JP4823043B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP4823043B2
JP4823043B2 JP2006333663A JP2006333663A JP4823043B2 JP 4823043 B2 JP4823043 B2 JP 4823043B2 JP 2006333663 A JP2006333663 A JP 2006333663A JP 2006333663 A JP2006333663 A JP 2006333663A JP 4823043 B2 JP4823043 B2 JP 4823043B2
Authority
JP
Japan
Prior art keywords
heat transfer
flue
flow
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006333663A
Other languages
Japanese (ja)
Other versions
JP2008145061A (en
Inventor
毅 松尾
智規 小山
克彦 横濱
弘実 石井
治 品田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006333663A priority Critical patent/JP4823043B2/en
Publication of JP2008145061A publication Critical patent/JP2008145061A/en
Application granted granted Critical
Publication of JP4823043B2 publication Critical patent/JP4823043B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、加圧高温ガスの冷却等に用いられている熱交換器に関するものであり、例えば、石炭ガス化炉・油ガス化炉・バイオマスガス化炉など、圧力容器内に設置される加圧高温ガスのガス化冷却器または熱回収器に適用することが可能である。   The present invention relates to a heat exchanger used for cooling a pressurized high-temperature gas or the like. For example, a heat exchanger used in a pressure vessel such as a coal gasification furnace, an oil gasification furnace, or a biomass gasification furnace is provided. The present invention can be applied to a gasification cooler or a heat recovery device for pressurized hot gas.

従来、石炭ガス化複合発電システム(IGCC)においては、石炭等の燃料をガス化炉でガス化して高温のガスを発生させる石炭ガス化炉設備が知られている。
しかし、石炭ガス化炉の生成ガスには多量のチャーやスラグなどのダストが含まれているため、このダストが伝熱管に付着して熱回収効率を低下させるという問題がある。
2. Description of the Related Art Conventionally, in a coal gasification combined power generation system (IGCC), a coal gasification furnace facility that gasifies fuel such as coal in a gasification furnace to generate a high-temperature gas is known.
However, since the produced gas of the coal gasification furnace contains a large amount of dust such as char and slag, there is a problem that this dust adheres to the heat transfer tube and reduces the heat recovery efficiency.

伝熱管へのダスト付着を抑制する手法として、生成ガスの流速を増加させることが有効である。これを実現する従来技術として、下記の公知技術がある。
第1の公知技術として、生成ガスの流路中に仕切板を設置する方法が提案されている。(例えば、特許文献1参照)
第2の公知技術として、伝熱管にフィンを設置することにより、伝熱管の有効面積を拡大する方法が提案されている。(例えば、特許文献2参照)
Increasing the flow rate of the product gas is effective as a technique for suppressing dust adhesion to the heat transfer tubes. There are the following known techniques as conventional techniques for realizing this.
As a first known technique, a method of installing a partition plate in a product gas flow path has been proposed. (For example, see Patent Document 1)
As a second known technique, there has been proposed a method of expanding the effective area of the heat transfer tube by installing fins on the heat transfer tube. (For example, see Patent Document 2)

第3の公知技術として、生成ガスの流れ方向をリターンフロー型として、上下方向のダクト面積を過剰に大きくしないことで、冷却器のコンパクト化と伝熱管へのダスト堆積の抑制効果を得る方法が提案されている。(例えば、特許文献3参照)
特開2004−51915号公報 特開平2−21197号公報 特開2006−214712号公報
As a third known technique, there is a method of obtaining the effect of suppressing the dust accumulation on the heat transfer tubes by making the flow direction of the product gas a return flow type and not excessively increasing the vertical duct area. Proposed. (For example, see Patent Document 3)
JP 2004-51915 A JP-A-2-21197 JP 2006-214712 A

しかしながら、上記の公知技術については、次のような技術課題が指摘されている。
第1の公知技術は、ガス化炉の上部に生成ガス冷却装置を配置する構成のため、装置の高さが非常に大きくなるという技術課題を有している。
一般に圧力損失が低い部分でガス流速は高くなるが、伝熱管群の間に仕切板を設置する上記公知技術では、伝熱管がない仕切板近くで生成ガス流量は高くなる。
そのため、熱交換する部分における生成ガスの流速は仕切板設置前より低下し、管群内にはダストが堆積しやすい。加えて、生成ガスは伝熱管と平行に流れるため、重力により管群の下側ほどダストは堆積しやすい。
また、仕切板の上側は、入口側ほど二次流れの影響で板の近くによどみ域が生じる。このため、入口側の仕切板上側では仕切板へのダクトの堆積が生じる可能性がある。
このように、閉塞していない伝熱管ほど高熱負荷となり、閉塞した伝熱管ほど低負荷となるため、管群における熱負荷分布の不均一性が著しい。製品の寿命は高負荷側で決まるため、熱負荷の不均一性が著しい第一の公知技術は製品としての十分な寿命を有しないと考えられる。
However, the following technical problems have been pointed out with respect to the above known technique.
The first known technique has a technical problem that the height of the apparatus becomes very large due to the configuration in which the product gas cooling apparatus is arranged in the upper part of the gasification furnace.
In general, the gas flow rate increases at a portion where the pressure loss is low, but in the above-described known technique in which a partition plate is installed between the heat transfer tube groups, the generated gas flow rate increases near the partition plate without the heat transfer tube.
For this reason, the flow rate of the product gas in the heat exchange portion is lower than before the partition plate is installed, and dust is likely to accumulate in the tube group. In addition, since the generated gas flows in parallel with the heat transfer tubes, dust tends to accumulate toward the lower side of the tube group due to gravity.
Further, on the upper side of the partition plate, a stagnation region is generated near the plate due to the influence of the secondary flow toward the inlet side. For this reason, ducts may accumulate on the partition plate above the partition plate on the inlet side.
As described above, the heat transfer tube that is not closed has a higher heat load, and the closed heat transfer tube has a lower load, so the non-uniformity of the heat load distribution in the tube group is remarkable. Since the life of the product is determined on the high load side, it is considered that the first known technology with remarkable non-uniformity of the heat load does not have a sufficient life as a product.

第2の公知技術は、伝熱管にフィンを設置することにより、伝熱面積を拡大し熱回収効率を向上させるものである。フィンの設置によりフィン間の流路面積が減少するため、この部分のガス流速は高いと考えられる。フィン間の狭い部分を通過後に流路面積は急拡大するため、フィンに向かう二次流れの逆流が生じ、よどみ域を形成する。このよどみ域でダストが堆積しやすく、フィンの設置によりかえって、管群の閉塞を助長する問題が指摘されている。
第3の公知技術は、生成ガスの流れ方向をリターンフロー型として、上下方向のダクト面積を過剰に大きくせず、ガス流速を高くすることで、冷却器のコンパクト化と伝熱管へのダスト堆積の抑制効果を得るものである。
しかし、リターンフロー型とするため、ダウンフローとアップフローの各入口部にはダクトのエルボが存在し、エルボの内側には、生成ガスの二次流れによりよどみ域を形成する。そのため、各入口側の熱交管群において、エルボ内側の伝熱管ほど低負荷かつダストが堆積しやすく、エルボ外側の伝熱管ほど高負荷かつダストが堆積しにくい。
In the second known technique, by installing fins in the heat transfer tube, the heat transfer area is expanded and the heat recovery efficiency is improved. Since the flow path area between the fins is reduced by the installation of the fins, the gas flow velocity in this portion is considered to be high. After passing through a narrow portion between the fins, the flow path area suddenly expands, so that a back flow of the secondary flow toward the fins occurs and forms a stagnation region. Dust tends to accumulate in this stagnation area, and the problem of promoting blockage of the tube group has been pointed out by installing fins.
The third known technique is that the flow direction of the product gas is a return flow type, the duct area in the vertical direction is not excessively increased, and the gas flow rate is increased, so that the cooler is made compact and the dust is deposited on the heat transfer tubes. It is possible to obtain the suppression effect.
However, because of the return flow type, there is a duct elbow at each of the downflow and upflow inlets, and a stagnation region is formed inside the elbow due to the secondary flow of the product gas. For this reason, in the heat exchanger tube group on each inlet side, the heat transfer tubes on the inner side of the elbow are more likely to accumulate dust and the load is less likely to accumulate on the heat transfer tubes on the outer side of the elbow.

このように、例えば石炭ガス化炉で発生させた生成ガスのように、ガス中に多量のチャーやスラグなどのダストが含まれている生成ガスを冷却するガス化冷却器等の熱交換器においては、ダストの堆積による管群閉塞を防止するとともに、伝熱管の耐久性を低下させる熱負荷の不均一性を解消することが望まれる。
本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、ダストの堆積による管群閉塞を防止するとともに、伝熱管の耐久性を低下させる熱負荷の不均一性を解消した熱交換器を提供することにある。
Thus, in a heat exchanger such as a gasification cooler that cools a generated gas containing a large amount of dust such as char or slag in the gas, such as a generated gas generated in a coal gasification furnace, for example. It is desired to prevent the tube group from being blocked due to dust accumulation and to eliminate the non-uniformity of the heat load that reduces the durability of the heat transfer tube.
The present invention has been made in view of the above circumstances, and the object of the present invention is to prevent non-uniformity of the heat load that reduces tube group blockage due to dust accumulation and reduces the durability of the heat transfer tube. It is to provide a heat exchanger that has been eliminated.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明に係る熱交換器は、ガス化炉から導入した生成ガスを流す煙道が圧力容器内に形成され、前記煙道内に設置した伝熱管の内部を流す流体と前記生成ガスとの間で熱交換させる熱交換器であって、前記伝熱管の上流側に設けた中実で三角形断面の突起部と、前記伝熱管の後流側に設けた中実で略矩形断面の二次流れ抑制手段とを備えていることを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
In the heat exchanger according to the present invention, a flue for flowing a product gas introduced from a gasification furnace is formed in a pressure vessel, and a fluid flowing inside a heat transfer tube installed in the flue and the product gas A heat exchanger for exchanging heat, a solid triangular cross-section protrusion provided upstream of the heat transfer tube, and a solid and substantially rectangular cross-section secondary flow suppression provided on the downstream side of the heat transfer tube Means .

このような熱交換器によれば、前記伝熱管の上流側に設けた中実で三角形断面の突起部と、前記伝熱管の後流側に設けた中実で略矩形断面の二次流れ抑制手段とを備えているので、生成ガス中に含まれるダストが伝熱管に堆積することを防止または抑制することができる。
また、突起部の材質を伝熱管より伝熱性が良い、もしくは同等の伝熱性を有する材質とすることによって、生成ガスと伝熱管内の流体との熱抵抗を小さくすることができ、熱回収効率を向上させることができる。
伝熱管上流側の突起部としては、例えば逆V字型とした頂点の角度をダスト堆積時の安息角より小さな角度にすることにより、効果的にダストの堆積を抑制することができる。但し、突起部頂点の角度は、ダスト堆積時の安息角より大きくても生成ガスと伝熱管との間の熱抵抗を小さくすることができるので、熱回収効率を向上させることができる。
このような突起部は、全ての伝熱管に設置することが望ましいが、一部への設置に限定する場合は、高ダスト濃度側の伝熱管に設けることが望ましい。
According to such a heat exchanger, the solid triangular section protrusion provided on the upstream side of the heat transfer tube and the solid and substantially rectangular cross section secondary flow suppression provided on the downstream side of the heat transfer tube. And means for preventing or suppressing dust contained in the product gas from accumulating on the heat transfer tubes.
In addition, by making the material of the protrusions better heat transfer tube material or equivalent heat transfer material, the thermal resistance between the product gas and the fluid in the heat transfer tube can be reduced, and the heat recovery efficiency Can be improved.
As the protrusion on the upstream side of the heat transfer tube, for example, by setting the angle of the apex in an inverted V shape to be smaller than the angle of repose during dust accumulation, dust accumulation can be effectively suppressed. However, since the thermal resistance between the generated gas and the heat transfer tube can be reduced even if the angle of the protrusion vertex is larger than the angle of repose at the time of dust accumulation, the heat recovery efficiency can be improved.
Such protrusions are desirably installed on all the heat transfer tubes, but when limited to a part of the projecting portions, it is desirable to provide the heat transfer tubes on the high dust concentration side.

そして、熱交換器を形成する伝熱管の後流側に二次流れ抑制手段を備えているので、伝熱管の後流側に二次流れを生じにくい。このため、伝熱管の後流側で負圧域を形成しないので、伝熱管後流域にダストが堆積しにくく、熱回収性能が低下しない。また、より下流側に位置する伝熱管との間にダストのブリッジを形成しないので、下流側の伝熱管でも熱回収性能が低下せず、高い熱回収性能を維持できる。 And since the secondary flow suppression means is provided in the downstream of the heat exchanger tube which forms a heat exchanger, it is hard to produce a secondary flow in the downstream of the heat exchanger tube. For this reason, since a negative pressure region is not formed on the downstream side of the heat transfer tube, dust does not easily accumulate in the downstream region of the heat transfer tube, and the heat recovery performance does not deteriorate. Moreover, since a dust bridge is not formed between the heat transfer tube located on the downstream side, the heat recovery performance is not lowered even in the downstream heat transfer tube, and high heat recovery performance can be maintained.

上記の熱交換器において、前記煙道内に高温ガスを導入する導入流路コーナ部、前記煙道内から生成ガスを排出する排出流路コーナ部、及び前記煙道内で上下方向の流れを仕切る隔壁の流れ方向転換部のうち少なくともひとつR形状に丸みを持たせた生成ガス流路を備え、前記R形状の丸みの曲率半径が、流路の内径Dを基準にして1/10D〜2Dに設定されていることが好ましい。 In the above heat exchanger, an introduction flow path corner portion for introducing a high temperature gas into the flue, a discharge flow path corner portion for discharging a generated gas from the flue, and a partition wall for partitioning a vertical flow in the flue At least one of the flow direction changing part is provided with a product gas channel rounded to R shape, the radius of curvature of the rounded R shape, set to 1 / 10D~2D relative to the inner diameter D of the channel It is preferable that

このような熱交換器によれば、煙道内に高温ガスを導入する導入流路コーナ部、煙道内から生成ガスを排出する排出流路コーナ部、及び煙道内で上下方向の流れを仕切る隔壁の流れ方向転換部のうち少なくともひとつR形状に丸みを持たせた生成ガス流路を備え、前記R形状の丸みの曲率半径が、流路の内径Dを基準にして1/10D〜2Dに設定されているので、煙道内に生じる高温ガスの二次流れの形成もしくはよどみ域の形成を防止または抑制することができる。 According to such a heat exchanger, the introduction flow path corner section for introducing the high temperature gas into the flue, the discharge flow path corner section for discharging the generated gas from the flue, and the partition wall for partitioning the vertical flow in the flue. At least one of the flow direction changing part is provided with a product gas channel rounded to R shape, the radius of curvature of the rounded R shape, set to 1 / 10D~2D relative to the inner diameter D of the channel since it is, it is possible to prevent or suppress the formation of formation or stagnation zone of the secondary flow of hot gas produced in the flue.

