WO2019225164A1 - Boiler device and superheater - Google Patents

Boiler device and superheater Download PDF

Info

Publication number
WO2019225164A1
WO2019225164A1 PCT/JP2019/014624 JP2019014624W WO2019225164A1 WO 2019225164 A1 WO2019225164 A1 WO 2019225164A1 JP 2019014624 W JP2019014624 W JP 2019014624W WO 2019225164 A1 WO2019225164 A1 WO 2019225164A1
Authority
WO
WIPO (PCT)
Prior art keywords
superheater
inlet manifold
furnace
manifold
heat transfer
Prior art date
Application number
PCT/JP2019/014624
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 竹内
亨 藪木
裕昭 市川
誠治 菊原
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Publication of WO2019225164A1 publication Critical patent/WO2019225164A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/22Drums; Headers; Accessories therefor

Definitions

  • the present invention relates to a boiler device and a superheater.
  • a plurality of pipes to which a plurality of heat transfer pipes constituting the suspension type superheater are connected, and a manifold to which the plurality of pipes are connected Is arranged.
  • the manifold includes an inlet manifold and an outlet manifold.
  • manifold is collectively referred to as “manifold”.
  • the height of the penthouse from the ceiling wall of the boiler device to the suspension beam largely depends on the installation level of the manifold, and the installation level of the manifold is determined by the length of the heat transfer tube protruding on the ceiling wall. Furthermore, the length of the heat transfer tube protruding on the ceiling wall is determined within a range in which the heat transfer tube can be prevented from being damaged due to a difference in thermal expansion between the manifold and the ceiling wall.
  • the suspended superheater is disposed in the combustion gas flow path of the boiler device, and the upper part of the heat transfer tube constituting the suspension is disposed in the penthouse through the ceiling wall.
  • the ceiling wall is composed of tube walls, the amount of thermal expansion in the furnace width direction is larger in the manifold than in the ceiling wall, so that the thermal stress at the connection between the heat transfer tube and the pipe increases toward the side wall of the furnace. Occurs.
  • the length of the heat transfer tube protruding on the ceiling wall is determined such that the connection portion between the heat transfer tube and the pipe does not break even at the end in the furnace width direction.
  • the connection structure of a manifold, a pipe header, and a heat transfer tube is disclosed in Patent Document 1.
  • the boiler device having the above-described configuration is required to reduce the building height and, consequently, the construction cost.
  • it is effective to reduce the penthouse height by shortening the length of the heat transfer tube protruding into the penthouse, but as described above, the length of the heat transfer tube protruding into the penthouse. Is determined from the viewpoint of preventing the heat transfer tube from being damaged due to the difference in thermal expansion between the manifold and the ceiling wall. Therefore, if the problem of the difference in thermal expansion is not solved, the length of the heat transfer tube protruding into the penthouse is shortened. It is not possible to reduce the building height and the construction cost.
  • the present invention has been made in order to solve the problems of the prior art, and an object of the present invention is to provide a boiler device and a superheater capable of realizing a reduction in building height and a reduction in construction cost. To do.
  • a representative present invention includes a furnace for burning fuel, a rear heat transfer section disposed on the rear side of the furnace with respect to a flow path of combustion gas generated in the furnace, A plurality of superheaters including a suspended superheater arranged on the flow path of the combustion gas, a connecting pipe connecting the plurality of superheaters to each other, and a ceiling portion of the furnace and the rear heat transfer unit And an upper part of the heat transfer tube constituting the suspended superheater passes through the ceiling wall of the furnace and the rear heat transfer unit, and is arranged in the inlet manifold or
  • the inlet manifold is connected to an outlet manifold, and the inlet manifold includes a right inlet manifold that extends from a center portion in the furnace width direction to the right wall side of the furnace, and a left inlet manifold that extends from the center portion in the furnace width direction to the left wall side of the furnace. It is composed of, the right inlet manifold and said left inlet manif
  • the building height of the boiler device can be reduced, and the construction cost can be reduced.
  • FIG. 1 is an overall configuration diagram of a boiler device according to an embodiment. It is a figure which shows typically the connection structure of the primary superheater, secondary superheater, and tertiary superheater with which the boiler apparatus which concerns on embodiment is equipped. It is a top view which shows the specific structure of the connecting pipe which connects the primary superheater which concerns on embodiment, a secondary superheater, and a tertiary superheater. It is a perspective view which shows the structure of the tertiary superheater which concerns on embodiment. It is the A section enlarged view of FIG.
  • FIG. 1 is an overall configuration diagram of a boiler device according to an embodiment.
  • a boiler apparatus 1 of this example includes a furnace 2 that burns fuel, a rear heat transfer unit 3 that is disposed on the rear side of the furnace 2 with respect to a flow path of combustion gas generated in the furnace 2, and The penthouse 4 provided in the ceiling part of the furnace 2 and the rear heat transfer part 3 is provided.
  • the furnace 2 and the rear heat transfer section 3 are suspended from a beam section 5a of the boiler steel frame 5 using a suspension rod and a suspension beam (not shown).
  • the boiler building is constructed so as to cover the boiler steel frame 5 (not shown).
  • FIG. 1 is an overall configuration diagram of a boiler device according to an embodiment.
  • a boiler apparatus 1 of this example includes a furnace 2 that burns fuel, a rear heat transfer unit 3 that is disposed on the rear side of the furnace 2 with respect to a flow path of combustion gas generated in the furnace 2, and The penthouse 4 provided in the ceiling part of the furnace 2 and the rear heat transfer part 3
  • the furnace 2 side of the boiler apparatus 1 when the furnace 2 side of the boiler apparatus 1 is referred to as the front of the can, the rear heat transfer section 3 side is referred to as the rear of the can, and the right side or the left side in the furnace width direction, It refers to the right or left side when viewed from the front.
  • the primary superheater 6 is installed in the rear heat transfer section 3. Further, a secondary superheater 7 and a tertiary superheater 8 are installed at a position where the combustion gas G generated in the furnace 2 is directed to the rear heat transfer unit 3.
  • the primary superheater 6 is a so-called horizontal heat exchanger having a horizontal heat transfer surface
  • the secondary superheater 7 and the tertiary superheater 8 are so-called suspensions having a suspended heat transfer surface. It is a mold heat exchanger.
  • the tertiary superheater 8 is a final superheater provided at the final stage on the steam piping system of the boiler apparatus 1.
  • FIG. 2 is a diagram schematically illustrating a connection structure of a primary superheater, a secondary superheater, and a tertiary superheater provided in the boiler device according to the embodiment.
  • the primary superheater 6 has an integrated structure including an inlet manifold 11 and an outlet manifold 12 that penetrate from the right wall side to the left wall side of the furnace 2.
  • the secondary superheater 7 includes a right inlet manifold 13a and a left inlet manifold 13b extending from the center portion in the furnace width direction to the right wall side or the left wall side of the furnace 2, respectively, and from the center portion in the furnace width direction.
  • each has a two-part structure including a right outlet manifold 14a and a left outlet manifold 14b extending to the right wall side or the left wall side of the furnace 2, respectively.
  • the tertiary superheater 8 includes a right inlet manifold 15a and a left inlet manifold 15b extending from the center in the furnace width direction to the right wall side or the left wall side of the furnace 2, respectively, and from the right wall side to the left wall side of the furnace 2. It has a two-part structure including an outlet manifold 16 that passes therethrough.
  • the right inlet manifold 15a and the left inlet manifold 15b may be collectively referred to as “inlet manifold 15”.
  • the primary superheater 6, the secondary superheater 7, and the tertiary superheater 8 are connected to each other using a connecting pipe. That is, as shown in FIG. 2, connecting pipes 21a and 21b extending from the cage wall pipe are connected to the inlet manifold 11 of the primary superheater 6 at the left and right ends in the furnace width direction.
  • the right end of the outlet manifold 12 of the primary superheater 6 and the right end of the left inlet manifold 13b of the secondary superheater 7 are connected using a connecting pipe 22a. Further, the left end portion of the outlet manifold 12 of the primary superheater 6 and the left end portion of the right inlet manifold 13a of the secondary superheater 7 are connected using a connecting pipe 22b.
  • the connecting pipes 22a and 22b are provided with a spray 25 for adjusting the fluid temperature.
  • the right end of the left outlet manifold 14b of the secondary superheater 7 and the right end of the right inlet manifold 15a of the tertiary superheater 8 are connected using a connecting pipe 23a. Further, the left end of the right outlet manifold 14a of the secondary superheater 7 and the left end of the left inlet manifold 15b of the tertiary superheater 8 are connected using a connecting pipe 23b.
  • the communication pipes 23a and 23b are provided with a spray 26 for adjusting the fluid temperature.
  • One end of the connecting pipe 24a is connected to the right end of the outlet manifold 16 of the tertiary superheater 8, and one end of the connecting pipe 24b is connected to the left end of the outlet manifold 16 of the tertiary superheater 8.
  • the other ends of the communication pipes 24a and 24b are connected to a high-pressure turbine.
  • FIG. 3 is a plan view showing a specific configuration of a connecting pipe that connects the primary superheater, the secondary superheater, and the tertiary superheater according to the embodiment.
  • the connecting pipe 22 a has one end connected to the right end of the outlet manifold 12 of the primary superheater 6, the primary superheater right outlet connecting pipe 22 a 1, and one end connected to the left inlet of the secondary superheater 7.
  • the secondary superheater right inlet communication pipe 22a2 is connected to the right end of the manifold 13b and the other end is connected to the other end of the primary superheater right outlet communication pipe 22a1.
  • the connecting pipe 22b has one end connected to the left end of the outlet manifold 12 of the primary superheater 6 and the left side of the right inlet manifold 13a of the secondary superheater 7 connected to the left side of the primary superheater left outlet connecting pipe 22b1.
  • the secondary superheater left inlet communication pipe 22b2 is connected to the end and the other end is connected to the other end of the primary superheater left outlet communication pipe 22b1.
  • the connecting pipe 23a has one end connected to the right end of the left outlet manifold 14b of the secondary superheater 7 and the right end of the right inlet manifold 15a of the tertiary superheater 8 at one end.
  • the secondary superheater right side inlet communication pipe 23a2 is connected to the other end of the secondary superheater right side outlet communication pipe 23a1.
  • the connecting pipe 23b has one end connected to the left end of the right outlet manifold 14a of the secondary superheater 7 and the left side outlet manifold 23b1 of the secondary superheater 8 and one end connected to the left inlet manifold 15b of the tertiary superheater 8.
  • the third superheater left inlet communication pipe 23b2 is connected to the other left end of the secondary superheater left outlet communication pipe 23b1.
  • the arrow of FIG. 3 has shown the flow direction of the internal fluid (superheated steam) of each connecting pipe.
  • FIG. 4 is a perspective view showing the configuration of the tertiary superheater according to the embodiment
  • FIG. 5 is an enlarged view of part A of FIG.
  • the tertiary superheater 8 according to the embodiment includes a right inlet manifold 15 a, a left inlet manifold 15 b, an outlet manifold 16, and a plurality of pipes 31 with one end welded to each manifold. It consists mainly of a plurality of heat transfer tubes (leg tubes) 32 welded at both ends for each group of pipes 31 to be welded.
  • the right inlet manifold 15a, the left inlet manifold 15b, and the outlet manifold 16 are installed in the penthouse 4 in the furnace width direction.
  • the right inlet manifold 15a and the left inlet manifold 15b are arranged in a straight line with a gap 27 having a predetermined dimension between the left end of the right inlet manifold 15a and the right end of the left inlet manifold 15b.
  • the left end of the right inlet manifold 15a and the right end of the left inlet manifold 15b are closed using a plate material or the like.
  • the gap 27 is arranged at the center position (boiler center) in the furnace width direction.
  • the inlet manifold 15 of the tertiary superheater 8 is divided into two at the center in the length direction. Further, the gap 27 is set to a size such that the right inlet manifold 15a and the left inlet manifold 15b do not contact each other regardless of the internal fluid temperature in the right inlet manifold 15a and the left inlet manifold 15b.
  • the outlet manifold 16 is disposed above the right inlet manifold 15a and the left inlet manifold 15b in parallel with the right inlet manifold 15a and the left inlet manifold 15b.
  • the pipe 31 is welded at equal intervals in the length direction of the right inlet manifold 15a, the left inlet manifold 15b, and the outlet manifold 16.
  • the nozzles 31 welded to the right inlet manifold 15a and the left inlet manifold 15b are arranged horizontally toward the front side of the can.
  • the nozzle 31 welded to the outlet manifold 16 is horizontally arranged toward the rear side of the can.
  • Both ends of a plurality of heat transfer tubes 32 formed in a U-shape are welded in the length direction of the set of nozzles 31 protruding to the front side and the rear side of the can.
  • heat transfer panels 33 formed in a U-shaped panel shape with a combination of a plurality of heat transfer tubes 32 are formed at equal intervals. Is done.
  • the combustion gas G flows from the front side of the can to the rear side of the can through the gaps between the heat transfer panels 33 arranged adjacent to each other. Thereby, heat exchange between the combustion gas G and the internal fluid of the tertiary superheater 8 is performed.
  • the upper part of the heat transfer tube 32 constituting the heat transfer panel 33 penetrates the ceiling wall 34 and is arranged in the penthouse 4.
  • FIG. 6 is an explanatory diagram showing the inlet manifold setting height of the tertiary superheater according to the embodiment in comparison with the inlet manifold setting height of the tertiary superheater according to the conventional example.
  • the left figure of Fig.6 (a) is the figure which looked at the tertiary superheater which concerns on a prior art example from the can front side
  • the right figure of Fig.6 (a) is the figure which looked at the tertiary superheater which concerns on a prior art example from the right side wall side. It is.
  • the left figure of FIG.6 (b) is the figure which looked at the tertiary superheater which concerns on embodiment from the can front side
  • the right figure of FIG.6 (b) is the figure which looked at the tertiary superheater which concerns on embodiment from the right side wall side. It is.
  • the boiler apparatus 1 according to the embodiment has a two-part structure in which the inlet manifold 15 of the tertiary superheater 8 is divided into a right inlet manifold 15a and a left inlet manifold 15b at the boiler center.
  • the inlet manifold 15 of the tertiary superheater 8 has an integral structure.
  • the difference in thermal expansion between the inlet manifold 15 and the ceiling wall 34 of the tertiary superheater 8 in the furnace width direction increases in proportion to the length of the inlet manifold 15.
  • the inlet manifold 15 of the tertiary superheater 8 according to the conventional example has an integral structure, and the inlet manifold 15 of the tertiary superheater 8 according to the embodiment has a two-part structure divided at the center of the boiler.
  • the thermal stress acting on the connection portion between the header 31 and the heat transfer tube 32 at both the left and right end portions of the inlet manifold 15 becomes larger than the tertiary superheater 8 according to the embodiment.
  • the tertiary superheater 8 which concerns on a prior art example, in order to relieve
  • the inlet manifold 15 of the tertiary superheater 8 according to the embodiment has a smaller thermal stress acting on the connecting portion between the pipe 31 and the heat transfer tube 32 than the tertiary superheater 8 according to the conventional example.
  • the amount of bending of the heat transfer tube 32 for relaxing the stress can be reduced. Therefore, the tertiary superheater 8 according to the embodiment can reduce the inlet manifold set height H2 as is apparent from the comparison between FIG. 6A and FIG.
  • FIG. 7 is an explanatory diagram showing the building height of the boiler device according to the embodiment in comparison with the boiler device according to the conventional example.
  • the left figure of FIG. 7 is a figure which shows the building height of the boiler apparatus which concerns on a prior art example
  • the right figure of FIG. 7 is a figure which shows the building height of the boiler apparatus which concerns on embodiment.
  • the inlet manifold setting height H2 of the tertiary superheater 8 according to the embodiment can be smaller than the inlet manifold setting height H1 of the tertiary superheater 8 according to the conventional example, the height dimension of the penthouse 4 is also high. It can be lowered according to the difference (H1-H2) in the set height of each inlet manifold.
  • the boiler device 1 according to the embodiment can reduce the construction height of the boiler steel frame 5, and thus the construction height of the boiler building, as compared with the boiler device 100 according to the conventional example. .
  • the boiler apparatus 1 which concerns on embodiment can reduce a construction cost compared with the boiler apparatus 100 which concerns on a prior art example.
  • the boiler device 1 connects the right end portion of the left outlet manifold 14b of the secondary superheater 7 and the right end portion of the right inlet manifold 15a of the tertiary superheater 8 using the connecting pipe 23a. Since the left end of the right outlet manifold 14a of the secondary superheater 7 and the left end of the left inlet manifold 15b of the tertiary superheater 8 are connected using the connecting pipe 23b, the internal fluids on the left and right of the tertiary superheater 8 are connected. Temperature deviation can be suppressed or eliminated.
  • the connecting pipes 23a and 23b are connected as described above.
  • the tertiary superheater 8 the low-temperature internal fluid output from the secondary superheater 7 is introduced to the side where the combustion gas temperature is high, and the high-temperature internal fluid output from the secondary superheater 7 to the side where the combustion gas temperature is low. Since the fluid is introduced and heat exchange is performed, the temperature difference of the internal fluid temperature at the outlet of the tertiary superheater 8 can be reduced or eliminated in the left-right direction of the furnace 2. Therefore, the temperature deviation of the internal fluid flowing through the two main steam pipes (communication pipes 24a and 24b) guided from the left and right of the outlet manifold 16 of the tertiary superheater 8 to the high pressure turbine can be reduced or eliminated.
  • the boiler device 1 has a secondary superheater 7 and a tertiary superheater 8 in a two-part structure, and the right end portion of the outlet manifold 12 of the primary superheater 6 and the left inlet manifold 13b of the secondary superheater 7. Are connected using a connecting pipe 22a, and the left end of the outlet manifold 12 of the primary superheater 6 and the left end of the right inlet manifold 13a of the secondary superheater 7 are connected using a connecting pipe 22b.
  • the right end of the left outlet manifold 14b of the secondary superheater 7 and the right end of the right inlet manifold 15a of the tertiary superheater 8 are connected using a connecting pipe 23a, and the right side of the secondary superheater 7 is connected. Since the left end of the outlet manifold 14a and the left end of the left inlet manifold 15b of the tertiary superheater 8 are connected using the connecting pipe 23b, the secondary superheater 7 and the tertiary superheater 8 are integrated. It can reduce the total extension of the various connecting pipe in comparison with the case.
  • the secondary superheater 7 and the tertiary superheater 8 have an integrated structure similar to that of the primary superheater 6, the primary superheater 6 and the secondary superheater are used to reduce or eliminate the influence of temperature deviation in the furnace width direction. 7 and the secondary superheater 7 and the tertiary superheater 8 are connected to the rack, the total extension of the connecting pipes connecting the superheaters 6, 7, 8 is , 7 and 8 are double the total length of the connecting pipe when not connected to the rack. Therefore, according to the boiler apparatus 1 which concerns on embodiment, the total extension of a connecting pipe can be made as short as possible, and the design of the boiler apparatus 1 can be made easy and construction cost can be reduced.
  • the scope of the present invention is not limited to the above-described embodiment, and includes those in which the above-described embodiment is appropriately changed, added, or deleted without changing the gist of the present invention.
  • the inlet manifolds 13a and 13b and the outlet manifolds 14a and 14b of the secondary superheater 7 and the inlet manifolds 15a and 15b of the tertiary superheater 8 are each divided into two structures.
  • the inlet manifolds 13a and 13b and the outlet manifolds 14a and 14b may be integrated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Provided is a boiler device capable of achieving a reduction in building height and a reduction in construction costs. A boiler device (1) comprises: a furnace (2); a rear heat transfer unit (3); a penthouse (4); a primary superheater (6); a secondary superheater (7); and a tertiary superheater (8). The secondary superheater (7) and the tertiary superheater (8) are suspended superheaters, and an upper section of a heat transfer tube (32) is connected to an inlet manifold (15a, 15b) or an outlet manifold (16) disposed in the penthouse (4) through a ceiling wall (34). The inlet manifold (15) has a two-part structure divided at a center portion in the furnace width direction, and is disposed in a straight line in the furnace width direction with a gap (27) in the inlet manifold.

Description

ボイラ装置及び過熱器Boiler equipment and superheater
 本発明は、ボイラ装置及び過熱器に関する。 The present invention relates to a boiler device and a superheater.
 吊下げ型の過熱器を備えたボイラ装置のペントハウス内には、吊下げ型の過熱器を構成する複数の伝熱管が接続される複数の管寄と、これら複数の管寄が接続されるマニホールドが配置されている。なお、マニホールドには、入口マニホールドと出口マニホールドとがあるが、ここではこれらを総称して「マニホールド」という。ボイラ装置の天井壁から吊下げビームまでのペントハウス高さは、マニホールドの設置レベルに依るところが大きく、マニホールドの設置レベルは、天井壁上に突出する伝熱管の長さによって決定される。更に、天井壁上に突出する伝熱管の長さは、マニホールドと天井壁の熱膨張差に起因する伝熱管の破損を防止可能な範囲に決定される。 In a penthouse of a boiler apparatus equipped with a suspension type superheater, a plurality of pipes to which a plurality of heat transfer pipes constituting the suspension type superheater are connected, and a manifold to which the plurality of pipes are connected Is arranged. The manifold includes an inlet manifold and an outlet manifold. Here, these are collectively referred to as “manifold”. The height of the penthouse from the ceiling wall of the boiler device to the suspension beam largely depends on the installation level of the manifold, and the installation level of the manifold is determined by the length of the heat transfer tube protruding on the ceiling wall. Furthermore, the length of the heat transfer tube protruding on the ceiling wall is determined within a range in which the heat transfer tube can be prevented from being damaged due to a difference in thermal expansion between the manifold and the ceiling wall.
 即ち、吊下げ型の過熱器は、ボイラ装置の燃焼ガス流路中に配置されており、これを構成する伝熱管の上部は、天井壁を貫通してペントハウス内に配置されている。天井壁は管壁をもって構成されるが、炉幅方向の熱膨張量は天井壁よりもマニホールドの方が大きいので、火炉の側壁側に至るほど伝熱管と管寄の接続部には大きな熱応力が発生する。天井壁上に突出する伝熱管の長さは、このような事情を考慮し、炉幅方向の端部においても伝熱管と管寄の接続部に破損が生じない長さに決定される。なお、マニホールド、管寄及び伝熱管の接続構造については、特許文献1に開示されている。 That is, the suspended superheater is disposed in the combustion gas flow path of the boiler device, and the upper part of the heat transfer tube constituting the suspension is disposed in the penthouse through the ceiling wall. Although the ceiling wall is composed of tube walls, the amount of thermal expansion in the furnace width direction is larger in the manifold than in the ceiling wall, so that the thermal stress at the connection between the heat transfer tube and the pipe increases toward the side wall of the furnace. Occurs. In consideration of such circumstances, the length of the heat transfer tube protruding on the ceiling wall is determined such that the connection portion between the heat transfer tube and the pipe does not break even at the end in the furnace width direction. In addition, the connection structure of a manifold, a pipe header, and a heat transfer tube is disclosed in Patent Document 1.
特許第4792355号公報Japanese Patent No. 4792355
 ところで、前記構成のボイラ装置には、建屋高さの低減ひいては建設コストの低減が求められる。このような要求に対しては、ペントハウス内に突出する伝熱管の長さを短縮してペントハウス高さを低減することが有効であるが、前記のようにペントハウス内に突出する伝熱管の長さは、マニホールドと天井壁の熱膨張差に起因する伝熱管の破損を防止する観点から決定されるので、熱膨張差の問題を解決しなければ、ペントハウス内に突出する伝熱管の長さを短縮できず、建屋高さの低減及び建設コストの低減を実現することはできない。 By the way, the boiler device having the above-described configuration is required to reduce the building height and, consequently, the construction cost. For such a requirement, it is effective to reduce the penthouse height by shortening the length of the heat transfer tube protruding into the penthouse, but as described above, the length of the heat transfer tube protruding into the penthouse. Is determined from the viewpoint of preventing the heat transfer tube from being damaged due to the difference in thermal expansion between the manifold and the ceiling wall. Therefore, if the problem of the difference in thermal expansion is not solved, the length of the heat transfer tube protruding into the penthouse is shortened. It is not possible to reduce the building height and the construction cost.
 本発明は、このような従来技術の課題を解決するためになされたものであり、建屋高さの低減と建設コストの低減とを実現可能なボイラ装置及び過熱器とを提供することを目的とする。 The present invention has been made in order to solve the problems of the prior art, and an object of the present invention is to provide a boiler device and a superheater capable of realizing a reduction in building height and a reduction in construction cost. To do.
 上記目的を達成するために、代表的な本発明は、燃料を燃焼する火炉と、前記火炉内で発生した燃焼ガスの流路に関して前記火炉の後側に配置される後部伝熱部と、前記燃焼ガスの流路上に配置された吊下げ型の過熱器を含む複数の過熱器と、前記複数の過熱器を相互に接続する連絡管と、前記火炉及び前記後部伝熱部の天井部に設けられたペントハウスと、を備え、前記吊下げ型の過熱器を構成する伝熱管の上部は、前記火炉及び前記後部伝熱部の天井壁を貫通して、前記ペントハウス内に配置された入口マニホールド又は出口マニホールドに連結され、前記入口マニホールドは、炉幅方向の中央部分から前記火炉の右側壁側に延びる右側入口マニホールドと、炉幅方向の中央部分から前記火炉の左側壁側に延びる左側入口マニホールドとから構成されており、前記右側入口マニホールド及び前記左側入口マニホールドは、隙間を介して炉幅方向に一直線状に配置されていることを特徴とする。 In order to achieve the above object, a representative present invention includes a furnace for burning fuel, a rear heat transfer section disposed on the rear side of the furnace with respect to a flow path of combustion gas generated in the furnace, A plurality of superheaters including a suspended superheater arranged on the flow path of the combustion gas, a connecting pipe connecting the plurality of superheaters to each other, and a ceiling portion of the furnace and the rear heat transfer unit And an upper part of the heat transfer tube constituting the suspended superheater passes through the ceiling wall of the furnace and the rear heat transfer unit, and is arranged in the inlet manifold or The inlet manifold is connected to an outlet manifold, and the inlet manifold includes a right inlet manifold that extends from a center portion in the furnace width direction to the right wall side of the furnace, and a left inlet manifold that extends from the center portion in the furnace width direction to the left wall side of the furnace. It is composed of, the right inlet manifold and said left inlet manifold is characterized by being arranged in a straight line in the furnace width direction with a gap.
 本発明によれば、ボイラ装置の建屋高さを低減でき、建設コストの低減をはかることができる。上記した以外の課題、構成及び効果は、以下に記載する実施形態の説明により明らかにされる。 According to the present invention, the building height of the boiler device can be reduced, and the construction cost can be reduced. Problems, configurations, and effects other than those described above will become apparent from the description of the embodiments described below.
実施形態に係るボイラ装置の全体構成図である。1 is an overall configuration diagram of a boiler device according to an embodiment. 実施形態に係るボイラ装置に備えられる一次過熱器、二次過熱器及び三次過熱器の連絡構造を模式的に示す図である。It is a figure which shows typically the connection structure of the primary superheater, secondary superheater, and tertiary superheater with which the boiler apparatus which concerns on embodiment is equipped. 実施形態に係る一次過熱器、二次過熱器及び三次過熱器を連絡する連絡管の具体的な構成を示す平面図である。It is a top view which shows the specific structure of the connecting pipe which connects the primary superheater which concerns on embodiment, a secondary superheater, and a tertiary superheater. 実施形態に係る三次過熱器の構成を示す斜視図である。It is a perspective view which shows the structure of the tertiary superheater which concerns on embodiment. 図4のA部拡大図である。It is the A section enlarged view of FIG. 実施形態に係る三次過熱器の入口マニホールド設定高さを従来例に係る三次過熱器の入口マニホールド設定高さと比較して示す説明図である。It is explanatory drawing which shows the inlet manifold setting height of the tertiary superheater which concerns on embodiment compared with the inlet manifold setting height of the tertiary superheater which concerns on a prior art example. 実施形態に係るボイラ装置の建屋高さを従来例に係るボイラ装置と比較して示す説明図である。It is explanatory drawing which shows the building height of the boiler apparatus which concerns on embodiment compared with the boiler apparatus which concerns on a prior art example.
 以下、実施形態に係るボイラ装置及び過熱器を図に基づいて説明する。なお、以下に記載の実施形態は、本発明を実施する際の具体的な一例を示すものであって、本発明の範囲が以下に記載の実施形態に制限されるものではない。 Hereinafter, the boiler device and the superheater according to the embodiment will be described with reference to the drawings. In addition, embodiment described below shows a specific example at the time of implementing this invention, Comprising: The range of this invention is not restrict | limited to embodiment described below.
 図1は、実施形態に係るボイラ装置の全体構成図である。図1に示すように、本例のボイラ装置1は、燃料を燃焼する火炉2と、火炉2内で発生した燃焼ガスの流路に関して火炉2の後側に配置された後部伝熱部3と、火炉2及び後部伝熱部3の天井部に設けられたペントハウス4と、を備えている。火炉2及び後部伝熱部3は、ボイラ鉄骨5の梁部5aから図示しない吊下げロッド及び吊下げビームを用いて吊り下げられている。ボイラ建屋は、ボイラ鉄骨5を覆うように建設される(図示省略)。なお、図1に示すように、本明細書においては、ボイラ装置1の火炉2側を缶前、後部伝熱部3側を缶後といい、炉幅方向の右側又は左側というときは、缶前側から見たときの右側又は左側を指している。 FIG. 1 is an overall configuration diagram of a boiler device according to an embodiment. As shown in FIG. 1, a boiler apparatus 1 of this example includes a furnace 2 that burns fuel, a rear heat transfer unit 3 that is disposed on the rear side of the furnace 2 with respect to a flow path of combustion gas generated in the furnace 2, and The penthouse 4 provided in the ceiling part of the furnace 2 and the rear heat transfer part 3 is provided. The furnace 2 and the rear heat transfer section 3 are suspended from a beam section 5a of the boiler steel frame 5 using a suspension rod and a suspension beam (not shown). The boiler building is constructed so as to cover the boiler steel frame 5 (not shown). In addition, as shown in FIG. 1, in this specification, when the furnace 2 side of the boiler apparatus 1 is referred to as the front of the can, the rear heat transfer section 3 side is referred to as the rear of the can, and the right side or the left side in the furnace width direction, It refers to the right or left side when viewed from the front.
 後部伝熱部3内には、一次過熱器6が設置されている。また、火炉2内で発生した燃焼ガスGが後部伝熱部3に向かう位置には、二次過熱器7及び三次過熱器8が設置されている。一次過熱器6は、横置き伝熱面を備えた所謂横置き型の熱交換器であり、二次過熱器7及び三次過熱器8は、吊下げ型の伝熱面を備えた所謂吊下げ型の熱交換器である。本例のボイラ装置1においては、三次過熱器8がボイラ装置1の蒸気配管系統上の最終段に設けられる最終過熱器となっている。なお、火炉2及び後部伝熱部3の所要の部分には、節炭器や再熱器等の他の熱交換器が設置されるが、これらについては公知の事項であり、かつ本発明の要旨でもないので説明を省略する。 The primary superheater 6 is installed in the rear heat transfer section 3. Further, a secondary superheater 7 and a tertiary superheater 8 are installed at a position where the combustion gas G generated in the furnace 2 is directed to the rear heat transfer unit 3. The primary superheater 6 is a so-called horizontal heat exchanger having a horizontal heat transfer surface, and the secondary superheater 7 and the tertiary superheater 8 are so-called suspensions having a suspended heat transfer surface. It is a mold heat exchanger. In the boiler apparatus 1 of this example, the tertiary superheater 8 is a final superheater provided at the final stage on the steam piping system of the boiler apparatus 1. In addition, although other heat exchangers, such as a economizer and a reheater, are installed in the required part of the furnace 2 and the rear heat-transfer part 3, these are well-known matters and are the present invention. Since it is not a gist, explanation is omitted.
 図2は、実施形態に係るボイラ装置に備えられる一次過熱器、二次過熱器及び三次過熱器の連結構造を模式的に示す図である。図2に示すように、一次過熱器6は、火炉2の右壁側から左壁側まで貫通する入口マニホールド11及び出口マニホールド12を備えた一体構造になっている。これに対して、二次過熱器7は、炉幅方向の中央部からそれぞれ火炉2の右壁側又は左壁側に延びる右側入口マニホールド13a及び左側入口マニホールド13bと、炉幅方向の中央部からそれぞれ火炉2の右壁側又は左壁側に延びる右側出口マニホールド14a及び左側出口マニホールド14bと、を備えた2分割構造になっている。また、三次過熱器8は、炉幅方向の中央部からそれぞれ火炉2の右壁側又は左壁側に延びる右側入口マニホールド15a及び左側入口マニホールド15bと、火炉2の右壁側から左壁側まで貫通する出口マニホールド16と、を備えた2分割構造になっている。なお、本明細書においては、右側入口マニホールド15a及び左側入口マニホールド15bを総称して「入口マニホールド15」ということがある。 FIG. 2 is a diagram schematically illustrating a connection structure of a primary superheater, a secondary superheater, and a tertiary superheater provided in the boiler device according to the embodiment. As shown in FIG. 2, the primary superheater 6 has an integrated structure including an inlet manifold 11 and an outlet manifold 12 that penetrate from the right wall side to the left wall side of the furnace 2. On the other hand, the secondary superheater 7 includes a right inlet manifold 13a and a left inlet manifold 13b extending from the center portion in the furnace width direction to the right wall side or the left wall side of the furnace 2, respectively, and from the center portion in the furnace width direction. Each has a two-part structure including a right outlet manifold 14a and a left outlet manifold 14b extending to the right wall side or the left wall side of the furnace 2, respectively. Further, the tertiary superheater 8 includes a right inlet manifold 15a and a left inlet manifold 15b extending from the center in the furnace width direction to the right wall side or the left wall side of the furnace 2, respectively, and from the right wall side to the left wall side of the furnace 2. It has a two-part structure including an outlet manifold 16 that passes therethrough. In the present specification, the right inlet manifold 15a and the left inlet manifold 15b may be collectively referred to as “inlet manifold 15”.
 一次過熱器6、二次過熱器7及び三次過熱器8は、連絡管を用いて相互に連結される。即ち、図2に示すように、一次過熱器6の入口マニホールド11には、炉幅方向の左右両側端部において、ケージ壁管から延びる連絡管21a、21bが接続される。 The primary superheater 6, the secondary superheater 7, and the tertiary superheater 8 are connected to each other using a connecting pipe. That is, as shown in FIG. 2, connecting pipes 21a and 21b extending from the cage wall pipe are connected to the inlet manifold 11 of the primary superheater 6 at the left and right ends in the furnace width direction.
 一次過熱器6の出口マニホールド12の右側端部と二次過熱器7の左側入口マニホールド13bの右側端部とは、連絡管22aを用いて接続される。また、一次過熱器6の出口マニホールド12の左側端部と二次過熱器7の右側入口マニホールド13aの左側端部とは、連絡管22bを用いて接続される。連絡管22a、22bには、流体温度調整用のスプレ25が備えられる。 The right end of the outlet manifold 12 of the primary superheater 6 and the right end of the left inlet manifold 13b of the secondary superheater 7 are connected using a connecting pipe 22a. Further, the left end portion of the outlet manifold 12 of the primary superheater 6 and the left end portion of the right inlet manifold 13a of the secondary superheater 7 are connected using a connecting pipe 22b. The connecting pipes 22a and 22b are provided with a spray 25 for adjusting the fluid temperature.
 二次過熱器7の左側出口マニホールド14bの右側端部と三次過熱器8の右側入口マニホールド15aの右側端部とは、連絡管23aを用いて接続される。また、二次過熱器7の右側出口マニホールド14aの左側端部と三次過熱器8の左側入口マニホールド15bの左側端部とは、連絡管23bを用いて接続される。連絡管23a、23bには、流体温度調整用のスプレ26が備えられる。 The right end of the left outlet manifold 14b of the secondary superheater 7 and the right end of the right inlet manifold 15a of the tertiary superheater 8 are connected using a connecting pipe 23a. Further, the left end of the right outlet manifold 14a of the secondary superheater 7 and the left end of the left inlet manifold 15b of the tertiary superheater 8 are connected using a connecting pipe 23b. The communication pipes 23a and 23b are provided with a spray 26 for adjusting the fluid temperature.
 三次過熱器8の出口マニホールド16の右側端部には連絡管24aの一端が接続され、三次過熱器8の出口マニホールド16の左側端部には連絡管24bの一端が接続される。連絡管24a、24bの他端は、高圧タービンに接続される。 One end of the connecting pipe 24a is connected to the right end of the outlet manifold 16 of the tertiary superheater 8, and one end of the connecting pipe 24b is connected to the left end of the outlet manifold 16 of the tertiary superheater 8. The other ends of the communication pipes 24a and 24b are connected to a high-pressure turbine.
 図3は、実施形態に係る一次過熱器、二次過熱器及び三次過熱器を連絡する連絡管の具体的な構成を示す平面図である。図3に示すように、連絡管22aは、一端が一次過熱器6の出口マニホールド12の右側端部に接続された一次過熱器右側出口連絡管22a1と、一端が二次過熱器7の左側入口マニホールド13bの右側端部に接続され、他端が一次過熱器右側出口連絡管22a1の他端に接続された二次過熱器右側入口連絡管22a2とから構成される。同様に、連絡管22bは、一端が一次過熱器6の出口マニホールド12の左側端部に接続された一次過熱器左側出口連絡管22b1と、一端が二次過熱器7の右側入口マニホールド13aの左側端部に接続され、他端が一次過熱器左側出口連絡管22b1の他端に接続された二次過熱器左側入口連絡管22b2とから構成される。 FIG. 3 is a plan view showing a specific configuration of a connecting pipe that connects the primary superheater, the secondary superheater, and the tertiary superheater according to the embodiment. As shown in FIG. 3, the connecting pipe 22 a has one end connected to the right end of the outlet manifold 12 of the primary superheater 6, the primary superheater right outlet connecting pipe 22 a 1, and one end connected to the left inlet of the secondary superheater 7. The secondary superheater right inlet communication pipe 22a2 is connected to the right end of the manifold 13b and the other end is connected to the other end of the primary superheater right outlet communication pipe 22a1. Similarly, the connecting pipe 22b has one end connected to the left end of the outlet manifold 12 of the primary superheater 6 and the left side of the right inlet manifold 13a of the secondary superheater 7 connected to the left side of the primary superheater left outlet connecting pipe 22b1. The secondary superheater left inlet communication pipe 22b2 is connected to the end and the other end is connected to the other end of the primary superheater left outlet communication pipe 22b1.
 連絡管23aは、一端が二次過熱器7の左側出口マニホールド14bの右側端部に接続された二次過熱器右側出口連絡管23a1と、一端が三次過熱器8の右側入口マニホールド15aの右側端部に接続され、他端が二次過熱器右側出口連絡管23a1の他端に接続された二次過熱器右側入口連絡管23a2とから構成される。同様に、連絡管23bは、一端が二次過熱器7の右側出口マニホールド14aの左側端部に接続された二次過熱器左側出口連絡管23b1と、一端が三次過熱器8の左側入口マニホールド15bの左側端部に接続され、他端が二次過熱器左側出口連絡管23b1の他端に接続された三次過熱器左側入口連絡管23b2とから構成される。なお、図3の矢印は、各連絡管の内部流体(過熱蒸気)の流れ方向を示している。 The connecting pipe 23a has one end connected to the right end of the left outlet manifold 14b of the secondary superheater 7 and the right end of the right inlet manifold 15a of the tertiary superheater 8 at one end. The secondary superheater right side inlet communication pipe 23a2 is connected to the other end of the secondary superheater right side outlet communication pipe 23a1. Similarly, the connecting pipe 23b has one end connected to the left end of the right outlet manifold 14a of the secondary superheater 7 and the left side outlet manifold 23b1 of the secondary superheater 8 and one end connected to the left inlet manifold 15b of the tertiary superheater 8. The third superheater left inlet communication pipe 23b2 is connected to the other left end of the secondary superheater left outlet communication pipe 23b1. In addition, the arrow of FIG. 3 has shown the flow direction of the internal fluid (superheated steam) of each connecting pipe.
 図4は、実施形態に係る三次過熱器の構成を示す斜視図、図5は、図4のA部拡大図である。図4及び図5に示すように、実施形態に係る三次過熱器8は、右側入口マニホールド15a、左側入口マニホールド15b、出口マニホールド16、前記各マニホールドに一端が溶接された複数の管寄31、対応する管寄31の組毎に両端が溶接された複数の伝熱管(レグチューブ)32と、から主に構成されている。 FIG. 4 is a perspective view showing the configuration of the tertiary superheater according to the embodiment, and FIG. 5 is an enlarged view of part A of FIG. As shown in FIGS. 4 and 5, the tertiary superheater 8 according to the embodiment includes a right inlet manifold 15 a, a left inlet manifold 15 b, an outlet manifold 16, and a plurality of pipes 31 with one end welded to each manifold. It consists mainly of a plurality of heat transfer tubes (leg tubes) 32 welded at both ends for each group of pipes 31 to be welded.
 右側入口マニホールド15a、左側入口マニホールド15b及び出口マニホールド16は、ペントハウス4内において炉幅方向に設置される。右側入口マニホールド15a及び左側入口マニホールド15bは、右側入口マニホールド15aの左側端部と左側入口マニホールド15bの右側端部との間に所定寸法の隙間27を設けた状態で、一直線状に配置される。勿論、右側入口マニホールド15aの左側端部及び左側入口マニホールド15bの右側端部は、板材等を用いて閉止されている。隙間27は、炉幅方向の中心位置(ボイラ中心)に配置される。つまり、三次過熱器8の入口マニホールド15は、長さ方向の中央部で2分割された構成になっている。また、隙間27は、右側入口マニホールド15a内及び左側入口マニホールド15bの内部流体温度によらず、右側入口マニホールド15a及び左側入口マニホールド15bが接触しない大きさに設定される。 The right inlet manifold 15a, the left inlet manifold 15b, and the outlet manifold 16 are installed in the penthouse 4 in the furnace width direction. The right inlet manifold 15a and the left inlet manifold 15b are arranged in a straight line with a gap 27 having a predetermined dimension between the left end of the right inlet manifold 15a and the right end of the left inlet manifold 15b. Of course, the left end of the right inlet manifold 15a and the right end of the left inlet manifold 15b are closed using a plate material or the like. The gap 27 is arranged at the center position (boiler center) in the furnace width direction. That is, the inlet manifold 15 of the tertiary superheater 8 is divided into two at the center in the length direction. Further, the gap 27 is set to a size such that the right inlet manifold 15a and the left inlet manifold 15b do not contact each other regardless of the internal fluid temperature in the right inlet manifold 15a and the left inlet manifold 15b.
 出口マニホールド16は、右側入口マニホールド15a及び左側入口マニホールド15bの上方において、右側入口マニホールド15a及び左側入口マニホールド15bと平行に配置される。 The outlet manifold 16 is disposed above the right inlet manifold 15a and the left inlet manifold 15b in parallel with the right inlet manifold 15a and the left inlet manifold 15b.
 管寄31は、右側入口マニホールド15a、左側入口マニホールド15b及び出口マニホールド16の長さ方向に等間隔に溶接される。右側入口マニホールド15a及び左側入口マニホールド15bに溶接される管寄31は、缶前側に向けて水平に配列される。これに対して、出口マニホールド16に溶接される管寄31は、缶後側に向けて水平に配列される。缶前側及び缶後側に突出された1組の管寄31の長さ方向には、U字形に成形された複数の伝熱管32の両端部がそれぞれ溶接される。これにより、右側入口マニホールド15a、左側入口マニホールド15b及び出口マニホールド16の長さ方向には、複数の伝熱管32の組合せをもってU字形のパネル状に形成された伝熱パネル33が、等間隔に形成される。 The pipe 31 is welded at equal intervals in the length direction of the right inlet manifold 15a, the left inlet manifold 15b, and the outlet manifold 16. The nozzles 31 welded to the right inlet manifold 15a and the left inlet manifold 15b are arranged horizontally toward the front side of the can. On the other hand, the nozzle 31 welded to the outlet manifold 16 is horizontally arranged toward the rear side of the can. Both ends of a plurality of heat transfer tubes 32 formed in a U-shape are welded in the length direction of the set of nozzles 31 protruding to the front side and the rear side of the can. Thereby, in the length direction of the right inlet manifold 15a, the left inlet manifold 15b, and the outlet manifold 16, heat transfer panels 33 formed in a U-shaped panel shape with a combination of a plurality of heat transfer tubes 32 are formed at equal intervals. Is done.
 燃焼ガスGは、隣接して配置される各伝熱パネル33の隙間を通って缶前側から缶後側に流れる。これにより、燃焼ガスGと三次過熱器8の内部流体との熱交換が行われる。 The combustion gas G flows from the front side of the can to the rear side of the can through the gaps between the heat transfer panels 33 arranged adjacent to each other. Thereby, heat exchange between the combustion gas G and the internal fluid of the tertiary superheater 8 is performed.
 図4及び図5に示すように、伝熱パネル33を構成する伝熱管32の上部は、天井壁34を貫通してペントハウス4内に配置される。 As shown in FIGS. 4 and 5, the upper part of the heat transfer tube 32 constituting the heat transfer panel 33 penetrates the ceiling wall 34 and is arranged in the penthouse 4.
 以下、実施形態に係るボイラ装置1の効果について説明する。 Hereinafter, effects of the boiler device 1 according to the embodiment will be described.
 図6は、実施形態に係る三次過熱器の入口マニホールド設定高さを従来例に係る三次過熱器の入口マニホールド設定高さと比較して示す説明図である。図6(a)の左図は、従来例に係る三次過熱器を缶前側から見た図、図6(a)の右図は、従来例に係る三次過熱器を右側壁側から見た図である。図6(b)の左図は、実施形態に係る三次過熱器を缶前側から見た図、図6(b)の右図は、実施形態に係る三次過熱器を右側壁側から見た図である。実施形態に係るボイラ装置1は、三次過熱器8の入口マニホールド15が、ボイラ中心において右側入口マニホールド15aと、左側入口マニホールド15bと、に分割された2分割構造になっている。これに対して、従来例に係るボイラ装置100は、三次過熱器8の入口マニホールド15が、一体構造になっている。 FIG. 6 is an explanatory diagram showing the inlet manifold setting height of the tertiary superheater according to the embodiment in comparison with the inlet manifold setting height of the tertiary superheater according to the conventional example. The left figure of Fig.6 (a) is the figure which looked at the tertiary superheater which concerns on a prior art example from the can front side, The right figure of Fig.6 (a) is the figure which looked at the tertiary superheater which concerns on a prior art example from the right side wall side. It is. The left figure of FIG.6 (b) is the figure which looked at the tertiary superheater which concerns on embodiment from the can front side, The right figure of FIG.6 (b) is the figure which looked at the tertiary superheater which concerns on embodiment from the right side wall side. It is. The boiler apparatus 1 according to the embodiment has a two-part structure in which the inlet manifold 15 of the tertiary superheater 8 is divided into a right inlet manifold 15a and a left inlet manifold 15b at the boiler center. On the other hand, in the boiler apparatus 100 according to the conventional example, the inlet manifold 15 of the tertiary superheater 8 has an integral structure.
 炉幅方向における三次過熱器8の入口マニホールド15と天井壁34との熱膨張差は、入口マニホールド15の長さ寸法に比例して大きくなる。従来例に係る三次過熱器8の入口マニホールド15は一体構造であり、実施形態に係る三次過熱器8の入口マニホールド15はボイラ中心で分割された二分割構造であるので、当然のことながら、従来例に係る三次過熱器8の方が、実施形態に係る三次過熱器8よりも、入口マニホールド15の左右両端部における管寄31と伝熱管32の接続部に作用する熱応力が大きくなる。 The difference in thermal expansion between the inlet manifold 15 and the ceiling wall 34 of the tertiary superheater 8 in the furnace width direction increases in proportion to the length of the inlet manifold 15. The inlet manifold 15 of the tertiary superheater 8 according to the conventional example has an integral structure, and the inlet manifold 15 of the tertiary superheater 8 according to the embodiment has a two-part structure divided at the center of the boiler. In the tertiary superheater 8 according to the example, the thermal stress acting on the connection portion between the header 31 and the heat transfer tube 32 at both the left and right end portions of the inlet manifold 15 becomes larger than the tertiary superheater 8 according to the embodiment.
 このため、従来例に係る三次過熱器8においては、伝熱管32を撓みやすくして管寄31と伝熱管32の接続部に作用する熱応力を緩和するため、図6(a)に示すように、天井壁34から三次過熱器8の入口マニホールド15までの高さ、即ち、入口マニホールド設定高さH1を大きくする必要がある。これに対して、実施形態に係る三次過熱器8の入口マニホールド15は、従来例に係る三次過熱器8に比べて管寄31と伝熱管32の接続部に作用する熱応力が小さいので、熱応力を緩和するための伝熱管32の撓み量を小さくできる。よって、実施形態に係る三次過熱器8は、図6(a)と図6(b)の比較から明らかなように、入口マニホールド設定高さH2を小さくできる。 For this reason, in the tertiary superheater 8 which concerns on a prior art example, in order to relieve | moderate the thermal stress which acts on the connection part of the header 31 and the heat exchanger tube 32 by making it easy to bend the heat exchanger tube 32, as shown to Fig.6 (a). In addition, it is necessary to increase the height from the ceiling wall 34 to the inlet manifold 15 of the tertiary superheater 8, that is, the inlet manifold setting height H1. On the other hand, the inlet manifold 15 of the tertiary superheater 8 according to the embodiment has a smaller thermal stress acting on the connecting portion between the pipe 31 and the heat transfer tube 32 than the tertiary superheater 8 according to the conventional example. The amount of bending of the heat transfer tube 32 for relaxing the stress can be reduced. Therefore, the tertiary superheater 8 according to the embodiment can reduce the inlet manifold set height H2 as is apparent from the comparison between FIG. 6A and FIG.
 図7は、実施形態に係るボイラ装置の建屋高さを従来例に係るボイラ装置と比較して示す説明図である。図7の左図は、従来例に係るボイラ装置の建屋高さを示す図、図7の右図は、実施形態に係るボイラ装置の建屋高さを示す図である。前記のように、実施形態に係る三次過熱器8の入口マニホールド設定高さH2は、従来例に係る三次過熱器8の入口マニホールド設定高さH1よりも小さくできるので、ペントハウス4の高さ寸法も各入口マニホールド設定高さの差(H1-H2)に応じて低くできる。また、ペントハウス4の高さ寸法を小さくできる結果、実施形態に係るボイラ装置1は、従来例に係るボイラ装置100に比べて、ボイラ鉄骨5の建設高さひいてはボイラ建屋の建設高さを低減できる。これにより、実施形態に係るボイラ装置1は、従来例に係るボイラ装置100に比べて、建設コストを低減できる。 FIG. 7 is an explanatory diagram showing the building height of the boiler device according to the embodiment in comparison with the boiler device according to the conventional example. The left figure of FIG. 7 is a figure which shows the building height of the boiler apparatus which concerns on a prior art example, and the right figure of FIG. 7 is a figure which shows the building height of the boiler apparatus which concerns on embodiment. As described above, since the inlet manifold setting height H2 of the tertiary superheater 8 according to the embodiment can be smaller than the inlet manifold setting height H1 of the tertiary superheater 8 according to the conventional example, the height dimension of the penthouse 4 is also high. It can be lowered according to the difference (H1-H2) in the set height of each inlet manifold. Moreover, as a result of being able to reduce the height dimension of the penthouse 4, the boiler device 1 according to the embodiment can reduce the construction height of the boiler steel frame 5, and thus the construction height of the boiler building, as compared with the boiler device 100 according to the conventional example. . Thereby, the boiler apparatus 1 which concerns on embodiment can reduce a construction cost compared with the boiler apparatus 100 which concerns on a prior art example.
 また、実施形態に係るボイラ装置1は、二次過熱器7の左側出口マニホールド14bの右側端部と三次過熱器8の右側入口マニホールド15aの右側端部とを連絡管23aを用いて接続すると共に、二次過熱器7の右側出口マニホールド14aの左側端部と三次過熱器8の左側入口マニホールド15bの左側端部とを連絡管23bを用いて接続するので、三次過熱器8の左右における内部流体の温度偏差を抑制又は解消できる。 The boiler device 1 according to the embodiment connects the right end portion of the left outlet manifold 14b of the secondary superheater 7 and the right end portion of the right inlet manifold 15a of the tertiary superheater 8 using the connecting pipe 23a. Since the left end of the right outlet manifold 14a of the secondary superheater 7 and the left end of the left inlet manifold 15b of the tertiary superheater 8 are connected using the connecting pipe 23b, the internal fluids on the left and right of the tertiary superheater 8 are connected. Temperature deviation can be suppressed or eliminated.
 即ち、炉幅方向に燃焼ガスの温度分布が生じ、二次過熱器7の内部流体温度が火炉2の左右方向について温度差が生じた場合でも、前記のように連絡管23a、23bを接続した結果、三次過熱器8においては、燃焼ガス温度が高い側に二次過熱器7から出た低温の内部流体が導入され、燃焼ガス温度が低い側に二次過熱器7から出た高温の内部流体が導入されて熱交換されるので、三次過熱器8の出口における内部流体温度の温度差を火炉2の左右方向について緩和又は解消できる。従って、三次過熱器8の出口マニホールド16の左右から高圧タービンへ導かれる2本の主蒸気配管(連絡管24a、24b)を流れる内部流体の温度偏差を小さく又は無くすことができる。 That is, even when the temperature distribution of the combustion gas occurs in the furnace width direction and the temperature of the internal fluid of the secondary superheater 7 varies in the horizontal direction of the furnace 2, the connecting pipes 23a and 23b are connected as described above. As a result, in the tertiary superheater 8, the low-temperature internal fluid output from the secondary superheater 7 is introduced to the side where the combustion gas temperature is high, and the high-temperature internal fluid output from the secondary superheater 7 to the side where the combustion gas temperature is low. Since the fluid is introduced and heat exchange is performed, the temperature difference of the internal fluid temperature at the outlet of the tertiary superheater 8 can be reduced or eliminated in the left-right direction of the furnace 2. Therefore, the temperature deviation of the internal fluid flowing through the two main steam pipes ( communication pipes 24a and 24b) guided from the left and right of the outlet manifold 16 of the tertiary superheater 8 to the high pressure turbine can be reduced or eliminated.
 更に、実施形態に係るボイラ装置1は、二次過熱器7及び三次過熱器8を2分割構造とし、一次過熱器6の出口マニホールド12の右側端部と二次過熱器7の左側入口マニホールド13bの右側端部とを連絡管22aを用いて接続し、一次過熱器6の出口マニホールド12の左側端部と二次過熱器7の右側入口マニホールド13aの左側端部とを連絡管22bを用いて接続すると共に、二次過熱器7の左側出口マニホールド14bの右側端部と三次過熱器8の右側入口マニホールド15aの右側端部とを連絡管23aを用いて接続し、二次過熱器7の右側出口マニホールド14aの左側端部と三次過熱器8の左側入口マニホールド15bの左側端部とを連絡管23bを用いて接続したので、二次過熱器7及び三次過熱器8を一体構造とした場合に比べて各種連絡管の総延長を短縮できる。 Furthermore, the boiler device 1 according to the embodiment has a secondary superheater 7 and a tertiary superheater 8 in a two-part structure, and the right end portion of the outlet manifold 12 of the primary superheater 6 and the left inlet manifold 13b of the secondary superheater 7. Are connected using a connecting pipe 22a, and the left end of the outlet manifold 12 of the primary superheater 6 and the left end of the right inlet manifold 13a of the secondary superheater 7 are connected using a connecting pipe 22b. In addition to connecting, the right end of the left outlet manifold 14b of the secondary superheater 7 and the right end of the right inlet manifold 15a of the tertiary superheater 8 are connected using a connecting pipe 23a, and the right side of the secondary superheater 7 is connected. Since the left end of the outlet manifold 14a and the left end of the left inlet manifold 15b of the tertiary superheater 8 are connected using the connecting pipe 23b, the secondary superheater 7 and the tertiary superheater 8 are integrated. It can reduce the total extension of the various connecting pipe in comparison with the case.
 即ち、仮に二次過熱器7及び三次過熱器8を一次過熱器6と同様の一体構造とし、炉幅方向における温度偏差の影響を緩和又は解消するために、一次過熱器6と二次過熱器7とをたすき掛けに接続すると共に、二次過熱器7と三次過熱器8とをたすき掛けに接続すると、各過熱器6、7、8を接続する連絡管の総延長は、各過熱器6、7、8をたすき掛けに接続しない場合の連絡管の総延長の2倍となる。よって、実施形態に係るボイラ装置1によれば、連絡管の総延長を極力短いものにすることができ、ボイラ装置1の設計を容易化できると共に建設コストの低減を図ることができる。 That is, if the secondary superheater 7 and the tertiary superheater 8 have an integrated structure similar to that of the primary superheater 6, the primary superheater 6 and the secondary superheater are used to reduce or eliminate the influence of temperature deviation in the furnace width direction. 7 and the secondary superheater 7 and the tertiary superheater 8 are connected to the rack, the total extension of the connecting pipes connecting the superheaters 6, 7, 8 is , 7 and 8 are double the total length of the connecting pipe when not connected to the rack. Therefore, according to the boiler apparatus 1 which concerns on embodiment, the total extension of a connecting pipe can be made as short as possible, and the design of the boiler apparatus 1 can be made easy and construction cost can be reduced.
 なお、本発明の範囲は、前記実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で前記実施形態に適宜変更、追加、削除を施したものが含まれる。例えば、前記実施形態においては、二次過熱器7の入口マニホールド13a、13b及び出口マニホールド14a、14b並びに三次過熱器8の入口マニホールド15a、15bをそれぞれ2分割構造としたが、二次過熱器7の入口マニホールド13a、13b及び出口マニホールド14a、14bについては一体構造とすることもできる。この場合にも、他の吊下げ型の過熱器に比べて最も内部流体温度が高くなる三次過熱器8の入口マニホールド15a、15bを2分割構造とするので、建屋高さの低減効果を実現できる。 It should be noted that the scope of the present invention is not limited to the above-described embodiment, and includes those in which the above-described embodiment is appropriately changed, added, or deleted without changing the gist of the present invention. For example, in the above-described embodiment, the inlet manifolds 13a and 13b and the outlet manifolds 14a and 14b of the secondary superheater 7 and the inlet manifolds 15a and 15b of the tertiary superheater 8 are each divided into two structures. The inlet manifolds 13a and 13b and the outlet manifolds 14a and 14b may be integrated. Also in this case, since the inlet manifolds 15a and 15b of the tertiary superheater 8 having the highest internal fluid temperature as compared with other suspended superheaters have a two-part structure, an effect of reducing the building height can be realized. .
 1 ボイラ装置
 2 火炉
 3 後部伝熱部
 4 ペントハウス
 5 ボイラ鉄骨
 6 一次過熱器
 7 二次過熱器
 8 三次過熱器
 11 一次過熱器の入口マニホールド
 12 一次過熱器の出口マニホールド
 13a、13b 二次過熱器の入口マニホールド
 14a、14b 二次過熱器の出口マニホールド
 15a、15b 三次過熱器の入口マニホールド
 16 三次過熱器の出口マニホールド
 21a、21b 連絡管
 22a、22b 連絡管
 23a、23b 連絡管
 24a、24b 連絡管
 27 隙間
 31 管寄
 32 伝熱管(レグチューブ)
 33 伝熱パネル
 34 天井壁
DESCRIPTION OF SYMBOLS 1 Boiler apparatus 2 Furnace 3 Rear heat transfer part 4 Penthouse 5 Boiler steel frame 6 Primary superheater 7 Secondary superheater 8 Tertiary superheater 11 Primary superheater inlet manifold 12 Primary superheater outlet manifold 13a, 13b Secondary superheater Inlet manifold 14a, 14b Secondary superheater outlet manifold 15a, 15b Tertiary superheater inlet manifold 16 Tertiary superheater outlet manifold 21a, 21b Connecting pipe 22a, 22b Connecting pipe 23a, 23b Connecting pipe 24a, 24b Connecting pipe 27 Gap 31 tube 32 heat transfer tube (leg tube)
33 Heat transfer panel 34 Ceiling wall

Claims (5)

  1.  燃料を燃焼する火炉と、前記火炉内で発生した燃焼ガスの流路に関して前記火炉の後側に配置される後部伝熱部と、前記燃焼ガスの流路上に配置された吊下げ型の過熱器を含む複数の過熱器と、前記複数の過熱器を相互に接続する連絡管と、前記火炉及び前記後部伝熱部の天井部に設けられたペントハウスと、を備え、
     前記吊下げ型の過熱器を構成する伝熱管の上部は、前記火炉及び前記後部伝熱部の天井壁を貫通して、前記ペントハウス内に配置された入口マニホールド又は出口マニホールドに連結され、
     前記入口マニホールドは、炉幅方向の中央部分から前記火炉の右側壁側に延びる右側入口マニホールドと、炉幅方向の中央部分から前記火炉の左側壁側に延びる左側入口マニホールドとから構成されており、前記右側入口マニホールド及び前記左側入口マニホールドは、隙間を介して炉幅方向に一直線状に配置されていることを特徴とするボイラ装置。
    A furnace for burning fuel, a rear heat transfer section disposed on the rear side of the furnace with respect to a flow path of combustion gas generated in the furnace, and a suspended superheater disposed on the flow path of the combustion gas Including a plurality of superheaters, a connecting pipe connecting the plurality of superheaters to each other, and a penthouse provided on a ceiling of the furnace and the rear heat transfer section,
    The upper part of the heat transfer tube constituting the suspended superheater passes through the ceiling wall of the furnace and the rear heat transfer unit, and is connected to an inlet manifold or an outlet manifold arranged in the penthouse,
    The inlet manifold is composed of a right inlet manifold that extends from the center portion in the furnace width direction to the right wall side of the furnace, and a left inlet manifold that extends from the center portion in the furnace width direction to the left wall side of the furnace, The boiler device, wherein the right inlet manifold and the left inlet manifold are arranged in a straight line in the furnace width direction through a gap.
  2.  請求項1に記載のボイラ装置において、
     前記吊下げ型の過熱器は、蒸気配管系統の最終段に設けられる最終過熱器であることを特徴とするボイラ装置。
    The boiler device according to claim 1,
    The suspended superheater is a final superheater provided in a final stage of a steam piping system.
  3.  請求項2に記載のボイラ装置において、
     前記燃焼ガスの流路内に、前記燃焼ガスの流れ方向の上流側から下流側に向けて、二次過熱器と前記最終過熱器である三次過熱器とが配置され、前記二次過熱器の入口マニホールド及び出口マニホールド並びに前記三次過熱器の入口マニホールドは、炉幅方向の中央部で分割された2分割構造となっており、前記二次過熱器の左側出口マニホールドの右側端部と三次過熱器の右側入口マニホールドの右側端部とは連絡管を用いて接続され、前記二次過熱器の右側出口マニホールドの左側端部と三次過熱器の左側入口マニホールドの左側端部とは他の連絡管を用いて接続されていることを特徴とするボイラ装置。
    The boiler device according to claim 2,
    In the flow path of the combustion gas, a secondary superheater and a tertiary superheater as the final superheater are arranged from the upstream side to the downstream side in the flow direction of the combustion gas, and the secondary superheater The inlet manifold, the outlet manifold, and the inlet manifold of the tertiary superheater have a two-part structure divided at the center in the furnace width direction, and the right end of the left outlet manifold of the secondary superheater and the tertiary superheater The right end of the right inlet manifold of the secondary superheater is connected using a connecting pipe, and the left end of the right outlet manifold of the secondary superheater and the left end of the left inlet manifold of the tertiary superheater are connected with other connecting pipes. Boiler device characterized by being connected using.
  4.  請求項3に記載のボイラ装置において、
     前記後部伝熱部には一次過熱器が配置され、前記一次過熱器は、炉幅方向に向けて一連に構成された一体構造の出口マニホールドを有しており、前記一次過熱器の出口マニホールドの右側端部と前記二次過熱器の左側入口マニホールドの右側端部とは連絡管を用いて接続され、前記一次過熱器の出口マニホールドの左側端部と前記二次過熱器の右側入口マニホールドの左側端部とは他の連絡管を用いて接続されていることを特徴とするボイラ装置。
    In the boiler apparatus according to claim 3,
    A primary superheater is disposed in the rear heat transfer section, and the primary superheater has a monolithic outlet manifold configured in a series in the furnace width direction, and the outlet superheater of the primary superheater The right end and the right end of the left inlet manifold of the secondary superheater are connected using a connecting pipe, and the left end of the outlet manifold of the primary superheater and the left side of the right inlet manifold of the secondary superheater A boiler device characterized in that the end portion is connected using another connecting pipe.
  5.  蒸気タービンに送給する過熱蒸気を生成するための複数の過熱器のうち、過熱蒸気系統の最終段に配される吊り下げ型の過熱器であって、
     前記過熱蒸気系統に関して前記吊り下げ型の過熱器の前段に配置された過熱器からの蒸気が流入する直管状の入口マニホールドと、
     前記蒸気タービンへと前記過熱蒸気が流れる主蒸気配管が接続される直管状の出口マニホールドとを備え、
     前記入口マニホールドは、炉幅方向の中央部分から火炉の右側壁側に延びる右側入口マニホールドと、炉幅方向の中央部分から前記火炉の左側壁側に延びる左側入口マニホールドとから構成されており、前記右側入口マニホールド及び前記左側入口マニホールドは、隙間を介して炉幅方向に一直線状に配置され、かつ複数の伝熱管が吊り下げられる複数の管寄せがボイラ前方側に向かって長手方向に複数分岐しており、
     前記出口マニホールドは、複数の伝熱管が吊り下げられる複数の管寄せがボイラ後方側に向かって長手方向に複数分岐しており、前記右側入口マニホールド及び前記左側入口マニホールドの上方に一直線状に配置されている
     ことを特徴とする過熱器。
    Among a plurality of superheaters for generating superheated steam to be supplied to the steam turbine, it is a suspended superheater arranged in the final stage of the superheated steam system,
    A straight tubular inlet manifold into which steam from the superheater is arranged upstream of the suspended superheater with respect to the superheated steam system;
    A straight tubular outlet manifold to which a main steam pipe through which the superheated steam flows is connected to the steam turbine;
    The inlet manifold is composed of a right inlet manifold that extends from the center portion in the furnace width direction to the right wall side of the furnace, and a left inlet manifold that extends from the center portion in the furnace width direction to the left wall side of the furnace, The right inlet manifold and the left inlet manifold are arranged in a straight line through the gap in the furnace width direction, and a plurality of headers on which a plurality of heat transfer tubes are suspended branch in the longitudinal direction toward the boiler front side. And
    In the outlet manifold, a plurality of headers from which a plurality of heat transfer tubes are suspended are branched in the longitudinal direction toward the rear side of the boiler, and are arranged in a straight line above the right inlet manifold and the left inlet manifold. A superheater characterized by
PCT/JP2019/014624 2018-05-24 2019-04-02 Boiler device and superheater WO2019225164A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-100011 2018-05-24
JP2018100011A JP2019203661A (en) 2018-05-24 2018-05-24 Boiler device and superheater

Publications (1)

Publication Number Publication Date
WO2019225164A1 true WO2019225164A1 (en) 2019-11-28

Family

ID=68616993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014624 WO2019225164A1 (en) 2018-05-24 2019-04-02 Boiler device and superheater

Country Status (2)

Country Link
JP (1) JP2019203661A (en)
WO (1) WO2019225164A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7316388B2 (en) * 2020-01-22 2023-07-27 三菱重工業株式会社 Boiler heat transfer panel structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592367A (en) * 1982-06-28 1984-01-07 Matsushita Electric Works Ltd Semiconductor device
JPH0634102A (en) * 1992-07-22 1994-02-08 Babcock Hitachi Kk Support structure for heat transfer pipes
JP4792355B2 (en) * 2006-09-12 2011-10-12 バブコック日立株式会社 Yokoyose / stub tube welded structure and boiler apparatus including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117402U (en) * 1984-01-13 1985-08-08 三菱重工業株式会社 freestanding boiler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592367A (en) * 1982-06-28 1984-01-07 Matsushita Electric Works Ltd Semiconductor device
JPH0634102A (en) * 1992-07-22 1994-02-08 Babcock Hitachi Kk Support structure for heat transfer pipes
JP4792355B2 (en) * 2006-09-12 2011-10-12 バブコック日立株式会社 Yokoyose / stub tube welded structure and boiler apparatus including the same

Also Published As

Publication number Publication date
JP2019203661A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
CA2449652C (en) Steam generator
JPS599407A (en) Steam generator
SK22295A3 (en) Stean generator
WO2019225164A1 (en) Boiler device and superheater
JPH033841B2 (en)
RU2396486C1 (en) Reactor feed water circuit with fluidised bed and reactor with fluidised bed with such feed water circuit
JP5456071B2 (en) Once-through evaporator
JPH0650502A (en) Heat exchanging unit for heat recovery steam generator
JPS6014241B2 (en) Transforming boiler
JP7272852B2 (en) boiler equipment
JP2013124828A (en) Marine boiler
JP5302852B2 (en) Reheat boiler
US20110265735A1 (en) Boiler structure
WO2022113484A1 (en) Support mechanism for exhaust heat recovery boilers
WO2021149196A1 (en) Heat transfer panel structure for boiler
US10955201B2 (en) Heat exchanger, boiler, and setting method for heat exchanger
JP7427761B2 (en) Heat exchanger, boiler equipped with the same, and heat exchange method
JP2019178843A (en) Vibration control device of heat transfer tube, heat exchanger and boiler
JP6936207B2 (en) Boiler device
JPS6042361B2 (en) A variable pressure steam generator using a crossover circuit for the rifted internal fluid pipes that make up the furnace wall.
JP7313215B2 (en) header and boiler
JP2003336803A (en) Boiler system
CN105222122A (en) Be applied to the superheater of boiler
WO2013015088A1 (en) Tower boiler
JP2009222304A (en) Once-through exhaust heat recovery boiler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19806522

Country of ref document: EP

Kind code of ref document: A1