JP3407722B2 - Combination heat exchanger - Google Patents

Combination heat exchanger

Info

Publication number
JP3407722B2
JP3407722B2 JP2000265715A JP2000265715A JP3407722B2 JP 3407722 B2 JP3407722 B2 JP 3407722B2 JP 2000265715 A JP2000265715 A JP 2000265715A JP 2000265715 A JP2000265715 A JP 2000265715A JP 3407722 B2 JP3407722 B2 JP 3407722B2
Authority
JP
Japan
Prior art keywords
heat transfer
tube
transfer tube
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000265715A
Other languages
Japanese (ja)
Other versions
JP2002071861A (en
Inventor
正典 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2000265715A priority Critical patent/JP3407722B2/en
Publication of JP2002071861A publication Critical patent/JP2002071861A/en
Application granted granted Critical
Publication of JP3407722B2 publication Critical patent/JP3407722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0054Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for nuclear applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/16Safety or protection arrangements; Arrangements for preventing malfunction for preventing leakage

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、互いに接触するこ
とを避けなければならない2つの異なる流体間で熱交換
する熱交換器に関し、特に水と液体ナトリウムの熱交換
を行う液体金属冷却高速増殖炉の蒸気発生器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for exchanging heat between two different fluids which must avoid contact with each other, and more particularly to a liquid metal cooled fast breeder reactor for exchanging heat between water and liquid sodium. Of steam generators.

【0002】[0002]

【従来の技術】ナトリウムを用いた液体金属冷却高速増
殖炉の蒸気発生器では、一重の伝熱管を用いると伝熱管
が損傷を受けたときに直ちにナトリウムと水が接触して
ナトリウム水反応が生じるので、損傷が生じても直ちに
不具合に繋がらないような信頼性の高い熱交換器が求め
られている。
2. Description of the Related Art In a steam generator for a liquid metal cooled fast breeder reactor using sodium, when a single heat transfer tube is used, sodium and water immediately contact with each other when the heat transfer tube is damaged to cause a sodium water reaction. Therefore, there is a demand for a highly reliable heat exchanger that does not immediately lead to malfunction even if damage occurs.

【0003】このため従来、液体金属冷却高速増殖炉用
蒸気発生器として、内管と外管に分割して独立させた二
重管蒸気発生器や、ナトリウム側伝熱管と水・水蒸気側
伝熱管を分離した分離管型蒸気発生器などが考えられて
きた。二重管式熱交換器の二重伝熱管には、密着二重管
や組網線入り二重管、あるいは有間隙二重管などがあ
る。たとえば特開平6−323777号公報には、組網
線入り二重管式熱交換器が開示されている。これらはい
ずれも内管と外管の間隙が数ミクロンから数ミリメート
ル程度であって、大きな力が加わった場合には内管と外
管が同時に損傷を受ける可能性があった。内管と外管の
間隔を大きくして同時破損の可能性を小さくしようとす
ると、二重管の内外管間隙部の熱抵抗が増大し伝熱性能
が低下する。
For this reason, conventionally, as a steam generator for a liquid metal cooling fast breeder reactor, a double-tube steam generator which is divided into an inner tube and an outer tube and is independent, a sodium side heat transfer tube and a water / steam side heat transfer tube. Separated tube steam generators have been considered. The double heat transfer tubes of the double tube heat exchanger include a close contact double tube, a double tube with a braided wire, and a double tube with a gap. For example, Japanese Patent Application Laid-Open No. 6-323777 discloses a double tube heat exchanger with a braided wire. In all of these, the gap between the inner tube and the outer tube is about several microns to several millimeters, and there is a possibility that the inner tube and the outer tube may be damaged at the same time when a large force is applied. If the distance between the inner pipe and the outer pipe is increased to reduce the possibility of simultaneous breakage, the thermal resistance of the gap between the inner and outer pipes of the double pipe increases and the heat transfer performance deteriorates.

【0004】一方、分離型蒸気発生器では、ナトリウム
側伝熱管と水・蒸気側伝熱管は位置的に独立しており、
単一の原因で両方の伝熱管が同時に破損事故を起こす可
能性が小さくなる。しかし、分離管型蒸気発生器はたと
えば、2つの流体を通す伝熱管の間に金属ブロックやビ
スマス、スズ、インジュウムなどの熱伝導性の優れた液
体金属を配して熱伝導により熱交換させるもので、熱交
換器内に配置する中間熱媒体が膨大な量になり、また、
構造が複雑で大型化するため経済上の課題があった。
On the other hand, in the separated steam generator, the sodium heat transfer tube and the water / steam heat transfer tube are positionally independent,
There is less chance that both heat transfer tubes will break at the same time due to a single cause. However, the separation tube type steam generator is one in which a metal block or a liquid metal having excellent thermal conductivity such as bismuth, tin, or indium is arranged between heat transfer tubes that pass two fluids to perform heat exchange by heat conduction. Therefore, the amount of intermediate heat medium arranged in the heat exchanger becomes huge, and
There was an economic problem because the structure was complex and large.

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明が解決
しようとする課題は、伝熱管が破損した場合にも互いに
接触することを避けなければならない2つの異なる流体
が混ざる可能性を減少させた小型軽量の熱交換器を提供
することであり、特に液体金属冷却高速増殖炉の蒸気発
生器に適した設計の自由度の高い熱交換器を提供するこ
とである。
Therefore, the problem to be solved by the present invention is to reduce the possibility of mixing two different fluids which must avoid contact with each other even if the heat transfer tube is broken. It is intended to provide a small and lightweight heat exchanger, and particularly to provide a heat exchanger having a high degree of freedom of design suitable for a steam generator of a liquid metal cooled fast breeder reactor.

【0006】[0006]

【課題を解決するための手段】上記課題を解決する本発
明の組合せ型熱交換器は、胴内にヘリカルコイル伝熱管
からなる層を同心状に多数設け、ヘリカルコイル伝熱管
層の間に多数の直管伝熱管を配置した層を設けて、ヘリ
カルコイル伝熱管に第1の流体を通し、直管伝熱管に第
2の流体を通し、直管伝熱管とヘリカルコイル伝熱管の
間に中間熱媒体を充填して、中間熱媒体の自然対流を介
して第1の流体と第2の流体の熱交換をするようにした
ことを特徴とする。
A combination type heat exchanger of the present invention for solving the above-mentioned problems is provided with a large number of concentric layers of helical coil heat transfer tubes in a body, and a large number of layers between helical coil heat transfer tube layers. By providing a layer in which the straight pipe heat transfer pipe is arranged, the first fluid is passed through the helical coil heat transfer pipe, the second fluid is passed through the straight pipe heat transfer pipe, and an intermediate portion is provided between the straight pipe heat transfer pipe and the helical coil heat transfer pipe. It is characterized in that the heat medium is filled so that heat exchange between the first fluid and the second fluid is carried out through natural convection of the intermediate heat medium.

【0007】本発明の組合せ型熱交換器は、第1流体を
通すヘリカルコイル伝熱管と第2流体を通す直管伝熱管
が互いに分離独立しているため、単一の原因により同時
破損する可能性が小さく、第1流体と第2流体の接触反
応を起こす可能性が減少する。また、熱伝導率の高い中
間熱媒体の自然対流を利用するため単なる二重管より伝
熱効率が高い。さらに、直管伝熱管の数はヘリカルコイ
ル伝熱管の数に制約を受けず、ヘリカルコイル伝熱管の
管長は直管伝熱管の管長に制約されない。したがって、
第1流体と第2流体を独立に設計できる異なる形状の伝
熱管に通せるため設計の自由度が大きくなり、2つの流
体の特性に最適な条件に基づいて構成することができ
る。このように、本発明によれば、熱交換器の設計が極
めて容易になるばかりでなく、装置の物量を低減するこ
とができる。
In the combined heat exchanger of the present invention, since the helical coil heat transfer tube for passing the first fluid and the straight tube heat transfer tube for passing the second fluid are separated and independent from each other, they can be simultaneously damaged by a single cause. Therefore, the possibility that a contact reaction between the first fluid and the second fluid will occur is reduced. Further, since the natural convection of the intermediate heat medium having high thermal conductivity is used, the heat transfer efficiency is higher than that of a simple double tube. Further, the number of straight tube heat transfer tubes is not restricted by the number of helical coil heat transfer tubes, and the tube length of the helical coil heat transfer tubes is not restricted by the tube length of the straight tube heat transfer tubes. Therefore,
Since the first fluid and the second fluid can be passed through the heat transfer tubes having different shapes that can be designed independently, the degree of freedom in design is increased, and the two fluids can be configured based on the optimum conditions. As described above, according to the present invention, not only the design of the heat exchanger becomes extremely easy, but also the quantity of the device can be reduced.

【0008】なお、特に、組合せ型熱交換器は垂直に設
置するものとした場合は、組合せ型熱交換器の軸位置に
内筒を設けて、所定の間隔で内筒を軸とした放射状に設
けた複数の梁から垂下するラダーを備えることが好まし
い。前記梁には、ほぼ水平に設けた通孔を備えたラダー
を固定してこの水平通孔によりヘリカルコイル伝熱管を
支持する。また、隣接したラダー同士の間に垂直に設け
た複数の通孔を備えたバッフル板を固定してこの垂直通
孔により直管伝熱管を支持する。このような構成を採用
することにより容易に、異なる形状の2種の伝熱管を一
つの熱交換器に収納して固定することができる。またこ
の構成では、第1流体用の伝熱管と第2流体用伝熱管で
は支持方法が異なるため、さらに同時破損現象が発生し
にくい。
When the combination heat exchanger is installed vertically, an inner cylinder is provided at the axial position of the combination heat exchanger, and the inner cylinder is radially arranged with the inner cylinder at predetermined intervals. It is preferable to provide a ladder that hangs from a plurality of beams provided. A ladder having a through hole provided substantially horizontally is fixed to the beam, and the helical coil heat transfer tube is supported by the through hole. Further, a baffle plate having a plurality of vertically provided through holes is fixed between adjacent ladders, and the straight tube heat transfer tube is supported by the vertical through holes. By adopting such a configuration, two types of heat transfer tubes having different shapes can be easily housed and fixed in one heat exchanger. Further, in this configuration, since the heat transfer tube for the first fluid and the heat transfer tube for the second fluid have different support methods, the simultaneous breakage phenomenon is further unlikely to occur.

【0009】さらに、垂直配置型熱交換器は、内筒の上
端部に支持構造体を備えることが好ましい。この支持構
造体は、内筒を軸として放射状に設けられ端部を組合せ
型熱交換器の外壁に固定された複数の支持梁からなる。
ヘリカルコイル伝熱管の端部は、支持梁の上に集合して
組合せ型熱交換器の側部に設けられるノズルに接合し、
支持梁同士の間にある直管伝熱管の端部は、組合せ型熱
交換器の端部に設けたノズルに接合する。このようにす
ると、熱交換器端部に多数の伝熱管が存在して混乱する
のを防止して、2種の伝熱管を通る流体をそれぞれ整理
して供給し排出するようにすることができ、また施工の
単純化を図って経済的な製造を可能にする。
Further, the vertically arranged heat exchanger preferably includes a support structure at the upper end of the inner cylinder. This support structure is composed of a plurality of support beams that are radially provided with the inner cylinder as an axis and whose ends are fixed to the outer wall of the combined heat exchanger.
The ends of the helical coil heat transfer tubes are assembled on a support beam and joined to a nozzle provided on the side of the combined heat exchanger,
The ends of the straight pipe heat transfer tubes between the support beams are joined to the nozzles provided at the ends of the combined heat exchanger. By doing so, it is possible to prevent confusion due to the presence of a large number of heat transfer tubes at the end of the heat exchanger, and to supply and discharge the fluids passing through the two kinds of heat transfer tubes in an organized manner. Also, it enables economical manufacturing by simplifying construction.

【0010】本発明の熱交換器は、加熱側流体と冷却側
流体が混合すると事故などの恐れがあるような2液を扱
う熱交換器として一般産業用に使用することができる。
特に、液体金属冷却高速増殖炉の蒸気発生器などでよく
使用される水とナトリウム金属の間の熱交換に適用する
ことにより大きな効果を発揮する。液体金属冷却高速増
殖炉の蒸気発生器では、ナトリウム流量は水・水蒸気流
量の約10倍とされ、さらにナトリウムの圧力損失許容
値は水・水蒸気の約10分の1またはそれ以下とされ
る。したがって、液体ナトリウムを管長の短い垂直管の
方に通し、水・水蒸気をヘリカルコイル型伝熱管に通す
ようにすることが好ましい。なお、中間熱媒体として水
とナトリウムのいずれにも反応しにくく熱伝導率が高い
鉛、ビスマス、スズ、インジュウムのいずれかあるいは
これらの混合体を使用することができる。
The heat exchanger of the present invention can be used for general industry as a heat exchanger for handling two liquids which may cause an accident when the heating side fluid and the cooling side fluid are mixed.
In particular, it exerts a great effect when applied to heat exchange between water and sodium metal, which is often used in a steam generator of a liquid metal cooled fast breeder reactor. In the steam generator of the liquid metal cooled fast breeder reactor, the sodium flow rate is about 10 times the water / steam flow rate, and the allowable pressure loss of sodium is about 1/10 or less of the water / steam flow rate. Therefore, it is preferable that the liquid sodium is passed through the vertical tube having a short tube length, and the water / steam is passed through the helical coil type heat transfer tube. As the intermediate heat medium, it is possible to use lead, bismuth, tin, indium, or a mixture thereof, which does not easily react with water or sodium and has high thermal conductivity.

【0011】[0011]

【発明の実施の形態】以下、本発明について実施例に基
づき図面を参照して詳細に説明する。本実施例は、本発
明の熱交換器を液体金属冷却高速増殖炉の蒸気発生器に
適用したものである。図1は本実施例の蒸気発生器の一
部切り欠き図、図2は図1に表した蒸気発生器を45度
回転させた断面図、図3は蒸気発生器の頂部を示す平面
図、図4は図1のA−A面で切断した状態を示す水平断
面図である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in detail based on embodiments with reference to the drawings. In this embodiment, the heat exchanger of the present invention is applied to a steam generator of a liquid metal cooled fast breeder reactor. 1 is a partial cutaway view of the steam generator of the present embodiment, FIG. 2 is a sectional view of the steam generator shown in FIG. 1 rotated by 45 degrees, and FIG. 3 is a plan view showing the top of the steam generator. FIG. 4 is a horizontal cross-sectional view showing a state cut along the plane AA of FIG.

【0012】本実施例の蒸気発生器は、ヘリカルコイル
伝熱管と直管伝熱管を組み合わせた縦置き型の水・ナト
リウム熱交換器で、胴1の内にヘリカルコイル伝熱管2
からなる層を同心状に多数設け、多数の直管伝熱管3を
軸方向に配置した層をヘリカルコイル伝熱管層の各層間
に設けたものである。ヘリカルコイル伝熱管2に水・水
蒸気を通し、直管伝熱管3に液体ナトリウムを通し、熱
交換領域には中間熱媒体4として液相の鉛ビスマスを充
填して、中間熱媒体の自然対流を介して液体ナトリウム
と水・水蒸気の熱交換をさせる。
The steam generator of the present embodiment is a vertical water / sodium heat exchanger in which a helical coil heat transfer tube and a straight tube heat transfer tube are combined.
A large number of layers each of which is concentrically provided, and a layer in which a large number of straight tube heat transfer tubes 3 are arranged in the axial direction is provided between the respective layers of the helical coil heat transfer tube layers. Water and steam are passed through the helical coil heat transfer tube 2, liquid sodium is passed through the straight tube heat transfer tube 3, and liquid phase lead bismuth is filled as the intermediate heat medium 4 in the heat exchange region to allow natural convection of the intermediate heat medium. To exchange heat between liquid sodium and water / steam.

【0013】ヘリカルコイル伝熱管2は、伝熱管を同じ
曲率で螺旋状に巻き上げたものを適当数軸方向に平行に
重ねて1層に配置されている。複数のヘリカルコイル伝
熱管層はそれぞれ巻き径が異なるが、伝熱管の傾斜角を
同じにすれば伝熱管長は等しいため等価な伝熱管として
扱うことができる。直管伝熱管3は、蒸気発生器の軸方
向に伸張する直管を円周に沿って1列に並置して円筒状
の層を形成している。ヘリカルコイル伝熱管2の層と直
管伝熱管3の層は、径方向に隣接して交互に配置され
る。
The helical coil heat transfer tubes 2 are arranged in one layer by stacking spirally wound heat transfer tubes with the same curvature in parallel in an appropriate number of axial directions. The plurality of helical coil heat transfer tube layers have different winding diameters, but if the heat transfer tubes have the same inclination angle, the heat transfer tubes have the same length and can be treated as equivalent heat transfer tubes. The straight tube heat transfer tube 3 is formed by arranging straight tubes extending in the axial direction of the steam generator in a row along the circumference to form a cylindrical layer. The layers of the helical coil heat transfer tube 2 and the layers of the straight tube heat transfer tube 3 are alternately arranged adjacent to each other in the radial direction.

【0014】蒸気発生器は軸位置に内筒5が設けられて
おり、ヘリカルコイル伝熱管2を支持するラダー6が周
方向に複数取り付けられている。ラダー6にはヘリカル
コイル伝熱管2の層と交差する位置に蒸気発生器の軸方
向に並んでヘリカルコイル伝熱管2を通す通孔7が設け
られている。ヘリカルコイル伝熱管2は鉛直方向に撓み
やすいので、たとえば1個おきなど適当な間隔でラダー
6に固定されるが、伝熱管に作用する熱応力を緩和する
ためその他の位置では単に支えるだけになっている。図
4にはラダー6が4枚設けられた例が示されているが、
適当なラダー数は条件により変化する。
The steam generator is provided with an inner cylinder 5 at an axial position, and a plurality of ladders 6 for supporting the helical coil heat transfer tubes 2 are mounted in the circumferential direction. Through holes 7 are provided in the ladder 6 at positions intersecting with the layers of the helical coil heat transfer tubes 2 side by side in the axial direction of the steam generator to pass the helical coil heat transfer tubes 2. Since the helical coil heat transfer tube 2 is easily bent in the vertical direction, the helical coil heat transfer tube 2 is fixed to the ladder 6 at an appropriate interval, for example, every other one, but it is merely supported at other positions to relieve the thermal stress acting on the heat transfer tube. ing. FIG. 4 shows an example in which four ladders 6 are provided,
The appropriate ladder number varies depending on the conditions.

【0015】ラダー6の間には軸方向における適当な間
隔で扇形のバッフル板8が取り付けられる。バッフル板
8は直管伝熱管3の層に当たる位置に配設され、蒸気発
生器の軸方向に開けられた通孔9により直管伝熱管3の
位置が変化しないように保持する。バッフル板8の通孔
9は鼓状の断面を有して伝熱管が振動したり変位したと
きにも管壁に損傷を与えにくくしている。直管伝熱管3
の重力方向における支持は蒸気発生器の両端付近の管板
により行うため、直管伝熱管3をバッフル板8に固定す
る必要はない。
Fan-shaped baffle plates 8 are mounted between the ladders 6 at appropriate intervals in the axial direction. The baffle plate 8 is arranged at a position corresponding to the layer of the straight tube heat transfer tube 3, and holds the straight tube heat transfer tube 3 so that the position of the straight tube heat transfer tube 3 does not change by a through hole 9 opened in the axial direction of the steam generator. The through hole 9 of the baffle plate 8 has a drum-shaped cross section so that the tube wall is less likely to be damaged even when the heat transfer tube vibrates or is displaced. Straight tube heat transfer tube 3
Since the support in the gravitational direction is performed by the tube plates near both ends of the steam generator, it is not necessary to fix the straight tube heat transfer tube 3 to the baffle plate 8.

【0016】図5はラダー6とバッフル板8の組み立て
状態を模式的に示す斜視図、図6はその部分拡大断面図
である。ラダー6は、伝熱管2がヘリカルコイル状にな
っている熱交換領域に設けられ、ヘリカルコイル伝熱管
2の1層分を単位とする連結可能なブロックから組み立
てられて、内筒5に取り付けられる。バッフル板8はラ
ダー6に挟まれた扇形部分に設けられ、ラダー6にボル
ト10により固定される。このボルト10はラダー6の
ブロック同士を固定する役割を持たせることもできる。
内筒5は、胴1の上下それぞれに固定された梁11,1
2により支持され、伝熱管の重量を支えている。なお、
運転中は伝熱管が鉛ビスマスに浸漬するため大きな浮力
が発生するので、この梁11,12は重力と浮力の両方
に耐えるようになっている。
FIG. 5 is a perspective view schematically showing the assembled state of the ladder 6 and the baffle plate 8, and FIG. 6 is a partially enlarged sectional view thereof. The ladder 6 is provided in a heat exchange area where the heat transfer tube 2 is in the shape of a helical coil, is assembled from a connectable block in units of one layer of the helical coil heat transfer tube 2, and is attached to the inner cylinder 5. . The baffle plate 8 is provided in a fan-shaped portion sandwiched between the ladders 6 and fixed to the ladders 6 with bolts 10. The bolt 10 can also serve to fix the blocks of the ladder 6 to each other.
The inner cylinder 5 includes beams 11 and 1 fixed to the upper and lower sides of the body 1, respectively.
2 supports the weight of the heat transfer tube. In addition,
Since the heat transfer tube is immersed in lead bismuth during operation, a large buoyancy is generated, so that the beams 11 and 12 can withstand both gravity and buoyancy.

【0017】直管伝熱管3は、バッフル板8により案内
され、蒸気発生器頭頂部にラダー6に挟まれる領域毎に
設けられたナトリウム入口ノズル13の管板14と、ナ
トリウム入口ノズル13と対応する底部のナトリウム出
口ノズル15に設けられた管板16の間で支持される。
熱応力は底部に設けられる曲管部分17で吸収すること
ができる。また、ヘリカルコイル伝熱管2は、蒸気発生
器の下側側面に設けられた水供給ノズル18の管板19
で固定され、直管伝熱管3を避けて下梁12の近辺から
ヘリカル部分に立ち上げ、ヘリカル部分に連結される。
ヘリカルコイル伝熱管2は、ヘリカル部分を巡って、そ
の上端部で直管伝熱管3の立ち上がりを避けて、内筒5
を支持する上梁11の脇に立ち上げ上梁11の上と蒸気
発生器の上部シュラウドにできた空間を使って、蒸気発
生器の上側側面に設けられた蒸気出口ノズル20に集め
られ管板21に固定される。蒸気発生器は、スカート2
2により支持構造体に固定される。
The straight tube heat transfer tube 3 is guided by a baffle plate 8 and corresponds to the tube plate 14 of the sodium inlet nozzle 13 provided in each region sandwiched by the ladder 6 at the top of the steam generator and the sodium inlet nozzle 13. It is supported between the tube sheets 16 provided on the bottom sodium outlet nozzles 15.
The thermal stress can be absorbed by the curved tube portion 17 provided at the bottom. The helical coil heat transfer tube 2 is a tube plate 19 of the water supply nozzle 18 provided on the lower side surface of the steam generator.
It is fixed by, and rises from the vicinity of the lower beam 12 to the helical portion while avoiding the straight pipe heat transfer tube 3, and is connected to the helical portion.
The helical coil heat transfer tube 2 goes around the helical portion and avoids the rising of the straight tube heat transfer tube 3 at its upper end,
Standing up beside the upper beam 11 that supports the space, the space formed in the upper beam of the upper beam 11 and the upper shroud of the steam generator is used to collect the tube sheet collected in the steam outlet nozzle 20 provided on the upper side surface of the steam generator. It is fixed at 21. The steam generator has a skirt 2
It is fixed to the support structure by 2.

【0018】蒸気発生器を運転するときは、水が給水入
口ヘッダ22の給水入口ノズル18からヘリカルコイル
伝熱管2に供給され、鉛ビスマス4の自然対流を介して
液体ナトリウムの熱を受けて蒸気になり、蒸気ヘッダ2
3に集まってから蒸気出口ノズル20より図外の蒸気タ
ービン発電機等に送出される。一方、液体金属冷却高速
増殖炉の冷却材である液体ナトリウムは、ナトリウム入
口ヘッダ24のナトリウムノズル13から直管伝熱管3
に供給され、底部に設けられたナトリウム出口ヘッダ2
5に集合しナトリウム出口のする1より図外の液体金属
冷却高速増殖炉に帰還する。
When the steam generator is operated, water is supplied from the water supply inlet nozzle 18 of the water supply inlet header 22 to the helical coil heat transfer tube 2 and receives the heat of liquid sodium through the natural convection of lead bismuth 4 to generate steam. And steam header 2
After being collected in 3, the steam is discharged from the steam outlet nozzle 20 to a steam turbine generator or the like (not shown). On the other hand, liquid sodium, which is a coolant for the liquid metal cooling fast breeder reactor, is supplied from the sodium nozzle 13 of the sodium inlet header 24 to the straight pipe heat transfer pipe 3
And sodium outlet header 2 provided at the bottom
Collected in 5 and returned to the liquid metal cooling fast breeder reactor (not shown) from the sodium outlet 1.

【0019】液体金属冷却型高速増殖炉では、ナトリウ
ムの流量は水・蒸気の流量の約10倍になり、しかも蒸
気発生器においてナトリウムに認められる圧力損失は水
・蒸気の約10分の1またはそれ以下である。従来のヘ
リカルコイル蒸気発生器では、同じコイル層に位置する
ナトリウムと水・蒸気の伝熱管は交互に隣接して配設さ
れていたが、このような構成ではナトリウム伝熱管と水
・蒸気伝熱管は同じ長さを持つことになるので、ナトリ
ウム伝熱管が過剰に長くなることになり、圧力損失を抑
えるためには管径を増大させなければならなかった。す
ると、管内を流れるナトリウムの流速が低下し伝熱性能
が劣化するため伝熱面積を増大させなければならなくな
って熱交換器としての物量が増大しコスト増大の原因と
なった。また、直管型蒸気発生器では、管長が限られる
ので水・蒸気伝熱管の圧力損失が小さく管内流速が小さ
くなるため伝熱性能が劣化し、これを補って伝熱面積を
大きくするため熱交換器の物量を増大しコストを上昇さ
せる結果になっていた。
In the liquid metal cooled fast breeder reactor, the flow rate of sodium is about 10 times the flow rate of water / steam, and the pressure loss observed in sodium in the steam generator is about 1/10 of that of water / steam. Below that. In conventional helical coil steam generators, sodium and water / steam heat transfer tubes located in the same coil layer were alternately arranged adjacent to each other.In such a configuration, sodium heat transfer tubes and water / steam heat transfer tubes are arranged. Since they have the same length, the sodium heat transfer tube becomes excessively long, and the tube diameter had to be increased in order to suppress the pressure loss. Then, the flow velocity of sodium flowing in the pipe is lowered and the heat transfer performance is deteriorated, so that the heat transfer area has to be increased and the amount of the material as the heat exchanger is increased, which causes a cost increase. In addition, in a straight-tube steam generator, since the pipe length is limited, the pressure loss of the water / steam heat transfer pipe is small and the flow velocity in the pipe is small, so the heat transfer performance deteriorates. As a result, the quantity of the exchanger is increased and the cost is increased.

【0020】本発明は、ナトリウムを直管伝熱管に通
し、水・蒸気をヘリカルコイル伝熱管に通すため、それ
ぞれ独立に最も適当なディメンジョンを選択することが
できる。高速増殖炉ではナトリウムの流量が大きいのに
対して圧力損失が小さくなければならないが、熱交換器
の長さが決まっているとして直管伝熱管の径と本数を適
当な圧力損失と管内流速が得られるように選択すること
により伝熱面積を小さくして物量とコストを低減するこ
とができる。また、水・蒸気についても、ヘリカルコイ
ル伝熱管を用いるため、伝熱管長と管内流速を適当に調
整して伝熱性能が最適になるように選択して、物量とコ
ストを低減することができる。
In the present invention, sodium is passed through the straight tube heat transfer tube and water and steam are passed through the helical coil heat transfer tube, so that the most suitable dimensions can be selected independently. In a fast breeder reactor, the flow rate of sodium is large, but the pressure loss must be small, but assuming that the length of the heat exchanger is fixed, the diameter and number of straight heat transfer tubes must be set to an appropriate pressure loss and flow rate inside the tube. By selecting so as to obtain, the heat transfer area can be reduced and the quantity and cost can be reduced. Also, for water and steam, since the helical coil heat transfer tube is used, it is possible to reduce the quantity and cost by appropriately adjusting the heat transfer tube length and in-tube flow rate to select heat transfer performance optimally. .

【0021】さらに、ヘリカルコイル型熱交換器では、
ナトリウム伝熱管と水・蒸気伝熱管が一つの伝熱管層内
で交互に配置されていたので、高温域と低温域が鉛直方
向に細かい周期で出現するため、中間熱媒体の対流が成
長しにくかった。しかし、本発明の組合せ型熱交換器で
は、ナトリウムと水・蒸気の2種類の熱媒体について、
それぞれ同じ熱媒が通る伝熱管のみを円筒状の層として
形成しているため、中間熱媒体の上昇流と下降流がそれ
ぞれ十分に成長するので、槽内の熱媒体が大きく自然対
流を起こして良好な熱伝達特性を有するようになる。
Further, in the helical coil heat exchanger,
Since the sodium heat transfer tubes and the water / steam heat transfer tubes were alternately arranged in one heat transfer tube layer, the convection of the intermediate heat medium was difficult to grow because the high temperature region and the low temperature region appeared in the vertical fine cycle. It was However, in the combined heat exchanger of the present invention, two types of heat mediums of sodium and water / steam are
Since only the heat transfer tubes through which the same heat medium passes are formed as a cylindrical layer, the upflow and downflow of the intermediate heat medium grow sufficiently, so the heat medium in the tank causes large natural convection. It has good heat transfer characteristics.

【0022】たとえば、液体金属冷却型高速増殖炉にお
いて1000MWのナトリウムの熱により水を過熱蒸気
にする場合に、ヘリカルコイル型熱交換器を用いれば、
ナトリウムと水・蒸気それぞれ730本の伝熱管を用い
て径7.2m、高さ23.2m、重量860トン、ナト
リウムと水・蒸気の伝熱面積合計が14370m2とな
り、直管型蒸発器では伝熱管がそれぞれ4843本、径
が4.2m、高さ33.5m、重量800トン、ナトリ
ウムと水・蒸気の伝熱面積合計が12570m 2とな
る。
For example, in a liquid metal cooled fast breeder reactor
And superheat the water with the heat of 1000 MW of sodium
When using a helical coil type heat exchanger,
730 heat transfer tubes for sodium, water and steam
Diameter 7.2 m, height 23.2 m, weight 860 tons, NAT
The total heat transfer area of rumium, water and steam is 14370m.2Tona
In a straight tube evaporator, there are 4843 heat transfer tubes each
Is 4.2m, height is 33.5m, weight is 800 tons, Natri
Total heat transfer area of um and water / steam is 12570m 2Tona
It

【0023】同じ条件において、本発明の組合せ型熱交
換器では、ナトリウム用直管伝熱管が7710本、水・
蒸気用ヘリカルコイル伝熱管が527本、径5.7m、
高さ25m、物量720トン、ナトリウムと水・蒸気の
伝熱面積合計11330m2となる。このように、本発
明によれば、それぞれ最適な条件に基づいて設計するこ
とができるため、伝熱面積が極めて小さくなり物量も低
減する。また、熱交換器の寸法も小さくなり、コストも
低減する。
Under the same conditions, in the combination heat exchanger of the present invention, 7710 straight sodium heat transfer tubes for water,
527 helical coil heat transfer tubes for steam, diameter 5.7m,
The height is 25 m, the quantity is 720 tons, and the total heat transfer area of sodium and water / steam is 11330 m 2 . As described above, according to the present invention, since the design can be performed based on the optimum conditions, respectively, the heat transfer area becomes extremely small and the amount of material is reduced. Moreover, the size of the heat exchanger is reduced, and the cost is reduced.

【0024】上記実施例では、便宜のためヘリカルコイ
ル伝熱管と直管伝熱管の層が各4層の場合について図示
し、また、ラダーが4本の場合について説明したが、こ
れらの数は条件により変化することは言うまでもない。
なお、ノズルの位置と個数はラダーの位置に対して独立
に決めることができる。特に水・蒸気の伝熱管はシュラ
ウド内の引き回しが容易であるので、ノズル位置をより
自由に決定することができる。また、中間熱媒体として
鉛ビスマスを採用したが、この他にもアンチモン・ビス
マスなど熱交換の条件により最適な媒体を選択すること
ができることは言うまでもない。さらに、本実施例で
は、本発明の熱交換器を水ナトリウム熱交換に利用した
が、これ以外にも、本発明を熱交換する2つの熱媒が接
触すると不都合な結果をもたらす場合に大きな効果があ
ることはいうまでもない。
In the above embodiment, for convenience, the helical coil heat transfer tube and the straight tube heat transfer tube each have four layers, and the case where the number of ladders is four has been described. Needless to say, it changes depending on.
The position and the number of nozzles can be determined independently of the position of the ladder. In particular, since the water / steam heat transfer tube can be easily routed within the shroud, the nozzle position can be determined more freely. Further, although lead bismuth is adopted as the intermediate heat medium, it is needless to say that an optimum medium such as antimony / bismuth can be selected depending on the heat exchange conditions. Furthermore, in the present embodiment, the heat exchanger of the present invention was used for water-sodium heat exchange, but in addition to this, a great effect is brought about when two heat mediums for heat exchange of the present invention bring an inconvenient result. It goes without saying that there is

【0025】[0025]

【発明の効果】以上説明したように、本発明の熱交換器
は、直管伝熱管とヘリカルコイル伝熱管を異なる媒体に
適用するので、何らかの不都合があっても両媒体が接触
する可能性が少ない。また、両媒体についてそれぞれ独
立に最適な条件を達成することができるため、より自由
な設計ができ、熱交換器や蒸気発生器の伝熱面積、物
量、コストなどを最適なものにすることができる。
As explained above, in the heat exchanger of the present invention, since the straight pipe heat transfer tube and the helical coil heat transfer tube are applied to different media, there is a possibility that both media will come into contact with each other even if there is any inconvenience. Few. In addition, since optimum conditions can be achieved independently for both media, more flexible design can be achieved, and heat transfer area, quantity, cost, etc. of the heat exchanger and steam generator can be optimized. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱交換器を適用した液体金属冷却高速
増殖炉の蒸気発生器の一部切り欠き図である。
FIG. 1 is a partial cutaway view of a steam generator of a liquid metal cooled fast breeder reactor to which a heat exchanger of the present invention is applied.

【図2】本実施例の熱交換器の断面図である。FIG. 2 is a cross-sectional view of the heat exchanger of this embodiment.

【図3】本実施例の熱交換器の頂部を示す平面図であ
る。
FIG. 3 is a plan view showing the top of the heat exchanger of this embodiment.

【図4】図1のA−A面切断水平断面図である。FIG. 4 is a horizontal sectional view taken along the line AA of FIG.

【図5】本実施例に用いるラダーとバッフル板の組み立
て状態を模式的に示す斜視図である。
FIG. 5 is a perspective view schematically showing an assembled state of a ladder and a baffle plate used in this embodiment.

【図6】本実施例のラダーとバッフル板の組み立て部分
の拡大断面図である。
FIG. 6 is an enlarged cross-sectional view of an assembled portion of the ladder and the baffle plate of this embodiment.

【符号の説明】[Explanation of symbols]

1 胴 2 ヘリカルコイル伝熱管 3 直管伝熱管 4 中間熱媒体 5 内筒 6 ラダー 7 通孔 8 バッフル板 9 通孔 10 ボルト 11 上梁 12 下梁 13 ナトリウム入口ノズル 14 管板 15 ナトリウム出口ノズル 16 管板 17 曲管 18 給水入口ノズル 19 管板 20 蒸気出口ノズル 21 管板 22 給水入口ヘッダ 23 蒸気ヘッダ 24 ナトリウム入口ヘッダ 25 ナトリウム出口ヘッダ 1 torso 2 Helical coil heat transfer tube 3 straight tube heat transfer tube 4 Intermediate heat medium 5 inner cylinder 6 ladder 7 through holes 8 baffle board 9 through holes 10 volts 11 Upper beam 12 Lower beam 13 Sodium inlet nozzle 14 tube sheet 15 Sodium outlet nozzle 16 tube sheet 17 curved pipe 18 Water inlet nozzle 19 tube sheet 20 Steam outlet nozzle 21 tube sheet 22 Water inlet header 23 Steam header 24 sodium inlet header 25 sodium outlet header

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G21C 1/02 F22B 1/06 F28F 11/00 G21C 15/02 G21D 1/00 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) G21C 1/02 F22B 1/06 F28F 11/00 G21C 15/02 G21D 1/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 胴内にヘリカルコイル伝熱管からなる層
を同心状に多数設け、該ヘリカルコイル伝熱管層の層間
ごとに多数の直管伝熱管を軸方向に配置した層を設けた
熱交換器であって、前記ヘリカルコイル伝熱管に第1の
流体を通し、前記直管伝熱管に第2の流体を通し、該直
管伝熱管と前記ヘリカルコイル伝熱管の間に中間熱媒体
を充填して、該中間熱媒体の自然対流を介して前記第1
の流体と第2の流体の熱交換をするようにしたことを特
徴とする組合せ型熱交換器。
1. A heat exchange in which a large number of layers of helical coil heat transfer tubes are concentrically provided in the body, and a layer in which a large number of straight tube heat transfer tubes are axially arranged is provided for each layer of the helical coil heat transfer tube layers. A first fluid is passed through the helical coil heat transfer tube, a second fluid is passed through the straight tube heat transfer tube, and an intermediate heat medium is filled between the straight tube heat transfer tube and the helical coil heat transfer tube. Then, the first convection is conducted through natural convection of the intermediate heat medium.
A heat exchanger for exchanging heat between the fluid and the second fluid.
【請求項2】 前記組合せ型熱交換器が垂直に設置さ
れ、該組合せ型熱交換器の軸位置に内筒を設けて、該内
筒を軸として複数のラダーを放射状に設け、該ラダーに
は前記ヘリカルコイル伝熱管層の各層の位置にほぼ水平
にうがった水平通孔を軸方向に多数連設して、該水平通
孔により前記ヘリカルコイル伝熱管を支持し、軸方向所
定の位置で前記ラダーに挟まれた前記直管伝熱管層の各
層の部分に垂直に設けた複数の垂直通孔を備えたバッフ
ル板を固定して、該垂直通孔により前記直管伝熱管を支
持することを特徴とする請求項1記載の組合せ型熱交換
器。
2. The combination heat exchanger is installed vertically, an inner cylinder is provided at an axial position of the combination heat exchanger, and a plurality of ladders are radially provided with the inner cylinder as an axis, and the ladder is attached to the ladder. Is a large number of horizontal through-holes, which are laid horizontally in the axial direction, are continuously provided at positions of each layer of the helical coil heat-transfer tube layer, the horizontal through-holes support the helical coil heat-transfer tubes, and at predetermined positions in the axial direction. Fixing a baffle plate having a plurality of vertical through holes vertically provided in a portion of each layer of the straight tube heat transfer tube layer sandwiched between the ladders, and supporting the straight tube heat transfer tube by the vertical through holes. The combined heat exchanger according to claim 1, wherein:
【請求項3】 前記内筒の上端部に支持構造体を備え、
該支持構造体は該内筒を軸として放射状に設けられ端部
を前記組合せ型熱交換器の外壁に固定された複数の支持
梁からなり、前記支持梁同士の間にある前記直管伝熱管
の端部を前記組合せ型熱交換器の端部に設けたノズルに
接合し、前記ヘリカルコイル伝熱管の端部が該支持梁の
付近に集合して前記組合せ型熱交換器の側部に設けられ
るノズルに接合することを特徴とする請求項2記載の組
合せ型熱交換器。
3. A support structure is provided on an upper end portion of the inner cylinder,
The support structure comprises a plurality of support beams which are radially provided with the inner cylinder as an axis and whose end portions are fixed to the outer wall of the combination heat exchanger, and the straight pipe heat transfer tube between the support beams. The end of the helical heat transfer tube is joined to the nozzle provided at the end of the combined heat exchanger, and the end of the helical coil heat transfer tube is gathered near the support beam and provided at the side of the combined heat exchanger. The combined heat exchanger according to claim 2, wherein the combined heat exchanger is joined to the nozzle.
【請求項4】 前記第1流体が水または水蒸気で、前記
第2流体が液体ナトリウムであることを特徴とする請求
項1から3のいずれかに記載の組合せ型熱交換器。
4. The combined heat exchanger according to claim 1, wherein the first fluid is water or steam and the second fluid is liquid sodium.
JP2000265715A 2000-09-01 2000-09-01 Combination heat exchanger Expired - Fee Related JP3407722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000265715A JP3407722B2 (en) 2000-09-01 2000-09-01 Combination heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000265715A JP3407722B2 (en) 2000-09-01 2000-09-01 Combination heat exchanger

Publications (2)

Publication Number Publication Date
JP2002071861A JP2002071861A (en) 2002-03-12
JP3407722B2 true JP3407722B2 (en) 2003-05-19

Family

ID=18752942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000265715A Expired - Fee Related JP3407722B2 (en) 2000-09-01 2000-09-01 Combination heat exchanger

Country Status (1)

Country Link
JP (1) JP3407722B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7219512B1 (en) 2001-05-04 2007-05-22 Battelle Energy Alliance, Llc Apparatus for the liquefaction of natural gas and methods relating to same
US6581409B2 (en) 2001-05-04 2003-06-24 Bechtel Bwxt Idaho, Llc Apparatus for the liquefaction of natural gas and methods related to same
JP3524083B2 (en) * 2001-11-16 2004-04-26 核燃料サイクル開発機構 Helical heat exchanger with intermediate heat carrier
US9254448B2 (en) 2007-09-13 2016-02-09 Battelle Energy Alliance, Llc Sublimation systems and associated methods
US8899074B2 (en) 2009-10-22 2014-12-02 Battelle Energy Alliance, Llc Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams
US9217603B2 (en) 2007-09-13 2015-12-22 Battelle Energy Alliance, Llc Heat exchanger and related methods
US8061413B2 (en) 2007-09-13 2011-11-22 Battelle Energy Alliance, Llc Heat exchangers comprising at least one porous member positioned within a casing
US8555672B2 (en) 2009-10-22 2013-10-15 Battelle Energy Alliance, Llc Complete liquefaction methods and apparatus
US9574713B2 (en) 2007-09-13 2017-02-21 Battelle Energy Alliance, Llc Vaporization chambers and associated methods
KR101022486B1 (en) 2008-09-10 2011-03-16 ㈜하이텔파이 Heating apparatus of boiler that use convective flow
US9190673B2 (en) 2010-09-01 2015-11-17 Bloom Energy Corporation SOFC hot box components
US10655911B2 (en) 2012-06-20 2020-05-19 Battelle Energy Alliance, Llc Natural gas liquefaction employing independent refrigerant path
KR101436497B1 (en) 2012-12-11 2014-09-01 한국원자력연구원 Passive decay heat removal system for liquid metal cooled reactors with enhanced natural circulation cooling capability using a helical type sodium-to-sodium heat exchanger
CN108892147B (en) * 2018-09-05 2023-09-05 欧中电子材料(重庆)有限公司 Separation method and device for separating carbonyl chloride in purification medium
WO2023090744A1 (en) * 2021-11-16 2023-05-25 울산과학기술원 Double-walled single-pass steam generator

Also Published As

Publication number Publication date
JP2002071861A (en) 2002-03-12

Similar Documents

Publication Publication Date Title
JP3407722B2 (en) Combination heat exchanger
CN101551207B (en) Shell-and-tube heat exchanger with oblate tube
US3503440A (en) Formed plate tube support
US3768554A (en) Steam generator heated with liquid metal
JP2952102B2 (en) Heat exchanger
CA1080691A (en) Helical coil steam generator
US20040081268A1 (en) Heat exchanger tube support structure
CN101523146A (en) Reduced vibration tube bundle device having slotted baffles
JPH0250398B2 (en)
CN101040164A (en) Support system for tube bundle devices
JP3524083B2 (en) Helical heat exchanger with intermediate heat carrier
US4289198A (en) Heat exchanger
US4050511A (en) Heat exchangers
US4336614A (en) Tube-in-shell heat exchangers
US4446820A (en) Steam generator heated by liquid metal
CN106643227A (en) Mixed baffling stream type reboiler
KR100286518B1 (en) Separate Perfusion Spiral Steam Generator
JPH076754B2 (en) Heat exchanger
CN104457335B (en) Coiled pipe heat exchanger
GB1562662A (en) Tubular heat exchangers and tube bundle for use therein
ES2885829T3 (en) Heat exchanger for a molten salt steam generator in a concentrated solar power plant (III)
JPS5819922B2 (en) steam generator
CN208139894U (en) The built-in telescopic efficient heat exchanger of distribution
JP2963586B2 (en) Steam generator
CA2288323C (en) Heat exchanger tube support structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees