JPS608320Y2 - Shell-and-tube heat exchanger - Google Patents
Shell-and-tube heat exchangerInfo
- Publication number
- JPS608320Y2 JPS608320Y2 JP11394975U JP11394975U JPS608320Y2 JP S608320 Y2 JPS608320 Y2 JP S608320Y2 JP 11394975 U JP11394975 U JP 11394975U JP 11394975 U JP11394975 U JP 11394975U JP S608320 Y2 JPS608320 Y2 JP S608320Y2
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- medium
- flow
- flow rate
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Furnace Details (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Description
【考案の詳細な説明】 本考案は、多管式熱交換器に関するものである。[Detailed explanation of the idea] The present invention relates to a shell-and-tube heat exchanger.
工業炉において燃焼廃ガスの潜熱を用いて空気等の予熱
を行う多管式の熱交換器は近年大型化の傾向となり、熱
源及び予熱媒体の高温度域において使用される為、熱交
換器の生命である鋼管部に高温に依る熱変形、酸化減肉
及び腐蝕による事故が多発し操業の安定性を著しく悪化
させている。Shell-and-tube heat exchangers, which preheat air, etc. using the latent heat of combustion waste gas in industrial furnaces, have tended to become larger in recent years, and because they are used in the high temperature range of the heat source and preheating medium, There are many accidents caused by thermal deformation, oxidation thinning, and corrosion caused by high temperatures in steel pipes, which are the lifeblood of steel pipes, and the stability of operations is significantly deteriorated.
第1図には一般に公知の多管式熱交換器を示していて、
煙道1内に設けた鋼管群4及び6は格子状又は千鳥状に
配列されていてその両端はそれぞれ鏡板に取付けられて
いる。Figure 1 shows a generally known multi-tubular heat exchanger.
The steel pipe groups 4 and 6 provided in the flue 1 are arranged in a lattice or staggered pattern, and both ends thereof are attached to end plates, respectively.
一方熱源媒体はaよりbへ鋼管群の間を流れ、他方予熱
媒体はノズル2より冷風分配面3を経て鋼管群4の内部
を流下し、下部転換箱5で方向を変え鋼管群6の内部を
流れ分配由7に集りノズル8に至る構造である。On the one hand, the heat source medium flows between the steel pipe groups from a to b, and on the other hand, the preheating medium flows from the nozzle 2 through the cold air distribution surface 3 and down the inside of the steel pipe group 4, changes direction in the lower conversion box 5, and flows inside the steel pipe group 6. The structure is such that the flow collects in a flow distribution channel 7 and reaches a nozzle 8.
当該熱交換器における鋼管の変形、酸化及び腐蝕減肉の
主たる原因は、異状な鋼管壁温度上昇に起因する。The main cause of deformation, oxidation, and corrosion thinning of the steel pipes in the heat exchanger is due to an abnormal rise in the wall temperature of the steel pipes.
鋼管温度の異状な温度上昇の要因は、予熱媒体の流量変
動に依って生じる各管内の不均一な流れによる部分的な
冷却不足及び各管の受熱温度の不均一による過熱である
。The causes of the abnormal rise in temperature of the steel pipes are local insufficient cooling due to non-uniform flow within each pipe caused by fluctuations in the flow rate of the preheating medium, and overheating due to non-uniformity in the heat receiving temperature of each pipe.
以下その理由を第1図及び第2図によって説明する。The reason for this will be explained below with reference to FIGS. 1 and 2.
第1図の場合熱源媒体はaよりbに至る間に放熱して次
第に温度は下る。In the case of FIG. 1, the heat source medium radiates heat from point a to point b, and the temperature gradually decreases.
一方鋼管の管壁温度は第2図に示す41列・42列・・
・・・・4□□□[と同様に追随して低下することにな
る。On the other hand, the pipe wall temperature of the steel pipe is shown in Figure 2 in rows 41 and 42.
...4□□□[It will follow and decrease similarly.
ここで実際の数値として、鋼管内を流れる場合の内部抵
抗ΔPは空気の場合、次式によれば
L /d12” x 10f’mm水柱
ただし、W:流速、T:流体温度、P:圧力、L:管長
、d:管直径(コロナ社応用伝熱A・5CHACK著)
となり、上式による41列目の鋼管と4明目鋼管との温
度が300℃及び100℃と差が生じた場合、管径6h
管長300−流速20m/ sと仮定すれば両管の内部
抵抗は68rrrm水柱及び40TIr!n水柱と大巾
な差が生ずる事になり当然流量が抵抗の大きい方へは流
れにくいことを示している。Here, as an actual value, the internal resistance ΔP when flowing in a steel pipe is L /d12" x 10 f'mm water column according to the following formula, where W: flow velocity, T: fluid temperature, P: pressure, L: Pipe length, d: Pipe diameter (written by Corona Corporation Applied Heat Transfer A/5CHACK)
According to the above formula, if the temperature difference between the 41st row steel pipe and the 4th row steel pipe is 300°C and 100°C, the pipe diameter is 6h.
Assuming a pipe length of 300 mm and a flow rate of 20 m/s, the internal resistance of both pipes is 68 rrrm water column and 40 TIr! There is a large difference in the water column, which naturally indicates that it is difficult for the flow rate to flow in the direction of greater resistance.
又流量が変動する場合は、第1図に示す様に予熱媒体は
ノズル2より冷風分配管3により、均等に容管に分配さ
れるわけであるが実際は、下記の事柄が起る。When the flow rate fluctuates, the preheating medium is evenly distributed from the nozzle 2 to the cold air distribution pipe 3 to the container pipes as shown in FIG. 1, but in reality, the following events occur.
仮に管径60m管長3000mm予熱媒体(空気とする
)の流速20m/s平均温度300°Cの場合、前式に
よる圧力損失は68順水柱である。Assuming that the pipe diameter is 60 m, the pipe length is 3000 mm, the flow rate of the preheating medium (air) is 20 m/s, and the average temperature is 300°C, the pressure loss according to the above equation is 68 normal water columns.
流量が2分の1に減少した場合は流速torn/ sと
なり圧力損失は18閣水柱となる。If the flow rate is reduced by half, the flow rate will be torn/s and the pressure loss will be 18 columns of water.
更に流量が5分の1となった場合圧力損失は5mm水柱
と激減する。Furthermore, when the flow rate is reduced to one-fifth, the pressure loss drastically decreases to 5 mm of water column.
特に第2図に示す通り412〜418列の管数に比べて
熱源媒体の流れ方向の管列数が多い場合、熱源媒体鋼管
入口側と出口側の管壁温度の差が大きくなり、管列41
〜49を通る流量は著しく不均一なものとなる。In particular, as shown in Figure 2, when the number of tube rows in the flow direction of the heat source medium is larger than the number of tube rows 412 to 418, the difference in tube wall temperature between the inlet side and the outlet side of the heat source medium steel pipe becomes large, and the tube row 41
The flow rate through ~49 becomes significantly non-uniform.
本考案は、冷風分配画を複数に分割し、更にこれら分配
画に送り込む予熱媒体の流入量を制御することによって
、管群の温度の不均一を解消して、熱交換器の生命とも
いうべき鋼管の保護を図った多管式熱交換器を提供する
ことを目的とする。This invention solves the non-uniformity of temperature in the tube group by dividing the cold air distribution section into multiple sections and controlling the amount of preheating medium sent into these distribution sections. The purpose is to provide a multi-tubular heat exchanger that protects steel pipes.
以下、図示の一実施例によって本考案を説明する。Hereinafter, the present invention will be explained with reference to an illustrated embodiment.
第3図において、符号52は図示されないポンプに接続
された予熱媒体、例えば空気の冷風主配管を示している
。In FIG. 3, reference numeral 52 indicates a cold air main pipe for a preheating medium, such as air, which is connected to a pump (not shown).
この冷風配管52には、分岐配管53.54の一端がそ
れぞれ接続されている。This cold air pipe 52 is connected to one end of branch pipes 53 and 54, respectively.
分岐配管53.54の他端は、それぞれ冷風分配函57
.58のノズル55.56に接続されていて、一方の分
岐配管54には、流量制御用媒介15が配設されている
。The other ends of the branch pipes 53 and 54 are connected to cold air distribution boxes 57, respectively.
.. 58 nozzles 55 and 56, and one branch pipe 54 is provided with a flow rate control medium 15.
上記冷風分配画57は、煙道1の熱源媒体の流れにおい
て上流側に配置され、これの鏡板57aには、伝熱管群
59の空気流入側が接続されている。The cold air distribution section 57 is arranged on the upstream side in the flow of the heat source medium of the flue 1, and the air inflow side of the heat transfer tube group 59 is connected to the end plate 57a of this.
また、上記流れにおいて下流側に位置する冷風分配函5
8の鏡板58aには伝熱管群60の空気流入側が接続さ
れている。In addition, a cold air distribution box 5 located on the downstream side in the above flow
The air inflow side of the heat exchanger tube group 60 is connected to the end plate 58a of No. 8.
そして、伝熱管群59.60の他側は、下部空気転換函
61にそれぞれ接続されている。The other sides of the heat exchanger tube groups 59 and 60 are connected to the lower air conversion box 61, respectively.
下部空気転換函61には、上記伝熱管群60の更に下流
側に位置する伝熱管群62の下端が接続され、同管群の
上端は熱風ヘッダー63に接続されている。The lower end of a heat exchanger tube group 62 located further downstream of the heat exchanger tube group 60 is connected to the lower air conversion box 61, and the upper end of the tube group is connected to a hot air header 63.
熱風ヘッダー63にはノズル64を介して図示されない
熱風配管が接続されている。A hot air pipe (not shown) is connected to the hot air header 63 via a nozzle 64.
また、上記分岐配管54に配設された流量制御用媒介1
5は、上記伝熱管群59,60の管壁温度或いは同管群
59.60の出口における空気の温度を検知して、これ
により作動させて、冷風分配置i57,58への空気流
入量を制御する。Further, the flow rate control medium 1 disposed in the branch pipe 54
5 detects the temperature of the tube wall of the heat transfer tube group 59, 60 or the temperature of the air at the outlet of the tube group 59, 60, and operates based on this to control the amount of air flowing into the cold air distribution arrangement i57, 58. Control.
いま、冷風主配管52に圧入された空気は、分岐配管5
3,54に予じめ設定された量に分岐して冷風分配置i
57,58から伝熱管群59.60へ送り込まれ、同管
群の周囲を流れる熱源媒体により加熱された伝熱管中を
流下するとき、吸熱して下部転換函61で合流し、伝熱
管群62を経て熱風ヘッダー63に至る。Now, the air press-injected into the cold air main pipe 52 is transferred to the branch pipe 5.
3. The cold air is distributed by branching into preset amounts at 3 and 54.
57 and 58 to the heat exchanger tube group 59 and 60, and as they flow down the heat exchanger tubes heated by the heat source medium flowing around the tube group, they absorb heat and merge at the lower conversion box 61, and the heat exchanger tube group 62 The hot air header 63 is reached through the hot air header 63.
上記空気が伝熱管群59.60を流下するとき、冷風分
配置f157.58に送り込まれる空気量が同じである
と、前述したように熱源媒体の温度降下による管内の抵
抗が変化して流量が不均一となるが、媒介15によって
上流側伝熱管59と下流側伝熱管群60への流量が制御
されるため、すなわち流量調整によって伝熱管の内部抵
抗が強制的に変化させられるので、従来最も損傷の激し
かった上流側伝熱管群59にも、これを充分に冷却でき
るだけの空気が流通させられることになる。When the above air flows down the heat transfer tube group 59.60, if the amount of air sent to the cold air distribution arrangement f157.58 is the same, the resistance inside the tube changes due to the temperature drop of the heat source medium as described above, and the flow rate increases. Although it becomes non-uniform, since the flow rate to the upstream heat exchanger tube 59 and the downstream side heat exchanger tube group 60 is controlled by the medium 15, that is, the internal resistance of the heat exchanger tube is forcibly changed by adjusting the flow rate. Even the upstream heat exchanger tube group 59, which was severely damaged, is now supplied with enough air to sufficiently cool it.
従って、上流側伝熱管群59の過熱およびこれに伴なう
変形等が防止される。Therefore, overheating of the upstream heat exchanger tube group 59 and accompanying deformation are prevented.
また、流量調整用の媒介15は、前記温度検出に応じて
自動的に作動するようにしてもよいこと勿論であり、更
に、熱源媒体の流れ方向における伝熱管の列が長い場合
には、冷風分配画を多分割として、熱源媒体の温度降下
に追従して管内部の抵抗を変化させるようにしてもよい
。Further, the flow rate adjustment medium 15 may of course be configured to operate automatically in accordance with the temperature detection. The distribution section may be multi-divided to change the resistance inside the tube in accordance with the temperature drop of the heat source medium.
以上説明したように、冷風分配函を複数に分割し、これ
に送り込まれる予熱媒体の流量を制御する本考案の多管
式熱交換器によれば、熱源物質の上流側に位置する伝熱
管群とこれの下流に位置する伝熱管群とを流れる予熱物
質の流量が制御されるので前者の伝熱管群が充分に冷却
されることになって、伝熱管の保護換言すれば寿命の長
い安定した多管式熱交換器を提供することができる。As explained above, according to the multi-tube heat exchanger of the present invention, which divides the cold air distribution box into a plurality of parts and controls the flow rate of the preheating medium sent into the boxes, a group of heat transfer tubes located upstream of the heat source material Since the flow rate of the preheating material flowing through the heat exchanger tube group located downstream of this is controlled, the former heat exchanger tube group is sufficiently cooled, and in other words, the heat exchanger tube group is protected and has a long service life. A shell-and-tube heat exchanger can be provided.
第1図は従来の多管式熱交換器を示す側断面図、第2図
は同上の拡大平断面図、第3図は本考案の多管式熱交換
器の一実施例を示す側断面図である。
15・・・・・・流量制御用バタ弁、52・・・・・・
冷風主配管、53.54・・・・・・分岐配管、57.
58・・・・・・冷風ひ配函、59.60・曲・伝熱管
群、61・・・・・・下部空気転換内。Fig. 1 is a side sectional view showing a conventional shell-and-tube heat exchanger, Fig. 2 is an enlarged plan sectional view of the same, and Fig. 3 is a side sectional view showing an embodiment of the shell-and-tube heat exchanger of the present invention. It is a diagram. 15...Bata valve for flow rate control, 52...
Cold air main piping, 53.54...Branch piping, 57.
58... Cold air distribution box, 59.60 Bent/heat transfer tube group, 61... Lower air conversion inside.
Claims (1)
内に吊り下げて用いる多管式熱交換器において、熱源媒
体の流れの上流側に位置する伝熱管群の予熱媒体流入側
に接続される上記流れに直交して複数に分割された分配
画と、この複数に分割された分配函に対する予熱媒体の
流量を制御する機構とを備えた多管式熱交換器。In a multi-tube heat exchanger that is used by being suspended in a flue and in which a preheating medium flows perpendicularly to the flow of the heat source medium, a heat exchanger connected to the preheating medium inflow side of a group of heat transfer tubes located upstream of the flow of the heat source medium. A multi-tubular heat exchanger comprising: a distribution box divided into a plurality of sections perpendicular to the flow; and a mechanism for controlling the flow rate of a preheating medium to the distribution box divided into the plurality of sections.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11394975U JPS608320Y2 (en) | 1975-08-19 | 1975-08-19 | Shell-and-tube heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11394975U JPS608320Y2 (en) | 1975-08-19 | 1975-08-19 | Shell-and-tube heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5227649U JPS5227649U (en) | 1977-02-26 |
JPS608320Y2 true JPS608320Y2 (en) | 1985-03-23 |
Family
ID=28594986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11394975U Expired JPS608320Y2 (en) | 1975-08-19 | 1975-08-19 | Shell-and-tube heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS608320Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112595146B (en) * | 2020-12-29 | 2023-09-12 | 乔治洛德方法研究和开发液化空气有限公司 | High-temperature fluid transportation pipeline with pipeline shell composed of heat exchange equipment, applicable heat exchange equipment and heat exchange method |
-
1975
- 1975-08-19 JP JP11394975U patent/JPS608320Y2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5227649U (en) | 1977-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9170055B2 (en) | Tube bundle heat exchanger for controlling a wide performance range | |
EP2622297B1 (en) | Waste heat boiler | |
US3963071A (en) | Chell-and-tube heat exchanger for heating viscous fluids | |
US4084546A (en) | Heat exchanger | |
JP2017078567A (en) | Heat exchanger | |
US4244421A (en) | Process and an apparatus for cooling of waste gas bends | |
JPS608320Y2 (en) | Shell-and-tube heat exchanger | |
CN106765288A (en) | A kind of classification heat-exchange system of station boiler rotary regenerative air preheater | |
US2683590A (en) | Automatic fluid heat exchange apparatus | |
JPS6025704B2 (en) | air heating device | |
US3702633A (en) | Gas-to-gas heat exchanger | |
US3247897A (en) | Differential expansion compensating apparatus | |
CN110173712A (en) | Air-water heat exchanger with perpendicular fins | |
US2385177A (en) | Gas heater | |
JP4823043B2 (en) | Heat exchanger | |
CN206582891U (en) | A kind of classification heat-exchange system of station boiler rotary regenerative air preheater | |
US2029450A (en) | Heat exchanger | |
CN105737136A (en) | U-shaped pipe superheater | |
JPH07190648A (en) | Heat exchanger and control method thereof | |
US4230307A (en) | Cooling apparatus for copper converter opening | |
RU189596U1 (en) | Zone heat exchanger | |
JPH0615949B2 (en) | Raw gas / pure gas heat exchanger | |
SU966419A1 (en) | Tubular air heater | |
JPH0749243Y2 (en) | Exhaust heat recovery device | |
JPS6215662Y2 (en) |