JP2009078951A - Urea modifying apparatus and exhaust gas cleaning system equipped with the same - Google Patents

Urea modifying apparatus and exhaust gas cleaning system equipped with the same Download PDF

Info

Publication number
JP2009078951A
JP2009078951A JP2007250313A JP2007250313A JP2009078951A JP 2009078951 A JP2009078951 A JP 2009078951A JP 2007250313 A JP2007250313 A JP 2007250313A JP 2007250313 A JP2007250313 A JP 2007250313A JP 2009078951 A JP2009078951 A JP 2009078951A
Authority
JP
Japan
Prior art keywords
urea
ammonia
dielectric
electrodes
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007250313A
Other languages
Japanese (ja)
Other versions
JP5468732B2 (en
Inventor
Akira Mizuno
彰 水野
Kazunori Takashima
和則 高島
Yoshihiro Iizuka
喜啓 飯塚
Hiroki Yamauchi
浩揮 山内
Priet Graciela
プリエト グラシエラ
Mitsuru Hosoya
満 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Toyohashi University of Technology NUC
Original Assignee
Hino Motors Ltd
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd, Toyohashi University of Technology NUC filed Critical Hino Motors Ltd
Priority to JP2007250313A priority Critical patent/JP5468732B2/en
Publication of JP2009078951A publication Critical patent/JP2009078951A/en
Application granted granted Critical
Publication of JP5468732B2 publication Critical patent/JP5468732B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a urea modifying apparatus efficiently and continuously producing ammonia even in cold exhaust gas. <P>SOLUTION: The urea modifying apparatus comprises: a pair of electrodes; a pellet-like dielectric put between the pair of electrodes; an emulsion supply means configured such that a urea-containing emulsion can be supplied to the dielectric; a power source means connected to the pair of electrodes and configured such that pulse discharge or AC discharge is caused between the pair of electrodes and the urea reaching the dielectric can be converted to ammonia; and a carrier gas supply means configured such that carrier gas is supplied to the dielectric and ammonia converted from the urea can be extracted. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は,アンモニアSCR法に用いられるものであって、可動または定置のディーゼルエンジンやリーンバーンエンジンなどの排ガス中に含まれるNOXを還元して窒素にするための還元剤であるアンモニアを生成しうる尿素改質装置及びそれを用いた排ガス浄化装置に関するものである。 The present invention is used in the ammonia SCR method, and generates ammonia as a reducing agent for reducing NO X contained in exhaust gas such as a movable or stationary diesel engine or lean burn engine to nitrogen. The present invention relates to a urea reformer that can be used and an exhaust gas purification device using the same.

排気ガスの規制強化動向を鑑み,燃焼排ガスに含まれるNOX(例えばNOやNO2)を窒素分子に還元する技術が研究されている。公知の貴金属触媒によるNOX処理方法は,排ガス中に高濃度の酸素が含まれるディーゼルエンジンやリーンバーンエンジンに適用することが不可能であり,該方法に代わるNOX処理技術としてアンモニアと触媒をもってNOXを窒素に還元するアンモニアSCR法が広く定置エンジンの脱硝法に採用されている。しかし上述のアンモニアSCR法は毒性のあるアンモニアを使用する必要があるために,可動エンジンにおいては尿素の状態で貯蔵し該尿素を熱分解してアンモニアを生成して,そのアンモニアでNOXを還元する排ガス浄化方法(例えば、非特許文献1参照。)が取られている。このアンモニアSCRシステムによる排ガス浄化において,尿素を熱分解してアンモニア生成するためには,排ガス温度が520〜570K程度である必要がある。
窒素酸化物防止技術 稲葉英也 化学工業社(1973)
In view of the trend of stricter regulations on exhaust gas, technologies for reducing NO x (for example, NO and NO 2 ) contained in combustion exhaust gas to nitrogen molecules have been studied. NO X treatment method according to the known noble metal catalyst, it is impossible to apply to a diesel engine or lean burn engines contains a high concentration of oxygen in the exhaust gas, with ammonia and a catalyst as NO X processing technique alternative to the method The ammonia SCR method, which reduces NO X to nitrogen, is widely used for stationary engine denitration. However, since the above-mentioned ammonia SCR method requires the use of toxic ammonia, in a mobile engine, it is stored in the form of urea, the urea is thermally decomposed to produce ammonia, and NO X is reduced with the ammonia. An exhaust gas purification method (see, for example, Non-Patent Document 1) is employed. In the exhaust gas purification using the ammonia SCR system, the exhaust gas temperature needs to be about 520 to 570K in order to thermally decompose urea to produce ammonia.
Nitrogen oxide prevention technology Hideya Inaba Chemical Industry Co., Ltd. (1973)

しかし、エンジン起動時には排ガス温度が低く400Kあるいはそれ以下になる。また,技術発展に伴うエンジンの熱効率の改善によって,排ガス温度が前記と同じように400Kあるいはそれ以下になることが考えられる。そのような排ガス温度が比較的低い場合,上述した従来の尿素SCR法では,熱量の不足により尿素を分解してアンモニアを生成する反応が充分な速度で行われず,SCR法に必要な還元剤(アンモニア)が供給されない。そのため低い排ガス温度(コールドエミッション)に対応した,尿素を改質してアンモニアを生成する方法が望まれている。   However, when the engine is started, the exhaust gas temperature is low and is 400K or less. In addition, due to improvements in engine thermal efficiency that accompany technological development, the exhaust gas temperature may be 400K or less as described above. When such exhaust gas temperature is relatively low, the above-mentioned conventional urea SCR method does not carry out the reaction of decomposing urea and generating ammonia at a sufficient rate due to lack of heat, and the reducing agent (reducing agent required for the SCR method ( Ammonia) is not supplied. Therefore, there is a demand for a method of reforming urea to generate ammonia corresponding to a low exhaust gas temperature (cold emission).

本発明の目的は、低温排ガス中であっても効率よくアンモニアを連続的に生成し得る尿素改質装置を提供することにある。   An object of the present invention is to provide a urea reformer capable of efficiently and continuously producing ammonia even in low temperature exhaust gas.

本発明の別の目的は、低温排ガス中であっても効率よくNOXを窒素分子に還元し得る排ガス浄化装置を提供することにある。 Another object of the present invention is to provide an exhaust gas purifying apparatus capable of efficiently reducing NO x to nitrogen molecules even in low temperature exhaust gas.

請求項1に係る発明は、一対の電極と、一対の電極間に設けられたペレット状の誘電体と、尿素を含むエマルジョンを誘電体に供給可能に構成されたエマルジョン供給手段と、一対の電極に接続され一対の電極間にパルス放電又は交流放電を発生させて誘電体に達する尿素をアンモニアに転化可能に構成された電源手段と、誘電体にキャリアガスを供給して尿素から転化したアンモニアを抽出可能に構成されたキャリアガス供給手段とを備えた尿素改質装置である。   The invention according to claim 1 includes a pair of electrodes, a pellet-shaped dielectric provided between the pair of electrodes, an emulsion supply means configured to supply an emulsion containing urea to the dielectric, and a pair of electrodes A power source means configured to generate a pulse discharge or an alternating current discharge between a pair of electrodes to convert urea reaching the dielectric into ammonia, and to supply ammonia into the dielectric converted from urea by supplying a carrier gas to the dielectric. A urea reformer comprising a carrier gas supply means configured to be extractable.

ここで、一対の電極としては,放電電極とその外周に同軸円筒状に誘電体を介して設けられた接地電極であることが好ましく、これを用いたものとしては放電空間内に充填したペレット状の誘電体と粉末状の尿素からなる充填層型放電反応器が考えられる(図1)。この充填型放電反応器にパルスあるいは交流高電圧を放電電極に印加することで放電プラズマを発生させて,放電プラズマ域にある尿素のアンモニアへの分解を行う。このとき,尿素を連続的に反応器に供給するため、油中に尿素粉末、あるいは高濃度尿素水溶液を液滴として分散させたエマルションを用いる。またもう一つの方法として、尿素水溶液を反応器内に噴霧して連続供給を行う。これにより液体用のポンプを用いることで反応装置内に連続供給できる。   Here, the pair of electrodes is preferably a discharge electrode and a ground electrode provided on the outer periphery of the discharge electrode in the form of a coaxial cylinder through a dielectric. A packed-bed type discharge reactor made of a dielectric material and powdered urea can be considered (FIG. 1). A pulse or alternating high voltage is applied to the discharge electrode in the filling type discharge reactor to generate discharge plasma, and the urea in the discharge plasma region is decomposed into ammonia. At this time, in order to continuously supply urea to the reactor, an emulsion in which urea powder or high-concentration urea aqueous solution is dispersed as droplets in oil is used. As another method, the urea aqueous solution is sprayed into the reactor to perform continuous supply. Thereby, it can supply continuously in a reactor by using the pump for liquids.

そして、上述した尿素改質装置と、エンジンの排気経路に設けられ尿素改質装置によって生成したアンモニアを還元剤として窒素酸化物(NOX)を還元する還元触媒とを備えることにより排ガス浄化装置が得られる。 The exhaust gas purification apparatus includes the urea reforming apparatus described above and a reduction catalyst that reduces nitrogen oxide (NO x ) using ammonia generated in the exhaust path of the engine and generated by the urea reforming apparatus as a reducing agent. can get.

従来の熱励起による尿素の分解では,483K以下において亜硝酸アンモニウムが生成する。そのため,アンモニアの生成速度が遅くなってしまう。本発明では,放電プラズマによって尿素が分解されてアンモニアが生成する反応を誘起している。そのため,比較的排ガス温度が低い状態,例えば400K以下においても,放電プラズマに暴露した時の方が,プラズマに暴露しない時に比べ高濃度のアンモニアを生成することができる。つまり,放電プラズマによって尿素からアンモニアを生成することで,従来の尿素SCR法では困難であった低温排ガス中のNOXを効率よく還元処理することができるようになった。 Conventional decomposition of urea by thermal excitation produces ammonium nitrite at 483K or lower. As a result, the production rate of ammonia is slow. In the present invention, a reaction in which urea is decomposed by discharge plasma to generate ammonia is induced. For this reason, even when the exhaust gas temperature is relatively low, for example, 400K or less, a higher concentration of ammonia can be generated when exposed to discharge plasma than when exposed to plasma. In other words, by generating ammonia from urea by discharge plasma, it has become possible to efficiently reduce NO x in low-temperature exhaust gas, which was difficult with the conventional urea SCR method.

尿素粉末を放電装置に連続供給するためには、放電装置に流入するガスの上流側で、ガス中に粉末を吹き込むことなどの方法が必要であるが、尿素は潮解性があり、粉末が固化するなどでノズルが閉塞する問題があった。本発明では,油中に尿素粉末あるいは高濃度尿素水溶液の液滴を分散させた流動性のあるエマルションを用いるため、ノズルのつまりがなく、連続供給が可能となる。また尿素水溶液を放電装置内に噴霧することでも連続供給ができる。   In order to continuously supply urea powder to the discharge device, a method such as blowing the powder into the gas upstream of the gas flowing into the discharge device is required. However, urea is deliquescent and the powder solidifies. There was a problem that the nozzle was blocked by doing so. In the present invention, since a fluid emulsion in which droplets of urea powder or high-concentration urea aqueous solution are dispersed in oil is used, there is no nozzle clogging and continuous supply is possible. Also, continuous supply can be performed by spraying an aqueous urea solution into the discharge device.

次に本発明を実施するための最良の形態を図面に基づいて説明する。   Next, the best mode for carrying out the present invention will be described with reference to the drawings.

