JP2009264148A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2009264148A
JP2009264148A JP2008111973A JP2008111973A JP2009264148A JP 2009264148 A JP2009264148 A JP 2009264148A JP 2008111973 A JP2008111973 A JP 2008111973A JP 2008111973 A JP2008111973 A JP 2008111973A JP 2009264148 A JP2009264148 A JP 2009264148A
Authority
JP
Japan
Prior art keywords
urea
ammonia
exhaust
discharge
urea water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008111973A
Other languages
Japanese (ja)
Other versions
JP5340629B2 (en
Inventor
Yoshihiro Kawada
吉弘 川田
Shinya Sato
信也 佐藤
Mitsuru Hosoya
満 細谷
Akira Mizuno
彰 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Toyohashi University of Technology NUC
Original Assignee
Hino Motors Ltd
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd, Toyohashi University of Technology NUC filed Critical Hino Motors Ltd
Priority to JP2008111973A priority Critical patent/JP5340629B2/en
Publication of JP2009264148A publication Critical patent/JP2009264148A/en
Application granted granted Critical
Publication of JP5340629B2 publication Critical patent/JP5340629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device capable of showing high NOx reduction performances right after a stage where exhaust gas temperature reaches activation temperature zone of selective reduction type catalyst even under a condition where exhaust gas temperature is low such as in the case of engine start and low speed travel. <P>SOLUTION: The exhaust emission control device is provided with the selective reduction type catalyst 11 provided with a characteristics making NOx selectively react with ammonia even under existence of oxygen, and an urea water adding valve 14 (urea water adding means) adding urea water 13 as reducer to an upstream side of the selective reduction type catalyst 11, in the middle of an exhaust pipe 10 in which exhaust gas 8 from an engine 1 flows. The device is additionally equipped with an urea water discharge decomposition reactor 18 forcibly decomposing solid of urea to ammonia by discharge plasma and introducing the same to the exhaust pipe 10 at an upstream side of the selective reduction type catalyst 11. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

従来より、ディーゼルエンジンにおいては、排気ガスが流通する排気管の途中に、酸素共存下でも選択的にNOxを還元剤と反応させる性質を備えた選択還元型触媒を装備し、該選択還元型触媒の上流側に必要量の還元剤を添加して該還元剤を選択還元型触媒上で排気ガス中のNOx(窒素酸化物)と還元反応させ、これによりNOxの排出濃度を低減し得るようにしたものがある。   Conventionally, a diesel engine is equipped with a selective reduction catalyst having a property of selectively reacting NOx with a reducing agent even in the presence of oxygen in the middle of an exhaust pipe through which exhaust gas flows, and the selective reduction catalyst A required amount of a reducing agent is added to the upstream side of the catalyst so that the reducing agent undergoes a reduction reaction with NOx (nitrogen oxide) in the exhaust gas on the selective catalytic reduction catalyst, thereby reducing the NOx emission concentration. There is what I did.

他方、プラント等における工業的な排煙脱硝処理の分野では、還元剤にアンモニア(NH3)を用いてNOxを還元浄化する手法の有効性が既に広く知られているところであるが、自動車の場合には、アンモニアそのものを搭載して走行することに関し安全確保が困難であるため、近年においては、毒性のない尿素水を還元剤として使用することが研究されている(例えば、特許文献1参照)。 On the other hand, in the field of industrial flue gas denitration treatment in plants and the like, the effectiveness of a method for reducing and purifying NOx using ammonia (NH 3 ) as a reducing agent is already widely known. Since it is difficult to ensure safety with respect to traveling with ammonia itself, in recent years, the use of non-toxic urea water as a reducing agent has been studied (see, for example, Patent Document 1). .

即ち、尿素水を選択還元型触媒の上流側で排気ガス中に添加すれば、該排気ガスの熱によって尿素水が次式によりアンモニアと炭酸ガスに加水分解され、選択還元型触媒上で排気ガス中のNOxがアンモニアにより良好に還元浄化されることになる。
[化1]
(NH22CO+H2O→2NH3+CO2
特開2002−161732号公報
That is, if urea water is added to the exhaust gas upstream of the selective catalytic reduction catalyst, the urea water is hydrolyzed into ammonia and carbon dioxide gas by the following equation by the heat of the exhaust gas, and the exhaust gas is exhausted on the selective catalytic reduction catalyst. The NOx contained therein is reduced and purified well by ammonia.
[Chemical 1]
(NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2
JP 2002-161732 A

このような排気浄化装置にあっては、選択還元型触媒にアンモニアを添加することで約100℃以上の排気温度からNOx低減効果が得られることが実験により確認されているが、尿素水がアンモニアと炭酸ガスに加水分解するのに少なくとも約150〜160℃の排気温度が必要であるため、これより低い排気温度が想定されるエンジンスタート時や低速走行時等に、いくら尿素水を添加してもアンモニアが十分に生成されないためにNOx低減性能がなかなか高まらないという問題があった。   In such an exhaust purification device, it has been confirmed by experiments that an NOx reduction effect can be obtained from an exhaust temperature of about 100 ° C. or more by adding ammonia to the selective catalytic reduction catalyst. Since an exhaust temperature of at least about 150 to 160 ° C. is required to hydrolyze it into carbon dioxide, urea water can be added to some extent when starting an engine at a lower exhaust temperature or when driving at a low speed. However, there is a problem that the NOx reduction performance is not easily improved because ammonia is not sufficiently generated.

本発明は上述の実情に鑑みてなしたもので、排気温度の低いエンジンスタート時や低速走行時等においても、排気温度が選択還元型触媒の活性温度域に到達した段階から直ちに高いNOx低減性能を発揮し得るようにした排気浄化装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and even when the engine temperature is low or when the engine is running at low speed, the NOx reduction performance is high immediately after the exhaust temperature reaches the active temperature range of the selective catalytic reduction catalyst. An object of the present invention is to provide an exhaust emission control device that can exhibit the above.

本発明は、エンジンからの排気ガスが流通する排気管の途中に、酸素共存下でも選択的にNOxをアンモニアと反応させる性質を備えた選択還元型触媒と、該選択還元型触媒の上流側に尿素水を還元剤として添加する尿素水添加手段とを備えた排気浄化装置において、尿素の固形物を放電プラズマにより強制的にアンモニアに分解して排気管内に導入する尿素放電分解リアクタを前記選択還元型触媒の上流側に追加装備したことを特徴とするものである。   The present invention provides a selective reduction catalyst having a property of selectively reacting NOx with ammonia even in the presence of oxygen in the middle of an exhaust pipe through which exhaust gas from an engine flows, and an upstream side of the selective reduction catalyst. In the exhaust gas purification apparatus equipped with urea water addition means for adding urea water as a reducing agent, the urea discharge decomposition reactor that forcibly decomposes urea solids into ammonia by discharge plasma and introduces it into the exhaust pipe is selectively reduced. It is characterized by additional equipment upstream of the type catalyst.

而して、このようにすれば、排気温度が尿素水を効率良くアンモニアと炭酸ガスに加水分解するのに十分な温度に達していなくても、排気温度が選択還元型触媒の活性温度域に到達した段階で尿素放電分解リアクタを作動させ、該尿素放電分解リアクタにて尿素の固形物を放電プラズマにより強制的にアンモニアに分解して排気管内に導入すると、このアンモニアを還元剤として排気ガス中のNOxが選択還元型触媒上で良好に還元浄化されることになる。   Thus, in this way, even if the exhaust temperature does not reach a temperature sufficient to efficiently hydrolyze urea water into ammonia and carbon dioxide, the exhaust temperature is within the active temperature range of the selective catalytic reduction catalyst. When the urea discharge decomposition reactor is activated, the urea discharge decomposition reactor forcibly decomposes urea solids into ammonia by the discharge plasma and introduces it into the exhaust pipe, and this ammonia is used as a reducing agent in the exhaust gas. NOx can be reduced and purified well on the selective catalytic reduction catalyst.

尚、このように尿素の固形物を放電プラズマによりアンモニアに分解する方式であれば、同じ量のアンモニアを添加するのに必要な尿素の重量・容積が尿素水(通常は32.5重量%程度の水溶液)と比較して1/3程度で済み、しかも、少ない尿素の固形物から濃いアンモニアを生成できるので、極めてコンパクトな装置としてまとめることが可能である。   If the urea solid is decomposed into ammonia by discharge plasma in this way, the weight and volume of urea required to add the same amount of ammonia is urea water (usually about 32.5% by weight). 1) compared to the aqueous solution of (2), and it is possible to produce concentrated ammonia from a small amount of urea solids.

また、排気温度が尿素水を効率良くアンモニアと炭酸ガスに加水分解するのに十分な温度を超える運転状態に移行した段階では、尿素水添加手段に切り換えて尿素水の添加を開始し、現在の運転状態から推定されるNOx発生量に見合う過不足のない添加量に制御して尿素水の添加を行えば良い。   In addition, when the exhaust gas temperature has shifted to an operating state where the urea water exceeds the temperature sufficient to efficiently hydrolyze the urea water into ammonia and carbon dioxide, the urea water addition means is switched to start the urea water addition. The urea water may be added by controlling the addition amount so that there is no excess or deficiency corresponding to the NOx generation amount estimated from the operating state.

更に、本発明をより具体的に実施するにあたっては、前記尿素放電分解リアクタが、互いに所要間隔を隔てて対向配置され且つ一方の他方に対する対向面に誘電体が配設されて相互間に高電圧が印加されるようにした電極と、該電極の相互間に形成される放電空間に充填された誘電体ペレットと、前記放電空間に尿素の固形物を切削して微細化してから投入する尿素切削投入手段と、前記放電空間で生じたアンモニアを排気管内へ送り出すための搬送ガスを導く搬送ガスラインとを備えていることが好ましい。   Furthermore, in more concrete implementation of the present invention, the urea discharge cracking reactors are arranged to face each other at a required interval, and a dielectric is arranged on the opposite surface with respect to the other, so that a high voltage is generated between them. Electrodes, dielectric pellets filled in the discharge space formed between the electrodes, and urea cutting in which the solid matter of urea is cut into the discharge space and then refined It is preferable that a charging means and a carrier gas line for guiding a carrier gas for sending ammonia generated in the discharge space into the exhaust pipe are provided.

而して、このように尿素放電分解リアクタを構成した場合に、電極の相互間に高電圧を印加して放電空間内に放電プラズマを発生させる一方、尿素切削投入手段により尿素の固形物を切削して微細化してから放電空間に投入すると、該放電空間内で尿素の固形物が放電プラズマによりアンモニアに分解され、搬送ガスラインにより導かれた搬送ガスにより前記アンモニアが排気管内へと送り出される。   Thus, when a urea discharge decomposition reactor is configured in this way, a high voltage is applied between the electrodes to generate discharge plasma in the discharge space, while urea solids are cut by the urea cutting input means. Then, when it is made finer and then introduced into the discharge space, the solid matter of urea is decomposed into ammonia by the discharge plasma in the discharge space, and the ammonia is sent out into the exhaust pipe by the carrier gas guided by the carrier gas line.

この際、放電空間に誘電体ペレットが充填されていると、該各誘電体ペレット同士の接触点に電界が集中して強い放電プラズマが発生し易くなり、しかも、誘電体ペレットのような固体表面での方が尿素からアンモニアへの分解が進み易くなるため、放電空間内で尿素の固形物が強い放電プラズマにより効率良くアンモニアに分解されることになる。   At this time, if the discharge space is filled with dielectric pellets, the electric field is concentrated at the contact points between the dielectric pellets, and a strong discharge plasma is likely to be generated. In this case, the decomposition of urea into ammonia is easier to proceed, so that the solid substance of urea is efficiently decomposed into ammonia by the strong discharge plasma in the discharge space.

更に、前記誘電体ペレットの表面には、尿素からアンモニアへの分解を促進する尿素分解触媒が担持されていることが好ましく、このようにすれば、尿素からアンモニアへの分解をより一層促進することが可能となる。   Furthermore, it is preferable that a urea decomposition catalyst that promotes the decomposition of urea into ammonia is supported on the surface of the dielectric pellet. In this way, the decomposition of urea into ammonia is further promoted. Is possible.

上記した本発明の排気浄化装置によれば、下記の如き種々の優れた効果を奏し得る。   According to the exhaust emission control device of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、排気温度の低いエンジンスタート時や低速走行時等においても、尿素放電分解リアクタを作動させて尿素の固形物を放電プラズマにより強制的にアンモニアに分解し、このアンモニアを選択還元型触媒の還元剤として排気管内に導入することができるので、排気温度が選択還元型触媒の活性温度域に到達した段階から直ちに高いNOx低減性能を発揮させることができる。   (I) According to the invention described in claim 1 of the present invention, the urea discharge decomposition reactor is operated to forcibly discharge the urea solid matter by the discharge plasma even when the engine having a low exhaust temperature is started or at low speed. It can be decomposed into ammonia, and this ammonia can be introduced into the exhaust pipe as a reducing agent for the selective catalytic reduction catalyst, so that it exhibits high NOx reduction performance immediately after the exhaust temperature reaches the active temperature range of the selective catalytic reduction catalyst. Can be made.

(II)本発明の請求項2に記載の発明によれば、尿素の固形物を尿素切削投入手段により切削して微細化することでアンモニアへの分解を促し、誘電体ペレットの充填により強い放電プラズマを発生させ、誘電体ペレットのような固体表面で分解を行わせることで尿素からアンモニアへの分解を進み易くすることができ、尿素からアンモニアへの分解を効率良く実現することができる。   (II) According to the invention described in claim 2 of the present invention, the solid matter of urea is cut and refined by urea cutting and charging means to promote decomposition into ammonia and strong discharge by filling the dielectric pellets. By generating plasma and causing decomposition on a solid surface such as a dielectric pellet, decomposition from urea to ammonia can be facilitated, and decomposition from urea to ammonia can be efficiently realized.

(III)本発明の請求項3に記載の発明によれば、尿素からアンモニアへの分解を促進する尿素分解触媒を誘電体ペレットの表面に担持させたことにより、尿素からアンモニアへの分解をより一層促進することができる。   (III) According to the invention described in claim 3 of the present invention, the urea decomposition catalyst for promoting the decomposition of urea into ammonia is supported on the surface of the dielectric pellet, so that the decomposition of urea into ammonia is further improved. It can be further promoted.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図3は本発明を実施する形態の一例を示すもので、図1中における符号1はディーゼル機関であるエンジンを示し、ここに図示しているエンジン1では、ターボチャージャ2が備えられており、図示しないエアクリーナから導いた吸気3が吸気管4を介し前記ターボチャージャ2のコンプレッサ2aへと送られ、該コンプレッサ2aで加圧された吸気3が更にインタークーラ5へと送られて冷却され、該インタークーラ5からインテークマニホールド6へと吸気3が導かれてエンジン1の各シリンダ7に導入されるようにしてある。   1 to 3 show an example of an embodiment of the present invention. Reference numeral 1 in FIG. 1 denotes an engine that is a diesel engine. In the engine 1 shown here, a turbocharger 2 is provided. The intake air 3 guided from an air cleaner (not shown) is sent to the compressor 2a of the turbocharger 2 through the intake pipe 4, and the intake air 3 pressurized by the compressor 2a is further sent to the intercooler 5 for cooling. The intake air 3 is guided from the intercooler 5 to the intake manifold 6 and introduced into each cylinder 7 of the engine 1.

また、このエンジン1の各シリンダ7から排出された排気ガス8がエキゾーストマニホールド9を介し前記ターボチャージャ2のタービン2bへと送られ、該タービン2bを駆動した排気ガス8が排気管10を介し車外へ排出されるようにしてあるが、該排気管10の途中には、酸素共存下でも選択的にNOxをアンモニアと反応させる性質を備えた選択還元型触媒11がケーシング12を介し装備されている。   Further, exhaust gas 8 discharged from each cylinder 7 of the engine 1 is sent to the turbine 2b of the turbocharger 2 through the exhaust manifold 9, and the exhaust gas 8 driving the turbine 2b passes through the exhaust pipe 10 to the outside of the vehicle. In the middle of the exhaust pipe 10, a selective catalytic reduction catalyst 11 having a property of selectively reacting NOx with ammonia even in the presence of oxygen is provided via a casing 12. .

更に、前記ケーシング12の入口付近には、排気ガス8中に尿素水13を添加する尿素水添加手段として尿素水添加弁14が装備されており、この尿素水添加弁14には、所要場所に配置された尿素水タンク15から導いた尿素水供給ライン16が接続されており、該尿素水供給ライン16の途中に装備したポンプ17の駆動により尿素水タンク15内の尿素水13が抜き出されて前記尿素水添加弁14に向けて供給され、該尿素水添加弁14のノズル先端から排気管10内に噴射されるようになっている。   Further, a urea water addition valve 14 is provided near the inlet of the casing 12 as urea water addition means for adding urea water 13 to the exhaust gas 8. The urea water addition valve 14 is provided at a required place. A urea water supply line 16 led from the disposed urea water tank 15 is connected, and the urea water 13 in the urea water tank 15 is extracted by driving a pump 17 provided in the middle of the urea water supply line 16. The urea water addition valve 14 is supplied to the urea water addition valve 14 and is injected into the exhaust pipe 10 from the nozzle tip of the urea water addition valve 14.

そして、本形態例においては、以上に述べた如き従来周知の排気浄化装置の構成に対し、尿素の固形物を放電プラズマにより強制的にアンモニアに分解して排気管10内に導入する尿素放電分解リアクタ18を前記ケーシング12の入口付近(選択還元型触媒11の上流側)に追加装備したことを特徴としている。   In this embodiment, the urea discharge decomposition in which the solid substance of urea is forcibly decomposed into ammonia by discharge plasma and introduced into the exhaust pipe 10 in contrast to the configuration of the conventionally known exhaust purification device as described above. A reactor 18 is additionally provided near the inlet of the casing 12 (upstream of the selective catalytic reduction catalyst 11).

図2に詳細を示している通り、前記尿素放電分解リアクタ18は、排気管10の上側に直立するように配置されており、その内部下段にロッド状の高電圧電極19が起立状態で配置され、これを取り巻くように円筒状の接地電極20が同心状に配置されており、該接地電極20の内周面(高電圧電極19に対する対向面)に誘電体21が内嵌装着されて前記高電圧電極19と接地電極20の相互間に高電圧が印加されるようになっている。   As shown in detail in FIG. 2, the urea discharge decomposition reactor 18 is arranged so as to stand upright above the exhaust pipe 10, and a rod-shaped high-voltage electrode 19 is arranged in an upright state at the lower stage inside thereof. A cylindrical ground electrode 20 is concentrically disposed so as to surround this, and a dielectric 21 is fitted on the inner peripheral surface of the ground electrode 20 (the surface facing the high voltage electrode 19). A high voltage is applied between the voltage electrode 19 and the ground electrode 20.

しかも、前記高電圧電極19と接地電極20の相互間に形成される放電空間22には、尿素からアンモニアへの分解を促進する性質を備えた酸化チタン等の尿素分解触媒が担持された多数の誘電体ペレット23が充填されており、該誘電体ペレット23がセラミックス製のパンチングプレート24の底板により抜け落ちないように支持されている。   Moreover, in the discharge space 22 formed between the high voltage electrode 19 and the ground electrode 20, a number of urea decomposition catalysts such as titanium oxide having the property of promoting the decomposition of urea into ammonia are supported. A dielectric pellet 23 is filled, and the dielectric pellet 23 is supported by a bottom plate of a ceramic punching plate 24 so as not to fall off.

更に、前記尿素放電分解リアクタ18の内部上段には、放電空間22に尿素の固形物25を切削して微細化してから投入する尿素切削投入装置26(尿素切削投入手段)が設けられており、この尿素切削投入装置26は、尿素の固形物25を切削する円盤状の切削刃27と、該切削刃27を回転駆動する駆動装置28と、前記切削刃27の上面に尿素の固形物25を押圧する供給装置29とにより構成されている。   Furthermore, a urea cutting charging device 26 (urea cutting charging means) for cutting and solidifying urea solids 25 into the discharge space 22 is provided in the upper stage of the urea discharge decomposition reactor 18, The urea cutting input device 26 includes a disk-shaped cutting blade 27 for cutting the urea solid material 25, a drive device 28 for rotationally driving the cutting blade 27, and the urea solid material 25 on the upper surface of the cutting blade 27. It is comprised with the supply apparatus 29 to press.

前記円盤状の切削刃27は、鉛直方向の軸を中心に水平回転し得るよう図示しない軸支手段により回転自在に保持されており、図3に示す如く、その平面部分の周方向複数箇所(図示では4箇所)に鉋の歯の如き刃先27aが斜めに立ち上がり、この刃先27aに沿って開口する隙間(図3で刃先27aに隠れた部分)から切削粉が下の放電空間22に落下するようにしてあり、前記切削刃27の外周部に刻設されたギヤ歯27bと噛合するピニオン30を介して前記駆動装置28により前記切削刃27が回転駆動されるようになっている。   The disk-shaped cutting blade 27 is rotatably held by a shaft support means (not shown) so as to be able to rotate horizontally around a vertical axis, and as shown in FIG. The cutting edge 27a such as a tooth of a spear rises diagonally at four positions in the drawing, and the cutting powder falls into the discharge space 22 below from a gap (a portion hidden by the cutting edge 27a in FIG. 3) that opens along the cutting edge 27a. In this manner, the cutting blade 27 is rotationally driven by the driving device 28 via a pinion 30 that meshes with gear teeth 27b formed on the outer peripheral portion of the cutting blade 27.

また、前記供給装置29は、円柱状に成形された複数の尿素の固形物25を前記切削刃27の上面側で刃先27aと対峙するよう多段に保持するガイド筒31と、該ガイド筒31の上部開口に挿入され且つ圧縮バネ32により下方向きに付勢されたピストン33とにより構成されており、該ピストン33により尿素の固形物25が、回転する切削刃27の上面に押し付けられて切削されるようにしてある。   The supply device 29 includes a guide cylinder 31 that holds a plurality of urea solids 25 formed in a columnar shape in multiple stages so as to face the cutting edge 27 a on the upper surface side of the cutting blade 27, and the guide cylinder 31. The piston 33 is inserted into the upper opening and biased downward by the compression spring 32. The piston 33 presses the solid material 25 of the urea against the upper surface of the rotating cutting blade 27 and cuts it. It is made to do.

また、前記切削刃27の上面側でガイド筒31と干渉しない位置には、車両に搭載されたエアタンク34(図1参照)から開閉弁35を介して圧縮空気36を導く搬送ガスライン37が引き込まれており、該搬送ガスライン37からの圧縮空気36を搬送ガスとして、前記放電空間22で生じたアンモニアが排気管10内へ送り出されるようになっている。   Further, a carrier gas line 37 that guides the compressed air 36 from the air tank 34 (see FIG. 1) mounted on the vehicle via the opening / closing valve 35 is drawn into a position where the upper surface of the cutting blade 27 does not interfere with the guide cylinder 31. The ammonia generated in the discharge space 22 is sent into the exhaust pipe 10 using the compressed air 36 from the carrier gas line 37 as a carrier gas.

尚、この種のエアタンク34は、トラック等の大型車両でブレーキ系やサスペンション系にに利用される圧縮空気36を蓄えておくためのものとして周知のものであるが、このようなエアタンク34が搭載されていない車両にあっては、ターボチャージャ2のコンプレッサ2aの出口から吸気3を抽気して導いても良い。   This type of air tank 34 is well-known for storing compressed air 36 used for brake systems and suspension systems in large vehicles such as trucks. If the vehicle is not used, the intake air 3 may be extracted from the outlet of the compressor 2a of the turbocharger 2 and guided.

而して、このようにすれば、排気温度が尿素水13を効率良くアンモニアと炭酸ガスに加水分解するのに十分な温度(約200℃程度:尿素水13がアンモニアと炭酸ガスに加水分解するのに少なくとも約150〜160℃が必要であるため)に達していなくても、排気温度が選択還元型触媒11の活性温度域(約100℃程度)に到達した段階で尿素放電分解リアクタ18を作動させ、該尿素放電分解リアクタ18にて尿素の固形物25を放電プラズマにより強制的にアンモニアに分解して排気管10内に導入すると、このアンモニアを還元剤として排気ガス8中のNOxが選択還元型触媒11上で良好に還元浄化されることになる。   Thus, in this way, the exhaust temperature is a temperature sufficient to efficiently hydrolyze the urea water 13 into ammonia and carbon dioxide (about 200 ° C .: the urea water 13 is hydrolyzed into ammonia and carbon dioxide. However, at least when the exhaust gas temperature reaches the activation temperature range (about 100 ° C.) of the selective catalytic reduction catalyst 11, the urea discharge decomposition reactor 18 is turned on. When the urea solid matter 25 is forcedly decomposed into ammonia by the discharge plasma in the urea discharge decomposition reactor 18 and introduced into the exhaust pipe 10, NOx in the exhaust gas 8 is selected using this ammonia as a reducing agent. The reduction catalyst 11 is reduced and purified satisfactorily.

即ち、尿素放電分解リアクタ18における電極の相互間に高電圧を印加して放電空間22内に放電プラズマを発生させる一方、尿素切削投入装置26の駆動装置28で切削刃27を回転駆動して尿素の固形物25を切削し、前記切削刃27の刃先27aの隙間から微細化した切削粉を落として放電空間22に投入すると、該放電空間22内で尿素の固形物25が放電プラズマによりアンモニアに分解され、搬送ガスライン37により導かれた圧縮空気36により前記アンモニアが排気管10内へと送り出される。   That is, a high voltage is applied between the electrodes in the urea discharge decomposition reactor 18 to generate discharge plasma in the discharge space 22, while the cutting blade 27 is rotationally driven by the drive device 28 of the urea cutting input device 26 to urea. When the solid material 25 is cut, and the finely divided cutting powder is dropped from the gap of the cutting edge 27a of the cutting blade 27 and put into the discharge space 22, the urea solid material 25 is converted into ammonia by the discharge plasma in the discharge space 22. The ammonia is sent into the exhaust pipe 10 by the compressed air 36 that is decomposed and guided by the carrier gas line 37.

この際、本形態例に示す如く、放電空間22に誘電体ペレット23が充填されていると、該各誘電体ペレット23同士の接触点に電界が集中して強い放電プラズマが発生し易くなり、しかも、誘電体ペレット23のような固体表面での方が尿素からアンモニアへの分解が進み易くなるため、放電空間22内で尿素の固形物25が強い放電プラズマにより効率良くアンモニアに分解されることになる。   At this time, as shown in the present embodiment, when the discharge space 22 is filled with the dielectric pellets 23, the electric field is concentrated at the contact points between the dielectric pellets 23, and strong discharge plasma is easily generated. In addition, since the decomposition of urea into ammonia is facilitated on the solid surface such as the dielectric pellet 23, the urea solid matter 25 is efficiently decomposed into ammonia in the discharge space 22 by the strong discharge plasma. become.

特に本形態例の場合は、前記誘電体ペレット23の表面に尿素からアンモニアへの分解を促進する性質を備えた酸化チタン等の尿素分解触媒を担持させているので、尿素からアンモニアへの分解をより一層促進することが可能となる。   Particularly in the case of this embodiment, since a urea decomposition catalyst such as titanium oxide having the property of promoting the decomposition of urea into ammonia is supported on the surface of the dielectric pellet 23, the decomposition of urea into ammonia is prevented. This can be further promoted.

尚、このように尿素の固形物25を放電プラズマによりアンモニアに分解する方式であれば、同じ量のアンモニアを添加するのに必要な尿素の重量・容積が尿素水13(通常は32.5重量%程度の水溶液)と比較して1/3程度で済み、しかも、少ない尿素の固形物25から濃いアンモニアを生成できるので、極めてコンパクトな装置としてまとめることが可能である。   If the urea solid material 25 is decomposed into ammonia by discharge plasma in this way, the weight and volume of urea required to add the same amount of ammonia is the urea water 13 (usually 32.5 weight). 1% as compared with an aqueous solution of about%), and since concentrated ammonia can be generated from a small amount of urea solids 25, it can be integrated as an extremely compact apparatus.

また、排気温度が尿素水13を効率良くアンモニアと炭酸ガスに加水分解するのに十分な温度(約200℃程度)を超える運転状態に移行した段階では、尿素水添加弁14に切り換えて尿素水13の添加を開始し、現在の運転状態から推定されるNOx発生量に見合う過不足のない添加量に制御して尿素水13の添加を行えば良い。   In addition, when the exhaust gas temperature shifts to an operation state in which the urea water 13 exceeds the temperature sufficient for hydrolyzing the urea water 13 into ammonia and carbon dioxide (about 200 ° C.), the urea water addition valve 14 is switched to the urea water. The addition of the urea water 13 may be performed by starting the addition of 13 and controlling the addition amount so that there is no excess or deficiency corresponding to the NOx generation amount estimated from the current operating state.

従って、上記形態例によれば、排気温度の低いエンジンスタート時や低速走行時等においても、尿素放電分解リアクタ18を作動させて尿素の固形物25を放電プラズマにより強制的にアンモニアに分解し、このアンモニアを選択還元型触媒11の還元剤として排気管10内に導入することができるので、排気温度が選択還元型触媒11の活性温度域に到達した段階から直ちに高いNOx低減性能を発揮させることができる。   Therefore, according to the above embodiment, the urea discharge decomposition reactor 18 is operated to forcibly decompose the urea solid matter 25 into ammonia by the discharge plasma even when the engine is started at a low exhaust temperature or at low speed, etc. Since this ammonia can be introduced into the exhaust pipe 10 as a reducing agent for the selective catalytic reduction catalyst 11, a high NOx reduction performance is immediately exhibited from the stage when the exhaust temperature reaches the active temperature range of the selective catalytic reduction catalyst 11. Can do.

また、尿素の固形物25を尿素切削投入装置26により切削して微細化することでアンモニアへの分解を促し、誘電体ペレット23の充填により強い放電プラズマを発生させ、誘電体ペレット23のような固体表面で分解を行わせることで尿素からアンモニアへの分解を進み易くすることができ、しかも、尿素からアンモニアへの分解を促進する尿素分解触媒を誘電体ペレット23の表面に担持させたことにより、尿素からアンモニアへの分解をより一層促進することもできる。   Further, the urea solid material 25 is cut and refined by the urea cutting and feeding device 26 to promote decomposition into ammonia, and when the dielectric pellet 23 is filled, a strong discharge plasma is generated. By causing the decomposition on the solid surface, the decomposition of urea into ammonia can be facilitated, and furthermore, the urea decomposition catalyst that promotes the decomposition of urea into ammonia is supported on the surface of the dielectric pellet 23. In addition, decomposition of urea to ammonia can be further promoted.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、尿素放電分解リアクタの具体的な構成は必ずしも図示例に限定されないこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The exhaust emission control device of the present invention is not limited to the above-described embodiment, and the specific configuration of the urea discharge decomposition reactor is not necessarily limited to the illustrated example, and does not depart from the gist of the present invention. Of course, various changes can be made within the range.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 図1の尿素放電分解リアクタの詳細を示す断面図である。It is sectional drawing which shows the detail of the urea discharge decomposition reactor of FIG. 図2の切削刃を上方から見た平面図である。It is the top view which looked at the cutting blade of FIG. 2 from upper direction.

符号の説明Explanation of symbols

1 エンジン
8 排気ガス
10 排気管
11 選択還元型触媒
13 尿素水
14 尿素水添加弁
18 尿素放電分解リアクタ
19 高電圧電極
20 接地電極
21 誘電体
22 放電空間
23 誘電体ペレット
25 尿素の固形物
26 尿素切削投入装置
36 圧縮空気(搬送ガス)
37 搬送ガスライン
DESCRIPTION OF SYMBOLS 1 Engine 8 Exhaust gas 10 Exhaust pipe 11 Selective reduction type catalyst 13 Urea water 14 Urea water addition valve 18 Urea discharge decomposition reactor 19 High voltage electrode 20 Ground electrode 21 Dielectric 22 Discharge space 23 Dielectric pellet 25 Urea solid matter 26 Urea Cutting input device 36 Compressed air (carrier gas)
37 Carrier gas line

Claims (3)

エンジンからの排気ガスが流通する排気管の途中に、酸素共存下でも選択的にNOxをアンモニアと反応させる性質を備えた選択還元型触媒と、該選択還元型触媒の上流側に尿素水を還元剤として添加する尿素水添加手段とを備えた排気浄化装置において、尿素の固形物を放電プラズマにより強制的にアンモニアに分解して排気管内に導入する尿素放電分解リアクタを前記選択還元型触媒の上流側に追加装備したことを特徴とする排気浄化装置。   A selective reduction catalyst having the property of selectively reacting NOx with ammonia even in the presence of oxygen in the middle of an exhaust pipe through which exhaust gas from the engine flows, and urea water is reduced upstream of the selective reduction catalyst And a urea water addition means to be added as an agent, wherein a urea discharge decomposition reactor that forcibly decomposes urea solids into ammonia by discharge plasma and introduces it into the exhaust pipe is provided upstream of the selective catalytic reduction catalyst. An exhaust purification system characterized by additional equipment on the side. 尿素放電分解リアクタが、互いに所要間隔を隔てて対向配置され且つ一方の他方に対する対向面に誘電体が被覆されて相互間に高電圧が印加されるようにした電極と、該電極の相互間に形成される放電空間に充填された誘電体ペレットと、前記放電空間に尿素の固形物を切削して微細化してから投入する尿素切削投入手段と、前記放電空間で生じたアンモニアを排気管内へ送り出すための搬送ガスを導く搬送ガスラインとを備えていることを特徴とする請求項1に記載の排気浄化装置。   A urea discharge cracking reactor is disposed opposite to each other with a required interval between them, and a dielectric is coated on a surface facing one of the other so that a high voltage is applied between the electrodes, and between the electrodes Dielectric pellets filled in the discharge space to be formed, urea cutting charging means for cutting and solidifying urea solids into the discharge space, and feeding ammonia generated in the discharge space into the exhaust pipe The exhaust gas purification apparatus according to claim 1, further comprising a carrier gas line for guiding a carrier gas for the purpose. 誘電体ペレットの表面に、尿素からアンモニアへの分解を促進する尿素分解触媒が担持されていることを特徴とする請求項2に記載の排気浄化装置。   The exhaust emission control device according to claim 2, wherein a urea decomposition catalyst that promotes decomposition of urea into ammonia is supported on a surface of the dielectric pellet.
JP2008111973A 2008-04-23 2008-04-23 Exhaust purification device Active JP5340629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008111973A JP5340629B2 (en) 2008-04-23 2008-04-23 Exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008111973A JP5340629B2 (en) 2008-04-23 2008-04-23 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2009264148A true JP2009264148A (en) 2009-11-12
JP5340629B2 JP5340629B2 (en) 2013-11-13

Family

ID=41390307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008111973A Active JP5340629B2 (en) 2008-04-23 2008-04-23 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP5340629B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128145A1 (en) * 2011-03-18 2012-09-27 日野自動車株式会社 Urea solution reformer and exhaust gas purifier using same
JP2012197695A (en) * 2011-03-18 2012-10-18 Hino Motors Ltd Urea solution reformer and exhaust gas purifier using the same
JP2013130073A (en) * 2011-12-20 2013-07-04 Mitsubishi Motors Corp Exhaust emission control device and method of internal combustion engine
JP2013130109A (en) * 2011-12-21 2013-07-04 Mitsubishi Motors Corp Exhaust emission control device and method of internal combustion engine
US20160032801A1 (en) * 2014-07-31 2016-02-04 Caterpillar Inc. Aftertreatment system having multiple dosing circuits

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272331A (en) * 1992-03-25 1993-10-19 Hino Motors Ltd Exhaust emission control device and reducing agent supply method and device used therein
JPH11347356A (en) * 1998-04-30 1999-12-21 Degussa Huels Ag Method for reducing content of nitrogen oxide of exhaust gas of internal combustion engine
JP2002004840A (en) * 2000-06-23 2002-01-09 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2004257325A (en) * 2003-02-26 2004-09-16 Mitsubishi Fuso Truck & Bus Corp NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2006144631A (en) * 2004-11-18 2006-06-08 Hino Motors Ltd Exhaust emission control device
JP2007321680A (en) * 2006-06-01 2007-12-13 Toyohashi Univ Of Technology Plasma assist type urea reforming device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272331A (en) * 1992-03-25 1993-10-19 Hino Motors Ltd Exhaust emission control device and reducing agent supply method and device used therein
JPH11347356A (en) * 1998-04-30 1999-12-21 Degussa Huels Ag Method for reducing content of nitrogen oxide of exhaust gas of internal combustion engine
JP2002004840A (en) * 2000-06-23 2002-01-09 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2004257325A (en) * 2003-02-26 2004-09-16 Mitsubishi Fuso Truck & Bus Corp NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2006144631A (en) * 2004-11-18 2006-06-08 Hino Motors Ltd Exhaust emission control device
JP2007321680A (en) * 2006-06-01 2007-12-13 Toyohashi Univ Of Technology Plasma assist type urea reforming device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128145A1 (en) * 2011-03-18 2012-09-27 日野自動車株式会社 Urea solution reformer and exhaust gas purifier using same
JP2012197695A (en) * 2011-03-18 2012-10-18 Hino Motors Ltd Urea solution reformer and exhaust gas purifier using the same
US8875499B2 (en) 2011-03-18 2014-11-04 Hino Motors Ltd. Urea solution reformer and exhaust gas purifier using same
JP2013130073A (en) * 2011-12-20 2013-07-04 Mitsubishi Motors Corp Exhaust emission control device and method of internal combustion engine
JP2013130109A (en) * 2011-12-21 2013-07-04 Mitsubishi Motors Corp Exhaust emission control device and method of internal combustion engine
US20160032801A1 (en) * 2014-07-31 2016-02-04 Caterpillar Inc. Aftertreatment system having multiple dosing circuits

Also Published As

Publication number Publication date
JP5340629B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5340629B2 (en) Exhaust purification device
EP2462056B1 (en) Activation of hydrogen peroxide with catalyst
JP5000602B2 (en) Exhaust purification device and control method thereof
US11060431B2 (en) Process and apparatus for reducing NOx emissions
JP5222616B2 (en) Exhaust purification device
JP4681284B2 (en) Exhaust purification device
KR20100132310A (en) The scr system of a ship for nitrogen oxide(nox) reduction using fine urea powder
WO2015005066A1 (en) Exhaust gas treatment method, and exhaust gas treatment device
JP2007145796A (en) Urea water and denitrification apparatus using the same
JP4309167B2 (en) Exhaust gas denitration method using urea
JP2006122792A (en) Urea hydrolysis catalyst, ammonia manufacturing method, and denitration method
JP2009269983A (en) Fuel-cost-saving apparatus of eliminating carbon dioxide
CN202844873U (en) Annular nitric oxide waste gas purifier
JP2007075800A (en) Exhaust gas cleaning equipment and exhaust gas cleaning method used for exhaust gas cleaning equipment
JP2003013077A (en) Method for treating organic compound
JP2015016434A (en) Exhaust gas treatment method and exhaust gas treatment device
JP2993133B2 (en) Exhaust gas treatment method and apparatus
JP5128425B2 (en) Exhaust purification device
CN103452624A (en) Tail gas purifying system for high-power diesel engine
JP6680501B2 (en) Method for purifying hazardous substance-containing liquid and apparatus for purifying hazardous substance-containing liquid for carrying out the method
JP2014105143A (en) Ammonia generator and exhaust gas purifier using the same
JP5468732B2 (en) Urea reformer and exhaust gas purifier equipped with the same
CN203669966U (en) Tail gas purification system for high-power diesel engine
JP2004202450A (en) Exhaust gas denitrification method and denitrification apparatus thereof
CN1820824A (en) Ozone exhaust gas treating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130807

R150 Certificate of patent or registration of utility model

Ref document number: 5340629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250