JP2004313917A - Method and apparatus for waste gas denitrification using urea - Google Patents

Method and apparatus for waste gas denitrification using urea Download PDF

Info

Publication number
JP2004313917A
JP2004313917A JP2003110706A JP2003110706A JP2004313917A JP 2004313917 A JP2004313917 A JP 2004313917A JP 2003110706 A JP2003110706 A JP 2003110706A JP 2003110706 A JP2003110706 A JP 2003110706A JP 2004313917 A JP2004313917 A JP 2004313917A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
urea
reactor
denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003110706A
Other languages
Japanese (ja)
Other versions
JP4309167B2 (en
Inventor
Takeshi Hirota
健 広田
Yasuyoshi Kato
泰良 加藤
Yuji Fukuda
祐治 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2003110706A priority Critical patent/JP4309167B2/en
Publication of JP2004313917A publication Critical patent/JP2004313917A/en
Application granted granted Critical
Publication of JP4309167B2 publication Critical patent/JP4309167B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for waste gas denitrification capable of forming ammonia necessary for a denitrification reaction by efficiently hydrolyzing urea with reduced energy consumption at a relatively low temperature. <P>SOLUTION: The waste gas denitrification method reduces and decomposes the NOx contained in waste gas and comprises reducing and decomposing the NOx contained in the waste gas by; heating and pressurizing urea water; bringing the urea water into contact with a solid hydrolysis catalyst 7 to hydrolyze a part or the whole of the urea and to form ammonium carbonate; blowing an aqueous solution (tank 11) containing the ammonium carbonate into a waste gas flue to generate NH<SB>3</SB>; then bringing the NH<SB>3</SB>into contact with the waste gas in the presence of an NH<SB>3</SB>catalytic reduction denitrification catalyst. At this time, the catalyst prepared by adding titania or cerium to γ-alumina is used as the solid hydrolysis catalyst 7. Also, intermittent operation is made possible by heating or heat insulating a reactor and the apparatus on the post stream thereof. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、尿素を用いた排ガス脱硝方法および装置に係り、特に、自動車等の内燃機関または発電所等の外燃機関から排出される排ガスに含まれる窒素酸化物(NOx)を還元剤として安全かつ取り扱いが容易な尿素の加水分解水を利用して分解、除去する排ガス脱硝方法および装置に関する。
【0002】
【従来の技術】
外燃機関である発電所や工場などから排出される排煙中の窒素酸化物(NOx)を除去する方法として、アンモニア(NH)を還元剤とした選択的接触還元による排煙脱硝法が幅広く採用されている。また、最近では内燃機関である分散型電源用ディーゼルエンジンを利用したコジェネレーションシステムまたは自動車が都市部を中心として増加しており、これらの排ガスに対してもNOxの排出規制が適用され、かつ地域によっては規制が強化されるために、大型プラントと同様に排ガス脱硝装置の設置が急務となっている。このような小規模施設や自動車用の脱硝装置は人口密集地で使用されるので、発電所や工場で使用されるような液化アンモニアの使用は危険である。このため、毒性が少なく、取り扱いが容易で、かつ安価な尿素を還元剤とする方法が注目されている。
【0003】
尿素を還元剤として使用する場合、直接、排ガス煙道に尿素または尿素水を添加して脱硝反応を行わせる方法もあるが、400℃以下の低温で脱硝を行う場合には、アンモニアへの分解効率の悪さに起因する脱硝反応効率の低下および煙道内部に還元剤に由来する副生成物が付着する等の問題がある。従って、一般には、アルミナ等の還元剤分解触媒(加水分解触媒)を充填した還元剤分解装置を用い、尿素を分解してアンモニアを生成させたのち、脱硝に用いる方法が採用されている。この場合、問題となるのは、アンモニアを生成する尿素の分解率であり、高い分解率を得るための方法として、例えば、還元剤分解触媒の温度を250℃〜500℃の高温とすることで尿素の分解率を向上させようとする方法(特開平5−15739号公報)や、還元剤分解触媒としてアルカリ金属の水酸化物、炭酸塩などを用いることで、200℃という低温雰囲気で尿素を分解してアンモニアを生成させる方法(特開平11−171535号公報)が知られている。
【0004】
【特許文献1】特開平05−015739号公報
【特許文献2】特開平11−171535号公報
【0005】
【発明が解決しようとする課題】
しかしながら、前者の方法では、高いアンモニア生成率を得るためには高温にする必要があり、ランニングコストの上昇を招くだけでなく、難分解性物質が生成し易くなって脱硝触媒や配管上に析出するおそれがある。一方、従来の方法では、還元剤分解触媒としてアルカリ金属の水酸化物や炭酸塩などが用いられるが、これらの触媒は水溶性であるために、昇温または降温中に尿素水やアンモニア水中に溶出し、これによって触媒性能が短時間で劣化するか、または触媒そのものが崩壊もしくは目詰りするという問題がある。
【0006】
一方、中規模ディーゼルエンジンは発電が必要な時に運転し、不必要な時は停止する場合がある。加圧加水分解装置を用いて断続運転試験を行ったところ、起動時に配管、フィルタ、調圧弁等が析出物によって閉塞したために、加圧加水分解装置の始動不可となる場合があった。
【0007】
本発明の課題は、比較的低温でエネルギーが小さくて済み、効率的よく尿素の加水分解を行い、高いアンモニア生成を得られる、排ガス脱硝方法及び装置、ならびに該脱硝装置に用いる加圧加水分解装置を安定して使用可能とする方法および装置を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を達成するため、本発明者らは、先願である特願2002−377564号において、尿素の水溶液を加熱、加圧し、固体状加水分解触媒と接触させ、前記尿素を加水分解して炭酸アンモニウムを生成させ、該炭酸アンモニウムを含む水溶液を前記排ガス中に吹き込んでNH接触還元脱硝触媒の存在下に排ガスと接触させ、該排ガスに含まれる窒素酸化物を還元、分解することを特徴とする排ガス脱硝方法を提案した。
【0009】
ところで排ガス脱硝に必要な10〜20%のアンモニア水を噴霧するためには、20〜40重量%の尿素水の濃度が必要であるが、尿素水の濃度が高くなると、市販の加水分解触媒(例えばγ−アルミナ)の存在下では、アンモニア生成量がやや低下する傾向が見られた。そこで本発明者らは、尿素の加圧加水分解用触媒について鋭意研究したところ、γ−アルミナをベースにした多成分系触媒、特にγ−アルミナをベースにし、これに高い比表面積を持つチタニアを添加して細孔容積を大きく増加させた触媒、およびγ−アルミナをベースにし、これにセリウムを添加して加水分解などの活性点を大きく増加させた触媒が、高いアンモニア生成率を得ることができることを見出し、本発明に到達した。
【0010】
すなわち、上記課題を解決するために、本願で特許請求する発明は以下のとおりである。
(1)尿素の水溶液を加熱、加圧下に固体状加水分解触媒と液相で接触させ、前記尿素の一部または全部を加水分解して炭酸アンモニウムを生成させ、該炭酸アンモニウムを含む水溶液を、窒素酸化物を含む排ガス中に吹き込み、NH接触還元脱硝触媒の存在下に該排ガスに含まれる窒素酸化物を還元、分解する排ガス脱硝方法であって、前記固体状加水分解触媒が、γ−アルミナにチタニアを添加した触媒であることを特徴とする排ガス脱硝方法。
【0011】
(2)前記チタニアが、比表面積100m/g 以上を有し、その添加量が2〜40重量%であることを特徴とする(1)記載の排ガス脱硝方法。
(3)尿素の水溶液を加熱、加圧下に固体状加水分解触媒と液相で接触させ、前記尿素の一部または全部を加水分解して炭酸アンモニウムを生成させ、該炭酸アンモニウムを含む水溶液を、窒素酸化物を含む排ガス中に吹き込み、NH接触還元脱硝触媒の存在下に該排ガスに含まれる窒素酸化物を還元、分解する排ガス脱硝方法であって、前記固体状加水分解触媒が、γ−アルミナにセリウムを添加した触媒であることを特徴とする排ガス脱硝方法。
【0012】
(4)前記セリウムの添加量が2〜40重量%であることを特徴とする(3)記載の排ガス脱硝方法。
(5)前記炭酸アンモニウムを含む水溶液を加熱してアンモニアガス、炭酸ガスおよび水蒸気を含む混合ガスとした後、前記排ガス流路に吹き込むことを特徴とする(1)ないし(4)のいずれかに記載の排ガス脱硝方法。
【0013】
(6)前記加熱条件を150〜400℃、加圧条件を0.5〜10MPaとすることを特徴とする(1)〜(5)のいずれかに記載の方法。
(7) 前記加熱条件を200〜400℃、加圧条件を0.5〜10MPaとすることを特徴とする(1)〜(5)のいずれかに記載の方法。
【0014】
(8)排ガス中の窒素酸化物を尿素を用いて還元、分解する排ガス脱硝装置であって、排ガス流路に設けられたNH接触還元脱硝触媒層と、還元剤としての尿素水溶液を加熱、加圧雰囲気で固体状の加水分解触媒と接触させ、前記尿素の一部または全部を加水分解して炭酸アンモニウムを生成させる手段と、得られた炭酸アンモニウムを含む水溶液を直接または気化させた後、前記ガス流路のNH接触還元脱硝触媒層の前流側に吹き込む手段とを有する装置であって、前記固体状の加水分解触媒がγ−アルミナにチタニアまたはセリウムを添加した触媒であることを特徴とする排ガス脱硝装置。
【0015】
(9)尿素の水溶液を反応器内で加熱、加圧下に固体状加水分解触媒と液相で接触させ、前記尿素の一部または全部を加水分解してアンモニアと炭酸ガスを生成させる装置であって、該装置の反応器およびその後流部に位置する流路配管ならびに反応生成物と接触する付帯機器が加熱手段または保温手段を有することを特徴とする(8)記載の装置に用いる加圧加水分解装置。
【0016】
(10)(9)の装置の起動にあたり、(9)記載の加熱または保温手段を、反応器の反応生成物が配管または付帯機器に接触する前に作動させることを特徴とする運転方法。
【0017】
(11)(9)の装置の運転にあたり、圧力計が所定値以上になると、反応器およびその後流部に位置する流路配管、ならびに反応生成物と接触する付帯機器の加熱をより高温にすることを特徴とする運転方法。
【0018】
本発明において、γ−アルミナをベ−スとしてもう1成分を添加した触媒としては,100m/g以上の高い比表面積を持つチタニアを全重量基準で2〜40重量%(特に5〜30重量%)添加したγ−アルミナが好ましい。高比表面積のチタニアをγ−アルミナに添加し粒状触媒にすると、γ−アルミナ単味を粒状にした場合に比べ細孔容積が1.5〜2倍に増大する。増加した細孔内へ加圧加温下の尿素水が通過することによって、γ−アルミナの固体酸点としての接触面積が増大することになり、尿素の加水分解反応が促進されると考えられる。ここで100m未満の比表面積を持つチタニアを添加すると、チタニアの添加量を例えば70重量%と高くしなければならず、細孔容積が増加してもγ−アルミナの固体酸点が不足するため、アンモニア生成率は相対的に低下する。また100m以上の高い比表面積を持つチタニアの添加量が2重量%未満と少なすぎても、細孔容積が例えば10%程度しか増加しないため、高いアンモニア生成は達成できない。100m/g 以上の高い比表面積を持つチタニアを40重量%を超えて添加すると細孔容積は増加するが、γ−アルミナの固体酸点が不足するため、高いアンモニア生成は達成できなくなる。
【0019】
γ−アルミナをベ−スとして、もう1成分を添加することによって加水分解反応の活性点を大きく増加させる触媒としては、γ−アルミナにセリウムを全重量基準で2〜40重量%(特に5〜30重量%)添加した触媒が好ましい。γ−アルミナの高い比表面積を保ったまま活性成分(固体酸点)が増加することによって尿素の加水分解反応が促進されると考えられる。活性成分となる物質はアルカリまたはアルカリ土類金属があるが、多くの物質は加水分解反応が起こった時の熱アルカリ水に溶けてしまう。γ−アルミナにセリウムを2重量%未満を添加した触媒は、活性成分の増加が少ないため高いアンモニア生成は達成できない。γ−アルミナにセリウムを40重量%を超えて添加した触媒は活性成分は増加するが、セリウムが比表面積および細孔容積を減少させるため高いアンモニア生成は達成できない。
【0020】
また10〜20%のアンモニア水を噴霧するためには、前述のように尿素水の濃度は20〜40重量%が妥当であるが、アルミナ/チタニア触媒を用いた場合、例えば温度175℃、圧力2MPa、尿素水流速10mL/min触媒充填量280mLの条件で約90%の高いアンモニア生成率であった。
【0021】