上記の熱交換器において、前記煙道内を流れる生成ガスの高流速部に前記伝熱管の管群を配置することが好ましい。
Said heat exchanger WHEREIN: It is preferable to arrange | position the tube group of the said heat exchanger tube in the high flow-velocity part of the product gas which flows through the inside of the said flue .

このような熱交換器によれば、煙道内を流れる生成ガスの高流速部に伝熱管の管群を配置したので、この管群を流れの圧損抵抗体として用いることができ、管群の熱負荷を均一にし、不均一な熱負荷に起因する製品の計画寿命からの短縮を抑制することができる。   According to such a heat exchanger, since the tube group of the heat transfer tubes is arranged at the high flow velocity portion of the product gas flowing in the flue, the tube group can be used as a flow pressure drop resistor, and the heat of the tube group can be used. The load can be made uniform, and the shortening of the product from the planned life due to the uneven heat load can be suppressed.

上述した本発明によれば、熱交換器を形成する伝熱管にダストが堆積することを防止または抑制できるので、ダストによる管群閉塞を防止して熱交換器の良好な熱回収効率を維持することが可能になる。
また、熱交換器を形成する伝熱管の耐久性を低下させる熱負荷の不均一性を解消することができるので、熱交換器の計画寿命が不均一な熱負荷に起因して短縮されることを抑制できる。
According to the present invention described above, dust can be prevented or suppressed from accumulating on the heat transfer tubes forming the heat exchanger, so that tube group blockage due to dust is prevented and good heat recovery efficiency of the heat exchanger is maintained. It becomes possible.
In addition, since the non-uniformity of the heat load that reduces the durability of the heat transfer tubes forming the heat exchanger can be eliminated, the planned life of the heat exchanger is shortened due to the non-uniform heat load Can be suppressed.

以下、本発明に係る熱交換器の一実施形態を図面に基づいて説明する。
図5は、石炭ガス化複合発電システム(IGCC)に用いられる石炭ガス化設備の概略構成図であり、石炭等の燃料をガス化炉でガス化して高温のガスを発生させる石炭ガス化炉設備が知られている。
この石炭ガス化炉設備は、石炭供給設備100、ガス化炉200、本発明の対象となるガス化冷却器のガス化冷却器(熱交換器)300、及びチャー回収設備400等を主要な構成要素としている。
Hereinafter, one embodiment of a heat exchanger concerning the present invention is described based on a drawing.
FIG. 5 is a schematic configuration diagram of a coal gasification facility used in an integrated coal gasification combined power generation system (IGCC), in which a coal gasification facility that gasifies fuel such as coal in a gasification furnace and generates high-temperature gas is shown. It has been known.
This coal gasification furnace equipment mainly comprises a coal supply equipment 100, a gasification furnace 200, a gasification cooler (heat exchanger) 300 of a gasification cooler that is a subject of the present invention, a char recovery equipment 400, and the like. As an element.

ここで、ガス化冷却器300は、例えば図6に示すように、ガス化炉200からチャーを含有する約1100℃の生成ガスの供給を受け、この生成ガスをガス化炉設備の後流側に設置された図示しないガス精製設備に適した温度である約450℃まで冷却するとともに、生成ガスから熱エネルギーを回収する熱交換器である。
また、このガス化冷却器300は、圧力容器350の内部に形成されて生成ガスの流路となる煙道301内に、蒸発器(EVA)310、2次過熱器(2SH)320、1次過熱器(1SH)330及び節炭器(ECO:エコノマイザー)340の各熱交換器を上から順に配置し、煙道301内を上から下向きに流れる生成ガスから吸熱して冷却するように構成されている。
Here, as shown in FIG. 6, for example, the gasification cooler 300 is supplied with a generated gas of about 1100 ° C. containing char from the gasifying furnace 200, and this generated gas is supplied to the downstream side of the gasifying furnace equipment. Is a heat exchanger that cools to about 450 ° C., which is a temperature suitable for a gas purification facility (not shown), and recovers thermal energy from the generated gas.
In addition, the gasification cooler 300 includes an evaporator (EVA) 310, a secondary superheater (2SH) 320, and a primary in a flue 301 that is formed inside the pressure vessel 350 and serves as a flow path for product gas. The heat exchangers of the superheater (1SH) 330 and the economizer (ECO: economizer) 340 are arranged in order from the top, and are configured to absorb heat from the generated gas flowing from the top to the bottom in the flue 301 and cool it. Has been.

このようなガス化冷却器には、リターンフロー型と呼ばれるものがある。
図7及び図8に示すリターンフロー型のガス化冷却器10は、円形断面とした圧力容器11内に周壁23により煙道20を形成し、煙道20の内部断面を隔壁30により分割したものである。このリターンフロー型構造は、煙道20を隔壁30で分割して形成された第1煙道(図7の構成ではダウンフロー)21及び第2煙道(図7の構成ではアップフロー)22を備え、圧力容器10の頂部からガス化炉設備で生成された生成ガスを導入し、圧力容器10の底部で導入した生成ガスが折り返して逆向きに流れるものであるから、圧力容器10の高さを低くすることができ、装置をコンパクト化することができる。また、折り返し部24にチャー回収機構を備えてもよい。なお、生成ガスの導入及び折り返しについては、頂部及び底部が逆の構成としてもよい。
Such gasification coolers include what is called a return flow type.
The return flow type gasification cooler 10 shown in FIGS. 7 and 8 has a flue 20 formed by a peripheral wall 23 in a pressure vessel 11 having a circular cross section, and the internal cross section of the flue 20 is divided by a partition wall 30. It is. This return flow type structure has a first flue (down flow in the configuration of FIG. 7) 21 and a second flue (up flow in the configuration of FIG. 7) 22 formed by dividing the flue 20 by a partition wall 30. The generated gas generated in the gasification furnace equipment is introduced from the top of the pressure vessel 10, and the introduced gas introduced at the bottom of the pressure vessel 10 is folded and flows in the opposite direction. Can be reduced, and the apparatus can be made compact. Further, the folded portion 24 may be provided with a char recovery mechanism. In addition, about introduction | transduction and return | folding of product gas, it is good also as a structure where a top part and a bottom part are reverse.

図8の例では、圧力容器11の内周面には断熱材12が取り付けられ、煙道20が圧力容器11の内部空間に形成されている。この煙道20を第1煙道21及び第2煙道22に分割している断面積分割割合は、相互に逆向きの流れとなる高温ガスの流速が略一致するように設定されている。この断面積分割割合は、導入した生成ガスをダウンフローに流す下降部分である第1煙道21の断面積割合が、圧力容器10の底部で折り返した生成ガスをアップフローに流す上昇部分である第2煙道22の断面積割合より大きな値(例えば2:1)とされる。
また、第1煙道21及び第2煙道22には、それぞれ冷媒を流すパネル50が配設されて熱交換器40を構成している。
In the example of FIG. 8, the heat insulating material 12 is attached to the inner peripheral surface of the pressure vessel 11, and the flue 20 is formed in the internal space of the pressure vessel 11. The cross-sectional area division ratio at which the flue 20 is divided into the first flue 21 and the second flue 22 is set so that the flow rates of the high-temperature gases that flow in opposite directions are substantially the same. This cross-sectional area division ratio is an ascending portion where the cross-sectional area ratio of the first flue 21 that is the descending portion that flows the introduced product gas into the downflow flows the product gas that is turned back at the bottom of the pressure vessel 10 into the upflow. The value is larger than the cross-sectional area ratio of the second flue 22 (for example, 2: 1).
In addition, the first flue 21 and the second flue 22 are each provided with a panel 50 through which a refrigerant flows to constitute a heat exchanger 40.

生成ガスをダウンフローに流す下降部分の第1煙道21内には、熱交換器40として機能する蒸発器(EVA;エバポレイター)41、2次過熱器(2SH;二次スーパーヒータ)42、1次過熱器(1SH;一次スーパーヒータ)43が上から順に配置される。また、底面で折り返した生成ガスを下から上向きに流す上昇部分の第2煙道22内には、熱交換器40として機能する節炭器(ECO;エコノマイザー)44が配置される。   In the first flue 21 at the descending portion where the product gas flows into the downflow, an evaporator (EVA) 41, a secondary superheater (2SH; secondary superheater) 42 functioning as a heat exchanger 40, A primary superheater (1SH; primary superheater) 43 is arranged in order from the top. In addition, an economizer (ECO) 44 that functions as a heat exchanger 40 is disposed in the second flue 22 at the rising portion where the product gas folded at the bottom flows upward.

ここで、上述した熱交換器40のパネル50は、例えば冷媒(流体)を流すボイラ熱交換器用炭素鋼鋼管、合金鋼管、ステンレス鋼管等の伝熱管51が生成ガスと熱交換する伝熱管となり、この伝熱管が略U字状に成形されて多数配列され、パネル50を形成するものである。各伝熱管51の両端部は、管寄せ52の冷媒入口部及び冷媒出口部にそれぞれ接続されている。従って、このパネル50を煙道20内に配置することにより、伝熱管51の表面が伝熱面となり、煙道20内を流れる生成ガスから伝熱管51内を循環する間に冷媒が吸熱するので、生成ガスの冷却及び生成ガスから熱回収を行う熱交換器40が構成される。
なお、図6に示したガス化冷却器300内に設置される各熱交換器の構成も、リターンフロー型のガス冷却器10内に設置される熱交換器40と実質的に同じである。
Here, the panel 50 of the heat exchanger 40 described above is a heat transfer tube in which a heat transfer tube 51 such as a carbon steel tube for a boiler heat exchanger, an alloy steel tube, a stainless steel tube or the like for flowing a refrigerant (fluid) exchanges heat with the generated gas. A number of these heat transfer tubes are formed in a substantially U shape and arranged to form a panel 50. Both end portions of each heat transfer tube 51 are connected to the refrigerant inlet portion and the refrigerant outlet portion of the header 52, respectively. Therefore, by arranging this panel 50 in the flue 20, the surface of the heat transfer tube 51 becomes a heat transfer surface, and the refrigerant absorbs heat while circulating in the heat transfer tube 51 from the generated gas flowing in the flue 20. A heat exchanger 40 that cools the product gas and recovers heat from the product gas is configured.
The configuration of each heat exchanger installed in the gasification cooler 300 shown in FIG. 6 is substantially the same as that of the heat exchanger 40 installed in the return flow type gas cooler 10.

<第1の実施形態>
上述した熱交換器40の伝熱管51には、例えば図1に示すように、管表面の生成ガス流れ方向上流側に突起部60が設けられている。
この突起部60の材質を伝熱管51より伝熱性がよい、もしくは同等の伝熱性を有する材質とすることによって、生成ガスと伝熱管51内の流体との熱抵抗を小さくすることができ、熱回収効率を向上させることができる。
突起部60は、上端部の角度θが粉体であるダストの安息角より小さな角度に設定した三角形またはその類似形状とすることが望ましい。即ち、突起部60は、粉体であるダストが突起部60の表面に滞留することなく滑落する角度の傾斜面を有していれば、先端角部にR(丸み)が形成されていてもよいし、あるいは、曲面や複数段に角度変化するような傾斜面としてもよい。但し、上端部の角度θが粉体であるダストの安息角より大きな角度の場合であっても、生成ガスと伝熱管51内を流れる冷媒との間の熱抵抗は低減するので、熱回収効率を向上させることは可能である。
なお、このような突起部60は、全ての伝熱管51に設けてもよいが、その作用効果及び経済性を考慮した場合、生成ガスの流れ方向において高ダスト濃度側となる伝熱管51に設けることが好ましい。
<First Embodiment>
For example, as shown in FIG. 1, the heat transfer tube 51 of the heat exchanger 40 described above is provided with a protrusion 60 on the upstream side of the tube surface in the direction of product gas flow.
By making the material of the protrusion 60 better than that of the heat transfer tube 51 or having the same heat transfer property, the thermal resistance between the generated gas and the fluid in the heat transfer tube 51 can be reduced, Recovery efficiency can be improved.
It is preferable that the protrusion 60 has a triangular shape with an angle θ of the upper end portion set to be smaller than the repose angle of dust, which is powder, or a similar shape thereof. That is, if the protrusion 60 has an inclined surface at which the powdered dust slides without staying on the surface of the protrusion 60, even if R (roundness) is formed at the tip corner. Alternatively, it may be a curved surface or an inclined surface that changes its angle in a plurality of stages. However, even when the angle θ at the upper end is larger than the angle of repose of dust, which is powder, the heat resistance between the generated gas and the refrigerant flowing in the heat transfer tube 51 is reduced, so that the heat recovery efficiency It is possible to improve.
In addition, although such a projection part 60 may be provided in all the heat exchanger tubes 51, when the effect and economy are considered, it is provided in the heat exchanger tube 51 which becomes the high dust density | concentration side in the flow direction of product gas. It is preferable.

また、突起部60は、中実または中空(例えば逆V字状に板を取り付け)のいずれでもよいが、中空の場合は堆積物により熱抵抗が増大するため、中実とすることが好ましい。なお、中実の突起部60は、引き抜きや押し出しにより伝熱管51と一体に成形したものでもよいし、あるいは、溶接等により別体の部材を後付けしたものでもよい。   Further, the protrusion 60 may be either solid or hollow (for example, a plate is attached in an inverted V shape), but in the case of being hollow, the thermal resistance is increased by the deposit, so that it is preferably solid. The solid protrusion 60 may be formed integrally with the heat transfer tube 51 by drawing or extruding, or may be a member attached separately by welding or the like.

上述した伝熱管51の後流側には、生成ガスの流れ方向において管の後流側で負圧の領域が形成される。このため、伝熱管51の後流側に形成された負圧領域に向けて、生成ガスの主流から二次流れを生じ、よどみ域を形成するためダストが管の後流側に堆積しやすい管の後流側でのダストの堆積を抑制するための二次流れ抑制手段として、管表面の後流側を覆うようにして略矩形断面形状とした中実の被覆部70を設けてある。この被覆部70は、伝熱管51の最大幅である外径Dに沿って、生成ガスの流れ方向と略一致する鉛直方向へ垂下する壁面を形成するものである。   On the downstream side of the heat transfer tube 51 described above, a negative pressure region is formed on the downstream side of the tube in the flow direction of the product gas. For this reason, a secondary flow is generated from the main flow of the product gas toward the negative pressure region formed on the downstream side of the heat transfer tube 51, and dust is likely to accumulate on the downstream side of the tube to form a stagnation region. As a secondary flow suppressing means for suppressing dust accumulation on the downstream side, a solid covering portion 70 having a substantially rectangular cross-sectional shape is provided so as to cover the downstream side of the pipe surface. The covering portion 70 forms a wall surface that hangs down in the vertical direction substantially coincident with the flow direction of the product gas along the outer diameter D that is the maximum width of the heat transfer tube 51.

この場合の被覆部70としては、例えば図1に示すように、伝熱管51と一体化した中実の部材がある。また、二次流れ抑制手段となる被覆部70の変形例として、例えば図2(a)に示す第1変形例のように、伝熱管51の最大幅である外径Dに沿って垂下した左右一対の板材71や、あるいは、図2(b)に示す第2変形例のように、下端を鋭角とした略三角形断面形状の中実被覆部72など、生成ガスの流れが伝熱管51の後流域で二次流れを生じ、よどみ域を形成しないような壁面を形成するものであればよい。   As the covering portion 70 in this case, for example, as shown in FIG. 1, there is a solid member integrated with the heat transfer tube 51. Moreover, as a modification of the covering portion 70 serving as the secondary flow suppressing means, for example, as shown in the first modification shown in FIG. 2A, left and right hanging along the outer diameter D that is the maximum width of the heat transfer tube 51. The pair of plate members 71 or the flow of the generated gas after the heat transfer tube 51, such as a solid covering portion 72 having a substantially triangular cross-sectional shape with an acute angle at the lower end, as in the second modification shown in FIG. Any wall that forms a secondary flow in the basin and does not form a stagnation region may be used.

上述した突起部60及び被覆部70は、伝熱管51に対していずれか一方が単独で設けられてもよいし、あるいは、両方がともに設けられたものでもよい。
そして、このような突起部60及び被覆部70の少なくとも一方を設けた伝熱管51は、図3(a)に示した碁盤目配置としてもよいし、あるいは、図3(b)に示した千鳥配列としてもよい。
Either one of the protrusion 60 and the cover 70 described above may be provided alone with respect to the heat transfer tube 51, or both may be provided together.
The heat transfer tube 51 provided with at least one of the protrusion 60 and the cover 70 may have a grid arrangement shown in FIG. 3A or a staggered pattern shown in FIG. 3B. It may be an array.

このように、熱交換器40が突起部60を備えた伝熱管51により構成されているガス化冷却器300(図6)またはリターンフロー型のガス化冷却器10(図7または図9)においては、伝熱管51にダストが堆積することによる熱抵抗を低減できるので、良好な熱交換効率を維持することが可能になる。
即ち、伝熱管51の周囲にダストが付着した状態では、ダストが熱伝達を妨げる熱抵抗体となるため、生成ガスの温度と伝熱管51内の冷媒との温度差は増大する。このため、伝熱管51内を流れる冷媒で生成ガスを冷却する熱交換器の熱回収効率はダスト付着により低下するが、上述した突起部60や被覆部70等を設けることにより、熱抵抗の増大を防止または抑制して良好な熱回収効率を維持できる。
As described above, in the gasification cooler 300 (FIG. 6) or the return flow type gasification cooler 10 (FIG. 7 or FIG. 9) in which the heat exchanger 40 is configured by the heat transfer tube 51 including the protrusions 60. Since it is possible to reduce the thermal resistance due to the accumulation of dust on the heat transfer tube 51, it is possible to maintain good heat exchange efficiency.
That is, in the state where dust adheres around the heat transfer tube 51, the dust becomes a thermal resistor that hinders heat transfer, so the temperature difference between the temperature of the generated gas and the refrigerant in the heat transfer tube 51 increases. For this reason, although the heat recovery efficiency of the heat exchanger that cools the generated gas with the refrigerant flowing in the heat transfer tube 51 is reduced due to dust adhesion, the provision of the above-described protrusion 60, the covering portion 70, etc. increases the thermal resistance. It is possible to maintain or maintain good heat recovery efficiency.

ダスト付着による熱抵抗の増大について、以下説明する。総括熱抵抗は式(1)で示される。

Figure 0004823043
上式の変数は、一般値として次のように定める。ダストの厚みは10mm、管の長さは1mとする。式(1)の左辺は総括熱抵抗であり、右辺第一項は管内の対流による熱抵抗(R1 )、右辺第二項は管の熱伝導による熱抵抗(R2 )、右辺第三項は管外の対流による熱抵抗(R3 )、右辺第四項はダストによる熱抵抗(R4 )である。
out:管外伝熱面積 [m2] (=0.0785m2)
in:管内伝熱面積 [m2] (=0.0628m2)
i:伝熱管の内径 [m] (=0.020m)
o:伝熱管の外径 [m] (=0.025m)
R:熱抵抗 [K/W]
αin:管内熱伝達率 [W/m2K] (=3000W/m2K)
αout:管外熱伝達率 [W/m2K] (=100W/m2K)
δ:ダストの厚み [m] (=0.010m)
λd:ダストの熱伝導率 [W/mK] (=0.1W/mK)
λs:伝熱管の熱伝導率 [W/mK] (=40W/mK)
上の値を式(1)に代入して各熱抵抗を求めると、管内の対流による熱抵抗R1 =0.0053K/W、管の熱伝導による熱抵抗R2 =0.0056K/W、管外の対流による熱抵抗R3 =0.127K/W、ダストによる熱抵抗R4 =1.274K/Wである。このように、総括熱抵抗1.412W/mKのうち約88%がダストによる熱抵抗であり、ダストの堆積を抑制することが熱回収効率の向上ため有効であることが分かる。 The increase in thermal resistance due to dust adhesion will be described below. The overall thermal resistance is given by equation (1).
Figure 0004823043
The variables in the above equation are defined as general values as follows. The thickness of the dust is 10 mm, and the length of the tube is 1 m. The left side of equation (1) is the overall thermal resistance, the first term on the right side is the thermal resistance (R 1 ) due to convection in the tube, the second term on the right side is the thermal resistance (R 2 ) due to heat conduction in the tube, and the third term on the right side Is the thermal resistance (R 3 ) due to convection outside the tube, and the fourth term on the right side is the thermal resistance (R 4 ) due to dust.
A out : Heat transfer area outside the tube [m 2 ] (= 0.0785m 2 )
A in : Heat transfer area in the pipe [m 2 ] (= 0.0628m 2 )
d i : Inner diameter of heat transfer tube [m] (= 0.020m)
d o: outer diameter of the heat transfer tube [m] (= 0.025m)
R: Thermal resistance [K / W]
α in : Heat transfer coefficient in the tube [W / m 2 K] (= 3000 W / m 2 K)
α out : Heat transfer coefficient outside the tube [W / m 2 K] (= 100 W / m 2 K)
δ: Dust thickness [m] (= 0.010m)
λ d : Thermal conductivity of dust [W / mK] (= 0.1 W / mK)
λ s : thermal conductivity of heat transfer tube [W / mK] (= 40W / mK)
Substituting the above value into the equation (1) to obtain each thermal resistance, thermal resistance R 1 = 0.0053 K / W due to convection in the pipe, thermal resistance R 2 = 0.0056 K / W due to thermal conduction in the pipe, Thermal resistance R 3 due to convection outside the tube = 0.127 K / W, and thermal resistance R 4 due to dust = 1.274 K / W. Thus, it can be seen that about 88% of the overall thermal resistance of 1.412 W / mK is the thermal resistance due to dust, and it is effective to suppress the accumulation of dust to improve the heat recovery efficiency.

本発明者等は、ガス化試験を行った結果、レイノルズ数(Re)と汚れ係数(R4 )との関係は、一般的な伝熱特性と類似した形で整理できるとの知見を得た。
ここで、レイノルズ数Reは、式(2)のように慣性力と粘性力の比で定義される。

Figure 0004823043
式(2)において、U:ガス流速[m/s]、do:伝熱管の外径[m]、vg:ガスの動粘性係数[m2 /s]である。
汚れ係数R4 は、式(1)の右辺第四項であり、式(3)で定義される。
Figure 0004823043
図4に示すように、レイノルズ数が大きい、即ちガス流速が高いほど、伝熱管51に対するダストの熱抵抗を示す汚れ係数が低下するとの知見を得た。このことは、ガス化炉200で生成され、ガス化冷却器10,300内に導入された生成ガスの流速が大きいほど汚れ係数も低下し、伝熱管51にダストが付着しにくいことを意味している。 As a result of the gasification test, the present inventors have obtained the knowledge that the relationship between the Reynolds number (Re) and the fouling coefficient (R 4 ) can be arranged in a manner similar to general heat transfer characteristics. .
Here, the Reynolds number Re is defined by the ratio between the inertial force and the viscous force as shown in Equation (2).
Figure 0004823043
In equation (2), U: gas flow velocity [m / s], d o : outer diameter of heat transfer tube [m], vg: kinematic viscosity coefficient [m 2 / s] of gas.
The contamination coefficient R 4 is the fourth term on the right side of the equation (1) and is defined by the equation (3).
Figure 0004823043
As shown in FIG. 4, it was found that the greater the Reynolds number, that is, the higher the gas flow rate, the lower the fouling coefficient indicating the thermal resistance of dust to the heat transfer tube 51. This means that the greater the flow rate of the product gas generated in the gasification furnace 200 and introduced into the gasification coolers 10 and 300, the lower the fouling coefficient, and the less the dust adheres to the heat transfer tubes 51. ing.

しかし、上述した生成ガス流速には摩耗による上限があり、従って、汚れ係数の低減にも限界がある。即ち、汚れ係数の低減を可能にする生成ガスの流速UCR は、図4に示すレイノルズ数ReCR に相当する流速が限界となり、これ以上の高速で生成ガスを流すと、ダストの衝突により伝熱管51の摩耗が促進されるため好ましくない。
ここで、限界レイノルズ数ReCR は、式(4)で定義される。

Figure 0004823043
従って、熱交換器40としての熱回収効率を高効率に維持するためには、生成ガスの流速を上げるだけでは限界があるので、伝熱管51に上述した突起部60や被覆部70を設置することが有効となる。 However, the above-mentioned product gas flow rate has an upper limit due to wear, and therefore there is a limit to reducing the contamination coefficient. That is, the flow rate U CR of the product gas that enables the reduction of the contamination coefficient is limited by the flow rate corresponding to the Reynolds number Re CR shown in FIG. 4, and if the product gas is flowed at a higher speed than this, it is transmitted by the collision of dust. Since wear of the heat pipe 51 is promoted, it is not preferable.
Here, the critical Reynolds number Re CR is defined by equation (4).
Figure 0004823043
Therefore, in order to maintain the heat recovery efficiency as the heat exchanger 40 with high efficiency, there is a limit only by increasing the flow rate of the generated gas. Therefore, the above-described protrusion 60 and the covering part 70 are installed in the heat transfer tube 51. Is effective.

<第2の実施形態>
続いて、本発明の第2の実施形態を図9に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
図9に示すガス化冷却器10Aは、図7に示したガス化冷却器10と同様のリターンフロー型である。このガス化冷却器10Aは、煙道20A内に生成ガスを導入する導入流路コーナ部、煙道20A内から生成ガスを排出する排出流路コーナ部、及び煙道20A内で流れを仕切る隔壁30Aの流れ方向転換部のうち少なくともひとつのコーナ部に丸みを持たせた生成ガス流路を備えている。
<Second Embodiment>
Subsequently, a second embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the part similar to embodiment mentioned above, and the detailed description is abbreviate | omitted.
The gasification cooler 10A shown in FIG. 9 is a return flow type similar to the gasification cooler 10 shown in FIG. The gasification cooler 10A includes an introduction flow path corner portion for introducing a generated gas into the flue 20A, a discharge flow path corner portion for discharging the generated gas from the flue 20A, and a partition that partitions the flow in the flue 20A. A generated gas flow path is provided in which at least one corner portion of the 30A flow direction changing portion is rounded.

具体的に説明すると、図示しないガス化炉から生成ガスを第1煙道21Aに導入する第1煙道入口25となる導入ダクト流路コーナ部をR形状の丸みを持たせ、二次流れによるよどみ域を形成しないようにする。即ち、生成ガスの流れが第1煙道入口25付近のコーナ部で流れが曲がると、二次流れによるよどみ域を形成して、流れが変化する曲率半径の小さいコーナ部下流側の壁面付近によどみ域S1を生じることとなる。この結果、第1煙道入口25の周辺には、図中に示す速度分布Vdのように、よどみ域S1から離れた位置に平均流速より高流速の領域が形成される。高流速の領域では伝熱管51に衝突するダストの運動量も大きく、衝突時の摩耗量も大きいので、ダストの速度分布Vdに応じて摩耗速度は不均一となり、設計された熱交換器40の寿命が得られなくなる。   More specifically, the introduction duct flow path corner portion serving as the first flue inlet 25 for introducing the generated gas from the gasification furnace (not shown) into the first flue 21A is rounded and has a secondary flow. Try not to form a stagnation zone. That is, when the flow of the product gas is bent at the corner portion near the first flue inlet 25, a stagnation region due to the secondary flow is formed, near the wall surface on the downstream side of the corner portion where the curvature radius is small. A stagnation area S1 is produced. As a result, a region having a flow velocity higher than the average flow velocity is formed around the first flue inlet 25 at a position distant from the stagnation region S1, as shown by a velocity distribution Vd shown in the drawing. Since the momentum of the dust colliding with the heat transfer tube 51 is large and the wear amount at the time of the collision is large in the high flow velocity region, the wear rate becomes nonuniform according to the dust velocity distribution Vd, and the life of the designed heat exchanger 40 is increased. Cannot be obtained.

しかし、第1煙道入口25に適度な丸みを持たせることにより、上述した二次流れによるよどみ域の形成が防止または抑制されるので、速度分布Vdの速度差を均一化することができる。従って、伝熱管51に衝突するダストの速度分布が均一化するので、速度分布Vdに応じた摩耗進行の不均一を解消して設計された熱交換器40の寿命を得ることができる。
このように、生成ガス流路ダクトにR形状の丸みを設けて、二次流れによるよどみ領域の形成を防止または抑制することは、上述した第1煙道入口25の他にも、第2煙道22Aからチャー回収設備へ向けて生成ガスを排出する排出流路出口26付近の流路コーナ部、あるいは、煙道20A内で流れを仕切る隔壁30Aの流れ方向転換部となるためよどみ域S2を生じる折り返し部24Aにも同様に適用可能である。
However, since the formation of the stagnation region due to the secondary flow described above is prevented or suppressed by giving the first flue inlet 25 an appropriate roundness, the speed difference of the speed distribution Vd can be made uniform. Accordingly, since the velocity distribution of the dust colliding with the heat transfer tube 51 is made uniform, it is possible to obtain the life of the designed heat exchanger 40 by eliminating the non-uniform wear progression according to the velocity distribution Vd.
In this way, the R-shaped roundness is provided in the product gas passage duct to prevent or suppress the formation of the stagnation region due to the secondary flow, in addition to the first flue inlet 25 described above. The stagnation area S2 is formed because it becomes a flow path corner portion near the discharge flow channel outlet 26 that discharges the generated gas from the road 22A toward the char recovery facility, or a flow direction changing portion of the partition wall 30A that partitions the flow in the flue 20A. The same applies to the resulting folded portion 24A.

このようなR形状の丸みは、第1煙道入口25付近の流路コーナ部、第2煙道出口26付近の流路コーナ部、及びダウンフローに流れる第1煙道21Aからアップフローに流れる第2煙道22Aに流れ方向を転換させる折り返し部24A付近の全てに採用することが好ましいのであるが、いずれか一箇所のみに適用してもよい。なお、折り返し部24AのR形状の丸みは、隔壁30Aの下端部31に適度な丸み加工を施せばよい。
ところで、上述したR形状の丸みの曲率半径は、流路の内径Dを基準にすると、概ね1/10D〜2D程度とすることが好ましい。
なお、このようなR形状の丸みは、折り返し部24Aがないガス化冷却器300において、煙道入口近及び煙道出口付近に流路コーナ部がある場合も適用可能である。
Such R-shaped roundness flows up-flow from the flow path corner near the first flue inlet 25, the flow path corner near the second flue outlet 26, and the first flue 21A flowing down. Although it is preferable to employ it in the vicinity of the turn-around portion 24A that changes the flow direction to the second flue 22A, it may be applied to only one location. In addition, what is necessary is just to give moderate rounding to the lower end part 31 of the partition 30A for the roundness of R shape of the folding | turning part 24A.
By the way, it is preferable that the radius of curvature of the rounded R-shape described above is approximately 1 / 10D to 2D, based on the inner diameter D of the flow path.
Such rounded R shape is also applicable in the gasification cooler 300 without the folded portion 24A even when there are flow path corner portions near the flue inlet and near the flue outlet.

また、上述した二次流れによるよどみ領域の形成の影響により、第1煙道21Aに近い高ダスト濃度側の熱交換器(図9の例では蒸発器41A)ほどよどみ域の形成により低流速となる炉壁27側にダストが堆積しやすくなるので、ダスト堆積による熱抵抗の増加のため、計画された熱回収効率を得ることができない。
そこで、ダウンフローの流れとなる第1煙道21A側及びアップフローの流れとなる第2煙道22A側ともに、それぞれの煙道内の高流速部に熱交換器を配置することにより、熱交換器を圧損抵抗体として用いる。
Further, due to the influence of the formation of the stagnation region due to the secondary flow described above, the heat flow on the high dust concentration side closer to the first flue 21A (evaporator 41A in the example of FIG. 9) has a lower flow rate due to the formation of the stagnation region. Since dust tends to accumulate on the furnace wall 27 side, the planned heat recovery efficiency cannot be obtained due to an increase in thermal resistance due to dust accumulation.
Therefore, by arranging the heat exchangers at the high flow velocity portions in the respective flues on both the first flue 21A side that is the downflow flow and the second flue 22A side that is the upflow flow, Is used as a pressure loss resistor.

図9に示す例では、生成ガスのダスト濃度が最も高い第1煙道の入口にある蒸発器41Aを、速度分布Vdが平均流速より大きい場所に設置している。即ち、二次流れによるよどみ域の形成により速度分布Vdが小さい炉壁27付近のよどみ領域S1には蒸発器41Aを配置せず、炉壁27から適当な間隔Lを設けてこれを配置している。この結果、蒸発器41Aが圧損抵抗体として働き、下流側の二次スーパヒータ、一次スーパヒータでは均一な速度分布、即ち均一な熱負荷分布が得られ、計画された寿命を得ることができる。但し、圧損抵抗体として蒸発器41Aを用いる場合、ガス流速が局所的に高くなり、他の熱交換器より摩耗速度が高いことを考慮して、伝熱管の仕様を決める必要がある。   In the example shown in FIG. 9, the evaporator 41A at the entrance of the first flue where the dust concentration of the product gas is the highest is installed at a location where the velocity distribution Vd is larger than the average flow velocity. That is, the evaporator 41A is not disposed in the stagnation region S1 in the vicinity of the furnace wall 27 where the velocity distribution Vd is small due to the formation of the stagnation region by the secondary flow, and this is disposed at an appropriate interval L from the furnace wall 27. Yes. As a result, the evaporator 41A functions as a pressure loss resistor, and the secondary secondary heater and the primary superheater on the downstream side can obtain a uniform speed distribution, that is, a uniform heat load distribution, and a planned life can be obtained. However, when the evaporator 41A is used as the pressure loss resistor, it is necessary to determine the specifications of the heat transfer tube in consideration of the locally high gas flow rate and the higher wear rate than other heat exchangers.

上述した本発明によれば、蒸発器41等の熱交換器を形成する伝熱管51にダストが堆積することを防止または抑制できるので、ダストによる管群閉塞を防止してガス化冷却器10,10A,300の良好な熱回収効率を維持することができる。
また、蒸発器41等の熱交換器を形成する伝熱管51の耐久性を低下させる熱負荷の不均一性を解消することができるので、熱交換器及びこの熱交換器を構成要素とするガス化冷却器10,10a,300の耐久性を向上させることができる。
According to the above-described present invention, dust can be prevented or suppressed from accumulating on the heat transfer tubes 51 forming the heat exchanger such as the evaporator 41. Therefore, the gasification cooler 10, Good heat recovery efficiency of 10A, 300 can be maintained.
Moreover, since the nonuniformity of the heat load that reduces the durability of the heat transfer tube 51 forming the heat exchanger such as the evaporator 41 can be eliminated, the heat exchanger and the gas including the heat exchanger as a constituent element can be eliminated. The durability of the chemical cooler 10, 10a, 300 can be improved.

さらに、上述した第1の実施形態及び第2の実施形態は、相互の組み合わせにより熱回収効率の維持性能や耐久性向上の作用効果がより一層顕著になる。
なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
Furthermore, in the first embodiment and the second embodiment described above, the effect of maintaining the heat recovery efficiency and improving the durability become even more remarkable by mutual combination.
In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary of this invention, it can change suitably.

本発明のガス化冷却器に係る第1の実施形態を示す図で、突起部及び被覆部を備えた伝熱管の構成を示す断面図である。It is a figure which shows 1st Embodiment which concerns on the gasification cooler of this invention, and is sectional drawing which shows the structure of the heat exchanger tube provided with the projection part and the coating | coated part. 図1に示した被覆部の変形例を示す図で、(a)は第1変形例の板材を示す断面図、(b)は第2変形例の略三角形断面形状を示す断面図である。It is a figure which shows the modification of the coating | coated part shown in FIG. 1, (a) is sectional drawing which shows the board | plate material of a 1st modification, (b) is sectional drawing which shows the substantially triangular cross-sectional shape of a 2nd modification. 伝熱管の配置例を示す図で、(a)は碁盤目配置の例、(b)は千鳥配置の例である。It is a figure which shows the example of arrangement | positioning of a heat exchanger tube, (a) is an example of grid arrangement, (b) is an example of zigzag arrangement. レイノルズ数(Re)と汚れ係数(R4 )との関係を示す図である。Is a diagram showing the relationship between the Reynolds number (Re) and dirt coefficient (R 4). 石炭ガス化複合発電設備(IGCC)に用いられる石炭ガス化設備の概略構成図である。It is a schematic block diagram of the coal gasification facility used for a coal gasification combined cycle power plant (IGCC). ガス化冷却器の概略構成図である。It is a schematic block diagram of a gasification cooler. リターンフロー型としたガス化冷却器の概略構成図である。It is a schematic block diagram of the gasification cooler made into the return flow type. 図7に示したガス化冷却器の横断面図である。It is a cross-sectional view of the gasification cooler shown in FIG. 本発明のガス化冷却器に係る第2の実施形態として、リターンフロー型のガス化冷却器を示す概略構成図である。It is a schematic block diagram which shows a return flow type gasification cooler as 2nd Embodiment which concerns on the gasification cooler of this invention.

符号の説明Explanation of symbols

10,10A,300 ガス化冷却器
51 伝熱管
60 突起部
70 被覆部(二次流れ抑制手段)
71 板材(二次流れ抑制手段)
72 中実被覆部(二次流れ抑制手段)
20,20A,301 煙道
24,24A 折り返し部
25 第1煙道入口
26 第2煙道出口
10, 10A, 300 Gasification cooler 51 Heat transfer tube 60 Projection part 70 Cover part (secondary flow suppression means)
71 Plate material (secondary flow suppression means)
72 Solid coating part (secondary flow control means)
20, 20A, 301 Flue 24, 24A Turn-up part 25 First flue inlet 26 Second flue outlet

Claims (3)

ガス化炉から導入した生成ガスを流す煙道が圧力容器内に形成され、前記煙道内に設置した伝熱管の内部を流す流体と前記生成ガスとの間で熱交換させる熱交換器であって、
前記伝熱管の上流側に設けた中実で三角形断面の突起部と、前記伝熱管の後流側に設けた中実で略矩形断面の二次流れ抑制手段とを備えていることを特徴とする熱交換器。
A heat exchanger in which a flue through which a product gas introduced from a gasification furnace flows is formed in a pressure vessel, and heat is exchanged between the fluid flowing through a heat transfer pipe installed in the flue and the product gas. ,
A solid triangular section protrusion provided on the upstream side of the heat transfer tube, and a solid and substantially rectangular cross section secondary flow suppression means provided on the downstream side of the heat transfer tube, Heat exchanger.
前記煙道内に高温ガスを導入する導入流路コーナ部、前記煙道内から生成ガスを排出する排出流路コーナ部、及び前記煙道内で上下方向の流れを仕切る隔壁の流れ方向転換部のうち少なくともひとつR形状に丸みを持たせた生成ガス流路を備え、前記R形状の丸みの曲率半径が、流路の内径Dを基準にして1/10D〜2Dに設定されていることを特徴とする請求項1に記載の熱交換器。 At least one of an introduction flow path corner portion for introducing a high temperature gas into the flue, a discharge flow passage corner portion for discharging a generated gas from the flue, and a flow direction changing portion of a partition wall that partitions a vertical flow in the flue. One is provided with a product gas flow path having a rounded R shape, and the radius of curvature of the rounded R shape is set to 1 / 10D to 2D with reference to the inner diameter D of the flow path. The heat exchanger according to claim 1 . 前記煙道内を流れる生成ガスの高流速部に前記伝熱管の管群を配置したことを特徴とする請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein a tube group of the heat transfer tubes is arranged at a high flow velocity portion of the product gas flowing in the flue.
JP2006333663A 2006-12-11 2006-12-11 Heat exchanger Expired - Fee Related JP4823043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333663A JP4823043B2 (en) 2006-12-11 2006-12-11 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006333663A JP4823043B2 (en) 2006-12-11 2006-12-11 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2008145061A JP2008145061A (en) 2008-06-26
JP4823043B2 true JP4823043B2 (en) 2011-11-24

Family

ID=39605438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333663A Expired - Fee Related JP4823043B2 (en) 2006-12-11 2006-12-11 Heat exchanger

Country Status (1)

Country Link
JP (1) JP4823043B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9541289B2 (en) 2011-07-14 2017-01-10 Mitsubishi Hitachi Power Systems, Ltd. Gas cooler, gasification furnace, and integrated gasification combined cycle for carbon-containing fuel
JP5575342B1 (en) 2014-02-03 2014-08-20 三菱重工業株式会社 Gasification furnace cooling structure, gasification furnace, and method for expanding annulus part of gasification furnace

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821197B2 (en) * 1977-05-31 1983-04-27 三菱重工業株式会社 Damping mechanism of finned tube
JPS6043802U (en) * 1983-08-31 1985-03-28 三菱重工業株式会社 Exhaust heat recovery boiler
JPS6252702U (en) * 1985-09-11 1987-04-02
JP2005003266A (en) * 2003-06-12 2005-01-06 Mitsubishi Heavy Ind Ltd Stationary type soot blower for coal gasification device
JP4599291B2 (en) * 2005-01-07 2010-12-15 三菱重工業株式会社 Pressurized high temperature gas cooler

Also Published As

Publication number Publication date
JP2008145061A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP6504520B2 (en) Combustion device
JP6255011B2 (en) Heat transfer tube in fluidized bed boiler and fluidized bed boiler
CN209945071U (en) Baffle plate heat exchanger with adjustable pitch
JP4823043B2 (en) Heat exchanger
JP4180935B2 (en) Heat exchanger and hot water heater
KR100993035B1 (en) Wrinkle pipe and heat exchanger of including the same
JP2008292059A (en) Heat exchanger and water heater
JP2023114164A (en) Heat exchanger
JP7311655B2 (en) Heat exchanger
JP7025521B1 (en) Heat exchanger
JP4616713B2 (en) Round exhaust heat boiler can structure
JP4565316B2 (en) Heat source equipment
US20150323222A1 (en) Heat Exchanger Device and System Technologies
JPH0615949B2 (en) Raw gas / pure gas heat exchanger
JP5844021B1 (en) Fluidized bed heat exchanger
JP7202851B2 (en) HEAT EXCHANGER, BOILER INCLUDING THE SAME, AND HEAT EXCHANGE METHOD
CN107246813A (en) Tubular heat exchange device
JP2963586B2 (en) Steam generator
JPS608320Y2 (en) Shell-and-tube heat exchanger
EP2600092A1 (en) Vertical heat exchanger
JP3805895B2 (en) 4-pass multi-tube boiler
KR100974432B1 (en) Water-cooled cyclone for circulating fluidized bed boilers
JP2007032985A (en) Boiler having heat transfer tube with heat absorbing fin
JP2022117579A (en) Heat exchanger and flue gas treatment system
CN114152119A (en) Wave graphite fin heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

R151 Written notification of patent or utility model registration

Ref document number: 4823043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees