JP2963586B2 - Steam generator - Google Patents

Steam generator

Info

Publication number
JP2963586B2
JP2963586B2 JP4254668A JP25466892A JP2963586B2 JP 2963586 B2 JP2963586 B2 JP 2963586B2 JP 4254668 A JP4254668 A JP 4254668A JP 25466892 A JP25466892 A JP 25466892A JP 2963586 B2 JP2963586 B2 JP 2963586B2
Authority
JP
Japan
Prior art keywords
heat transfer
spiral
steam generator
transfer tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4254668A
Other languages
Japanese (ja)
Other versions
JPH06109202A (en
Inventor
潤 柏倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4254668A priority Critical patent/JP2963586B2/en
Publication of JPH06109202A publication Critical patent/JPH06109202A/en
Application granted granted Critical
Publication of JP2963586B2 publication Critical patent/JP2963586B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱交換器に係り、特に
液体金属高速増殖炉の蒸気発生器に使用するに好適な熱
交換器の胴側流体の整流構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger and, more particularly, to a body side fluid rectification structure of a heat exchanger suitable for use in a steam generator of a liquid metal fast breeder reactor.

【0002】[0002]

【従来の技術】従来の高速増殖炉用大型蒸気発生器の構
造例のうちヘリカルコイル型を図5に、直管型を図6に
示す。
2. Description of the Related Art FIG. 5 shows a helical coil type and FIG. 6 shows a straight tube type of a conventional large steam generator for a fast breeder reactor.

【0003】図5のヘリカルコイル型蒸気発生器1にお
いては、加熱媒体である胴側流体としての高温の液体金
属ナトリウムは、蒸気発生器の胴2上部に設けられたナ
トリウム入口ノズル3を経て、蒸気発生器の胴2内に流
入する。このナトリウムは、円筒状の内筒4と外筒5で
囲まれたアニュラス空間に複数の伝熱管6がヘリカルコ
イル状に巻き上げられて構成されるヘリカルコイル管束
部7の管外側を下降し、ナトリウム出口ノズル8より胴
2外へ流出する。
In the helical coil type steam generator 1 shown in FIG. 5, high-temperature liquid metal sodium as a body side fluid as a heating medium passes through a sodium inlet nozzle 3 provided on the upper part of the body 2 of the steam generator. It flows into the body 2 of the steam generator. This sodium descends on the outside of the helical coil tube bundle 7 formed by winding a plurality of heat transfer tubes 6 in a helical coil shape in an annulus space surrounded by a cylindrical inner cylinder 4 and an outer cylinder 5, It flows out of the body 2 from the outlet nozzle 8.

【0004】一方、給水は、胴2下方に設けられた給水
入口ノズル9より給水入口室10に流入し、複数の伝熱
管6内に導かれ、ヘリカルコイル管束部7を上昇する。
この時、低温で流入した給水は、伝熱管6外を流れる高
温のナトリウムと熱交換し、予熱、沸騰、過熱され、高
温高圧の過熱蒸気となって蒸気出口室11に至り、蒸気
出口ノズル12からタ−ビン(図示せず)へ送られる。
On the other hand, the water supply flows into a water supply inlet chamber 10 from a water supply inlet nozzle 9 provided below the body 2, is guided into a plurality of heat transfer tubes 6, and rises up the helical coil tube bundle 7.
At this time, the feedwater that has flowed in at a low temperature exchanges heat with the high-temperature sodium flowing outside the heat transfer tube 6, is preheated, boiled, and superheated, becomes high-temperature and high-pressure superheated steam, reaches the steam outlet chamber 11, and reaches the steam outlet nozzle 12 To a turbine (not shown).

【0005】図6の直管型蒸気発生器は、複数の直管の
伝熱管6の両開口端が給水入口管板19又は管寄せと蒸
気出口管板又は管寄せ20に接続されており、この給水
入口管板19部に給水入口室10、蒸気出口管板20部
に蒸気出口室11が設置され、直管の管束群7の外側に
胴2が設置され、給水入口管板19と蒸気出口管板20
に接続して、胴側流体の流路を構成している。ヘリカル
コイル型蒸気発生器1と同様に、加熱媒体である高温の
液体金属ナトリウムは、直管型蒸気発生器の胴2上部に
設けられたナトリウム入口ノズル3を経て蒸気発生器1
の胴2内に流入し、複数の直管伝熱管6と胴2から構成
される管束流路を下降し、ナトリウム出口ノズル8より
胴外へ流出する。
In the straight tube type steam generator shown in FIG. 6, both open ends of a plurality of straight tube heat transfer tubes 6 are connected to a feed water inlet tube plate 19 or header and a steam outlet tube plate or header 20, respectively. A water supply inlet chamber 10 is provided in this water supply inlet tube sheet 19, a steam outlet chamber 11 is provided in a steam outlet tube sheet 20 part, and a body 2 is provided outside the tube bundle group 7 of straight pipes. Outlet tube sheet 20
To form a flow path for the body-side fluid. Like the helical coil type steam generator 1, high temperature liquid metal sodium as a heating medium passes through a sodium inlet nozzle 3 provided on the upper part of the body 2 of the straight tube type steam generator, and the steam generator 1
And flows down the tube bundle flow path composed of the plurality of straight tube heat transfer tubes 6 and the body 2, and flows out of the body from the sodium outlet nozzle 8.

【0006】一方、給水は、胴2下端に設けられた給水
入口室10から給水入口管板19を介して、複数の伝熱
管6内に導かれ、直管束部を上昇し、伝熱管6外を流れ
る高温のナトリウムと熱交換して、予熱、沸騰、過熱さ
れ、高温高圧の過熱蒸気となって蒸気出口管板20で集
合された後、蒸気出口室11に至り、蒸気出口ノズル1
2からタ−ビン(図示せず)へ送られる。
On the other hand, the water supply is guided from the water supply inlet chamber 10 provided at the lower end of the body 2 to the plurality of heat transfer tubes 6 via the water supply inlet tube plate 19, rises up the straight tube bundle portion, and is outside the heat transfer tubes 6. Exchanges heat with the high-temperature sodium flowing through the pipe, is preheated, boiled, and superheated, becomes high-temperature and high-pressure superheated steam, is collected at the steam outlet tube sheet 20, and then reaches the steam outlet chamber 11, where the steam outlet nozzle 1
2 to a turbine (not shown).

【0007】ところで、高速増殖炉の蒸気発生器1の水
側流動方式のうち貫流方式については、分離型と一体型
がある。分離型は、上述の蒸気発生器1と同様構造の蒸
発器と過熱器が分離して構成され、蒸発器は、給水をナ
トリウムにより加熱して、飽和蒸気または若干の過熱度
を有する過熱蒸気を生成し、過熱器は、蒸発器で生成し
た蒸気をさらに高温のナトリウムで加熱して高温の過熱
蒸気を生成する。一方、一体型は、単体で給水を高温の
ナトリウムで加熱し、直接高温高圧の過熱蒸気を生成す
るものである。
[0007] Among the water-side flow systems of the steam generator 1 of the fast breeder reactor, the through-flow system includes a separated type and an integrated type. The separation type is configured such that an evaporator and a superheater having the same structure as the above-described steam generator 1 are separated, and the evaporator heats feed water with sodium to produce saturated steam or superheated steam having a slight degree of superheat. The generated superheater further heats the steam generated in the evaporator with hot sodium to generate hot superheated steam. On the other hand, the integrated type heats feedwater with high-temperature sodium by itself and directly generates high-temperature, high-pressure superheated steam.

【0008】このような蒸気発生器1構造において、胴
側流体の偏流発生は、蒸気発生器1の性能が低下するこ
とだけでなく、蒸気出口部での局所的な温度分布を引き
起こして、部材の構造健全性を損なうこと等の不具合発
生の原因となる。
[0008] In such a steam generator 1 structure, the drift generation of the body side fluid not only causes the performance of the steam generator 1 to deteriorate, but also causes a local temperature distribution at the steam outlet portion, and Causes the occurrence of defects such as impairing the structural integrity of the vehicle.

【0009】そのため、従来の蒸気発生器1では以下の
対策を採ってきた。
Therefore, the following measures have been taken in the conventional steam generator 1.

【0010】直管型蒸気発生器では、ヘリカルコイル型
蒸気発生器に比べて、管束部7での整流効果が小さいこ
とから、偏流抑制のために、管束部7に一定間隔でじゃ
ま板16を設置しており、管束部7長さの長い一体貫流
型でも適切な間隔でじゃま板16を設置することで対応
を図っている。また、構造上の制限により、伝熱管6を
配置することができない外筒近傍の領域には、ダミ−管
17を設置し、外筒5とその近傍の伝熱管6で形成され
る過大な間隙をなくして無効流れの防止を図っている
が、管束7全体に対する整流作用は無く、上述のじゃま
板16にて胴側流体の整流、もしくは混合を図ってい
る。
In the straight tube type steam generator, since the rectifying effect in the tube bundle 7 is smaller than that in the helical coil type steam generator, the baffle plate 16 is attached to the tube bundle 7 at regular intervals to suppress drift. The baffle plate 16 is installed at an appropriate interval even in the case of an integral flow-through type having a long length of the tube bundle 7 to cope with the problem. In addition, a dummy tube 17 is provided in a region near the outer cylinder where the heat transfer tube 6 cannot be disposed due to structural limitations, and an excessive gap formed by the outer tube 5 and the heat transfer tube 6 in the vicinity thereof is provided. However, there is no rectification effect on the entire tube bundle 7, and the baffle plate 16 rectifies or mixes the body side fluid.

【0011】一方、ヘリカルコイル型蒸気発生器では、
各伝熱管6がヘリカルコイル状に巻き上げられるため
に、ナトリウムの流れ方向に対し、ほぼ直角となってお
り、管束部自体が、一様な抵抗体の機能、すなわち整流
機能を有しており、追加の対策として、ナトリウム分配
装置の構造適切化、管束上方への整流装置設置が対策と
して検討されてきた。
On the other hand, in a helical coil type steam generator,
Since each heat transfer tube 6 is wound up in a helical coil shape, it is substantially perpendicular to the flow direction of sodium, and the tube bundle itself has a uniform resistor function, that is, a rectifying function. As additional measures, the optimization of the structure of the sodium distribution device and the installation of a rectifier above the tube bundle have been studied as countermeasures.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、一体貫
流型の蒸気発生器1の場合には、分離貫流型と比較し
て、管束7長さがより長いため偏流発生のポテンシャル
が高く、かつ、単体で大きな過熱度の蒸気を生成するこ
とから、以下の傾向がある。
However, in the case of the integral once-through type steam generator 1, the tube bundle 7 has a longer length than the separated once-through type, so that the potential for the occurrence of drift is high, and The following tendency tends to be generated because the steam having a large degree of superheat is generated by the method.

【0013】 出口蒸気の過熱度が分離型に比べ大き
く、過熱度が大きいと水が振動しやすいという公知の現
象から、水側の不安定流動発生のポテンシャルが高い。
[0013] From the well-known phenomenon that the superheat degree of the outlet steam is larger than that of the separation type and that the water tends to oscillate if the superheat degree is large, the potential of the unstable flow generation on the water side is high.

【0014】 蒸気発生器1起動時においては、水側
出口はナトリウムにより加熱され、水単相から2相状
態、過熱蒸気となるが、出口蒸気の過熱度が大きいこと
から、各伝熱管6の出口で2相状態から過熱蒸気への移
行時期にずれが生じると管板部に大きな温度差が発生
し、構造健全性にインパクトを与える可能性がある。
When the steam generator 1 is started, the water-side outlet is heated by sodium and changes from a single-phase water to a two-phase state and superheated steam. However, since the degree of superheat of the outlet steam is large, each of the heat transfer tubes 6 If the shift from the two-phase state to the superheated steam occurs at the outlet, a large temperature difference occurs in the tube sheet, which may have an impact on structural integrity.

【0015】直管型蒸気発生器での対応としては、管束
部8でのじゃま板16の追加や、ナトリウムがじゃま板
16を通過するためのフロ−ホ−ル18の配置を工夫し
てナトリウムをジグザグ流れとして混合を促進する手法
が採られる。
As a countermeasure for the straight tube type steam generator, a baffle plate 16 is added at the tube bundle portion 8 and a flow hole 18 for passing sodium through the baffle plate 16 is devised to improve the sodium content. Is adopted as a zigzag flow to promote mixing.

【0016】一方、ヘリカルコイル型では、胴側流体の
偏流を抑制する方策として、伝熱管6の配列間隔を小さ
くし、胴側流路面積を削減して、流動抵抗を増加させる
方法が考えられるが、万一のナトリウム−水反応事故を
考慮すると、伝熱管6間隔の縮小は、ナトリウム−水反
応による損傷規模の拡大を招くために、伝熱管6の配列
間隔の縮小は安全性の観点からの制限がある。また、ヘ
リカルコイル管束7内部に、じゃま板16等の従来構造
の整流装置を取付けることは構造的に難しい。そのた
め、長尺の管束7部内の直接のナトリウム整流装置につ
いては検討されていなかった。
On the other hand, in the helical coil type, as a measure for suppressing the drift of the body-side fluid, a method of reducing the arrangement interval of the heat transfer tubes 6, reducing the area of the body-side flow path, and increasing the flow resistance can be considered. However, in consideration of a sodium-water reaction accident, a reduction in the interval between the heat transfer tubes 6 causes an increase in the scale of damage caused by the sodium-water reaction. There are restrictions. Further, it is structurally difficult to mount a rectifier having a conventional structure such as a baffle plate 16 inside the helical coil tube bundle 7. Therefore, a direct sodium rectifier in 7 parts of a long tube bundle has not been studied.

【0017】本発明の第一の目的は、管束7が長尺で、
かつ出口蒸気の過熱度が大きな一体貫流方式のヘリカル
コイル型蒸気発生器の胴側流体の偏流を最大限に抑え、
性能、構造健全性を確保することにある。
A first object of the present invention is that the tube bundle 7 is long,
In addition, it minimizes the drift of the body side fluid of the helical coil type steam generator of the integral once-through type with a large degree of superheat of the outlet steam,
Performance and structural integrity.

【0018】本発明の第二の目的は、胴側流路の一様性
を図り、整流効果を向上させることにある。
A second object of the present invention is to improve uniformity of the body-side flow path and improve the rectification effect.

【0019】[0019]

【課題を解決するための手段】本発明の第一の手段は、
上記第一の目的を達成するために、被加熱媒体が内部を
流れる複数の伝熱管が一定の径の螺旋状層に形成され、
さらに該螺旋状層の外側または内側に他の複数の伝熱管
が巻き上げられた螺旋状層が同心状に組み合わされた伝
熱管群と、該伝熱管群の端部が接続される管寄せと、該
螺旋状の伝熱管群の螺旋中心に同心に設置された円筒形
状の内筒と、該螺旋状伝熱管群の外側に同心に設置され
た外筒と、該外筒を内包する胴からなる蒸気発生器にお
いて、該伝熱管群の軸直角方向の1断面または複数断面
において隣合う該螺旋状層で囲まれた胴側流路毎に螺旋
状層と平行に該管束軸方向に抵抗体が設置されることを
特徴とするものである。
The first means of the present invention is as follows.
In order to achieve the first object, a plurality of heat transfer tubes through which the medium to be heated flows are formed in a spiral layer having a constant diameter,
Further, a heat transfer tube group in which spiral layers in which a plurality of other heat transfer tubes are wound outside or inside the spiral layer are concentrically combined, and a header to which the ends of the heat transfer tube group are connected, It comprises a cylindrical inner cylinder installed concentrically at the center of the spiral of the spiral heat transfer tube group, an outer cylinder installed concentrically outside the spiral heat transfer tube group, and a body enclosing the outer cylinder. In the steam generator, in one or more cross sections in the direction perpendicular to the axis of the heat transfer tube group, a resistor is provided in the tube bundle axial direction in parallel with the helical layer for each body-side flow path surrounded by the helical layer adjacent thereto. It is characterized by being installed.

【0020】さらに第二の手段は、上記第2の目的を達
成するために、上記第一の手段において、隣合う該螺旋
状層の相互に隣合う該螺旋状伝熱管で構成される胴側流
体の流路領域毎に、隣合う各螺旋状層の曲率の中間の曲
率で、該螺旋状伝熱管と同一の傾斜角度を有する抵抗体
が、螺旋状層と平行に設置されることを特徴とするもの
である。
In order to achieve the second object, the second means is the above-mentioned first means, wherein the body is constituted by the spiral heat transfer tubes adjacent to each other of the spiral layers adjacent to each other. A resistor having the same inclination angle as that of the spiral heat transfer tube at an intermediate curvature between the curvatures of the adjacent spiral layers for each fluid flow path region is installed in parallel with the spiral layer. It is assumed that.

【0021】[0021]

【作用】上記第一の手段によれば、ヘリカルコイル管束
7部内の所定の領域の胴側流体の流路面積を小さくでき
るので、本領域では胴側流体の流速が増加して、胴側流
体側圧力損失値が増大する。このため、本領域の上流側
で生じた偏流による動圧分布は緩和され、整流されるこ
とになる。
According to the first means, the flow area of the body-side fluid in a predetermined area in the helical coil tube bundle 7 can be reduced. The side pressure loss value increases. For this reason, the dynamic pressure distribution due to the drift generated on the upstream side of the region is reduced and rectified.

【0022】上記第二の手段によれば、ヘリカルコイル
管束7断面の胴側流体の流路形状の一様化を図ることが
でき、整流効果を増大させることができる。
According to the second means, the flow path shape of the body-side fluid in the cross section of the helical coil tube bundle 7 can be made uniform, and the rectifying effect can be increased.

【0023】[0023]

【実施例】図1に本発明の1実施例を示す。図1の部材
で図5と同一部材には、同一符号を付す。また、後述の
図2に示される伝熱管支持装置15は、便宜上図示を省
略する。本図は、胴側流体としてのナトリウムと水の熱
交換を行うヘリカルコイル型蒸気発生器1に、本発明を
適用した場合のヘリカルコイル管束部7の(a)水平方
向断面と(b)軸方向断面を示すものである。各伝熱管
6は、各ヘリカルコイル層内において軸方向に等ピッチ
で巻き上げられている。また、伝熱管6の蒸気発生器径
方向ピッチ、すなわち同心状に設置された各ヘリカルコ
イル層の間隔は一定となっている。本実施例では、この
ヘリカルコイル管束7部の高さ方向中段において、各ヘ
リカルコイル層間のアニュラス空間部である胴側流路毎
に、伝熱管と接しないように各ヘリカルコイル層と同心
に板状の流動抵抗体13を設けている。抵抗体13は、
隣り合う螺旋状層の曲率の中間の曲率とされ、すなわ
ち、隣り合う螺旋状層の径の中間の曲率径を有する。
FIG. 1 shows an embodiment of the present invention. 1 which are the same as those in FIG. 5 are denoted by the same reference numerals. Further, a heat transfer tube support device 15 shown in FIG. 2 described below is not shown for convenience. This figure shows the (a) horizontal cross section and (b) axis of the helical coil tube bundle 7 when the present invention is applied to the helical coil type steam generator 1 that performs heat exchange between sodium and water as the body side fluid. FIG. Each heat transfer tube 6 is wound up at a constant pitch in the axial direction in each helical coil layer. The pitch of the heat transfer tubes 6 in the radial direction of the steam generator, that is, the interval between the helical coil layers installed concentrically is constant. In the present embodiment, in the middle part of the helical coil tube bundle in the height direction, a plate is provided concentrically with each helical coil layer so as not to be in contact with the heat transfer tube for each body side flow path which is an annulus space between the helical coil layers. Flow resistor 13 is provided. The resistor 13 is
It has a curvature that is intermediate between the curvatures of the adjacent spiral layers, that is, a curvature diameter that is intermediate between the diameters of the adjacent spiral layers.

【0024】本領域にナトリウムが流れる場合、本領域
のナトリウム側流路面積が抵抗体13を設置していない
領域よりも小さいため、ナトリウムの流速は増大し、本
領域内での軸方向単位長さ当りのナトリウム側圧力損失
値は、他の領域よりも大きくなる。そのため、本領域の
上流側で偏流が生じた場合、ナトリウム速度分布に対応
した動圧分布は、本領域に流入後、平坦化され、ナトリ
ウム流れは整流される。また、伝熱管6一本当りのナト
リウム流路面積も等しい割合で小さくなっているので、
整流後、各伝熱管6にて、等しいナトリウムと水の流量
割合で熱交換がなされ、その結果、蒸気発生器1の各伝
熱管6の蒸気出口は均一となる。
When sodium flows in this region, the sodium flow path area in this region is smaller than that in the region where the resistor 13 is not provided, so that the flow velocity of sodium increases, and the unit length in the axial direction in this region is increased. The per-sodium pressure drop value is greater than in other regions. Therefore, when a drift occurs on the upstream side of the region, the dynamic pressure distribution corresponding to the sodium velocity distribution flows into the region, is flattened, and the sodium flow is rectified. Also, since the sodium flow path area per heat transfer tube 6 is also reduced at an equal rate,
After the rectification, heat exchange is performed in each heat transfer tube 6 at an equal flow rate of sodium and water, and as a result, the steam outlet of each heat transfer tube 6 of the steam generator 1 becomes uniform.

【0025】図2は、本実施例の抵抗体13を取付けた
ヘリカルコイル管束7部の上面図である。各伝熱管は、
内筒4と外筒5のアニュラス部すなわち胴側流路に放射
状に設置された伝熱管支持装置15で支持されており、
伝熱管支持装置15により胴側流路であるナトリウム流
路は扇型に分割されている。伝熱管支持装置15は、公
知のように放射方向又は半径方向に、分解組立自在とな
っていて、各層の伝熱管を支持可能となっている。抵抗
体13は、図3(a)に示す如く、ナトリウム流路分割
数と同数に分割されており、その両側部は伝熱管支持装
置15に溶接、ボルト止め、嵌合等の手段を用いてヘリ
カルコイル層と平行に取付けられる。なお、抵抗体13
の管束支持装置15への取付け構造に関しては、蒸気発
生器1運転時における伝熱管6と抵抗体13の熱膨張差
を吸収するために片側を溝に嵌めあわせた所謂シアキ−
構造の如き摺動可能な構構とすることもあるが、本発明
の一実施例であることにかわりはない。
FIG. 2 is a top view of the helical coil tube bundle 7 to which the resistor 13 of this embodiment is attached. Each heat transfer tube
An annulus portion of the inner cylinder 4 and the outer cylinder 5, that is, supported by a heat transfer tube support device 15 radially installed in the body side flow path,
The sodium flow path, which is the body-side flow path, is divided into a fan shape by the heat transfer tube support device 15. The heat transfer tube supporting device 15 can be disassembled and disassembled in a radial direction or a radial direction as is known, and can support the heat transfer tubes of each layer. As shown in FIG. 3A, the resistor 13 is divided into the same number as the number of divided sodium channels, and both sides of the resistor 13 are connected to the heat transfer tube support device 15 by means of welding, bolting, fitting, or the like. Mounted parallel to the helical coil layer. The resistor 13
Is attached to the tube bundle supporting device 15 in order to absorb the difference in thermal expansion between the heat transfer tube 6 and the resistor 13 when the steam generator 1 is operated.
Although a slidable structure such as a structure may be used, it is not limited to an embodiment of the present invention.

【0026】図4は、本発明の他の実施例を示す。本図
は、図1で示した発明の抵抗体13を、複数に分割し、
それぞれ同一の棒形状としたものであり、さらに分割し
た各抵抗体14を隣合うヘリカルコイル層の隣合う4本
の伝熱管6で囲まれた領域の中央部ごとにヘリカルコイ
ル伝熱管6と平行に、かつ同一の傾斜角で抵抗体14を
設置したものである。本実施例では、抵抗体14設置領
域の流路断面を一様にして、さらにナトリウム側流動の
均一化を図っている。なお、図2、及び図3(b)に示
すように、本実施例の抵抗体14もナトリウム流路分割
数と同数に分割されており、その両側部は伝熱管支持装
置15に溶接、ボルト止め、嵌合等の手段を用いてヘリ
カルコイル層と平行に取付けられる。前記各実施例で
は、ヘリカルコイル管束7部内の一領域に抵抗体13、
14を設置したが、管束7高さに対応して、複数領域に
抵抗体13、14を設置する。
FIG. 4 shows another embodiment of the present invention. This figure divides the resistor 13 of the invention shown in FIG.
Each of the resistors 14 has the same rod shape, and each of the divided resistors 14 is parallel to the helical coil heat transfer tube 6 at each central portion of a region surrounded by four adjacent heat transfer tubes 6 of the adjacent helical coil layer. And the resistor 14 is installed at the same inclination angle. In the present embodiment, the flow path cross section in the resistor 14 installation area is made uniform, and the flow on the sodium side is further made uniform. As shown in FIGS. 2 and 3 (b), the resistor 14 of this embodiment is also divided into the same number as the number of divided sodium channels, and both sides thereof are welded to the heat transfer tube supporting device 15 by bolts. The helical coil layer is attached in parallel with the helical coil layer by means such as stop and fitting. In each of the above embodiments, the resistor 13 is provided in one region in the helical coil tube bundle 7 part.
Although 14 is installed, resistors 13 and 14 are installed in a plurality of regions corresponding to the height of the tube bundle 7.

【0027】[0027]

【発明の効果】請求項1の発明によれば、ヘリカルコイ
ル型蒸気発生器のヘリカルコイル管束部内の所定の領域
の胴側流体の流路面積を小さくできるので、本領域にお
ける胴側流体の流速が増加して、胴側流体側圧力損失値
が増大する。このため、本領域の上流側で偏流が生じた
場合の胴側動圧分布は本領域への流入とともに緩和さ
れ、胴側流体の流れは整流されることになる。
According to the first aspect of the present invention, the flow area of the body-side fluid in a predetermined region in the helical coil tube bundle of the helical coil type steam generator can be reduced, so that the flow rate of the body-side fluid in this region is reduced. And the body-side fluid-side pressure loss value increases. For this reason, the body-side dynamic pressure distribution in the case where a drift occurs upstream of this region is reduced with the inflow into the region, and the flow of the body-side fluid is rectified.

【0028】請求項2の発明によれば、ヘリカルコイル
管束断面の胴側流体の流路形状の一様化を図ることがで
き、整流効果を増大させることができる。
According to the second aspect of the present invention, the shape of the flow path of the body-side fluid in the cross section of the helical coil tube bundle can be made uniform, and the rectifying effect can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のヘリカルコイル型蒸気発生
器において(a)は、管束部の水平方向断面図、(b)
は、軸方向断面図である。
FIG. 1A is a horizontal sectional view of a tube bundle in a helical coil type steam generator according to one embodiment of the present invention, and FIG.
Is an axial sectional view.

【図2】本発明の一実施例のヘリカルコイル型蒸気発生
器の管束部を上方から見た部分図である。
FIG. 2 is a partial view of the tube bundle of the helical coil type steam generator according to one embodiment of the present invention as viewed from above.

【図3】本発明の一実施例の抵抗体形状を示す図で、
(a)は、板状を示し、(b)は、棒状を示す図であ
る。
FIG. 3 is a diagram showing a resistor shape according to an embodiment of the present invention;
(A) is a figure which shows plate shape, (b) is a figure which shows rod shape.

【図4】本発明の一実施例のヘリカルコイル型蒸気発生
器において(a)は、管束部の一部分を、水平断面をと
って上斜め方向から見た斜視図、(b)は、軸方向断面
図である。
4A is a perspective view of a part of a tube bundle in a helical coil type steam generator according to an embodiment of the present invention, taken in a horizontal cross section and viewed obliquely from above, and FIG. It is sectional drawing.

【図5】従来のヘリカルコイル型蒸気発生器の軸方向断
面図である。
FIG. 5 is an axial sectional view of a conventional helical coil type steam generator.

【図6】従来の直管型蒸気発生器の軸方向断面図であ
る。
FIG. 6 is an axial sectional view of a conventional straight tube steam generator.

【符号の説明】[Explanation of symbols]

1…蒸気発生器 2…胴 3…ナトリウム入口ノズル 4…内筒 5…外筒 6…伝熱管 7…管束部 8…ナトリウム出
口ノズル 9…給水入口ノズル 10…給水入口室 11…蒸気出口室 12…蒸気出口ノ
ズル 13…抵抗体 14…抵抗体(分
割) 15…伝熱管支持装置 16…じゃま板 17…ダミ−管 18…フロ−ホ−
ル 19…給水入口管板 20…蒸気出口管
DESCRIPTION OF SYMBOLS 1 ... Steam generator 2 ... Body 3 ... Sodium inlet nozzle 4 ... Inner cylinder 5 ... Outer cylinder 6 ... Heat transfer tube 7 ... Tube bundle part 8 ... Sodium outlet nozzle 9 ... Water supply inlet nozzle 10 ... Water supply inlet room 11 ... Steam outlet room 12 ... Steam outlet nozzle 13 ... Resistor 14 ... Resistor (division) 15 ... Heat transfer tube support device 16 ... Baffle plate 17 ... Dummy tube 18 ... Flow-ho
Le 19: Feed water inlet tube sheet 20: Steam outlet tube sheet

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被加熱媒体が内部を流れる複数の伝熱管
が一定の径の螺旋状層に形成され、さらに該螺旋状層の
外側または内側に他の複数の伝熱管が巻き上げられた螺
旋状層が同心状に組み合わされた螺旋状の伝熱管群と、
該伝熱管群の端部が接続される管寄せと、該螺旋状の伝
熱管群の螺旋中心に同心に設置された円筒形状の内筒
と、該伝熱管群の外側に同心に設置された外筒と、前記
内筒、伝熱管及び外筒を内包する胴からなる蒸気発生器
において、該伝熱管群の軸直角方向の1断面または複数
断面において隣合う該螺旋状層で囲まれた胴側流路毎に
螺旋状層と平行に該管束軸方向に抵抗体が設置されるこ
とを特徴とする蒸気発生器。
1. A helical structure in which a plurality of heat transfer tubes through which a medium to be heated flows are formed in a spiral layer having a constant diameter, and a plurality of other heat transfer tubes are wound outside or inside the spiral layer. A spiral heat transfer tube group whose layers are concentrically combined,
A header to which the ends of the heat transfer tube group are connected, a cylindrical inner tube installed concentrically at the spiral center of the spiral heat transfer tube group, and a concentrically installed outside the heat transfer tube group. In a steam generator comprising an outer cylinder, and a body including the inner cylinder, the heat transfer tube, and the outer tube, a body surrounded by the spiral layers adjacent to each other in one section or a plurality of sections in a direction perpendicular to the axis of the heat transfer tube group. A steam generator, wherein a resistor is provided in the tube bundle axial direction in parallel with the spiral layer for each side flow path.
【請求項2】 請求項1の蒸気発生器において、隣合う
該螺旋状層の相互に隣合う該螺旋状伝熱管で構成される
胴側流体の流路領域毎に、隣合う各螺旋状層の曲率の中
間の曲率で、該螺旋状伝熱管と同一の傾斜角度を有する
棒状の抵抗体が、螺旋状層と平行に設置されることを特
徴とする蒸気発生器。
2. The steam generator according to claim 1, wherein the adjacent spiral layers are adjacent to each other in each body-side fluid flow path region constituted by the adjacent spiral heat transfer tubes. A steam generator characterized in that a rod-shaped resistor having an intermediate curvature of the above and having the same inclination angle as the spiral heat transfer tube is installed in parallel with the spiral layer.
JP4254668A 1992-09-24 1992-09-24 Steam generator Expired - Lifetime JP2963586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4254668A JP2963586B2 (en) 1992-09-24 1992-09-24 Steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4254668A JP2963586B2 (en) 1992-09-24 1992-09-24 Steam generator

Publications (2)

Publication Number Publication Date
JPH06109202A JPH06109202A (en) 1994-04-19
JP2963586B2 true JP2963586B2 (en) 1999-10-18

Family

ID=17268208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4254668A Expired - Lifetime JP2963586B2 (en) 1992-09-24 1992-09-24 Steam generator

Country Status (1)

Country Link
JP (1) JP2963586B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6232051B2 (en) * 2012-04-25 2017-11-15 エスエムアール・インベンテック・エルエルシー Nuclear steam supply system and method
CN112098131B (en) * 2020-09-15 2021-12-24 上海交通大学 Steam generator simulation device for simulating non-uniform incoming flow of nuclear main pump inlet

Also Published As

Publication number Publication date
JPH06109202A (en) 1994-04-19

Similar Documents

Publication Publication Date Title
JP2952102B2 (en) Heat exchanger
US3437077A (en) Once-through vapor generator
JP3407722B2 (en) Combination heat exchanger
US11454452B2 (en) Heat exchanger for a molten salt steam generator in a concentrated solar power plant (III)
JP2963586B2 (en) Steam generator
US20200393123A1 (en) Helical Baffle for Once-Through Steam Generator
US3256932A (en) Heat exchanger tube arrangement
US4298058A (en) Tube bundle heat exchanger
US4050511A (en) Heat exchangers
EP3502608B1 (en) Heat exchanger for a molten salt steam generator in a concentrated solar power plant (iii)
US4136644A (en) Tube heat exchanger with heating tubes
KR102514159B1 (en) Heat exchanger for a molten salt steam generator in a concentrated solar power plant (iii)
JPS6337880B2 (en)
JP4823043B2 (en) Heat exchanger
US3435890A (en) Heat exchanger
JP3916784B2 (en) Boiler structure
JP3190939B2 (en) Steam generator
US3354869A (en) Heat exchangers
JPH01200102A (en) Heat exchanger
JP3372424B2 (en) Tube heat exchanger type vertical steam generator
JPS643979Y2 (en)
JPS5952197A (en) Heat exchanger
JP3805895B2 (en) 4-pass multi-tube boiler
Duncan Heat exchanger design considerations for transonic wind tunnels
KR20200074010A (en) Tube with conductive fins