実機のディーゼル発電においては、発電が不要なときには、ディーゼルエンジンおよび加圧加水分解装置を停止する。そこで加圧加水分解装置の始動/停止の繰り返しテストを行ったところ、装置の停止時には大きな問題はなかったが、一旦停止し装置内の温度が室温になった後、再度始動する場合に、装置の反応器から後流側の配管、フィルタ、調圧弁および回収容器までの配管の閉塞現象が発生することがあった。配管、フィルタ、調圧弁および回収容器までの配管が閉塞すると、一旦配管等を分解した後、加熱して除去する必要があるため、大きな障害となる。閉塞した部分を分解後、採取し、熱分析したところ、析出物(閉塞物)は炭酸アンモニウムであることが分かった。尿素水は加圧加水分解した後、アンモニア、二酸化炭素および水になるが、一部は炭酸アンモニウムとして存在するのである。同じ加水分解反応率であれば、尿素水の濃度が高くなる程、多量の炭酸アンモニウムが生成する。
【0022】
そこで加圧加水分解装置に炭酸アンモニウムの結晶を析出(閉塞)させない条件を検討したところ、装置の一部を所定の温度(58〜130℃)に保温するか、または加圧加水分解装置の始動前に一部を所定の温度(58〜130℃)に加温した後、ポンプを始動することによって、閉塞せずに断続運転できることを見出した。
【0023】
炭酸アンモニウムは水に対して65℃においては40重量%の溶解度であるが、15℃では20重量%の溶解度である。加圧加水分解装置は、例えば温度150℃以上および尿素水の流量5mL/min以上の条件で運転した後、停止した場合、反応器から後流側の各部分は約80℃以上になっているので炭酸アンモニウムの溶解度は高く析出し難い。しかし、一旦加圧加水分解装置が室温になった後は、炭酸アンモニウムは析出する。そのままポンプを始動すると析出した炭酸アンモニウムは狭い配管、フィルタ、調圧弁および回収容器までの配管に蓄積/閉塞してしまうのである。
【0024】
炭酸アンモニウムは固体で存在する場合、58℃で分解し、アンモニア、二酸化炭素および水になるが、加圧加水分解反応は主に触媒を充填した反応器内で進行するため、反応器から後流側をすべて保温する。または始動前に加熱することにより、機器内を結晶化により閉塞させずに断続運転できることが分かった。
【0025】
保温温度は130℃を超えると、尿素水が加圧加水分解装置内で蒸気になり、尿素が結晶化またはシアヌール酸等の難分解性析出物になり析出するため、130℃以下が望ましい。
【0026】
以下、実施例により本発明を具体的に説明する。
【0027】
【発明の実施の形態】
図1は、本発明に用いる尿素の加圧加水分解装置一例を示す説明図である。この装置は、尿素水を貯蔵するタンク1と、該タンク1に高圧ポンプ2および予熱器4を介して連結された反応器5と、該反応器5内に設けられた加水分解触媒層7およびその加熱手段としての電気ヒータ6と、前記反応器5の後流に順次連結されたフィルター9および回収容器11とから主として構成されている。3は電気ヒータ、8は圧力計、10は圧力調節弁である。タンク1内の尿素水はポンプ2によって予熱器4で電気ヒータ3により予熱された後、反応器5に導入される。該反応器5内の電気ヒータ6で所定温度に加熱された尿素水は加水分解触媒層7に流入し、ここで尿素の一部または全部が加水分解されてNHが発生する。発生したNHを含む液はフィルター9および圧力調節弁10を経て回収容器11に回収される。
【0028】
回収した水溶液の組成は、下式に示すように炭酸アンモニウム水である。
(NHCO + 3HO → (NHCO・H
得られた炭酸アンモニウム水は70℃で分解して容易NH を生成する。
【0029】
図2は、本発明の一実施例である排ガス脱硝装置を移動型内燃機関に適用した説明図である。図2において、この脱硝装置は、内燃機関であるディーゼルエンジン15の排気管14に設けられたNH接触還元脱硝触媒層16と、還元剤としての尿素水2を200〜400℃、0.5〜10MPa雰囲気(亜臨界条件)で固体状の加水分解触媒と液相で接触させ、前記尿素の一部または全部を加水分解して炭酸アンモニウムを生成させる手段としてのタンク1、ポンプ2、反応器5、該反応器5内に設けられた加水分解触媒層7、電気ヒータ6および背圧弁12と、得られた炭酸アンモニウムの水溶液を前記排気管14のNH接触還元脱硝触媒層16の前流側に吹き込む手段としての反応器出口管20とを有するものである。17は、排気である。
【0030】
このような構成において、タンク1に貯留された尿素水はポンプ3によって抜き出されて反応器5に圧入され、電気ヒータ6および背圧弁12により、例えば温度200℃、圧力3MPaに調整された加水分解触媒層7に流入し、尿素が加水分解されて炭酸アンモニウムを生成する。炭酸アンモニウムを含む水溶液は反応器出口管20および背圧弁12を経て排気管14に液相状態で噴霧され、排ガスと混合した後、脱硝触媒層16に流入し、前記排ガス中のNOxが炭酸アンモニウムが分解したNHによって還元、分解される。
【0031】
本発明は、工場等で使用される定置用内燃機関の排ガス処理装置にも適用することができるが、移動型内燃機関に適用する場合と比較して、排ガス量が多くなるため、尿素水の供給量を多くする必要がある。
【0032】
以下、本発明の具体的実施例を、尿素の加水分解方法および装置について述べるが、排ガス脱硝装置は、図2に示すように、尿素の加水分解装置をNH 接触還元脱硝装置のアンモニア発生源として用いることにより、容易に実施することができる。
【0033】
【実施例】
実施例1
ベ−マイト(水酸化アルミニウム)120gと比表面積250mの酸化チタン30gと水180gを混合してスラリ−状した後、サンドバス上で水分を蒸発させて固化した。この塊を500℃で焼成した後、1〜2mmの大きさに粉砕し、加圧加水分解触媒とした。外径44mmΦ、内径30mmΦ、長さ300mmのステンレス製の反応器に触媒150mLを充填した後、ポンプを用いて30重量%尿素水を流速20mL/minで反応器に導入し、反応器の後流部に設置された調圧弁で3MPaに保ち、反応器の周囲を電気炉で220℃に加熱した。回収したアンモニア炭酸水をイオンクロマトグラフで分析した結果、アンモニア生成率100%であった。
【0034】
実施例2
ベ−マイト(水酸化アルミニウム)160gと硝酸セリウム100gと水240gを混合してスラリ−状した後、サンドバス上で水分を蒸発させて固化した。この塊を500℃で焼成した後、1〜2mmの大きさに粉砕し、加圧加水分解触媒とした。実施例1と同じ反応器及び装置を用いて触媒150mLを充填した後、ポンプを用いて30重量%尿素水を流速20mL/minで反応器に導入し、反応器の後流部に設置された調圧弁で3MPaに保ち、反応器の周囲を電気炉で220℃に加熱した。回収したアンモニア炭酸水をイオンクロマトグラフで分析した結果、アンモニア生成率100%であった。
【0035】
実施例3
ベ−マイト(水酸化アルミニウム)160gと硝酸セリウム50gと比表面積250mの酸化チタン15gと水220gを混合してスラリ−状した後、サンドバス上で水分を蒸発させて固化した。この塊を500℃で焼成した後、1〜2mmの大きさに粉砕し、加圧加水分解触媒とした。実施例1と同じ反応器及び装置を用いて触媒150mLを充填した後、ポンプを用いて30重量%尿素水を流速20mL/minで反応器に導入し、反応器の後流部に設置された調圧弁で3MPaに保ち、反応器の周囲を電気炉で220℃に加熱した。回収したアンモニア炭酸水をイオンクロマトグラフで分析した結果、アンモニア生成率100%であった。
【0036】
実施例4
本発明における尿素水の加圧加水分解試験を行った。アルミナ/チタニア触媒を用い、温度175℃、圧力2MPa、尿素水の濃度35重量%、尿素水流速10mL/min、触媒充填量280mLの条件で約90%の高いアンモニア生成率であった。図1の装置の反応器5から後流側をすべてリボンヒータを用いて80℃に保温し(常時80℃)、停止後は装置が室温になるまでの断続運転を20回繰り返した。その結果、加圧加水分解装置は一度も閉塞せずに断続運転することができた。
【0037】
実施例5
アルミナ/チタニア触媒を用い、温度175℃、圧力2MPa、尿素水の濃度35重量%、尿素水流速10mL/min、触媒充填量280mLの条件で約90%の高いアンモニア生成率であった。図1の装置の反応器5から後流側の部品にすべてリボンヒータを設置して、停止後の再起動時に80℃に10分間加熱後、ポンプを始動する断続運転を20回繰り返した。その結果、加圧加水分解装置は一度も閉塞せずに断続運転することができた。
【0038】
実施例6
アルミナ/チタニア触媒を用い、温度175℃、圧力2MPa、尿素水の濃度45重量%、尿素水流速10mL/min、触媒充填量280mLの条件で約90%の高いアンモニア生成率であった。図1の装置の反応器5から後流側の部品にすべてリボンヒータを設置して、停止後の再起動時に95℃に10分間加熱後、ポンプを始動する断続運転を20回繰り返した。その結果、加圧加水分解装置は一度も閉塞せずに断続運転することができた。
【0039】
実施例7
アルミナ/チタニア触媒を用い、温度175℃、圧力2MPa、尿素水の濃度35重量%、尿素水流速10mL/min、触媒充填量280mLの条件で約90%の高いアンモニア生成率であった。図1の装置において、尿素水タンク1、回収液タンク11および圧力計8を除く全部品を80℃に保たれた恒温槽内に配置した装置を用いて断続運転を20回繰り返した。その結果、加圧加水分解装置は一度も閉塞せずに断続運転することができた。
【0040】
実施例8
アルミナ/チタニア触媒を用い、温度175℃、圧力2MPa、尿素水の濃度35重量%、尿素水流速10mL/min、触媒充填量280mLの条件で約90%の高いアンモニア生成率であった。図1の装置に圧力センサを取り付け、圧力が2.5MPa以上になると、反応器5から後流側の部品に設置されたヒータを温度120℃に加熱されるよう設定した。この装置を用いて断続運転を20回繰り返した。その結果、加圧加水分解装置は一度も閉塞せずに断続運転することができた。
【0041】
比較例1
市販のγ−アルミナを1〜2mmの大きさに粉砕し、加圧加水分解触媒とした。実施例1と同じ設備を用いて、触媒150mLを充填した後、ポンプを用いて30重量%尿素水を流速20mL/minで反応器に導入し、反応器の後流部に設置された調圧弁で3MPaに保ち、反応器の周囲を電気炉で220℃に加熱した。回収したアンモニア炭酸水をイオンクロマトグラフで分析した結果、アンモニア生成率80%であった。
【0042】
比較例2
アルミナ/チタニア触媒を用い、温度175℃、圧力2MPa、尿素水の濃度35重量%、尿素水流速10mL/min、触媒充填量280mLの条件で約90%の高いアンモニア生成率であった。図1の装置において、実施例5で用いた保温/加熱用のリボンヒータを取り除き、断続運転を20回繰り返した。その結果、加圧加水分解装置は20回のうち6回閉塞した。
【0043】
比較例3
アルミナ/チタニア触媒を用い、温度175℃、圧力2MPa、尿素水の濃度45重量%、尿素水流速10mL/min、触媒充填量280mLの条件で約90%の高いアンモニア生成率であった。図1の装置において、実施例6で用いた保温/加熱用のリボンヒータを取り除き、断続運転を20回繰り返した。その結果、加圧加水分解装置は20回のうち14回閉塞した。
【0044】
【発明の効果】
請求項1〜8記載の発明によれば、還元剤分解の触媒量が少量で済むため、比較的低温でエネルギーが小さくて済み、また加水分解の反応槽がコンパクトで温度制御が容易になり、効率よく尿素の加水分解を行なうことができ、高いアンモニア生成率で排ガス脱硝を行うことができる。
【0045】
また請求項9〜11記載の発明によれば、加圧加水分解装置を反応生成物の結晶化で閉塞させずに、安定した状態で断続運転することができる。
【図面の簡単な説明】
【図1】本発明方法を実施するための加圧加水分解装置の説明図。
【図2】本発明の排ガス脱硝方法を移動型内燃機関に適用した実施例を示す説明図。
【符号の説明】
1…尿素水タンク、2…ポンプ、3…電気ヒ−タ、4…予熱器、5…反応器、6…電気ヒ−タ、7…触媒、8…圧力計、9…フィルタ、10…調圧弁、11…回収液タンク。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for exhaust gas denitration using urea, and more particularly to a method for safely using nitrogen oxides (NOx) contained in exhaust gas discharged from an internal combustion engine such as an automobile or an external combustion engine such as a power plant as a reducing agent. The present invention relates to an exhaust gas denitration method and apparatus for decomposing and removing using urea hydrolyzed water which is easy to handle.
[0002]
[Prior art]
As a method of removing nitrogen oxides (NOx) in flue gas discharged from power plants and factories as external combustion engines, a flue gas denitration method by selective catalytic reduction using ammonia (NH 3 ) as a reducing agent is known. Widely used. In recent years, the number of cogeneration systems or vehicles using a diesel engine for a distributed power source, which is an internal combustion engine, has been increasing mainly in urban areas. Due to stricter regulations, installation of exhaust gas denitration equipment is urgently required as in large plants. Since such a small facility or automobile denitration apparatus is used in a densely populated area, the use of liquefied ammonia as used in power plants and factories is dangerous. For this reason, a method using urea, which has low toxicity, is easy to handle, and is inexpensive, has attracted attention.
[0003]
When urea is used as a reducing agent, there is a method in which urea or urea water is directly added to the exhaust gas flue to perform a denitration reaction. However, when denitration is performed at a low temperature of 400 ° C. or less, decomposition into ammonia is performed. There are problems such as a reduction in denitration reaction efficiency due to poor efficiency and adhesion of by-products derived from the reducing agent inside the flue. Therefore, in general, a method is used in which a urea is decomposed to generate ammonia by using a reducing agent decomposition apparatus filled with a reducing agent decomposition catalyst (hydrolysis catalyst) such as alumina, and then used for denitration. In this case, the problem is the decomposition rate of urea that produces ammonia. As a method for obtaining a high decomposition rate, for example, by setting the temperature of the reducing agent decomposition catalyst to a high temperature of 250 ° C. to 500 ° C. Urea is decomposed at a low temperature of 200 ° C. by using a method of improving the decomposition rate of urea (JP-A-5-15739) or using an alkali metal hydroxide or carbonate as a reducing agent decomposition catalyst. A method of decomposing to produce ammonia (JP-A-11-171535) is known.
[0004]
[Patent Document 1] Japanese Patent Application Laid-Open No. 05-015739 [Patent Document 2] Japanese Patent Application Laid-Open No. 11-171535 [0005]
[Problems to be solved by the invention]
However, in the former method, it is necessary to raise the temperature in order to obtain a high ammonia generation rate, which not only raises the running cost, but also makes it easy to generate a hardly decomposable substance and precipitates on a denitration catalyst or a pipe. There is a possibility that. On the other hand, in the conventional method, an alkali metal hydroxide or carbonate is used as a reducing agent decomposition catalyst, but since these catalysts are water-soluble, they are dissolved in urea water or ammonia water during heating or cooling. There is a problem that the catalyst performance is deteriorated in a short time, or the catalyst itself is disintegrated or clogged.
[0006]
On the other hand, a medium-sized diesel engine may be operated when power generation is necessary and stopped when power generation is unnecessary. When an intermittent operation test was performed using a pressurized hydrolysis device, it was sometimes impossible to start the pressurized hydrolysis device because the pipes, filters, pressure regulating valves, and the like were blocked by deposits at startup.
[0007]
An object of the present invention is to provide a method and an apparatus for exhaust gas denitration that can efficiently hydrolyze urea and obtain high ammonia at a relatively low temperature with low energy consumption, and a pressurized hydrolysis apparatus used in the denitration apparatus. It is an object of the present invention to provide a method and an apparatus which can be used stably.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors disclosed in Japanese Patent Application No. 2002-377564, which was a prior application, by heating and pressurizing an aqueous solution of urea, bringing the aqueous solution into contact with a solid hydrolysis catalyst, and hydrolyzing the urea. An ammonium carbonate is generated, and an aqueous solution containing the ammonium carbonate is blown into the exhaust gas to come into contact with the exhaust gas in the presence of an NH 3 catalytic reduction denitration catalyst to reduce and decompose nitrogen oxides contained in the exhaust gas. An exhaust gas denitration method was proposed.
[0009]
By the way, in order to spray 10 to 20% ammonia water required for exhaust gas denitration, a concentration of urea water of 20 to 40% by weight is necessary. However, when the concentration of urea water increases, a commercially available hydrolysis catalyst ( For example, in the presence of (γ-alumina), the amount of ammonia produced tended to slightly decrease. Therefore, the present inventors have conducted extensive research on a catalyst for the hydrolysis of urea under pressure, and found that a multi-component catalyst based on γ-alumina, particularly, titania based on γ-alumina and having a high specific surface area. A catalyst with a large increase in pore volume by addition, and a catalyst based on γ-alumina, to which cerium is added to greatly increase active sites such as hydrolysis, can obtain a high ammonia production rate. They have found that they can do this and have reached the present invention.
[0010]
That is, the invention claimed in the present application to solve the above-mentioned problem is as follows.
(1) An aqueous solution of urea is brought into contact with a solid hydrolysis catalyst in a liquid phase under heat and pressure to hydrolyze a part or all of the urea to form ammonium carbonate, and the aqueous solution containing the ammonium carbonate is blown into the exhaust gas containing nitrogen oxides, NH 3 catalytic reduction denitration reducing nitrogen oxides contained in the exhaust gas in the presence of a catalyst, is the exhaust gas denitration method for decomposing, the solid hydrolysis catalyst, .gamma. An exhaust gas denitration method characterized by using a catalyst obtained by adding titania to alumina.
[0011]
(2) The exhaust gas denitration method according to (1), wherein the titania has a specific surface area of 100 m 2 / g or more, and the added amount is 2 to 40% by weight.
(3) An aqueous solution of urea is brought into contact with a solid hydrolysis catalyst in a liquid phase under heat and pressure to hydrolyze a part or all of the urea to produce ammonium carbonate, blown into the exhaust gas containing nitrogen oxides, NH 3 catalytic reduction denitration reducing nitrogen oxides contained in the exhaust gas in the presence of a catalyst, is the exhaust gas denitration method for decomposing, the solid hydrolysis catalyst, .gamma. An exhaust gas denitration method characterized by using a catalyst obtained by adding cerium to alumina.
[0012]
(4) The exhaust gas denitration method according to (3), wherein the amount of cerium added is 2 to 40% by weight.
(5) The method according to any one of (1) to (4), wherein the aqueous solution containing ammonium carbonate is heated to form a mixed gas containing ammonia gas, carbon dioxide gas, and water vapor, and then blown into the exhaust gas channel. The exhaust gas denitration method described in the above.
[0013]
(6) The method according to any one of (1) to (5), wherein the heating condition is 150 to 400 ° C. and the pressurizing condition is 0.5 to 10 MPa.
(7) The method according to any one of (1) to (5), wherein the heating condition is 200 to 400 ° C. and the pressurizing condition is 0.5 to 10 MPa.
[0014]
(8) An exhaust gas denitration device that reduces and decomposes nitrogen oxides in exhaust gas using urea, and heats an NH 3 catalytic reduction denitration catalyst layer provided in an exhaust gas channel and an aqueous urea solution as a reducing agent. A means for contacting with a solid hydrolysis catalyst in a pressurized atmosphere to hydrolyze part or all of the urea to form ammonium carbonate, and directly or vaporizing the obtained aqueous solution containing ammonium carbonate, Means for injecting the gas flow passage into the upstream side of the NH 3 catalytic reduction denitration catalyst layer, wherein the solid hydrolysis catalyst is a catalyst obtained by adding titania or cerium to γ-alumina. Exhaust gas denitration equipment.
[0015]
(9) A device for producing an ammonia and carbon dioxide gas by contacting an aqueous solution of urea with a solid hydrolysis catalyst in a liquid phase under heat and pressure in a reactor to hydrolyze a part or all of the urea. The reactor according to (8), wherein the reactor of the device, the flow pipe located in the downstream portion thereof, and the auxiliary equipment which comes into contact with the reaction product have a heating means or a heat retaining means. Disassembly device.
[0016]
(10) An operation method characterized in that, upon starting up the apparatus of (9), the heating or heat retaining means according to (9) is operated before the reaction product of the reactor comes into contact with piping or auxiliary equipment.
[0017]
(11) In the operation of the apparatus of (9), when the pressure gauge becomes equal to or higher than a predetermined value, the temperature of the heating of the reactor, the flow path piping located in the downstream portion thereof, and the auxiliary equipment in contact with the reaction product is increased. A driving method characterized in that:
[0018]
In the present invention, as a catalyst containing γ-alumina as a base and another component added, titania having a high specific surface area of 100 m 2 / g or more is 2 to 40% by weight (particularly 5 to 30% by weight) based on the total weight. %) Added gamma-alumina is preferred. When titania having a high specific surface area is added to γ-alumina to form a granular catalyst, the pore volume increases 1.5 to 2 times as compared with a case where γ-alumina alone is granulated. It is considered that the contact area of γ-alumina as a solid acid point increases due to the passage of urea water under pressure and heating into the increased pores, thereby promoting the urea hydrolysis reaction. . Here, when titania having a specific surface area of less than 100 m 2 is added, the addition amount of titania must be increased to, for example, 70% by weight, and the solid acid point of γ-alumina becomes insufficient even if the pore volume increases. Therefore, the ammonia generation rate relatively decreases. Also, if the addition amount of titania having a high specific surface area of 100 m 2 or more is too small as less than 2% by weight, high ammonia production cannot be achieved because the pore volume increases only by about 10%, for example. If titania having a high specific surface area of 100 m 2 / g or more is added in excess of 40% by weight, the pore volume increases, but the solid acid sites of γ-alumina are insufficient, so that high ammonia production cannot be achieved.
[0019]
As a catalyst which greatly increases the active site of the hydrolysis reaction by adding another component based on γ-alumina, cerium is added to γ-alumina in an amount of 2 to 40% by weight (particularly 5 to (30% by weight) are preferred. It is considered that the hydrolysis of urea is accelerated by increasing the number of active components (solid acid sites) while maintaining the high specific surface area of γ-alumina. Active substances include alkali or alkaline earth metals, but many substances dissolve in hot alkaline water when a hydrolysis reaction occurs. A catalyst obtained by adding less than 2% by weight of cerium to γ-alumina cannot achieve high ammonia production because the increase in the active component is small. The catalyst in which cerium is added to γ-alumina in an amount exceeding 40% by weight increases the active component, but cannot achieve high ammonia production because cerium decreases the specific surface area and pore volume.
[0020]
In order to spray ammonia water of 10 to 20%, the concentration of urea water is appropriately 20 to 40% by weight as described above. However, when an alumina / titania catalyst is used, for example, the temperature is 175 ° C. and the pressure is 175 ° C. Under the conditions of 2 MPa and a urea water flow rate of 10 mL / min and a catalyst loading amount of 280 mL, a high ammonia production rate of about 90% was obtained.
[0021]
In actual diesel power generation, when power generation is unnecessary, the diesel engine and the pressurized hydrolysis device are stopped. Therefore, when a repeated test of start / stop of the pressurized hydrolysis apparatus was performed, there was no major problem when the apparatus was stopped. However, when the apparatus was temporarily stopped and the temperature in the apparatus reached room temperature, and then restarted, the apparatus was restarted. Clogging of the piping from the reactor to the downstream side, the filter, the pressure regulating valve, and the recovery vessel in some cases. If the piping to the piping, the filter, the pressure regulating valve, and the collection container is closed, it is necessary to disassemble the piping once and then remove it by heating, which is a major obstacle. After the clogged portion was decomposed, it was collected and subjected to thermal analysis. As a result, it was found that the precipitate (clogged material) was ammonium carbonate. After urea water is hydrolyzed under pressure, it becomes ammonia, carbon dioxide, and water, but some of it is present as ammonium carbonate. At the same hydrolysis reaction rate, the higher the concentration of urea water, the more ammonium carbonate is generated.
[0022]
Therefore, the conditions under which the crystals of ammonium carbonate were not precipitated (clogged) in the pressure hydrolysis apparatus were examined, and a part of the apparatus was kept at a predetermined temperature (58 to 130 ° C.) or the pressure hydrolysis apparatus was started. After heating a part to a predetermined temperature (58 to 130 ° C.) beforehand, it has been found that the intermittent operation can be performed without blocking by starting the pump.
[0023]
Ammonium carbonate has a solubility of 40% by weight in water at 65 ° C, but a solubility of 20% by weight at 15 ° C. When the pressurized hydrolysis apparatus is operated under the conditions of, for example, a temperature of 150 ° C. or more and a flow rate of urea water of 5 mL / min or more, when stopped, each part on the downstream side from the reactor is at about 80 ° C. or more. Therefore, the solubility of ammonium carbonate is high and it is difficult to precipitate. However, once the pressure hydrolysis device has reached room temperature, ammonium carbonate precipitates. If the pump is started as it is, the precipitated ammonium carbonate accumulates / blocks in the narrow pipe, the filter, the pressure regulating valve, and the pipe to the recovery vessel.
[0024]
Ammonium carbonate, when present as a solid, decomposes at 58 ° C into ammonia, carbon dioxide and water, but the pressurized hydrolysis reaction proceeds mainly in the reactor filled with the catalyst, so that it flows downstream from the reactor. Keep all sides warm. Alternatively, it was found that the intermittent operation can be performed by heating before starting without closing the inside of the apparatus by crystallization.
[0025]
If the heat retention temperature exceeds 130 ° C., urea water becomes vapor in the pressure hydrolysis apparatus, and urea crystallizes or becomes hardly decomposable precipitates such as cyanuric acid and precipitates.
[0026]
Hereinafter, the present invention will be specifically described with reference to examples.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is an explanatory diagram showing an example of a urea pressure hydrolysis apparatus used in the present invention. This apparatus comprises a tank 1 for storing urea water, a reactor 5 connected to the tank 1 via a high-pressure pump 2 and a preheater 4, a hydrolysis catalyst layer 7 provided in the reactor 5, It is mainly composed of an electric heater 6 as a heating means, a filter 9 and a recovery container 11 sequentially connected to the downstream of the reactor 5. 3 is an electric heater, 8 is a pressure gauge, and 10 is a pressure control valve. The urea water in the tank 1 is preheated by the electric heater 3 by the preheater 4 by the pump 2 and then introduced into the reactor 5. The reactor 5 in the urea water heated to a predetermined temperature by an electric heater 6 of the flows into the hydrolysis catalyst layer 7, where some or all of the urea is hydrolyzed NH 3 occurs. The generated liquid containing NH 3 is collected in the collection container 11 via the filter 9 and the pressure control valve 10.
[0028]
The composition of the recovered aqueous solution is ammonium carbonate water as shown in the following formula.
(NH 2 ) 2 CO + 3H 2 O → (NH 4 ) 2 CO 3 · H 2 O
The obtained aqueous ammonium carbonate is decomposed at 70 ° C. and easily NH 3 Generate
[0029]
FIG. 2 is an explanatory diagram in which an exhaust gas denitration apparatus according to one embodiment of the present invention is applied to a mobile internal combustion engine. In FIG. 2, the denitration apparatus includes an NH 3 catalytic reduction denitration catalyst layer 16 provided in an exhaust pipe 14 of a diesel engine 15 which is an internal combustion engine, and urea water 2 as a reducing agent at 200 to 400 ° C. and 0.5 ° C. A tank 1, a pump 2 and a reactor as a means for bringing a solid hydrolysis catalyst into contact with a liquid phase in a liquid phase in an atmosphere of 10 to 10 MPa (subcritical conditions) to hydrolyze a part or all of the urea to produce ammonium carbonate. 5. The hydrolysis catalyst layer 7, the electric heater 6, and the back pressure valve 12 provided in the reactor 5, and the obtained aqueous solution of ammonium carbonate is fed upstream of the NH 3 catalytic reduction denitration catalyst layer 16 in the exhaust pipe 14. And a reactor outlet pipe 20 as a means for blowing into the side. 17 is an exhaust.
[0030]
In such a configuration, the urea water stored in the tank 1 is withdrawn by the pump 3 and press-fitted into the reactor 5, and is adjusted to, for example, a temperature of 200 ° C. and a pressure of 3 MPa by the electric heater 6 and the back pressure valve 12. It flows into the decomposition catalyst layer 7 and urea is hydrolyzed to produce ammonium carbonate. The aqueous solution containing ammonium carbonate is sprayed in a liquid state to the exhaust pipe 14 via the reactor outlet pipe 20 and the back pressure valve 12, mixed with the exhaust gas, and then flows into the denitration catalyst layer 16, where NOx in the exhaust gas is converted to ammonium carbonate. Is reduced and decomposed by decomposed NH 3 .
[0031]
The present invention can be applied to an exhaust gas treatment device for a stationary internal combustion engine used in a factory or the like.However, compared to a case where the present invention is applied to a mobile internal combustion engine, the amount of exhaust gas increases, It is necessary to increase the supply.
[0032]
Hereinafter, specific examples of the present invention, although described hydrolysis method and apparatus of the urea, the exhaust gas denitration apparatus, as shown in FIG. 2, NH 3 Hydrolysis apparatus urea It can be easily implemented by using it as an ammonia generation source of a catalytic reduction denitration apparatus.
[0033]
【Example】
Example 1
After mixing 120 g of boehmite (aluminum hydroxide), 30 g of titanium oxide having a specific surface area of 250 m 2 and 180 g of water to form a slurry, the water was evaporated on a sand bath to solidify. After firing this lump at 500 ° C., it was pulverized to a size of 1 to 2 mm to obtain a pressure hydrolysis catalyst. After filling 150 mL of the catalyst into a stainless steel reactor having an outer diameter of 44 mmΦ, an inner diameter of 30 mmΦ, and a length of 300 mm, 30% by weight urea water was introduced into the reactor at a flow rate of 20 mL / min using a pump, and the reactor was downstream of the reactor. The pressure was maintained at 3 MPa by a pressure regulating valve installed in the section, and the periphery of the reactor was heated to 220 ° C. in an electric furnace. The recovered ammonia carbonated water was analyzed by ion chromatography, and as a result, the ammonia generation rate was 100%.
[0034]
Example 2
After mixing 160 g of boehmite (aluminum hydroxide), 100 g of cerium nitrate and 240 g of water to form a slurry, the water was evaporated on a sand bath and solidified. After firing this lump at 500 ° C., it was pulverized to a size of 1 to 2 mm to obtain a pressure hydrolysis catalyst. After charging 150 mL of the catalyst using the same reactor and apparatus as in Example 1, 30% by weight urea water was introduced into the reactor at a flow rate of 20 mL / min using a pump, and placed in the downstream part of the reactor. The pressure was maintained at 3 MPa with a pressure regulating valve, and the periphery of the reactor was heated to 220 ° C. in an electric furnace. The recovered ammonia carbonated water was analyzed by ion chromatography, and as a result, the ammonia generation rate was 100%.
[0035]
Example 3
