるため、従来の後部煙道部1よりも大型化する。   In the configuration shown in FIG. 7, the flow rate adjustment damper 19 installed on the upstream side of the bypass duct 13 is closed so that no gas flows into the bypass duct 13 under the rated load condition, that is, the heat recovery amount is not reduced. There is a need to. However, when the flow rate adjustment damper 19 is closed, there is a problem that ash accumulates on the upper portion and sticks, and in the worst case, the flow rate adjustment damper 19 may not be opened and closed. Moreover, since the bypass duct 13 that does not contribute to heat transfer is provided in the rear flue portion 1, the size is larger than that of the conventional rear flue portion 1.

図8に示した2つに区分された後部煙道部1に設置される節炭器20、21の管群ピッチを異ならせる構造では、温度調整のために、伝熱管を粗に配置した側の節炭器21の伝熱管本数が、密に配置された側の節炭器20の伝熱管本数よりも極端に少なくする必要がある。このため、単位容積当たりの熱回収量が大幅に低下し、構造に無駄を生じることになる。このため、後部煙道部1の高さを高くする必要があり、設備コストが増大するという問題があった。   In the structure in which the tube group pitches of the economizers 20 and 21 installed in the rear flue portion 1 divided into two shown in FIG. 8 are made different, the side where the heat transfer tubes are roughly arranged for temperature adjustment. The number of heat transfer tubes of the economizer 21 needs to be extremely smaller than the number of heat transfer tubes of the economizer 20 on the densely arranged side. For this reason, the amount of heat recovered per unit volume is greatly reduced, and the structure is wasted. For this reason, there is a problem that it is necessary to increase the height of the rear flue portion 1 and the equipment cost increases.

図9に示した後部煙道部1の再熱器2側流路に設置された節炭器20を2分割し、それぞれの節炭器20に流通させるガス量を制御する構造では、同等性能の管群で構成される節炭器20を単に2分割しているのみであるため、温度調整時に節炭器20の下方に設置された流量調整ダンパ6,22の一方をほぼ全閉の状態で運用する必要があった。このため、ダンパの上部に灰が堆積し、固着するという問題あり、最悪の場合は流量調整ダンパの開閉操作ができなくなるという欠点があった。   In the structure which divides the economizer 20 installed in the reheater 2 side flow path of the rear flue section 1 shown in FIG. 9 into two parts and controls the amount of gas distributed to each economizer 20, the equivalent performance Since the economizer 20 composed of the tube group is simply divided into two, one of the flow rate adjustment dampers 6 and 22 installed below the economizer 20 is almost fully closed when the temperature is adjusted. It was necessary to operate with. For this reason, there is a problem that ash accumulates and adheres to the upper part of the damper, and in the worst case, there is a disadvantage that the flow adjustment damper cannot be opened and closed.

本発明の目的はこのような欠点を解消し、装置の大型化やコスト高を招くことなく、節炭器の下流側に設置された脱硝装置などの排ガス処理装置の入口ガス温度をボイラ負荷の変動にかかわらず一定に保つことができ、排ガス処理装置の性能を常に高い状態で運転できるボイラ装置を提供することにある。   The object of the present invention is to eliminate such drawbacks, and to reduce the boiler load to the inlet gas temperature of an exhaust gas treatment device such as a denitration device installed downstream of the economizer without increasing the size and cost of the device. An object of the present invention is to provide a boiler device that can be kept constant regardless of fluctuations and can always operate with high performance of the exhaust gas treatment device.

前記目的を達成するため本発明の第1の手段は、後部煙道部を排ガスの流れ方向に沿って分割し、その分割された煙道部分に1個以上の節炭器が設置され、前記後部煙道部の排ガスの流れ方向下流側に排ガス処理装置を設置したボイラ装置において、
前記節炭器のうち、少なくとも1個の節炭器を構成する伝熱管が単位長さ当たりの熱吸収量が異なる2種類以上の伝熱管部分から構成されて、
その熱吸収量が異なる2種類以上の伝熱管部分が排ガスの流れ方向と交差する方向に配置され、
その伝熱管部分の排ガスの流れ方向下流側にガス流量を調整するためのダンパを個別に設けたことを特徴とするものである。
In order to achieve the above object, the first means of the present invention divides the rear flue portion along the flow direction of the exhaust gas, and one or more economizers are installed in the divided flue portion, In the boiler device in which the exhaust gas treatment device is installed on the downstream side in the flow direction of the exhaust gas in the rear flue,
Among the economizers, the heat transfer tubes constituting at least one economizer are composed of two or more types of heat transfer tube portions with different heat absorption per unit length,
Two or more types of heat transfer tube portions having different heat absorption amounts are arranged in a direction crossing the flow direction of the exhaust gas,
A damper for adjusting the gas flow rate is separately provided on the downstream side of the heat transfer tube in the exhaust gas flow direction.

本発明の第2の手段は、後部煙道部を排ガスの流れ方向に沿って分割し、その分割された煙道部分に2個以上の節炭器が設置され、前記後部煙道部の排ガスの流れ方向下流側に排ガス処理装置を設置したボイラ装置において、
前記節炭器のうち少なくとも2個の節炭器が、単位長さ当たりの熱吸収量が多い第1の伝熱管で構成された第1の節炭器と、単位長さ当たりの熱吸収量が前記第1の伝熱管よりも少ない第2の伝熱管で構成された第2の節炭器であって、
前記第1の節炭器と第2の節炭器が排ガスの流れ方向と交差する方向に配置され、
前記第1の節炭器と第2の節炭器の排ガスの流れ方向下流側にガス流量を調整するためのダンパを個別に設けたことを特徴とするものである。
According to a second means of the present invention, the rear flue portion is divided along the flow direction of the exhaust gas, and two or more economizers are installed in the divided flue portion, and the exhaust gas of the rear flue portion is provided. In the boiler device in which the exhaust gas treatment device is installed on the downstream side in the flow direction of
Among the economizers, at least two economizers are a first economizer constituted by a first heat transfer tube having a large amount of heat absorption per unit length, and an amount of heat absorption per unit length. Is a second economizer composed of fewer second heat transfer tubes than the first heat transfer tubes,
The first economizer and the second economizer are arranged in a direction crossing the flow direction of the exhaust gas;
A damper for adjusting a gas flow rate is individually provided on the downstream side in the flow direction of the exhaust gas of the first economizer and the second economizer.

本発明の第3の手段は、後部煙道部を排ガスの流れ方向に沿って分割し、その分割された煙道部分に1個以上の節炭器が設置され、前記後部煙道部の排ガスの流れ方向下流側に排ガス処理装置を設置したボイラ装置において、
前記節炭器のうち、少なくとも1個の節炭器を構成する伝熱管が、フィンを付けたフィン付き伝熱管部分または管表面に多孔質層を形成した伝熱管部分で構成された第1の伝熱管部分と、フィンを付けない裸管部分または管表面に多孔質層を形成しない伝熱管部分で構成された第2の伝熱管部分とから構成されて、
その第1の伝熱管部分と第2の伝熱管部分が排ガスの流れ方向と交差する方向に配置され、
前記第1の伝熱管部分と第2の伝熱管部分の排ガスの流れ方向下流側にガス流量を調整するためのダンパを個別に設けたことを特徴とするものである。
According to a third means of the present invention, the rear flue portion is divided along the flow direction of the exhaust gas, and one or more economizers are installed in the divided flue portion, and the exhaust gas of the rear flue portion is provided. In the boiler device in which the exhaust gas treatment device is installed on the downstream side in the flow direction of
Of the economizers, a heat transfer tube constituting at least one economizer is a finned heat transfer tube portion with fins or a heat transfer tube portion having a porous layer formed on the tube surface. A heat transfer tube portion and a second heat transfer tube portion composed of a bare tube portion without fins or a heat transfer tube portion that does not form a porous layer on the tube surface;
The first heat transfer tube portion and the second heat transfer tube portion are arranged in a direction intersecting with the flow direction of the exhaust gas,
A damper for adjusting the gas flow rate is individually provided on the downstream side of the first heat transfer tube portion and the second heat transfer tube portion in the flow direction of the exhaust gas.

本発明の第4の手段は、後部煙道部を排ガスの流れ方向に沿って分割し、その分割された煙道部分に2個以上の節炭器が設置され、前記後部煙道部の排ガスの流れ方向下流側に排ガス処理装置を設置したボイラ装置において、
前記節炭器のうち、少なくとも2個の節炭器が、フィンを付けたフィン付き伝熱管または管表面に多孔質層を形成した伝熱管で構成された第1の節炭器と、フィンを付けない裸管または管表面に多孔質層を形成しない伝熱管で構成された第2の節炭器とから構成されて、
その第1の節炭器と第2の節炭器が排ガスの流れ方向と交差する方向に配置され、
前記第1の節炭器と第2の節炭器の排ガスの流れ方向下流側にガス流量を調整するためのダンパを個別に設けたことを特徴とするものである。
According to a fourth means of the present invention, the rear flue portion is divided along the flow direction of the exhaust gas, and two or more economizers are installed in the divided flue portion, and the exhaust gas of the rear flue portion is provided. In the boiler device in which the exhaust gas treatment device is installed on the downstream side in the flow direction of
Among the economizers, at least two economizers include a finned heat transfer tube with a fin or a first economizer composed of a heat transfer tube having a porous layer formed on the tube surface, and a fin. A second economizer composed of a bare pipe or a heat transfer pipe that does not form a porous layer on the pipe surface;
The first economizer and the second economizer are arranged in a direction crossing the flow direction of the exhaust gas,
A damper for adjusting a gas flow rate is individually provided on the downstream side in the flow direction of the exhaust gas of the first economizer and the second economizer.

本発明の第5の手段は前記第2または第4の手段において、前記第1の節炭器と第2の節炭器が共通の入口ヘッダと出口ヘッダで接続されていることを特徴とするものである。   According to a fifth means of the present invention, in the second or fourth means, the first economizer and the second economizer are connected by a common inlet header and outlet header. Is.

本発明の第6の手段は前記第2または第4の手段において、前記第1の節炭器と第2の節炭器の管群ピッチがほぼ等しいことを特徴とするものである。   The sixth means of the present invention is characterized in that, in the second or fourth means, the pipe group pitches of the first and second economizers are substantially equal.

本発明は前述のような構成になっており、装置の大型化やコスト高を招くことなく、節炭器の下流側に設置された脱硝装置などの排ガス処理装置の入口ガス温度をボイラ負荷の変動にかかわらず一定に保つことができ、排ガス処理装置の性能を常に高い状態で運転できるボイラ装置の提供が可能である。   The present invention is configured as described above, and the inlet gas temperature of an exhaust gas treatment device such as a denitration device installed on the downstream side of the economizer is reduced without increasing the size and cost of the device. It is possible to provide a boiler device that can be kept constant regardless of fluctuations and that can always operate with high performance of the exhaust gas treatment device.

次に本発明の実施形態を図面とともに説明する。図1は、実施形態に係るボイラ装置の一部側断面図である。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a partial cross-sectional view of a boiler device according to an embodiment.

同図に示されているように、後部煙道部1は隔壁5により排ガスの流れ方向に沿って2分割され、再熱器2は排ガスの流れに対して上流側(缶前側)に、過熱器3はガス流れに対して下流側(缶後側)に設置されている。   As shown in the figure, the rear flue section 1 is divided into two along the flow direction of the exhaust gas by the partition wall 5, and the reheater 2 is heated to the upstream side (front side of the can) with respect to the flow of the exhaust gas. The vessel 3 is installed on the downstream side (the rear side of the can) with respect to the gas flow.

過熱器3の排ガス流れ方向下流側の煙道は分割壁14により排ガスの流れ方向に沿って分割され、それぞれの空間にフィンを設けない裸管を用いて構成した裸管節炭器23と、管軸に垂直な方向に板状のフィンを設けたフィン付きの管体を用いて構成したフィン付き管節炭器24が設置されている。この裸管節炭器23とフィン付き管節炭器24は排ガスの流れ方向と交差する方向に配置されており、両節炭器23,24の管群ピッチはほぼ等しくなっている。   A flue downstream of the superheater 3 in the exhaust gas flow direction is divided along the exhaust gas flow direction by the dividing wall 14, and a bare pipe economizer 23 configured using bare pipes without fins in each space; A finned pipe economizer 24 configured by using a finned pipe body provided with plate-like fins in a direction perpendicular to the pipe axis is installed. The bare pipe economizer 23 and the finned pipe economizer 24 are arranged in a direction crossing the flow direction of the exhaust gas, and the tube group pitches of both economizers 23 and 24 are substantially equal.

前記裸管節炭器23ならびにフィン付き管節炭器24の管内を流れる流体は、入口ヘッダ25から供給され、裸管節炭器23とフィン付き管節炭器24に分かれて流入し、通過後に出口ヘッダ26で合流する。   The fluid flowing in the pipes of the bare pipe economizer 23 and the finned pipe economizer 24 is supplied from the inlet header 25, and flows into the bare pipe economizer 23 and the finned pipe economizer 24 and flows therethrough. It merges at the outlet header 26 later.

各々の管内流体の流量は、入口ヘッダ25の出口部に設置されたオリフィスなどの流量調整手段(図示せず)により調整されている。   The flow rate of each in-pipe fluid is adjusted by a flow rate adjusting means (not shown) such as an orifice installed at the outlet of the inlet header 25.

再熱器2、裸管節炭器23、フィン付き管節炭器24のガス流れ方向下流側には、流量調整ダンパ(A)6、流量調整ダンパ(C)22、流量調整ダンパ(B)7が設置されて、それぞれ独立してガス流量の調整が可能になっている。   On the downstream side in the gas flow direction of the reheater 2, the bare pipe economizer 23, and the finned pipe economizer 24, a flow rate adjustment damper (A) 6, a flow rate adjustment damper (C) 22, and a flow rate adjustment damper (B) 7 is installed, and the gas flow rate can be adjusted independently of each other.

後部煙道1の出口部には排ガス温度検出器15が設置され、検出した排ガス温度と、ボイラ負荷毎の排ガス温度が設定された温度設定器17からの温度設定信号とが温度調整器16に送られ、温度調整器16からの制御信号に基づいて各ダンパ駆動装置18により流量調整ダンパ(A)6、流量調整ダンパ(C)22、流量調整ダンパ(B)7を開閉している。   An exhaust gas temperature detector 15 is installed at the outlet of the rear flue 1, and the detected exhaust gas temperature and a temperature setting signal from a temperature setting device 17 in which the exhaust gas temperature for each boiler load is set are supplied to the temperature regulator 16. The flow rate adjustment damper (A) 6, the flow rate adjustment damper (C) 22, and the flow rate adjustment damper (B) 7 are opened and closed by each damper driving device 18 based on the control signal from the temperature regulator 16.

図示していないが排ガス温度検出器15の排ガス流れ方向下流側には、触媒を担持した脱硝装置などの排ガス処理装置が設置されている。   Although not shown, an exhaust gas treatment device such as a denitration device carrying a catalyst is installed downstream of the exhaust gas temperature detector 15 in the exhaust gas flow direction.

なお、フィン付き管節炭器24として、単位長さ当たりの熱吸収量が裸管節炭器23の1.2倍以上の物を用いた。   As the finned tube economizer 24, a heat absorption amount per unit length of 1.2 times or more that of the bare pipe economizer 23 was used.

また、節炭器占有容積の70%以上を熱吸収量の大きいフィン付き管節炭器24が占めており、高負荷時には、フィン付き管節炭器24側の流量調整ダンパ(B)7の開度が大、熱吸収量の小さい裸管側節炭器23側の流量調節ダンパ(C)22の開度が小となるように、逆に低負荷時には、フィン付き管節炭器24側の流量調整ダンパ(B)7の開度が小、熱吸収量の小さい裸管側節炭器23側の流量調節ダンパ(C)22の開度が大となるように、構成されている。   Further, the finned pipe economizer 24 having a large heat absorption amount occupies 70% or more of the economizer's occupied volume, and the flow adjustment damper (B) 7 on the finned pipe economizer 24 side at the time of high load. On the contrary, at the time of low load, the finned pipe economizer 24 side is opened so that the opening degree of the flow control damper (C) 22 on the bare pipe economizer 23 side with a large opening and a small heat absorption amount becomes small. The flow rate adjustment damper (B) 7 has a small opening, and the flow adjustment damper (C) 22 on the bare pipe side economizer 23 side with a small heat absorption amount is configured to have a large opening.

本発明の節炭器を用いることで図2に示すように、ボイラ負荷に応じて、裸管節炭器下側の流量調整ダンパ(C)22とフィン付き管節炭器側の流量調整ダンパ(B)7の開度を調整し、各々を流れるガス流量を個別に調整することが可能で、そのダンパの開度制御によりボイラ負荷に関わらず脱硝装置の入口ガス温度をほぼ一定に維持することができる。   By using the economizer of the present invention, as shown in FIG. 2, the flow rate adjustment damper (C) 22 on the lower side of the bare pipe economizer and the flow rate adjustment damper on the finned pipe economizer side according to the boiler load. (B) It is possible to adjust the opening degree of 7 and individually adjust the flow rate of gas flowing through each, and by controlling the opening degree of the damper, the inlet gas temperature of the denitration device is maintained almost constant regardless of the boiler load. be able to.

図5に示した節炭器バイパスダクト8を設けた従来技術における低負荷時のガスバイパス量は、全ガス量の10〜20%程度であり、脱硝装置入口のガス温度を20〜30℃程度上昇可能である。これに対して本発明では、低負荷時に、裸管側に全ガス量の70〜80%程度を流すことで、従来と同等の脱硝装置入口のガス温度を得ることができる。   The gas bypass amount at the time of low load in the prior art provided with the economizer bypass duct 8 shown in FIG. 5 is about 10 to 20% of the total gas amount, and the gas temperature at the inlet of the denitration apparatus is about 20 to 30 ° C. Can rise. On the other hand, in the present invention, the gas temperature at the inlet of the denitration device equivalent to the conventional one can be obtained by flowing about 70 to 80% of the total gas amount to the bare tube side at the time of low load.

また、負荷変化運転時の再熱器の蒸気温度制御に関しては図3に示すように、従来技術が、再熱器側と過熱器側の2つのダンパ開度を調整し、再熱器側を通過するガス量を調整していたのに対し、本発明では、過熱器側のダクトに設置される流量調整ダンパの数が1個から2個に増え、再熱器側と合わせ3個のダンパ開度を調整する。このように過熱器側のダンパが2つに分割されたことで、ダンパ駆動装置が小型化され、応答遅れが小さくなるという利点がある。   In addition, as shown in FIG. 3, regarding the steam temperature control of the reheater during load change operation, the conventional technology adjusts the two damper opening degrees on the reheater side and the superheater side, While the amount of gas passing through was adjusted, in the present invention, the number of flow rate adjustment dampers installed in the duct on the superheater side is increased from one to two, and three dampers are combined with the reheater side. Adjust the opening. Since the damper on the superheater side is divided into two in this way, there is an advantage that the damper driving device is miniaturized and the response delay is reduced.

本発明の他の実施形態を図4に示す。前記実施形態では、過熱器3の排ガス流れ方向下流側の煙道を分割壁14により2つに分割し、一方の煙道部分に裸管側節炭器23を、他方の煙道部分にフィン付き管節炭器24を設置したが、本実施形態では節炭器23、24を設置する煙道は分割せずに、節炭器23、24の下方空間部から流量調整ダンパ(B)7と流量調整ダンパ(C)22の間にかけてのみ分割壁14を設置している。   Another embodiment of the present invention is shown in FIG. In the above embodiment, the flue downstream of the superheater 3 in the exhaust gas flow direction is divided into two by the dividing wall 14, the bare pipe side economizer 23 is provided in one flue portion, and the fin is provided in the other flue portion. Although the attached pipe economizer 24 is installed, in this embodiment, the flue where the economizers 23 and 24 are installed is not divided, and the flow rate adjustment damper (B) 7 is provided from the space below the economizers 23 and 24. And the partition wall 14 is installed only between the flow control damper (C) 22.

前記実施形態では、裸管側節炭器23とフィン付き管節炭器24を別々に構成して所定の位置に設置したが、本実施形態では図に示すように伝熱管群の一方の端部側(図面に向かって左側の端部)にはフィンを付設しないで裸管として、全体として裸管側節炭器23を構成し、残りの部分にはフィンを付設してフィン付き管として、全体としてフィン付き管側節炭器24を構成している。   In the said embodiment, although the bare pipe side economizer 23 and the finned pipe economizer 24 were comprised separately and installed in the predetermined position, in this embodiment, as shown to a figure, one end of a heat exchanger tube group is shown. As a whole, the bare pipe side economizer 23 is constructed as a bare pipe without attaching fins to the section side (the left end as viewed in the drawing), and fins are attached to the remaining part as finned pipes. The tube side economizer 24 with fins is configured as a whole.

管内を流れる流体は、入口ヘッダ25から供給され、フィン付き管節炭器24と裸管節炭器32を交互に通り、出口ヘッダ26へ到達するようになっている。   The fluid flowing in the pipe is supplied from the inlet header 25, passes through the finned pipe economizer 24 and the bare pipe economizer 32 alternately, and reaches the outlet header 26.

例えばフィン付き管節炭器の形態としては、1本ないし上下2本以上1組の伝熱管の左右の両側から管の外形を切り欠いた矩形の板状フィンを溶接等により溶接した物が挙げられる。これは前記実施形態においても同様である。   For example, as a form of a finned pipe economizer, a rectangular plate-like fin in which the outer shape of the pipe is cut from both the left and right sides of one or two or more sets of heat transfer pipes is welded. It is done. The same applies to the above embodiment.

フィン付き管節炭器24の紙面に向かって横幅方向(管軸方向)のガス流動抵抗は非常に大きく、フィン付き管節炭器24に流入したガスの幅方向の移動が制限される。従って、本実施形態のように節炭器部分のガス流路を分割壁14で分割しなくても、裸管節炭器23とフィン付き管節炭器24を通過する各々のガス流量を、下流の流量調整ダンパ22,7により任意に調整可能である。   The gas flow resistance in the lateral width direction (tube axis direction) toward the paper surface of the finned tube economizer 24 is very large, and movement of the gas flowing into the finned tube economizer 24 in the width direction is limited. Therefore, even if the gas flow path of the economizer part is not divided by the dividing wall 14 as in the present embodiment, each gas flow rate passing through the bare pipe economizer 23 and the finned pipe economizer 24 is It can be arbitrarily adjusted by the downstream flow rate adjusting dampers 22 and 7.

このように、節炭器部分を分割壁で分割しないことで、分割壁14に伝熱管の貫通部分を施工する必要がなくなり、建設コストを低減できる。   In this way, by not dividing the economizer portion with the dividing wall, it is not necessary to construct a penetration portion of the heat transfer tube in the dividing wall 14, and the construction cost can be reduced.

前記実施形態では、伝熱性能の高い伝熱管としてフィン付き伝熱管を使用したが、管表面に多孔質層を形成した伝熱管を使用することもできる。   In the said embodiment, although the finned heat exchanger tube was used as a heat exchanger tube with high heat transfer performance, the heat exchanger tube in which the porous layer was formed in the tube surface can also be used.

本発明によれば図2に示すように、節炭器の下流側に設置された脱硝装置などの排ガス処理装置の入口ガス温度をボイラ負荷の変動にかかわらず一定に保つことができ、排ガス処理装置の性能を常に高い状態で運転できる。   According to the present invention, as shown in FIG. 2, the inlet gas temperature of an exhaust gas treatment device such as a denitration device installed on the downstream side of the economizer can be kept constant regardless of boiler load fluctuations. The device can be operated at a high level at all times.

本発明の実施形態に係るボイラ装置の一部側断面図である。It is a partial sectional side view of the boiler apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るボイラ負荷と裸管節炭器側ならびにフィン付き管節炭器側ダンパ開度との関係、ボイラ負荷と脱硝装置入口ガス温度との関係を示す特性図である。It is a characteristic view which shows the relationship between the boiler load which concerns on embodiment of this invention, a bare pipe economizer side, and a finned pipe economizer side damper opening degree, and the relationship between a boiler load and a denitration apparatus inlet gas temperature. 従来例と本発明における再熱器の蒸気温度制御を示す特性図である。It is a characteristic figure which shows steam temperature control of the reheater in a prior art example and this invention. 本発明の他の実施形態に係るボイラ装置の一部側断面図である。It is a partial sectional side view of the boiler apparatus which concerns on other embodiment of this invention. 従来提案されたボイラ装置の一部側断面図である。It is a partial sectional side view of the boiler apparatus proposed conventionally. 従来提案されたボイラ装置の一部側断面図である。It is a partial sectional side view of the boiler apparatus proposed conventionally. 従来提案されたボイラ装置の一部側断面図である。It is a partial sectional side view of the boiler apparatus proposed conventionally. 従来提案されたボイラ装置の一部側断面図である。It is a partial sectional side view of the boiler apparatus proposed conventionally. 従来提案されたボイラ装置の一部側断面図である。It is a partial sectional side view of the boiler apparatus proposed conventionally.

符号の説明Explanation of symbols

1:後部煙道部、2:再熱器、3:過熱器、4:隔壁、6:流量調整ダンパ(A)、7:流量調整ダンパ(B)、14:分割壁、15:排ガス温度検出器、16:温度調整計、17:温度設定器、18:ダンパ駆動装置、22:流量調整ダンパ(C)、23:裸管節炭器、24:フィン付き管節炭器、25:入口ヘッダ、26:出口ヘッダ。   1: rear flue section, 2: reheater, 3: superheater, 4: partition wall, 6: flow adjustment damper (A), 7: flow adjustment damper (B), 14: dividing wall, 15: exhaust gas temperature detection 16: Temperature controller, 17: Temperature setting device, 18: Damper drive device, 22: Flow rate adjustment damper (C), 23: Bare pipe economizer, 24: Finned pipe economizer, 25: Inlet header 26: Exit header.

Claims (6)

後部煙道部を排ガスの流れ方向に沿って分割し、その分割された煙道部分に1個以上の節炭器が設置され、前記後部煙道部の排ガスの流れ方向下流側に排ガス処理装置を設置したボイラ装置において、
前記節炭器のうち、少なくとも1個の節炭器を構成する伝熱管が単位長さ当たりの熱吸収量が異なる2種類以上の伝熱管部分から構成されて、
その熱吸収量が異なる2種類以上の伝熱管部分が排ガスの流れ方向と交差する方向に配置され、
その伝熱管部分の排ガスの流れ方向下流側にガス流量を調整するためのダンパを個別に設けたことを特徴とするボイラ装置。
The rear flue portion is divided along the flow direction of the exhaust gas, and one or more economizers are installed in the divided flue portion, and the exhaust gas treatment device is disposed downstream of the rear flue portion in the flow direction of the exhaust gas. In the boiler equipment where
Among the economizers, the heat transfer tubes constituting at least one economizer are composed of two or more types of heat transfer tube portions with different heat absorption per unit length,
Two or more types of heat transfer tube portions having different heat absorption amounts are arranged in a direction crossing the flow direction of the exhaust gas,
The boiler apparatus characterized by providing the damper for adjusting a gas flow rate separately in the flow direction downstream of the exhaust gas of the heat exchanger tube part.
後部煙道部を排ガスの流れ方向に沿って分割し、その分割された煙道部分に2個以上の節炭器が設置され、前記後部煙道部の排ガスの流れ方向下流側に排ガス処理装置を設置したボイラ装置において、
前記節炭器のうち少なくとも2個の節炭器が、単位長さ当たりの熱吸収量が多い第1の伝熱管で構成された第1の節炭器と、単位長さ当たりの熱吸収量が前記第1の伝熱管よりも少ない第2の伝熱管で構成された第2の節炭器であって、
前記第1の節炭器と第2の節炭器が排ガスの流れ方向と交差する方向に配置され、
前記第1の節炭器と第2の節炭器の排ガスの流れ方向下流側にガス流量を調整するためのダンパを個別に設けたことを特徴とするボイラ装置。
The rear flue portion is divided along the flow direction of the exhaust gas, and two or more economizers are installed in the divided flue portion, and the exhaust gas treatment device is disposed downstream of the rear flue portion in the flow direction of the exhaust gas. In the boiler equipment where
Among the economizers, at least two economizers are a first economizer constituted by a first heat transfer tube having a large amount of heat absorption per unit length, and an amount of heat absorption per unit length. Is a second economizer composed of fewer second heat transfer tubes than the first heat transfer tubes,
The first economizer and the second economizer are arranged in a direction crossing the flow direction of the exhaust gas;
The boiler apparatus characterized by providing the damper for adjusting a gas flow rate separately in the flow direction downstream of the exhaust gas of a said 1st economizer and a 2nd economizer.
後部煙道部を排ガスの流れ方向に沿って分割し、その分割された煙道部分に1個以上の節炭器が設置され、前記後部煙道部の排ガスの流れ方向下流側に排ガス処理装置を設置したボイラ装置において、
前記節炭器のうち、少なくとも1個の節炭器を構成する伝熱管が、フィンを付けたフィン付き伝熱管部分または管表面に多孔質層を形成した伝熱管部分で構成された第1の伝熱管部分と、フィンを付けない裸管部分または管表面に多孔質層を形成しない伝熱管部分で構成された第2の伝熱管部分とから構成されて、
その第1の伝熱管部分と第2の伝熱管部分が排ガスの流れ方向と交差する方向に配置され、
前記第1の伝熱管部分と第2の伝熱管部分の排ガスの流れ方向下流側にガス流量を調整するためのダンパを個別に設けたことを特徴とするボイラ装置。
The rear flue portion is divided along the flow direction of exhaust gas, and one or more economizers are installed in the divided flue portion, and the exhaust gas treatment device is disposed downstream of the rear flue portion in the flow direction of exhaust gas. In the boiler equipment where
Of the economizers, a heat transfer tube constituting at least one economizer is a finned heat transfer tube portion with fins or a heat transfer tube portion having a porous layer formed on the tube surface. A heat transfer tube portion and a second heat transfer tube portion composed of a bare tube portion without fins or a heat transfer tube portion that does not form a porous layer on the tube surface;
The first heat transfer tube portion and the second heat transfer tube portion are arranged in a direction intersecting with the flow direction of the exhaust gas,
The boiler apparatus characterized by providing the damper for adjusting a gas flow rate separately in the flow direction downstream of the exhaust gas of the said 1st heat-transfer tube part and the 2nd heat-transfer tube part.
後部煙道部を排ガスの流れ方向に沿って分割し、その分割された煙道部分に2個以上の節炭器が設置され、前記後部煙道部の排ガスの流れ方向下流側に排ガス処理装置を設置したボイラ装置において、
前記節炭器のうち、少なくとも2個の節炭器が、フィンを付けたフィン付き伝熱管または管表面に多孔質層を形成した伝熱管で構成された第1の節炭器と、フィンを付けない裸管または管表面に多孔質層を形成しない伝熱管で構成された第2の節炭器とから構成されて、
その第1の節炭器と第2の節炭器が排ガスの流れ方向と交差する方向に配置され、
前記第1の節炭器と第2の節炭器の排ガスの流れ方向下流側にガス流量を調整するためのダンパを個別に設けたことを特徴とするボイラ装置。
The rear flue is divided along the flow direction of the exhaust gas, and two or more economizers are installed in the divided flue portion, and the exhaust gas treatment device is disposed downstream of the rear flue in the flow direction of the exhaust gas. In the boiler equipment where
Of the economizers, at least two economizers include a finned heat exchanger tube or a first economizer composed of a heat exchanger tube having a porous layer formed on the tube surface, and a fin. A second economizer composed of a bare pipe or a heat transfer pipe that does not form a porous layer on the pipe surface;
The first economizer and the second economizer are arranged in a direction crossing the flow direction of the exhaust gas,
The boiler apparatus characterized by providing the damper for adjusting a gas flow rate separately in the flow direction downstream of the exhaust gas of a said 1st economizer and a 2nd economizer.
請求項2または4記載のボイラ装置において、前記第1の節炭器と第2の節炭器が共通の入口ヘッダと出口ヘッダで接続されていることを特徴とするボイラ装置。   5. The boiler device according to claim 2, wherein the first economizer and the second economizer are connected by a common inlet header and outlet header. 請求項2または4記載のボイラ装置において、前記第1の節炭器と第2の節炭器の管群ピッチがほぼ等しいことを特徴とするボイラ装置。   5. The boiler device according to claim 2, wherein tube pitches of the first economizer and the second economizer are substantially equal. 6.
JP2007249913A 2007-09-26 2007-09-26 Boiler device Pending JP2009079840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007249913A JP2009079840A (en) 2007-09-26 2007-09-26 Boiler device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007249913A JP2009079840A (en) 2007-09-26 2007-09-26 Boiler device

Publications (1)

Publication Number Publication Date
JP2009079840A true JP2009079840A (en) 2009-04-16

Family

ID=40654720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007249913A Pending JP2009079840A (en) 2007-09-26 2007-09-26 Boiler device

Country Status (1)

Country Link
JP (1) JP2009079840A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115095854A (en) * 2022-06-20 2022-09-23 浙江兴核智拓科技有限公司 Low low temperature economizer mounting structure of air preheater rear end wall temperature developments adjustable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115095854A (en) * 2022-06-20 2022-09-23 浙江兴核智拓科技有限公司 Low low temperature economizer mounting structure of air preheater rear end wall temperature developments adjustable

Similar Documents

Publication Publication Date Title
US7578265B2 (en) Multiple pass economizer and method for SCR temperature control
EP1869367B1 (en) Flexible assembly of once-through evaporation for horizontal heat recovery steam generator
JP5441767B2 (en) Integrated, separated flow water coil air heater and economizer (IWE)
US20070261647A1 (en) Multiple pass economizer and method for SCR temperature control
RU2123634C1 (en) Method of operation of flow-type steam generator and steam generator used for realization of this method
JP2009097801A (en) Boiler, and steam temperature adjusting method for boiler
JP2009079840A (en) Boiler device
JP4847213B2 (en) Once-through exhaust heat recovery boiler
JP2013011373A (en) Exhaust gas temperature control method for boiler, and boiler
JP3941035B2 (en) Heat exchanger
JP2008185297A (en) Heat exchanger for hot water supply
JP4400921B2 (en) Multi-pipe once-through boiler
JP5148426B2 (en) Reheat boiler
JP2007205170A (en) Moisture separating heater
JP2006207901A (en) Hot water apparatus
JP5089938B2 (en) Heat exchange device and combustion device equipped with the same
JP4823043B2 (en) Heat exchanger
JP2005164119A (en) Boiler with heat absorbing fin intersecting combustion gas flow
JP2005315492A (en) Waste heat recovery boiler with stabilizing burner and method of operating the same
JP5692385B2 (en) Tower boiler
JP5302852B2 (en) Reheat boiler
JP4616713B2 (en) Round exhaust heat boiler can structure
JP2009019858A (en) Heat exchanger and water heater
WO2020066386A1 (en) Water heating device
JP2006234252A (en) Can body structure for multitube type once-through boiler