本発明はディーゼルエンジンまたはリーンバーンエンジンの排気マニホールド内にて,エンジン後部からSCR用触媒前部の間に尿素改質装置を設置し,尿素の改質によって生成したアンモニアをSCR触媒に供給することでNOxの除去を行う排ガス浄化装置である。尿素改質装置の構成は,図1に示すように、一対の電極1,3と、一対の電極1,3の間に設けられたペレット状の誘電体7と、尿素を含むエマルジョンを誘電体に供給可能に構成されたエマルジョン供給手段と、一対の電極1,3に接続され一対の電極1,3の間にパルス放電又は交流放電を発生させて誘電体に達する尿素をアンモニアに転化可能に構成された電源手段9と、誘電体7にキャリアガスを供給して尿素から転化したアンモニアを抽出可能に構成されたキャリアガス供給手段5とを備える。この尿素改質装置では低排ガス温度で尿素をアンモニアに改質するため,ペレット状の誘電体7を多数充填して形成された充填層型反応器を用いる。即ち、一対の電極1,3は、放電電極1とその外周に同軸円筒状に誘電体7を介して設けられた接地電極3を備える。そして、放電空間内にペレット状の誘電体7からなる充填層が形成される。   In the exhaust manifold of a diesel engine or lean burn engine, the present invention installs a urea reformer between the rear of the engine and the front of the SCR catalyst, and supplies ammonia generated by the reforming of urea to the SCR catalyst. This is an exhaust gas purification device that removes NOx. As shown in FIG. 1, the structure of the urea reforming apparatus includes a pair of electrodes 1 and 3, a pellet-shaped dielectric 7 provided between the pair of electrodes 1 and 3, and an emulsion containing urea as a dielectric. The emulsion supply means configured to be able to supply the liquid and the urea that reaches the dielectric by generating pulse discharge or AC discharge between the pair of electrodes 1 and 3 and being connected to the pair of electrodes 1 and 3 can be converted to ammonia The power supply unit 9 is configured, and the carrier gas supply unit 5 is configured to be able to extract ammonia converted from urea by supplying a carrier gas to the dielectric 7. In this urea reformer, a packed bed reactor formed by filling a large number of pellet-like dielectrics 7 is used to reform urea into ammonia at a low exhaust gas temperature. That is, the pair of electrodes 1 and 3 includes a discharge electrode 1 and a ground electrode 3 provided on the outer periphery of the discharge electrode 1 in a coaxial cylindrical shape with a dielectric 7 interposed therebetween. And the filling layer which consists of the dielectric material 7 of a pellet form is formed in discharge space.

この尿素改質装置では、その充填型放電反応器に水蒸気を含むキャリアガス(例えば空気又は排ガス)をガス導入管5を介して供給しつつパルスあるいは交流高電圧を放電電極に印加することで放電プラズマを発生させて,放電プラズマ域にある尿素8のアンモニアへの分解を行う。このとき,ペレット状の誘電体7を多数充填して形成した充填層を電極1,3で挟み,パルスまたは交流高電圧を印加することで放電プラズマに暴露している。この放電プラズマ領域内で電子やイオンの励起により,尿素の加水分解反応が促進し,アンモニアが生成される。そして、充填層型の反応器を用いているので,充填層部分のみが放電プラズマに暴露するため,放電によるエネルギーが効率よく尿素に与えられ、アンモニアを有効に生成することができる。   In this urea reformer, a carrier gas (for example, air or exhaust gas) containing water vapor is supplied to the filling type discharge reactor through the gas introduction tube 5 while applying a pulse or an alternating high voltage to the discharge electrode. Plasma is generated to decompose urea 8 in the discharge plasma region into ammonia. At this time, a packed layer formed by filling a large number of pellet-like dielectrics 7 is sandwiched between electrodes 1 and 3 and exposed to discharge plasma by applying a pulse or an alternating high voltage. In the discharge plasma region, excitation of electrons and ions accelerates the hydrolysis reaction of urea, generating ammonia. Since the packed bed type reactor is used, only the packed bed portion is exposed to the discharge plasma, so that the energy from the discharge is efficiently given to the urea and ammonia can be effectively generated.

エマルジョン供給手段は、ポンプとノズルからなり、そして、このエマルジョン供給手段は、プラズマ装置内に、油中に尿素粉末あるいは高濃度尿素水溶液の液滴を分散させた流動性のあるエマルションを噴霧などで供給するように構成される。あるいは尿素水溶液を噴霧により供給する。このように、油中に尿素粉末あるいは高濃度尿素水溶液の液滴を分散させた流動性のあるエマルションを用いるため、ノズルのつまりがなく、連続供給が可能となる。また尿素水溶液を放電装置内に噴霧することでも連続供給ができる。これによりアンモニアを連続的に生成し、排ガス浄化装置において低温排ガス中であっても効率よくNOXを窒素分子に還元させることができる。 The emulsion supply means comprises a pump and a nozzle, and this emulsion supply means sprays a fluid emulsion in which droplets of urea powder or high-concentration urea aqueous solution are dispersed in oil in a plasma apparatus. Configured to supply. Alternatively, an aqueous urea solution is supplied by spraying. Thus, since a fluid emulsion in which droplets of urea powder or high-concentration urea aqueous solution are dispersed in oil is used, there is no nozzle clogging and continuous supply is possible. Also, continuous supply can be performed by spraying an aqueous urea solution into the discharge device. As a result, ammonia can be continuously produced, and NO x can be efficiently reduced to nitrogen molecules even in low temperature exhaust gas in the exhaust gas purification device.

図1に示す充填層放電型プラズマ装置、あるいは図1の装置において充填物を取り除いた形状の誘電体バリア放電型のプラズマ反応装置を用いることで大気圧放電プラズマを発生させた。図1の充填層放電型プラズマ反応装置は、長さ50mm内径19mmのホウケイ酸ガラス管(符号2)内部の中心に長さ25mm外形11mmのステンレスロッド(符号3)を同軸円筒状に配置し,ホウケイ酸ガラス管外周をステンレスシート(符号1)で覆う形状とした。このホウケイ酸ガラス管とステンレスロッドの間に直径2.5〜4mmの誘電体ペレット(符号7)と粉末状の尿素(符号8)を充填し,セラミックス(符号4)で両端を挟み込み固定することで充填層とした。内部のステンレスロッドは高電圧電極であり,そこに正極性パルス高電圧を印加し,外部のステンレスシートを接地電極とした。15kVp-p,5kHz,立ち上がり0.25μs程度のパルス電圧を印加して放電プラズマを発生させた。   Atmospheric pressure discharge plasma was generated by using the packed bed discharge type plasma apparatus shown in FIG. 1 or the dielectric barrier discharge type plasma reactor in which the filling material was removed in the apparatus of FIG. The packed bed discharge plasma reactor shown in Fig. 1 has a stainless steel rod (reference numeral 3) of 25 mm in length and 11 mm in outer diameter in the center of a borosilicate glass tube (reference numeral 2) having a length of 50 mm and an inner diameter of 19 mm. The outer periphery of the borosilicate glass tube was covered with a stainless steel sheet (reference numeral 1). Filled by filling the borosilicate glass tube and stainless steel rod with dielectric pellets (symbol 7) and powdered urea (symbol 8) with a diameter of 2.5 to 4 mm and sandwiching both ends with ceramics (symbol 4). Layered. The internal stainless steel rod is a high-voltage electrode, a positive pulsed high voltage was applied to it, and the external stainless steel sheet was used as the ground electrode. A discharge plasma was generated by applying a pulse voltage of 15 kVp-p, 5 kHz, and a rise of about 0.25 μs.

一方、1gの尿素を1gのイオン交換水に溶かした後、界面活性剤としてトリトンXを10μL加え、これをドデカン3mLに加え、攪拌して、エマルションを作成した。このエマルションを充填層型プラズマ反応装置に毎分100μLで供給した。あわせて、プラズマ反応装置には窒素ガスを毎分2Lの流量で供給した。反応装置の温度は60度Cとし、アンモニアを発生させた。   On the other hand, after dissolving 1 g of urea in 1 g of ion exchange water, 10 μL of Triton X was added as a surfactant, and this was added to 3 mL of dodecane and stirred to prepare an emulsion. This emulsion was supplied to the packed bed type plasma reactor at 100 μL per minute. In addition, nitrogen gas was supplied to the plasma reactor at a flow rate of 2 L / min. The temperature of the reactor was 60 ° C., and ammonia was generated.

また、正極性パルス高電圧を(10kVp-p,5kHz),(15kVp-p,0.7kHz)及び(12.5kVp-p,3.3kHz)に変更したことを除いて他の条件を変更せずに再びアンモニアを発生させた。これらの条件により発生したアンモニアの濃度と時間との関係を図2に示す。   Also, change other conditions except that the positive pulse high voltage was changed to (10kVp-p, 5kHz), (15kVp-p, 0.7kHz) and (12.5kVp-p, 3.3kHz). Without generating ammonia again. The relationship between the concentration of ammonia generated under these conditions and time is shown in FIG.

また、充填物の材質を変えて、15kVp-p,5kHz,立ち上がり0.25μs程度のパルス電圧を印加して放電プラズマを発生させたことを除き、先の条件と同一の条件及び手続きにおいてアンモニアを発生させた。このときのアンモニアの濃度と時間との関係を図3に示す。   Also, ammonia is generated under the same conditions and procedures as the previous conditions, except that the material of the packing was changed and a discharge plasma was generated by applying a pulse voltage of 15 kVp-p, 5 kHz, rising 0.25 μs. I let you. FIG. 3 shows the relationship between the ammonia concentration and time at this time.

更に、毎分5Lの流量で反応装置に供給する窒素ガス中に、濃度30%の尿素水をミスト径1〜10mmで噴霧することで、尿素を充填層型プラズマ反応装置に供給した。温度は120度Cとした。パルス電圧波高値10kV,
周波数5kHzとした。尿素水ミストがガス中で蒸発し、プラズマ部で尿素が分解されアンモニアが発生できることが確認できた。このときのアンモニアの濃度と時間との関係を図4に示す。
Further, urea was supplied to the packed bed type plasma reactor by spraying urea water having a concentration of 30% with a mist diameter of 1 to 10 mm into nitrogen gas supplied to the reactor at a flow rate of 5 L / min. The temperature was 120 ° C. Pulse voltage peak value 10kV,
The frequency was 5 kHz. It was confirmed that the urea water mist evaporated in the gas and urea was decomposed in the plasma part to generate ammonia. The relationship between the ammonia concentration and time at this time is shown in FIG.

この発明によりエンジン起動時のような低温排ガス条件でも,NOXを還元するためのアンモニアを尿素から生成することが可能である。これにより従来の技術では不可能であった低温での排ガス処理が期待される。また,電気エネルギーによる尿素の改質はオンデマンドのアンモニア供給の可能性を示唆している。   According to the present invention, ammonia for reducing NOX can be generated from urea even under low temperature exhaust gas conditions such as when the engine is started. As a result, exhaust gas treatment at a low temperature, which is impossible with conventional technology, is expected. In addition, the reforming of urea by electric energy suggests the possibility of on-demand ammonia supply.

充填層放電プラズマ反応器の構成を示した図である。It is the figure which showed the structure of the packed bed discharge plasma reactor. 尿素エマルションに対するプラズマ暴露の有無による生成アンモニア濃度である。This is the concentration of ammonia produced with and without plasma exposure to the urea emulsion. 充填物の材質と生成アンモニア濃度である。It is the material of the filler and the ammonia concentration produced. 尿素水噴霧による生成アンモニア濃度である。This is the concentration of ammonia produced by spraying urea water.

符号の説明Explanation of symbols

1 ステンレスシート(接地電極)
2 ホウケイ酸ガラス管
3 ステンレスロッド(高電圧電極)
4 高電圧電極およびペレット支持のためのセラミックス
5 ポリテトラフロロエチレン管
6 シリコン栓
7 γ-Al2O3ペレット
8 粉末状尿素
9 パルス電源
1 Stainless steel sheet (ground electrode)
2 Borosilicate glass tube 3 Stainless rod (high voltage electrode)
4 Ceramics for supporting high voltage electrodes and pellets 5 Polytetrafluoroethylene tubes 6 Silicon plugs 7 γ-Al2O3 pellets 8 Powdered urea 9 Pulsed power supply

Claims (4)

一対の電極と、
前記一対の電極間に設けられたペレット状の誘電体と、
尿素を含むエマルジョンを前記誘電体に供給可能に構成されたエマルジョン供給手段と、
前記一対の電極に接続され前記一対の電極間にパルス放電又は交流放電を発生させて前記誘電体に達する前記尿素をアンモニアに転化可能に構成された電源手段と、
前記誘電体にキャリアガスを供給して前記尿素から転化したアンモニアを抽出可能に構成されたキャリアガス供給手段と
を備えた尿素改質装置。
A pair of electrodes;
A pellet-shaped dielectric provided between the pair of electrodes;
An emulsion supply means configured to supply an emulsion containing urea to the dielectric;
Power supply means connected to the pair of electrodes and configured to convert the urea reaching the dielectric by generating pulse discharge or alternating current discharge between the pair of electrodes into ammonia;
A urea reformer comprising: a carrier gas supply means configured to supply a carrier gas to the dielectric and extract ammonia converted from the urea.
エマルジョンが、10〜90質量%の尿素と、90〜0質量%の水と、残部が油からなる請求項1記載の尿素改質装置。   The urea reforming apparatus according to claim 1, wherein the emulsion comprises 10 to 90% by mass of urea, 90 to 0% by mass of water, and the balance comprising oil. エマルジョン供給手段が、ポンプと、ノズルとからなる請求項1又は2記載の尿素改質装置。   The urea reforming apparatus according to claim 1 or 2, wherein the emulsion supply means comprises a pump and a nozzle. 請求項1ないし3いずれか1項に記載の尿素改質装置と、
エンジンの排気経路に設けられ前記尿素改質装置によって生成したアンモニアを還元剤として窒素酸化物(NOX)を還元する還元触媒と
を備えた排ガス浄化装置。
A urea reformer according to any one of claims 1 to 3,
An exhaust gas purification apparatus comprising: a reduction catalyst provided in an exhaust path of an engine for reducing nitrogen oxide (NO x ) using ammonia generated by the urea reformer as a reducing agent.
JP2007250313A 2007-09-27 2007-09-27 Urea reformer and exhaust gas purifier equipped with the same Expired - Fee Related JP5468732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007250313A JP5468732B2 (en) 2007-09-27 2007-09-27 Urea reformer and exhaust gas purifier equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007250313A JP5468732B2 (en) 2007-09-27 2007-09-27 Urea reformer and exhaust gas purifier equipped with the same

Publications (2)

Publication Number Publication Date
JP2009078951A true JP2009078951A (en) 2009-04-16
JP5468732B2 JP5468732B2 (en) 2014-04-09

Family

ID=40654002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007250313A Expired - Fee Related JP5468732B2 (en) 2007-09-27 2007-09-27 Urea reformer and exhaust gas purifier equipped with the same

Country Status (1)

Country Link
JP (1) JP5468732B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105142A (en) * 2012-11-29 2014-06-09 Hino Motors Ltd Ammonia generator and exhaust gas purifier using the same
KR200474568Y1 (en) 2012-11-19 2014-09-26 두산엔진주식회사 Urea hydrolysis apparatus for selective catalytic reuction

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5535708A (en) * 1993-08-30 1996-07-16 Platinum Plus, Inc. Reduction of nitrogen oxides emissions from diesel engines
JP2001503675A (en) * 1996-11-01 2001-03-21 ノックステック・インコーポレーテッド Method for reducing NOx from emissions generated by industrial processes
JP2001525902A (en) * 1997-05-16 2001-12-11 シーメンス アクチエンゲゼルシヤフト Method and apparatus for removing oxidized harmful substances in exhaust gas containing oxygen and engine driven thereby
JP2002508466A (en) * 1997-12-17 2002-03-19 シーメンス アクチエンゲゼルシヤフト Method and apparatus for reducing nitrogen oxides in exhaust gas from combustion equipment
JP2004313917A (en) * 2003-04-15 2004-11-11 Babcock Hitachi Kk Method and apparatus for waste gas denitrification using urea
JP2006504898A (en) * 2002-11-06 2006-02-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for post-processing exhaust gas and apparatus for post-processing exhaust gas
JP2006144631A (en) * 2004-11-18 2006-06-08 Hino Motors Ltd Exhaust emission control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5535708A (en) * 1993-08-30 1996-07-16 Platinum Plus, Inc. Reduction of nitrogen oxides emissions from diesel engines
JP2001503675A (en) * 1996-11-01 2001-03-21 ノックステック・インコーポレーテッド Method for reducing NOx from emissions generated by industrial processes
JP2001525902A (en) * 1997-05-16 2001-12-11 シーメンス アクチエンゲゼルシヤフト Method and apparatus for removing oxidized harmful substances in exhaust gas containing oxygen and engine driven thereby
JP2002508466A (en) * 1997-12-17 2002-03-19 シーメンス アクチエンゲゼルシヤフト Method and apparatus for reducing nitrogen oxides in exhaust gas from combustion equipment
JP2006504898A (en) * 2002-11-06 2006-02-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for post-processing exhaust gas and apparatus for post-processing exhaust gas
JP2004313917A (en) * 2003-04-15 2004-11-11 Babcock Hitachi Kk Method and apparatus for waste gas denitrification using urea
JP2006144631A (en) * 2004-11-18 2006-06-08 Hino Motors Ltd Exhaust emission control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200474568Y1 (en) 2012-11-19 2014-09-26 두산엔진주식회사 Urea hydrolysis apparatus for selective catalytic reuction
JP2014105142A (en) * 2012-11-29 2014-06-09 Hino Motors Ltd Ammonia generator and exhaust gas purifier using the same

Also Published As

Publication number Publication date
JP5468732B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP4803186B2 (en) Fuel reformer
JP2007321680A (en) Plasma assist type urea reforming device
DK2726412T5 (en) PROCEDURE FOR PREPARING AMMONIA FROM AN AMMONIA EXPOSURE TO REDUCE NITROGEN OXIDES IN EXHAUST GAS
TWI615543B (en) Energy-saving type dielectric barrier discharge plasma nox reduction device
JP5299647B2 (en) Exhaust gas treatment equipment
Assadi et al. Removal of trimethylamine and isovaleric acid from gas streams in a continuous flow surface discharge plasma reactor
WO2015005066A1 (en) Exhaust gas treatment method, and exhaust gas treatment device
CN104179552A (en) Automobile tail gas treatment device and method based on low-temperature plasma
Huang et al. Plasma‐water‐based nitrogen fixation: Status, mechanisms, and opportunities
KR20180051343A (en) Removing apparatus of perfluorinated compounds using catalytic combustor and method thereof
JP5153748B2 (en) Nitrous oxide reduction method and reduction apparatus
JP5468732B2 (en) Urea reformer and exhaust gas purifier equipped with the same
US7220396B2 (en) Processes for treating halogen-containing gases
JP2009264147A (en) Exhaust emission control device
KR100365368B1 (en) Method for treating toxic compounds using non-thermal plasma
JP2022524631A (en) Systems and methods for plasma-based purification of SOx and NOx
JP2009264148A (en) Exhaust emission control device
JP2015016434A (en) Exhaust gas treatment method and exhaust gas treatment device
JP2007301524A (en) Method and apparatus for denitrification
WO2013183300A1 (en) Apparatus and method for processing gas
ES2333420T3 (en) VOC SUPPRESSION METHOD IN EXHAUST GASES BY CROWN PULSE EFFECT VIA HUMEDA.
JPH06178914A (en) Waste gas treatment device
JP2001187319A (en) Method and device for cleaning gas
WO2005065805A1 (en) Method of treating exhaust gas and apparatus therefor
JP4266304B2 (en) Exhaust gas denitration method and denitration apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140130

R150 Certificate of patent or registration of utility model

Ref document number: 5468732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees