JP5302852B2 - Reheat boiler - Google Patents

Reheat boiler Download PDF

Info

Publication number
JP5302852B2
JP5302852B2 JP2009250537A JP2009250537A JP5302852B2 JP 5302852 B2 JP5302852 B2 JP 5302852B2 JP 2009250537 A JP2009250537 A JP 2009250537A JP 2009250537 A JP2009250537 A JP 2009250537A JP 5302852 B2 JP5302852 B2 JP 5302852B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
tooth plate
reheat
comb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009250537A
Other languages
Japanese (ja)
Other versions
JP2011094902A (en
Inventor
匡史 森
扶美子 川島
潤司 今田
龍太 中村
修二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009250537A priority Critical patent/JP5302852B2/en
Publication of JP2011094902A publication Critical patent/JP2011094902A/en
Application granted granted Critical
Publication of JP5302852B2 publication Critical patent/JP5302852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reheating boiler, capable of reducing stress generated at a connection part between a header and a heat transfer tube by thermal elongation of a support member. <P>SOLUTION: The reheating boiler includes a main boiler in which main combustion gas generated by burning of a burner flows from a furnace through a superheater and an evaporation pipe group; a reheating furnace disposed on the downstream side of the evaporation pipe group to generate reheating combustion gas by burning of a reheating burner; and a reheater 30 disposed on the upper side of the reheating furnace. As the heat transfer tube 31 of the reheater 30, a folded pipe which is folded in a plurality of lines while reciprocating in a width direction with upper and lower ends being connected to the header 32 is used, and the dead weight load of the heat transfer tube 31 is supported by a plurality of comb-tooth plates 40A in the width direction in which the comb-tooth plates are extended vertically with upper ends being fixed. With respect to a part in which the connection part stress between the header 32 and the heat transfer tube 31 exceeds an allowable value by thermal elongation of the comb-tooth plate 40A of the heat transfer tube support part of the comb-tooth plate 40A, the support structure of the heat transfer tube 31 is a free structure which is free from support or restriction by the comb-tooth plate. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、蒸発管群の後流側に再熱炉及び再熱器を備えている再熱ボイラに関する。     The present invention relates to a reheat boiler provided with a reheat furnace and a reheater on the downstream side of an evaporation tube group.

従来の舶用ボイラにおいては、燃焼ガス後流側に再熱炉と再熱器とを備えた再熱ボイラが知られている。
このような舶用の再熱ボイラにおいては、補修・メンテナンスの容易性確保や、再熱器不使用時つまり伝熱管内への蒸気通気が無い状態における伝熱管の損傷防止に配慮して、たとえば図4に示すように、燃焼ガス温度が比較的低温なボイラ出口ダクト部に再熱器を設置している。
In a conventional marine boiler, a reheat boiler having a reheat furnace and a reheater on the downstream side of the combustion gas is known.
In such a marine reheat boiler, for example, figure shows how easy it is to repair and maintain, and how to prevent damage to the heat transfer tube when the reheater is not used, that is, when there is no steam flow into the heat transfer tube. As shown in FIG. 4, the reheater is installed in the boiler outlet duct portion where the combustion gas temperature is relatively low.

図4は、舶用の再熱ボイラについて、その構成例を簡略に示す概略図である。
図4に示す再熱ボイラ10は、バーナ11、火炉12、フロントバンクチューブ13、過熱器(Superheater:SH)14及び蒸発管群(リアバンクチューブ)15からなる主ボイラ16と、蒸発管群15の後流側に配設されて再熱バーナ20を備えた再熱炉21と、排気ガス出口側に設けた再熱器30と、を具備して構成される。
FIG. 4 is a schematic diagram schematically showing a configuration example of a marine reheat boiler.
A reheat boiler 10 shown in FIG. 4 includes a main boiler 16 including a burner 11, a furnace 12, a front bank tube 13, a superheater (SH) 14 and an evaporation tube group (rear bank tube) 15, and an evaporation tube group 15. A reheating furnace 21 provided on the downstream side and provided with a reheating burner 20 and a reheater 30 provided on the exhaust gas outlet side are provided.

バーナ11の燃焼で発生した燃焼ガスは、火炉12からフロントバンクチューブ13、過熱器14及び蒸発管群15を流れ、再熱バーナ20の再熱燃焼ガスと再熱炉21にて混合した後、再熱器30と熱交換を行いながら流れ、ガス出口22から流出することで、効率的に運転を行うようにしていた。
なお、図4において、図中の符号13H,14Hはヘダー、17は水ドラム、18は蒸気ドラム、19はウォールチューブを示している。
The combustion gas generated by the combustion of the burner 11 flows from the furnace 12 through the front bank tube 13, the superheater 14 and the evaporation tube group 15, and after mixing in the reheating furnace 21 with the reheating combustion gas of the reheating burner 20, It flowed while exchanging heat with the reheater 30 and flowed out of the gas outlet 22 so as to operate efficiently.
In FIG. 4, reference numerals 13H and 14H in the figure indicate headers, 17 indicates a water drum, 18 indicates a steam drum, and 19 indicates a wall tube.

上述した再熱器30は、主ボイラ16の出口ダクト部に設置するため、たとえば図5に示すように、再熱器30の奥行き方向(図3のZ方向を参照)に配列された多数の伝熱管31が上下方向(Y軸方向)において複数列に折り返され、各伝熱管31の両端部をヘダー32に接続した管群構造を採用している。図示の管群構造では、図中に矢印Gで示す再熱燃焼ガスの流れ方向(Y軸方向)が3段の管群に分割されており、各管群には、火炉12から再熱炉21に燃焼ガスが流れる方向となる再熱器10の幅方向(X軸方向)に数カ所、自重負荷に対する伝熱管支持用として櫛歯板40が設けられている。   Since the reheater 30 described above is installed in the outlet duct portion of the main boiler 16, for example, as shown in FIG. 5, a large number of reheaters 30 arranged in the depth direction of the reheater 30 (see the Z direction in FIG. 3). A heat transfer tube 31 is folded in a plurality of rows in the vertical direction (Y-axis direction), and a tube group structure in which both end portions of each heat transfer tube 31 are connected to a header 32 is employed. In the illustrated tube group structure, the flow direction (Y-axis direction) of the reheat combustion gas indicated by an arrow G in the drawing is divided into three stages of tube groups. Comb plates 40 are provided in several places in the width direction (X-axis direction) of the reheater 10, which is the direction in which the combustion gas flows, in 21 for supporting the heat transfer tube with respect to its own load.

この櫛歯板40は、たとえば図6に詳細を示すように、伝熱管31の自重負荷をサポートするとともに、伝熱管31の流体振動等を抑制する構造が採用されている。
図示の櫛歯板40は、たとえば図6(a)のC矢視図である図6(b)に示すように、上端部側を固定支持して下方へ延在させた細長い板状部材であり、交差する伝熱管31を係止するため、板状部材の左右両端に略半円形状の凹部41が設けられている。
なお、図6(a)において、伝熱管31の両端を支持するのは、ヘダー32との取合部(接続部)Pa,Pbである。
For example, as shown in detail in FIG. 6, the comb-tooth plate 40 employs a structure that supports the self-load of the heat transfer tube 31 and suppresses fluid vibration and the like of the heat transfer tube 31.
The illustrated comb-tooth plate 40 is an elongate plate-like member that is fixedly supported at the upper end side and extends downward, as shown in FIG. 6B, for example, as viewed in the direction of arrow C in FIG. 6A. Yes, in order to lock the intersecting heat transfer tubes 31, substantially semicircular recesses 41 are provided at the left and right ends of the plate-like member.
In FIG. 6A, the ends of the heat transfer tube 31 are supported by the joint portions (connection portions) Pa and Pb with the header 32.

熱回収装置に関する伝熱管支持構造の従来技術としては、相対向する管板の間の熱媒体流路を複数回横断する伝熱管を適数本のS字形伝熱管ユニット(複数列の折り返し管)により構成し、この伝熱管の反転部を、管板に設けた長穴により支持する構造が知られている。(たとえば、特許文献1参照)   As a prior art of a heat transfer tube support structure related to a heat recovery device, a heat transfer tube crossing a heat medium flow path between opposed tube plates a plurality of times is constituted by an appropriate number of S-shaped heat transfer tube units (multiple rows of folded tubes). And the structure which supports the inversion part of this heat exchanger tube by the long hole provided in the tube sheet is known. (For example, see Patent Document 1)

実開昭60−86773号公報Japanese Utility Model Publication No. 60-86773

ところで、上述した再熱ボイラの再熱器30は、超々超臨界圧(USC)ボイラのエコノマイザ等と比較して伝熱管31の管列数が多く、しかも、伝熱管外を通過する燃焼ガス温度が再熱を受けることで高くなっている。このため、上端部側を支持して下端部側をフリーにした櫛歯板40が下方へ向けて熱伸びすることにより、櫛歯板40の下端部側に支持された伝熱管31程大きな熱伸びの影響を受けて下方に押し下げられ、この結果、伝熱管31とヘダー32との取合部に過大な応力が発生する。
図7は、櫛歯板40の熱伸びによる伝熱管31の変形例を示しており、実線で示す伝熱管31が変形前の状態、一点差線で示す伝熱管31′が櫛歯板の熱伸びによる変形状態を示している。
By the way, the reheater 30 of the reheat boiler mentioned above has many tube rows of the heat exchanger tubes 31 compared with the economizer etc. of a super supercritical pressure (USC) boiler, and also the combustion gas temperature which passes the heat exchanger tube outside Is getting higher due to reheating. For this reason, the comb-tooth plate 40 that supports the upper end side and makes the lower end side free is thermally extended downward, so that the heat transfer tube 31 supported on the lower end portion side of the comb-tooth plate 40 has a larger heat. Under the influence of elongation, it is pushed downward, and as a result, excessive stress is generated at the joint between the heat transfer tube 31 and the header 32.
FIG. 7 shows a modification of the heat transfer tube 31 due to the thermal elongation of the comb tooth plate 40. The heat transfer tube 31 shown by a solid line is in a state before the deformation, and the heat transfer tube 31 'shown by a one-point difference line is the heat of the comb tooth plate. The deformation state due to elongation is shown.

また、図8は、最もヘダー32に近い櫛歯板40の最下端部で伝熱管31を支持する凹部41の位置をPcとし、取合部Pbから位置Pcまでの距離Pb/Pcを横軸にして、取合部Pbにおいて発生する応力を縦軸に示したものである。この図8おいて、発生しうる応力範囲がハッチングにより示されており、また、取合部Pbの許容応力が破線で示されている。
上述した櫛歯板40を用いた伝熱管31の支持構造(従来構造)では、櫛歯板40は拘束の無いフリー状態の下端部側に熱伸びするので、取合部Pbの応力は取合部Paより大きくなり、しかも、Pb/Pc間距離が近いほど取合部Pbには大きな応力が作用する。従って、従来構造の櫛歯板40は、取合部Pbの応力が許容応力を超えて過大になることが懸念される。
In FIG. 8, the position of the concave portion 41 that supports the heat transfer tube 31 at the lowermost end portion of the comb tooth plate 40 closest to the header 32 is Pc, and the distance Pb / Pc from the coupling portion Pb to the position Pc is plotted on the horizontal axis. Thus, the stress generated in the joint portion Pb is shown on the vertical axis. In FIG. 8, the range of stresses that can be generated is indicated by hatching, and the allowable stress of the coupling portion Pb is indicated by a broken line.
In the support structure (conventional structure) of the heat transfer tube 31 using the comb tooth plate 40 described above, the comb tooth plate 40 is thermally extended to the lower end side in a free state without restraint, so the stress of the joint portion Pb is the joint force. The larger the portion Pa is, and the closer the distance between Pb / Pc is, the greater the stress acts on the joint portion Pb. Therefore, there is a concern that the comb tooth plate 40 having the conventional structure is excessively large in that the stress of the coupling portion Pb exceeds the allowable stress.

このような背景から、複数列の折り返し管群構造の再熱器を備えた再熱ボイラにおいては、ヘダーとの距離や通過する燃焼ガス温度分布に応じて伝熱管を支持する櫛歯板等の支持部材に生じる熱伸びの影響を抑制または調整可能とし、ヘダーと伝熱管との取合部に発生する応力を低減できる伝熱管支持構造が望まれる。
本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、支持部材の熱伸びによりヘダーと伝熱管との取合部に発生する応力を低減できる再熱ボイラを提供することにある。
From such a background, in a reheat boiler equipped with a reheater with a plurality of folded tube group structures, such as a comb tooth plate that supports the heat transfer tube according to the distance to the header and the distribution of the combustion gas temperature that passes through There is a demand for a heat transfer tube support structure that can suppress or adjust the influence of thermal elongation generated in the support member and can reduce the stress generated at the joint between the header and the heat transfer tube.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a reheat boiler that can reduce the stress generated in the joint portion between the header and the heat transfer tube due to the thermal elongation of the support member. There is to do.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明の請求項1に係る再熱ボイラは、バーナの燃焼で発生した主燃焼ガスが火炉から過熱器及び蒸発管群を通過して流れるように構成した主ボイラと、前記蒸発管群の後流側に配置され、再熱バーナの燃焼で再熱燃焼ガスを発生させる再熱炉と、該再熱炉の上部側に配置された再熱器とを備え、前記再熱器の伝熱管に上下両端をヘダーに接続して幅方向に往復する複数列の折り返し管が用いられるとともに、前記伝熱管の自重負荷が上端を固定して上下方向に延在する幅方向に複数の櫛歯板により支持されている再熱ボイラにおいて、前記櫛歯板の伝熱管支持部のうち、前記ヘダーと前記伝熱管との取合部応力が前記櫛歯板の熱伸びにより許容値を超える部分について、前記伝熱管の支持構造を櫛歯板による支持拘束の無いフリー構造としたことを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
A reheat boiler according to claim 1 of the present invention includes a main boiler configured such that main combustion gas generated by combustion of a burner flows from a furnace through a superheater and an evaporation tube group, and after the evaporation tube group A reheat furnace arranged on the flow side and generating reheat combustion gas by combustion of the reheat burner, and a reheater arranged on the upper side of the reheat furnace, and a heat transfer tube of the reheater A plurality of rows of folded tubes connected to the headers at the upper and lower ends and reciprocating in the width direction are used, and the self-weight load of the heat transfer tubes is fixed to the upper end by a plurality of comb teeth plates extending in the vertical direction. In the supported reheat boiler, the portion of the heat transfer tube support portion of the comb tooth plate where the joint stress between the header and the heat transfer tube exceeds the allowable value due to the thermal elongation of the comb tooth plate, The support structure of the heat transfer tube is a free structure without support restriction by the comb tooth plate. It is characterized in.

請求項1の再熱ボイラによれば、櫛歯板の伝熱管支持部のうち、ヘダーと伝熱管との取合部応力が櫛歯板の熱伸びにより許容値を超える部分について、伝熱管を不支持のフリー構造としたので、フリー構造部の伝熱管が櫛歯板の熱膨張の影響を受けることはなく、従って、ヘダーと伝熱管との取合部に発生する応力を低減することができる。すなわち、ヘダーとの距離に応じて伝熱管を支持する櫛歯板に生じる熱伸びの影響を抑制することにより、ヘダーと伝熱管との取合部に発生する応力を低減することができる。
このようなフリー構造部は、熱伸び量が最も大きくなる櫛歯板の最下段で伝熱管を支持する部分のみに採用しても大きな応力低減が可能となる。
According to the reheat boiler of claim 1, in the heat transfer tube support portion of the comb tooth plate, the heat transfer tube is provided for a portion where the joint stress between the header and the heat transfer tube exceeds the allowable value due to the thermal elongation of the comb tooth plate. Since it is an unsupported free structure, the heat transfer tube of the free structure portion is not affected by the thermal expansion of the comb tooth plate, and therefore the stress generated at the joint between the header and the heat transfer tube can be reduced. it can. That is, by suppressing the influence of the thermal elongation that occurs in the comb tooth plate that supports the heat transfer tube according to the distance to the header, the stress generated at the joint between the header and the heat transfer tube can be reduced.
Even if such a free structure portion is employed only in the portion that supports the heat transfer tube at the lowest stage of the comb tooth plate where the amount of thermal elongation is the largest, it is possible to greatly reduce the stress.

本発明の請求項2に係る再熱ボイラは、バーナの燃焼で発生した主燃焼ガスが火炉から過熱器及び蒸発管群を通過して流れるように構成した主ボイラと、前記蒸発管群の後流側に配置され、再熱バーナの燃焼で再熱燃焼ガスを発生させる再熱炉と、該再熱炉の上部側に配置された再熱器とを備え、前記再熱器の伝熱管に上下両端をヘダーに接続して幅方向に往復する複数列の折り返し管が用いられるとともに、前記伝熱管の自重負荷が上端を固定して上下方向に延在する幅方向に複数の櫛歯板により支持されている再熱ボイラにおいて、前記櫛歯板は、前記ヘダーとの距離が近いほど線膨張係数の小さい素材を使用していることを特徴とするものである。   According to a second aspect of the present invention, there is provided a reheat boiler comprising: a main boiler configured such that a main combustion gas generated by combustion of a burner flows from a furnace through a superheater and an evaporation tube group; A reheat furnace arranged on the flow side and generating reheat combustion gas by combustion of the reheat burner, and a reheater arranged on the upper side of the reheat furnace, and a heat transfer tube of the reheater A plurality of rows of folded tubes connected to the headers at the upper and lower ends and reciprocating in the width direction are used, and the self-weight load of the heat transfer tubes is fixed to the upper end by a plurality of comb teeth plates extending in the vertical direction. In the reheat boiler that is supported, the comb tooth plate uses a material having a smaller linear expansion coefficient as the distance from the header becomes shorter.

請求項2の再熱ボイラによれば、櫛歯板は、ヘダーとの距離が近いほど線膨張係数の小さい素材を使用するようにしたので、熱膨張の影響が大きい領域において伝熱管が受ける熱膨張の影響を低減することができ、従って、ヘダーと伝熱管との取合部に発生する応力を抑制することができる。すなわち、ヘダーとの距離に応じて伝熱管を支持する櫛歯板に生じる熱伸びの影響を調整することにより、ヘダーと伝熱管との取合部に発生する応力を低減することができる。   According to the reheat boiler of claim 2, since the comb tooth plate uses a material having a smaller linear expansion coefficient as the distance from the header is shorter, the heat received by the heat transfer tube in a region where the influence of the thermal expansion is large. The influence of expansion can be reduced, and therefore the stress generated at the joint between the header and the heat transfer tube can be suppressed. That is, by adjusting the influence of the thermal elongation generated in the comb tooth plate that supports the heat transfer tube according to the distance from the header, the stress generated at the joint between the header and the heat transfer tube can be reduced.

請求項1または2に記載の再熱ボイラは、再熱器入口断面における燃焼ガス温度分布の高温領域に存在する前記櫛歯板として、前記伝熱管支持部をフリー構造にしたもの、あるいは、素材の線膨張係数を小さくしたもののいずれかを使用することが好ましく、これにより、燃焼ガスが高温で櫛歯板の熱膨張が大きくなる領域においても、熱膨張の影響を抑制または調整可能とすることができ、従って、ヘダーと伝熱管との取合部に発生する応力を低減することができる。   The reheat boiler according to claim 1 or 2, wherein the heat transfer tube support portion has a free structure as the comb tooth plate existing in a high temperature region of the combustion gas temperature distribution in the reheater inlet cross section, or a material It is preferable to use one having a smaller coefficient of linear expansion, so that it is possible to suppress or adjust the influence of thermal expansion even in a region where the thermal expansion of the comb tooth plate increases due to high combustion gas temperature. Therefore, the stress generated at the joint between the header and the heat transfer tube can be reduced.

上述した本発明によれば、複数列の折り返し管群構造の再熱器を備えた再熱ボイラにおいて、ヘダーとの距離や通過する燃焼ガス温度分布に応じて伝熱管を支持する櫛歯板により支持部材に生じる熱伸び量を抑制または調整可能とし、ヘダーと伝熱管との取合部に発生する応力を低減することができる。この結果、再熱ボイラの再熱器は、耐久性や信頼性が向上するという顕著な効果が得られる。   According to the above-described present invention, in the reheat boiler provided with the reheater having a plurality of folded tube group structures, the comb tooth plate that supports the heat transfer tube according to the distance to the header and the distribution of the temperature of the passing combustion gas. The amount of thermal elongation generated in the support member can be suppressed or adjusted, and the stress generated at the joint between the header and the heat transfer tube can be reduced. As a result, the reheater of the reheat boiler has a remarkable effect that durability and reliability are improved.

本発明の再熱ボイラについて、伝熱管支持構造に係る第1の実施形態を示す図で、(a)は伝熱管支持構造を幅方向の正面から見た模式図、(b)は(a)のA矢視図である。It is a figure which shows 1st Embodiment which concerns on a heat exchanger tube support structure about the reheat boiler of this invention, (a) is the schematic diagram which looked at the heat exchanger tube support structure from the front of the width direction, (b) is (a). FIG. 本発明の再熱ボイラについて、伝熱管支持構造に係る第2の実施形態を示す説明図である。It is explanatory drawing which shows 2nd Embodiment which concerns on the heat exchanger tube support structure about the reheat boiler of this invention. 再熱器入口断面(図4のB−B断面)における燃焼ガス温度分布例を示す図である。It is a figure which shows the example of combustion gas temperature distribution in the reheater inlet cross section (BB cross section of FIG. 4). 再熱ボイラの構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structural example of a reheat boiler. 再熱器の伝熱管支持構造に係る概略構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the schematic structural example which concerns on the heat exchanger tube support structure of a reheater. 従来の伝熱管支持構造を示す図で、(a)は伝熱管支持構造を幅方向の正面から見た模式図、(b)は(a)のC矢視図である。It is a figure which shows the conventional heat exchanger tube support structure, (a) is the schematic diagram which looked at the heat exchanger tube support structure from the front of the width direction, (b) is C arrow directional view of (a). 櫛歯板の熱伸びによる伝熱管の変形例を示す図である。It is a figure which shows the modification of the heat exchanger tube by the thermal elongation of a comb-tooth board. ヘダーの取合部Pbから櫛歯板で伝熱管を支持している位置Pcまでの距離(Pb/Pc間距離)と、取合部Pbに作用する応力との関係を示す説明図である。It is explanatory drawing which shows the relationship between the distance (distance between Pb / Pc) from the coupling part Pb of a header to the position Pc which is supporting the heat exchanger tube with a comb-tooth board, and the stress which acts on the coupling part Pb.

以下、本発明に係る再熱ボイラの一実施形態を図面に基づいて説明する。
本実施形態の再熱ボイラ10は、たとえば図4に示すように、バーナ11の燃焼で発生した主燃焼ガスが火炉12から過熱器14及び蒸発管群15を通過して流れるように構成された主ボイラ16と、蒸発管群15の後流側に配置され、再熱バーナ20の燃焼で再熱燃焼ガスを発生させる再熱炉21と、再熱炉21の上部側に配置された再熱器30とを備えている。
Hereinafter, one embodiment of a reheat boiler concerning the present invention is described based on a drawing.
For example, as shown in FIG. 4, the reheat boiler 10 of the present embodiment is configured such that the main combustion gas generated by the combustion of the burner 11 flows from the furnace 12 through the superheater 14 and the evaporation tube group 15. A reheat furnace 21 disposed on the downstream side of the main boiler 16 and the evaporator tube group 15 and generating reheat combustion gas by combustion of the reheat burner 20, and a reheat disposed on the upper side of the reheat furnace 21 Device 30.

このように構成された再熱ボイラ10において、バーナ11の燃焼で発生させた主燃焼ガスは、主ボイラ16内において、火炉12からフロントバンクチューブ13、過熱器14及び蒸発管群15を通って下流の再熱炉21へ流れる。この後、主ボイラ16から再熱炉21に流入した主燃焼ガスは、再熱バーナ20で発生させた再熱燃焼ガスとともに再熱器30へ流出する。再熱器30を通過する主燃焼ガス及び再熱燃焼ガスは、再熱器30を通過する際に熱交換の加熱源として使用された後、上部に開口するガス出口22から再熱ボイラ10の外部へ流出する。   In the reheat boiler 10 configured as described above, the main combustion gas generated by the combustion of the burner 11 passes from the furnace 12 through the front bank tube 13, the superheater 14, and the evaporation tube group 15 in the main boiler 16. It flows to the reheating furnace 21 downstream. Thereafter, the main combustion gas flowing into the reheating furnace 21 from the main boiler 16 flows out to the reheater 30 together with the reheat combustion gas generated by the reheating burner 20. The main combustion gas and the reheat combustion gas that pass through the reheater 30 are used as a heat source for heat exchange when passing through the reheater 30, and then the gas outlet 22 that opens to the top of the reheat boiler 10. It flows out to the outside.

<第1の実施形態>
以下では、上述した再熱器30の内部に配設されている多数の伝熱管31を支持する伝熱管支持構造について、第1の実施形態を図1に基づいて説明する。
再熱器30の内部には、多数の伝熱管31が配列されている。この伝熱管31は、上下両端がそれぞれヘダー32に接続されるとともに、再熱器30の幅方向(X方向)に複数回(図示の構成例では4回)の往復をしながら上下方向(Y軸方向)に延在する折り返し管が用いられている。このような折り返し管とした伝熱管31は、再熱器30の奥行き方向(図3のZ方向を参照)に対し、ヘダー32に多数(複数)を接続して略平行に配列する管群構造が採用されている。なお、再熱器30内の燃焼ガス流れ方向は、図1における上下方向(Y軸方向)となり、上述した管群構造は、必要に応じて上下方向が複数段の管群に分割されている。
<First Embodiment>
Below, 1st Embodiment is described based on FIG. 1 about the heat exchanger tube support structure which supports many heat exchanger tubes 31 arrange | positioned inside the reheater 30 mentioned above.
A large number of heat transfer tubes 31 are arranged inside the reheater 30. The heat transfer tubes 31 are connected to the headers 32 at both upper and lower ends, and in the vertical direction (Y in the illustrated configuration example) while reciprocating multiple times in the width direction (X direction) of the reheater 30 (four times in the illustrated configuration example). A folded tube extending in the axial direction is used. The heat transfer tube 31 formed as such a folded tube has a tube group structure in which a large number (a plurality) are connected to the header 32 and arranged substantially in parallel to the depth direction of the reheater 30 (see the Z direction in FIG. 3). Is adopted. The combustion gas flow direction in the reheater 30 is the vertical direction (Y-axis direction) in FIG. 1, and the above-described tube group structure is divided into a plurality of tube groups in the vertical direction as necessary. .

このような管群構造を有する伝熱管31は、管群の各段において、再熱器30の幅方向(X軸方向)に数カ所、伝熱管31の支持用として上下方向の櫛歯板40Aが設けられている。この櫛歯板40Aは、細長い金属製(たとえば、ステンレススチール等)の矩形状板材に伝熱管31を支持する凹部(伝熱管支持部)41を形成した部材である。図示の櫛歯板40Aは、長手方向の両側に略半円形状の凹部41を形成したものであり、凹部41を形成する上下方向のピッチは、伝熱管31の折り返しピッチと一致している。
上述した櫛歯板40Aは、上端が再熱器30内の適所に固定され、ヘダー32から水平方向に延在する伝熱管31の自重負荷を支持するようになっている。
なお、図1(a)において、図中の符号Paは上段のヘダー32と伝熱管31の上端部との取合部(接続部)、符号Pbは下段のヘダー32と伝熱管31の下端部との取合部、符号Pc′は最もヘダー32に近い櫛歯板40Aの最下端部で伝熱管31とフリー状態に交差する位置である。
The heat transfer tubes 31 having such a tube group structure are arranged at several positions in the width direction (X-axis direction) of the reheater 30 at each stage of the tube group, and the vertical comb tooth plates 40A are used for supporting the heat transfer tubes 31. Is provided. The comb-tooth plate 40A is a member in which a recess (heat transfer tube support portion) 41 for supporting the heat transfer tube 31 is formed on a rectangular plate material made of an elongated metal (for example, stainless steel). The illustrated comb tooth plate 40 </ b> A has substantially semicircular recesses 41 formed on both sides in the longitudinal direction, and the pitch in the vertical direction forming the recesses 41 coincides with the folding pitch of the heat transfer tubes 31.
The above-described comb tooth plate 40A is fixed at an appropriate position in the reheater 30 and supports the self-load of the heat transfer tube 31 extending from the header 32 in the horizontal direction.
In FIG. 1A, symbol Pa in the drawing is a joint (connection portion) between the upper header 32 and the upper end of the heat transfer tube 31, and symbol Pb is the lower header 32 and the lower end of the heat transfer tube 31. The symbol Pc ′ is a position that intersects the heat transfer tube 31 in a free state at the lowest end of the comb tooth plate 40A closest to the header 32.

このような櫛歯板40Aにおいて、本実施形態では、伝熱管支持部となる凹部41のうち、ヘダー32と伝熱管31との取合部応力が櫛歯板40Aの熱伸びにより許容値を超える部分について、伝熱管31を不支持にするフリー構造が採用されている。
すなわち、本実施形態では、櫛歯板40Aが下方へ熱伸びするため、櫛歯板40Aの下端部側には伝熱管31を支持する凹部41を設けず、伝熱管31を支持しないフリーの状態になっている。また、図7に示す伝熱管31の変形及び図8に示す取合部Pbの応力から明らかなように、取合部Pbに作用する応力はヘダー32に近い(Pb/Pc間距離が小さい)櫛歯板40Aほど大きくなる。この結果、ヘダー32と伝熱管31との取合部応力が櫛歯板40Aの熱伸びにより許容値を最も超えやすい部分は、ヘダー32に最も近い櫛歯板40Aの下端部側領域にある伝熱管支持部となる。
In such a comb-tooth plate 40A, in this embodiment, the stress at the joint portion between the header 32 and the heat-transfer tube 31 in the recess 41 serving as the heat-transfer tube support portion exceeds the allowable value due to the thermal elongation of the comb-tooth plate 40A. About the part, the free structure which makes the heat exchanger tube 31 unsupported is employ | adopted.
That is, in this embodiment, since the comb-tooth plate 40A is thermally extended downward, the recess 41 that supports the heat transfer tube 31 is not provided on the lower end side of the comb-tooth plate 40A, and the heat transfer tube 31 is not supported. It has become. Further, as apparent from the deformation of the heat transfer tube 31 shown in FIG. 7 and the stress of the coupling portion Pb shown in FIG. 8, the stress acting on the coupling portion Pb is close to the header 32 (the distance between Pb / Pc is small). The comb tooth plate 40A becomes larger. As a result, the portion where the joint stress between the header 32 and the heat transfer tube 31 is most likely to exceed the allowable value due to the thermal elongation of the comb tooth plate 40 </ b> A is in the lower end side region of the comb tooth plate 40 </ b> A closest to the header 32. It becomes a heat pipe support part.

図示の櫛歯板40Aは、最下段となる伝熱管31を支持するための凹部41を形成する領域で部材を切り欠くことにより、最下段の伝熱管31を支持する凹部41がなく、従って、櫛歯板40Aの熱伸びによる影響を受けないフリー状態とする。ここで、櫛歯板40Aを切り欠いて凹部41を形成しない領域については、特に最下段からの段数を限定するものではないが、最下段のみをフリーにするだけでも大きな効果を得られる。
また、上述した櫛歯板40Aによる伝熱管31の支持には、自重負荷の支持に加えて、流体振動や偏流を防止する目的もあるので、流体振動等を考慮するとフリー状態の伝熱管31は最小限に抑えることが望ましい。
The illustrated comb-tooth plate 40A has no recess 41 for supporting the lowermost heat transfer tube 31 by cutting out the member in the region where the recess 41 for supporting the lowermost heat transfer tube 31 is formed. The free state is not affected by the thermal elongation of the comb tooth plate 40A. Here, the region where the comb-tooth plate 40A is not cut and the concave portion 41 is not formed is not particularly limited in the number of steps from the lowest step, but a large effect can be obtained only by making only the lowest step free.
Further, the support of the heat transfer tube 31 by the comb tooth plate 40A described above has the purpose of preventing fluid vibration and drift in addition to supporting its own weight load. It is desirable to keep it to a minimum.

上述した櫛歯板40Aを用いた伝熱管31の支持構造では、すなわち櫛歯板40Aの下端部側で伝熱管31をフリーとする伝熱管支持構造では、熱伸びの影響が最も大きい櫛歯板40Aの下端部側において、伝熱管31の変形がなくなるか最小限に抑えられるので、取合部Pbに作用する応力を許容応力以下(図8参照)に低減することができる。このような櫛歯板40Aを用いた伝熱管支持構造は、ヘダー32に最も近い櫛歯板40Aの下端部側にある伝熱管支持部ほど熱伸びの影響を受けて取合部Pbの応力が許容値を超えやすくなるので、この領域にある伝熱管支持部についてのみ、伝熱管31を不支持のフリー構造とすればよい。   In the support structure of the heat transfer tube 31 using the above-described comb tooth plate 40A, that is, in the heat transfer tube support structure in which the heat transfer tube 31 is free on the lower end portion side of the comb tooth plate 40A, the comb tooth plate having the greatest influence of thermal elongation. Since the deformation of the heat transfer tube 31 is eliminated or minimized at the lower end portion side of 40A, the stress acting on the coupling portion Pb can be reduced below the allowable stress (see FIG. 8). In such a heat transfer tube support structure using the comb tooth plate 40A, the heat transfer tube support portion located on the lower end side of the comb tooth plate 40A closest to the header 32 is affected by the thermal elongation, and the stress of the coupling portion Pb is increased. Since it is easy to exceed the allowable value, the heat transfer tube 31 only needs to have an unsupported free structure only for the heat transfer tube support portion in this region.

換言すれば、ヘダー32と伝熱管支持部との距離に応じて、距離が近い位置にある伝熱管支持部ほど伝熱管31を支持する櫛歯板40Aに生じる熱伸びの影響を抑制して小さくすることにより、ヘダー32と伝熱管31との取合部Pbに発生する応力を低減することができる。
また、このような伝熱管支持構造は、従来構造で説明した櫛歯板40から必要部分を切り欠くという簡単な構造変更を実施すればよく、従って、再熱器30の寸法や仕様を変更することなく取合部Pbの応力を許容値以下に低下させることができる。
In other words, depending on the distance between the header 32 and the heat transfer tube support portion, the heat transfer tube support portion closer to the distance suppresses the influence of the thermal elongation generated in the comb tooth plate 40A that supports the heat transfer tube 31 and becomes smaller. By doing, the stress which generate | occur | produces in the joint part Pb of the header 32 and the heat exchanger tube 31 can be reduced.
In addition, such a heat transfer tube support structure may be simply changed in structure by cutting out a necessary portion from the comb tooth plate 40 described in the conventional structure, and accordingly, the dimensions and specifications of the reheater 30 are changed. Without this, the stress of the joint portion Pb can be reduced below the allowable value.

<第2の実施形態>
続いて、上述した再熱器30の内部に配設されている多数の伝熱管31を支持する伝熱管支持構造について、第2の実施形態を図2に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
この実施形態においては、ヘダー32との距離(Pb/Pc間距離)が近いほど線膨張係数の小さい素材により製作した櫛歯板40Bを使用する。すなわち、本実施形態は、ヘダー32との距離に応じて、櫛歯板40Bの材質を線膨張係数の小さい材質に変更し、櫛歯板40Bの熱伸びによる発生応力を低減させるものである。
<Second Embodiment>
Then, 2nd Embodiment is described based on FIG. 2 about the heat exchanger tube support structure which supports many heat exchanger tubes 31 arrange | positioned inside the reheater 30 mentioned above. In addition, the same code | symbol is attached | subjected to the part similar to embodiment mentioned above, and the detailed description is abbreviate | omitted.
In this embodiment, a comb tooth plate 40B manufactured using a material having a smaller linear expansion coefficient is used as the distance from the header 32 (distance between Pb / Pc) is shorter. That is, in the present embodiment, the material of the comb tooth plate 40B is changed to a material having a small linear expansion coefficient according to the distance from the header 32, and the generated stress due to the thermal elongation of the comb tooth plate 40B is reduced.

具体例を示すと、ヘダー32に最も近い櫛歯板40Bについては、たとえばインコネル等のように、線膨張係数の小さい素材で製造したものを使用する。このため、熱膨張の影響による変形が取合部Pbの応力を最も大きくする領域にある伝熱管支持部は、最も熱伸びの影響を受ける最下端部の位置Pcにおいて、櫛歯板40Bの熱伸び量が減少する。すなわち、熱伸び後の位置Pcは、櫛歯板40Bの素材を線膨張係数の小さい素材に変更したことにより位置Pc′まで上昇するので、熱伸びの減少量はδとなる。
従って、ヘダー32と伝熱管31との取合部Pbに発生する応力は、櫛歯板の熱伸び量に比例することから、伝熱管31の変形が熱伸びの減少量δだけ小さくなることにより抑制される。換言すれば、ヘダー32との距離に応じて伝熱管31を支持する櫛歯板40Bの素材を変更し、櫛歯板40Bに生じる熱伸びの影響を調整したので、ヘダー32と伝熱管31との取合部Pbに発生する応力を低減することができる。
As a specific example, the comb tooth plate 40B closest to the header 32 is made of a material having a small linear expansion coefficient, such as Inconel. For this reason, the heat transfer tube support portion in the region where the deformation due to the influence of the thermal expansion maximizes the stress of the coupling portion Pb is the heat of the comb tooth plate 40B at the position Pc of the lowermost end portion that is most affected by the thermal elongation. Elongation decreases. That is, the position Pc after the thermal elongation rises to the position Pc ′ by changing the material of the comb tooth plate 40B to a material having a small linear expansion coefficient, and thus the amount of decrease in thermal elongation is δ.
Therefore, since the stress generated in the joint portion Pb between the header 32 and the heat transfer tube 31 is proportional to the thermal expansion amount of the comb tooth plate, the deformation of the heat transfer tube 31 is reduced by the thermal expansion reduction amount δ. It is suppressed. In other words, the material of the comb tooth plate 40B that supports the heat transfer tube 31 is changed according to the distance to the header 32, and the influence of the thermal elongation generated in the comb tooth plate 40B is adjusted. The stress which generate | occur | produces in the joint part Pb of can be reduced.

ところで、上述した第1及び第2の実施形態で説明した櫛歯板40A,40Bは、再熱ボイラ30の再熱器入口断面(図4のB−B断面)において、燃焼ガス温度分布が高温となる領域への適用も可能である。
図3は、再熱器入口断面の燃焼ガス温度分布について、一例を示した図である。この燃焼ガス温度分布例では、紙面右側の主ボイラ16から流入する燃焼ガス流れと、紙面下側に設置された再熱バーナ20で発生させた再熱燃焼ガス流れとが合流して再熱器30に流入している。このため、ヘダー32に近い領域には、再熱バーナ20からの再熱燃焼ガス流れ方向において下流側(紙面の左上方)に、ガス温度が高温となる領域が形成されている。
By the way, the comb tooth plates 40A and 40B described in the first and second embodiments described above have a high combustion gas temperature distribution in the reheater inlet cross section of the reheat boiler 30 (BB cross section in FIG. 4). It is also possible to apply to the following areas.
FIG. 3 is a diagram showing an example of the combustion gas temperature distribution at the reheater inlet cross section. In this combustion gas temperature distribution example, the combustion gas flow flowing in from the main boiler 16 on the right side of the paper and the reheat combustion gas flow generated by the reheating burner 20 installed on the lower side of the paper merge to form a reheater. 30. For this reason, an area where the gas temperature becomes high is formed in the area close to the header 32 on the downstream side (upper left in the drawing) in the reheat combustion gas flow direction from the reheat burner 20.

このような高温領域は、ヘダー32に近いことから櫛歯板40の熱伸びが大きくなり、従って、伝熱管31とヘダー32との取合部Pbには大きな応力が作用する。
そこで、上述した高温領域にある櫛歯板40についても、上述した第1及び第2の実施形態で説明した櫛歯板40A,40Bに変更することが好ましい。すなわち、高温領域にある櫛歯板40は、伝熱管支持部をフリー構造にした櫛歯板40Aか、あるいは、素材の線膨張係数を小さくした櫛歯板40Bのいずれか一方に変更することが望ましい。
Since such a high temperature region is close to the hedder 32, the thermal expansion of the comb tooth plate 40 increases, and accordingly, a large stress acts on the joint portion Pb between the heat transfer tube 31 and the hedder 32.
Therefore, it is preferable to change the comb tooth plate 40 in the high temperature region described above to the comb tooth plates 40A and 40B described in the first and second embodiments. That is, the comb-tooth plate 40 in the high temperature region can be changed to either the comb-tooth plate 40A having a heat transfer tube support portion having a free structure or the comb-tooth plate 40B having a reduced linear expansion coefficient of the material. desirable.

このようにすれば、燃焼ガス温度が高温となり、熱膨張の影響で取合部Pbの応力が大きくなる高温領域においても、櫛歯板40A、40Bの熱膨張による影響を抑制または調整することが可能になり、従って、ヘダー32と伝熱管31との取合部Pbに発生する応力を低減することができる。   In this way, the influence of the thermal expansion of the comb teeth plates 40A and 40B can be suppressed or adjusted even in a high temperature region where the combustion gas temperature becomes high and the stress of the coupling portion Pb increases due to the influence of thermal expansion. Therefore, the stress generated in the joint portion Pb between the header 32 and the heat transfer tube 31 can be reduced.

このように、上述した本実施形態の再熱ボイラ10によれば、複数列の折り返し管群構造の再熱器30において、ヘダー32との距離や通過する燃焼ガス温度分布に応じて伝熱管31の支持部材に生じる熱伸び量を抑制または調整可能とした櫛歯板40A、40Bを採用したので、ヘダー32と伝熱管31との取合部Pbに発生する応力を低減することができる。この結果、再熱ボイラ10の再熱器30は、その耐久性や信頼性が向上する。
なお、本発明は上述した実施形態に限定されることはなく、その要旨を逸脱しない範囲内において適宜変更することができる。
As described above, according to the reheat boiler 10 of the present embodiment described above, in the reheater 30 having a plurality of rows of folded tube group structures, the heat transfer tubes 31 according to the distance from the header 32 and the passing combustion gas temperature distribution. Since the comb-tooth plates 40A and 40B that can suppress or adjust the amount of thermal elongation generated in the supporting member are employed, the stress generated in the joint portion Pb between the header 32 and the heat transfer tube 31 can be reduced. As a result, the durability and reliability of the reheater 30 of the reheat boiler 10 are improved.
In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary, it can change suitably.

10 再熱ボイラ
11 バーナ
12 火炉
13 フロントバンクチューブ
14 過熱器(SH)
15 蒸発管群(リアバンクチューブ)
16 主ボイラ
20 再熱バーナ
21 再熱炉
22 ガス出口
30 再熱器
31 伝熱管
40A,40B 櫛歯板
41 凹部
10 Reheat boiler 11 Burner 12 Furnace 13 Front bank tube 14 Superheater (SH)
15 Evaporation tube group (rear bank tube)
16 main boiler 20 reheat burner 21 reheat furnace 22 gas outlet 30 reheater 31 heat transfer tube 40A, 40B comb tooth plate 41 recess

Claims (3)

バーナの燃焼で発生した主燃焼ガスが火炉から過熱器及び蒸発管群を通過して流れるように構成した主ボイラと、前記蒸発管群の後流側に配置され、再熱バーナの燃焼で再熱燃焼ガスを発生させる再熱炉と、該再熱炉の上部側に配置された再熱器とを備え、
前記再熱器の伝熱管に上下両端をヘダーに接続して幅方向に往復する複数列の折り返し管が用いられるとともに、前記伝熱管の自重負荷が上端を固定して上下方向に延在する幅方向に複数の櫛歯板により支持されている再熱ボイラにおいて、
前記櫛歯板の伝熱管支持部のうち、前記櫛歯板の熱伸びにより前記ヘダーと前記伝熱管との取合部応力が許容値を超える部分について、前記伝熱管の支持構造を櫛歯板による支持拘束の無いフリー構造としたことを特徴とする再熱ボイラ。
The main combustion gas generated by the burner combustion is arranged on the downstream side of the main boiler configured to flow from the furnace through the superheater and the evaporator tube group, and is regenerated by the combustion of the reheat burner. A reheat furnace for generating thermal combustion gas, and a reheater disposed on the upper side of the reheat furnace,
The reheater uses a plurality of rows of folded tubes connected to the headers at both upper and lower ends to the heat transfer tubes and reciprocates in the width direction, and the self-load load of the heat transfer tubes has a width that extends in the vertical direction with the upper end fixed. In the reheat boiler supported by a plurality of comb teeth plates in the direction,
Of the heat transfer tube support portion of the comb tooth plate, the heat transfer tube support structure is a comb tooth plate for a portion where the joint stress between the header and the heat transfer tube exceeds an allowable value due to thermal expansion of the comb tooth plate. A reheat boiler characterized by having a free structure without support restraint.
バーナの燃焼で発生した主燃焼ガスが火炉から過熱器及び蒸発管群を通過して流れるように構成した主ボイラと、前記蒸発管群の後流側に配置され、再熱バーナの燃焼で再熱燃焼ガスを発生させる再熱炉と、該再熱炉の上部側に配置された再熱器とを備え、
前記再熱器の伝熱管に上下両端をヘダーに接続して幅方向に往復する複数列の折り返し管が用いられるとともに、前記伝熱管の自重負荷が上端を固定して上下方向に延在する幅方向に複数の櫛歯板により支持されている再熱ボイラにおいて、
前記櫛歯板は、前記ヘダーとの距離が近いほど線膨張係数の小さい素材を使用していることを特徴とする再熱ボイラ。
The main combustion gas generated by the burner combustion is arranged on the downstream side of the main boiler configured to flow from the furnace through the superheater and the evaporator tube group, and is regenerated by the combustion of the reheat burner. A reheat furnace for generating thermal combustion gas, and a reheater disposed on the upper side of the reheat furnace,
The reheater uses a plurality of rows of folded tubes connected to the headers at both upper and lower ends to the heat transfer tubes and reciprocates in the width direction, and the self-load load of the heat transfer tubes has a width that extends in the vertical direction with the upper end fixed. In the reheat boiler supported by a plurality of comb teeth plates in the direction,
The reheat boiler, wherein the comb tooth plate uses a material having a smaller linear expansion coefficient as the distance from the header is shorter.
再熱器入口断面における燃焼ガス温度分布の高温領域に存在する前記櫛歯板として、前記伝熱管の支持構造を櫛歯板による支持拘束の無いフリー構造にしたもの、あるいは、素材の線膨張係数を小さくしたもののいずれかが使用されていることを特徴とする請求項1または2に記載の再熱ボイラ。
As the comb tooth plate present in the high temperature region of the combustion gas temperature distribution in the reheater inlet cross section, the support structure of the heat transfer tube is a free structure without support restriction by the comb tooth plate, or the linear expansion coefficient of the material The reheat boiler according to claim 1 or 2, wherein any one of those having a smaller size is used.
JP2009250537A 2009-10-30 2009-10-30 Reheat boiler Active JP5302852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009250537A JP5302852B2 (en) 2009-10-30 2009-10-30 Reheat boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009250537A JP5302852B2 (en) 2009-10-30 2009-10-30 Reheat boiler

Publications (2)

Publication Number Publication Date
JP2011094902A JP2011094902A (en) 2011-05-12
JP5302852B2 true JP5302852B2 (en) 2013-10-02

Family

ID=44112009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009250537A Active JP5302852B2 (en) 2009-10-30 2009-10-30 Reheat boiler

Country Status (1)

Country Link
JP (1) JP5302852B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8625088B2 (en) 2009-12-01 2014-01-07 Korean Research Institute Of Standards And Science Integrating sphere photometer and measuring method of the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54103906A (en) * 1978-02-02 1979-08-15 Mitsubishi Heavy Ind Ltd Steam temperature controller for marine reheat boiler
JPS57100084U (en) * 1980-12-12 1982-06-19
JP3875933B2 (en) * 2002-07-29 2007-01-31 新日鉄エンジニアリング株式会社 Boiler horizontal heat transfer tube support structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8625088B2 (en) 2009-12-01 2014-01-07 Korean Research Institute Of Standards And Science Integrating sphere photometer and measuring method of the same

Also Published As

Publication number Publication date
JP2011094902A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
KR100718357B1 (en) Steam generator
JP6911295B2 (en) boiler
CA2142840A1 (en) Steam generator
ITRM950141A1 (en) IMPROVEMENT IN SINGLE PASSING BOILERS AND STEAM GENERATORS, WITH SINGLE AND MULTIPLE PIPES AND RIBS.
JP5302852B2 (en) Reheat boiler
WO2013118527A1 (en) Heat exchanger
AU2018382368A1 (en) Heat exchanger for a molten salt steam generator in a concentrated solar power plant (III)
US6446580B2 (en) Fossil fuel-fired continuous-flow steam generator
US6715450B1 (en) Fossil-fuel fired continuous-flow steam generator
KR101663850B1 (en) Continuous evaporator
US20170284657A1 (en) High temperature sub-critical boiler with steam cooled upper furnace
US20020026906A1 (en) Fossil-fired steam generator
US10253972B2 (en) Transition casting for boiler with steam cooled upper furnace
KR101662348B1 (en) Continuous evaporator
US10415819B2 (en) High temperature sub-critical boiler with common steam cooled wall between furnace and convection pass
US9291344B2 (en) Forced-flow steam generator
WO2019225164A1 (en) Boiler device and superheater
JP5931599B2 (en) Marine boiler structure, superheater header support method for marine boiler and marine boiler
KR102514159B1 (en) Heat exchanger for a molten salt steam generator in a concentrated solar power plant (iii)
JP7427761B2 (en) Heat exchanger, boiler equipped with the same, and heat exchange method
JP7316388B2 (en) Boiler heat transfer panel structure
JP5514690B2 (en) Waste heat recovery device
EP3502608A1 (en) Heat exchanger for a molten salt steam generator in a concentrated solar power plant (iii)
JP2019178843A (en) Vibration control device of heat transfer tube, heat exchanger and boiler
US10234169B2 (en) Transition casting for boiler with steam cooled upper furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130621

R151 Written notification of patent or utility model registration

Ref document number: 5302852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250