160 g of boehmite (aluminum hydroxide), 50 g of cerium nitrate, 15 g of titanium oxide having a specific surface area of 250 m 2 and 220 g of water were mixed to form a slurry, and the water was evaporated on a sand bath to solidify. After firing this lump at 500 ° C., it was pulverized to a size of 1 to 2 mm to obtain a pressure hydrolysis catalyst. After charging 150 mL of the catalyst using the same reactor and apparatus as in Example 1, 30% by weight urea water was introduced into the reactor at a flow rate of 20 mL / min using a pump, and placed in the downstream part of the reactor. The pressure was maintained at 3 MPa with a pressure regulating valve, and the periphery of the reactor was heated to 220 ° C. in an electric furnace. The recovered ammonia carbonated water was analyzed by ion chromatography, and as a result, the ammonia generation rate was 100%.
[0036]
Example 4
A pressure hydrolysis test of urea water in the present invention was performed. Using an alumina / titania catalyst, a high ammonia production rate of about 90% was obtained at a temperature of 175 ° C., a pressure of 2 MPa, a concentration of urea water of 35% by weight, a flow rate of urea water of 10 mL / min, and a catalyst loading of 280 mL. The entire downstream side of the reactor 5 of the apparatus in FIG. 1 was kept at 80 ° C. using a ribbon heater (always at 80 ° C.), and after stopping, the intermittent operation until the apparatus reached room temperature was repeated 20 times. As a result, the pressurized hydrolysis device could be operated intermittently without any blockage.
[0037]
Example 5
Using an alumina / titania catalyst, a high ammonia production rate of about 90% was obtained at a temperature of 175 ° C., a pressure of 2 MPa, a concentration of urea water of 35% by weight, a flow rate of urea water of 10 mL / min, and a catalyst loading of 280 mL. A ribbon heater was installed on all components downstream from the reactor 5 of the apparatus of FIG. 1, and after restarting after stopping, after heating to 80 ° C. for 10 minutes, the intermittent operation of starting the pump was repeated 20 times. As a result, the pressurized hydrolysis device could be operated intermittently without any blockage.
[0038]
Example 6
Using an alumina / titania catalyst, a high ammonia production rate of about 90% was obtained at a temperature of 175 ° C., a pressure of 2 MPa, a concentration of urea water of 45% by weight, a flow rate of urea water of 10 mL / min, and a catalyst loading of 280 mL. A ribbon heater was installed on all components downstream from the reactor 5 of the apparatus shown in FIG. 1, and after restarting after stopping, heating was performed at 95 ° C. for 10 minutes, and then an intermittent operation of starting the pump was repeated 20 times. As a result, the pressurized hydrolysis device could be operated intermittently without any blockage.
[0039]
Example 7
Using an alumina / titania catalyst, a high ammonia production rate of about 90% was obtained at a temperature of 175 ° C., a pressure of 2 MPa, a concentration of urea water of 35% by weight, a flow rate of urea water of 10 mL / min, and a catalyst loading of 280 mL. In the apparatus shown in FIG. 1, the intermittent operation was repeated 20 times using an apparatus in which all parts except the urea water tank 1, the recovery liquid tank 11, and the pressure gauge 8 were arranged in a thermostat kept at 80 ° C. As a result, the pressurized hydrolysis device could be operated intermittently without any blockage.
[0040]
Example 8
Using an alumina / titania catalyst, a high ammonia production rate of about 90% was obtained at a temperature of 175 ° C., a pressure of 2 MPa, a concentration of urea water of 35% by weight, a flow rate of urea water of 10 mL / min, and a catalyst loading of 280 mL. A pressure sensor was attached to the apparatus shown in FIG. 1, and when the pressure became 2.5 MPa or more, the heater installed on the downstream part of the reactor 5 was set to be heated to a temperature of 120 ° C. Intermittent operation was repeated 20 times using this device. As a result, the pressurized hydrolysis device could be operated intermittently without any blockage.
[0041]
Comparative Example 1
Commercially available γ-alumina was pulverized to a size of 1 to 2 mm and used as a pressure hydrolysis catalyst. After filling 150 mL of the catalyst using the same equipment as in Example 1, 30% by weight urea water was introduced into the reactor at a flow rate of 20 mL / min using a pump, and a pressure regulating valve installed in the downstream of the reactor was used. , And the periphery of the reactor was heated to 220 ° C in an electric furnace. The collected ammonia carbonate water was analyzed by ion chromatography, and as a result, the ammonia generation rate was 80%.
[0042]
Comparative Example 2
Using an alumina / titania catalyst, a high ammonia production rate of about 90% was obtained at a temperature of 175 ° C., a pressure of 2 MPa, a concentration of urea water of 35% by weight, a flow rate of urea water of 10 mL / min, and a catalyst loading of 280 mL. In the apparatus shown in FIG. 1, the ribbon heater for heat retention / heating used in Example 5 was removed, and the intermittent operation was repeated 20 times. As a result, the pressure hydrolysis apparatus was closed 6 times out of 20 times.
[0043]
Comparative Example 3
Using an alumina / titania catalyst, a high ammonia production rate of about 90% was obtained at a temperature of 175 ° C., a pressure of 2 MPa, a concentration of urea water of 45% by weight, a flow rate of urea water of 10 mL / min, and a catalyst loading of 280 mL. In the apparatus shown in FIG. 1, the ribbon heater for heat retention / heating used in Example 6 was removed, and the intermittent operation was repeated 20 times. As a result, the pressurized hydrolysis device was closed 14 times out of 20 times.
[0044]
【The invention's effect】
According to the invention as set forth in claims 1 to 8, since the amount of the catalyst for the decomposition of the reducing agent is small, the energy is small at a relatively low temperature, and the hydrolysis reaction tank is compact and the temperature control is easy, Urea can be efficiently hydrolyzed, and exhaust gas denitration can be performed at a high ammonia production rate.
[0045]
In addition, according to the inventions described in claims 9 to 11, the pressure hydrolysis apparatus can be intermittently operated in a stable state without being blocked by crystallization of the reaction product.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a pressurized hydrolysis apparatus for carrying out the method of the present invention.
FIG. 2 is an explanatory view showing an embodiment in which the exhaust gas denitration method of the present invention is applied to a mobile internal combustion engine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Urea water tank, 2 ... Pump, 3 ... Electric heater, 4 ... Preheater, 5 ... Reactor, 6 ... Electric heater, 7 ... Catalyst, 8 ... Pressure gauge, 9 ... Filter, 10 ... Adjustment Pressure valve, 11: Collection liquid tank.

Claims (11)

尿素の水溶液を加熱、加圧下に固体状加水分解触媒と液相で接触させ、前記尿素の一部または全部を加水分解して炭酸アンモニウムを生成させ、該炭酸アンモニウムを含む水溶液を、窒素酸化物を含む排ガス中に吹き込み、NH接触還元脱硝触媒の存在下に該排ガスに含まれる窒素酸化物を還元、分解する排ガス脱硝方法であって、前記固体状加水分解触媒が、γ−アルミナにチタニアを添加した触媒であることを特徴とする排ガス脱硝方法。An aqueous solution of urea is brought into contact with a solid hydrolysis catalyst in a liquid phase under heat and pressure to hydrolyze a part or all of the urea to form ammonium carbonate. Exhaust gas denitration method for reducing and decomposing nitrogen oxides contained in the exhaust gas in the presence of an NH 3 catalytic reduction denitration catalyst by blowing the solid hydrolysis catalyst into γ-alumina with titania An exhaust gas denitration method characterized in that the catalyst is a catalyst to which is added. 前記チタニアが、比表面積100m/g 以上を有し、その添加量が2〜40重量%であることを特徴とする請求項1記載の排ガス脱硝方法。Said titania has a higher specific surface area 100 m 2 / g, the exhaust gas denitration process according to claim 1, wherein the amount added is 2 to 40 wt%. 尿素の水溶液を加熱、加圧下に固体状加水分解触媒と液相で接触させ、前記尿素の一部または全部を加水分解して炭酸アンモニウムを生成させ、該炭酸アンモニウムを含む水溶液を、窒素酸化物を含む排ガス中に吹き込み、NH接触還元脱硝触媒の存在下に該排ガスに含まれる窒素酸化物を還元、分解する排ガス脱硝方法であって、前記固体状加水分解触媒が、γ−アルミナにセリウムを添加した触媒であることを特徴とする排ガス脱硝方法。An aqueous solution of urea is brought into contact with a solid hydrolysis catalyst in a liquid phase under heat and pressure to hydrolyze a part or all of the urea to produce ammonium carbonate. Exhaust gas is blown into an exhaust gas containing, and the nitrogen oxides contained in the exhaust gas are reduced and decomposed in the presence of an NH 3 catalytic reduction denitration catalyst, wherein the solid hydrolysis catalyst comprises cerium An exhaust gas denitration method characterized in that the catalyst is a catalyst to which is added. 前記セリウムの添加量が2〜40重量%であることを特徴とする請求項3記載の排ガス脱硝方法。The exhaust gas denitration method according to claim 3, wherein the addition amount of the cerium is 2 to 40% by weight. 前記炭酸アンモニウムを含む水溶液を加熱してアンモニアガス、炭酸ガスおよび水蒸気を含む混合ガスとした後、前記排ガス流路に吹き込むことを特徴とする請求項1ないし4のいずれかに記載の排ガス脱硝方法。The exhaust gas denitration method according to any one of claims 1 to 4, wherein the aqueous solution containing ammonium carbonate is heated to be a mixed gas containing ammonia gas, carbon dioxide gas and water vapor, and then blown into the exhaust gas passage. . 前記加熱条件を150〜400℃、加圧条件を0.5〜10MPaとすることを特徴とする請求項1〜5のいずれかに記載の方法。The method according to any one of claims 1 to 5, wherein the heating condition is 150 to 400 ° C and the pressurizing condition is 0.5 to 10 MPa. 前記加熱条件を200〜400℃、加圧条件を0.5〜10MPaとすることを特徴とする請求項1〜5のいずれかに記載の方法。The method according to claim 1, wherein the heating condition is 200 to 400 ° C. and the pressurizing condition is 0.5 to 10 MPa. 排ガス中の窒素酸化物を尿素を用いて還元、分解する排ガス脱硝装置であって、排ガス流路に設けられたNH接触還元脱硝触媒層と、還元剤としての尿素水溶液を加熱、加圧雰囲気で固体状の加水分解触媒と接触させ、前記尿素の一部または全部を加水分解して炭酸アンモニウムを生成させる手段と、得られた炭酸アンモニウムを含む水溶液を直接または気化させた後、前記ガス流路のNH接触還元脱硝触媒層の前流側に吹き込む手段とを有する装置であって、前記固体状の加水分解触媒がγ−アルミナにチタニアまたはセリウムを添加した触媒であることを特徴とする排ガス脱硝装置。An exhaust gas denitration apparatus for reducing and decomposing nitrogen oxides in exhaust gas using urea, comprising heating an NH 3 catalytic reduction denitration catalyst layer provided in an exhaust gas channel and an aqueous urea solution as a reducing agent under a pressurized atmosphere. A means for contacting with a solid hydrolysis catalyst at a temperature to produce ammonium carbonate by hydrolyzing a part or all of the urea, and directly or vaporizing the obtained aqueous solution containing ammonium carbonate, Means for blowing into the upstream side of the NH 3 catalytic reduction denitration catalyst layer of the channel, wherein the solid hydrolysis catalyst is a catalyst obtained by adding titania or cerium to γ-alumina. Exhaust gas denitration equipment. 尿素の水溶液を反応器内で加熱、加圧下に固体状加水分解触媒と液相で接触させ、前記尿素の一部または全部を加水分解してアンモニアと炭酸ガスを生成させる装置であって、該装置の反応器およびその後流部に位置する流路配管ならびに反応生成物と接触する付帯機器が加熱手段または保温手段を有することを特徴とする請求項8記載の装置に用いる加圧加水分解装置。A device for heating an aqueous solution of urea in a reactor and bringing it into contact with a solid hydrolysis catalyst in a liquid phase under pressure to hydrolyze a part or all of the urea to produce ammonia and carbon dioxide gas, 9. The pressurized hydrolysis apparatus used in the apparatus according to claim 8, wherein the reactor of the apparatus, the flow pipe located in the downstream portion thereof, and the auxiliary equipment that comes into contact with the reaction product have heating means or heat retaining means. 請求項9の装置の起動にあたり、請求項9記載の加熱または保温手段を、反応器の反応生成物が配管または付帯機器に接触する前に作動させることを特徴とする運転方法。10. An operating method, wherein the heating or heat retaining means according to claim 9 is activated before the reaction product of the reactor comes into contact with a pipe or ancillary equipment when the apparatus according to claim 9 is started. 請求項9の装置の運転にあたり、圧力計が所定値以上になると、反応器およびその後流部に位置する流路配管、ならびに反応生成物と接触する付帯機器の加熱をより高温にすることを特徴とする運転方法。In the operation of the apparatus according to claim 9, when the pressure gauge becomes equal to or higher than a predetermined value, the heating of the reactor and the flow path piping located in the downstream thereof, and the auxiliary equipment in contact with the reaction product, is made higher. And driving method.
JP2003110706A 2003-04-15 2003-04-15 Exhaust gas denitration method using urea Expired - Lifetime JP4309167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110706A JP4309167B2 (en) 2003-04-15 2003-04-15 Exhaust gas denitration method using urea

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110706A JP4309167B2 (en) 2003-04-15 2003-04-15 Exhaust gas denitration method using urea

Publications (2)

Publication Number Publication Date
JP2004313917A true JP2004313917A (en) 2004-11-11
JP4309167B2 JP4309167B2 (en) 2009-08-05

Family

ID=33471496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110706A Expired - Lifetime JP4309167B2 (en) 2003-04-15 2003-04-15 Exhaust gas denitration method using urea

Country Status (1)

Country Link
JP (1) JP4309167B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068680A (en) * 2004-09-03 2006-03-16 Purearth Inc Denitrating reductant composition and producing method therefor
WO2006054632A1 (en) * 2004-11-18 2006-05-26 Hino Motors, Ltd. Exhaust purification apparatus
WO2007077919A1 (en) * 2006-01-06 2007-07-12 Mitsui Engineering & Shipbuilding Co., Ltd. Method of denitration of exhaust gas and apparatus therefor
JP2007187078A (en) * 2006-01-13 2007-07-26 Mitsui Eng & Shipbuild Co Ltd Exhaust gas treatment device
JP2009078951A (en) * 2007-09-27 2009-04-16 Toyohashi Univ Of Technology Urea modifying apparatus and exhaust gas cleaning system equipped with the same
DE102008016177A1 (en) 2008-03-28 2009-10-08 Süd-Chemie AG Harnstoffhydrolysekatalysator
JP2010506078A (en) * 2006-10-02 2010-02-25 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method and apparatus for generating a gas stream containing a reducing agent
CN106890567A (en) * 2017-04-06 2017-06-27 北京烨晶科技有限公司 The decomposition of a kind of fluidized bed type urea and its derivative and denitrating system and technique
EP3470639A1 (en) * 2017-10-16 2019-04-17 Winterthur Gas & Diesel Ltd. Device and method for generating a reducing agent gas from a liquid or solid reducing agent
CN109821413A (en) * 2019-04-02 2019-05-31 宋铭宇 A kind of flue gas ammonia method desulfurizing denitration minimum discharge integrated tower
CN113750948A (en) * 2021-09-09 2021-12-07 西安热工研究院有限公司 Urea catalytic hydrolysis reactor and method for flue gas denitration

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104353567B (en) * 2014-11-13 2016-09-07 河南海力特机电制造有限公司 High pressure fine water fog spraying gun for SNCR denitration system
KR101821096B1 (en) 2017-07-14 2018-01-23 박정봉 NOx reduction system based on urea solution

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068680A (en) * 2004-09-03 2006-03-16 Purearth Inc Denitrating reductant composition and producing method therefor
JP4681284B2 (en) * 2004-11-18 2011-05-11 日野自動車株式会社 Exhaust purification device
WO2006054632A1 (en) * 2004-11-18 2006-05-26 Hino Motors, Ltd. Exhaust purification apparatus
JP2006144631A (en) * 2004-11-18 2006-06-08 Hino Motors Ltd Exhaust emission control device
WO2007077919A1 (en) * 2006-01-06 2007-07-12 Mitsui Engineering & Shipbuilding Co., Ltd. Method of denitration of exhaust gas and apparatus therefor
JP2007187078A (en) * 2006-01-13 2007-07-26 Mitsui Eng & Shipbuild Co Ltd Exhaust gas treatment device
JP2010506078A (en) * 2006-10-02 2010-02-25 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method and apparatus for generating a gas stream containing a reducing agent
US8615985B2 (en) 2006-10-02 2013-12-31 EMITEC Gesellschaft fuer Emissions Technologies mbH Method and device for providing a gas flow containing a reducing agent
JP2009078951A (en) * 2007-09-27 2009-04-16 Toyohashi Univ Of Technology Urea modifying apparatus and exhaust gas cleaning system equipped with the same
DE102008016177A1 (en) 2008-03-28 2009-10-08 Süd-Chemie AG Harnstoffhydrolysekatalysator
CN106890567A (en) * 2017-04-06 2017-06-27 北京烨晶科技有限公司 The decomposition of a kind of fluidized bed type urea and its derivative and denitrating system and technique
CN106890567B (en) * 2017-04-06 2023-07-18 北京烨晶科技有限公司 Fluidized bed urea and decomposition and denitration system and process of derivative thereof
EP3470639A1 (en) * 2017-10-16 2019-04-17 Winterthur Gas & Diesel Ltd. Device and method for generating a reducing agent gas from a liquid or solid reducing agent
CN109821413A (en) * 2019-04-02 2019-05-31 宋铭宇 A kind of flue gas ammonia method desulfurizing denitration minimum discharge integrated tower
CN113750948A (en) * 2021-09-09 2021-12-07 西安热工研究院有限公司 Urea catalytic hydrolysis reactor and method for flue gas denitration
CN113750948B (en) * 2021-09-09 2023-04-28 西安热工研究院有限公司 Urea catalytic hydrolysis reactor and method for flue gas denitration

Also Published As

Publication number Publication date
JP4309167B2 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
US6077491A (en) Methods for the production of ammonia from urea and/or biuret, and uses for NOx and/or particulate matter removal
JP2004313917A (en) Method and apparatus for waste gas denitrification using urea
RU2193442C2 (en) Flue gas treatment method
EP0542792B1 (en) Process for the in-line hydrolysis of urea
JP4646063B2 (en) Exhaust gas denitration method and apparatus using urea decomposition catalyst
EP3272412A1 (en) Gas denitration process and apparatus
JP2020503467A (en) Formation of ammonium carbamate and reduction of nitrogen oxides
WO1998042623A9 (en) Methods for the production of ammonia from urea and uses thereof
JP2002514495A (en) Method and apparatus for selective catalytic reduction of nitrogen oxides in oxygen-containing gaseous medium
JP2001518830A (en) Reduction of NO X emissions from the engine by temperature-controlled urea injection for selective catalytic reduction
JP3638638B2 (en) Denitration equipment using solid reducing agent
JP2007145796A (en) Urea water and denitrification apparatus using the same
JP4599989B2 (en) Ammonia production method and denitration method
JP2000506062A (en) Desulfurization method and apparatus by electron beam irradiation
JP2001157822A (en) Method for removing nitrogen oxide in combustion exhaust gas
JP2007301524A (en) Method and apparatus for denitrification
JP4266304B2 (en) Exhaust gas denitration method and denitration apparatus
JP5152227B2 (en) Urea water
JP3276158B2 (en) Denitration equipment
JP4433694B2 (en) Urea water and denitration method using the same
JP4381881B2 (en) Flue gas denitration device and starting method thereof
JP4534729B2 (en) Denitration method using urea water
JP2002306929A (en) Method and device for cleaning engine exhaust gas
JPH04200692A (en) Treatment of ammonium nitrate-containing waste water
JPS62262729A (en) Method for removing nitrogen oxide contained in exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4309167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term