JP2009076301A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2009076301A
JP2009076301A JP2007243892A JP2007243892A JP2009076301A JP 2009076301 A JP2009076301 A JP 2009076301A JP 2007243892 A JP2007243892 A JP 2007243892A JP 2007243892 A JP2007243892 A JP 2007243892A JP 2009076301 A JP2009076301 A JP 2009076301A
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
negative electrode
conductive
tab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007243892A
Other languages
Japanese (ja)
Other versions
JP5163026B2 (en
Inventor
Takeshi Matsuyama
剛 松山
Yoshihiro Niida
善洋 新居田
Yasuhisa Kojima
育央 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2007243892A priority Critical patent/JP5163026B2/en
Publication of JP2009076301A publication Critical patent/JP2009076301A/en
Application granted granted Critical
Publication of JP5163026B2 publication Critical patent/JP5163026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact nonaqueous electrolyte secondary battery with improved high-rate charge discharge characteristics. <P>SOLUTION: In addition to connection of a cathode tab 3 with a cathode collector 1 in ultrasonic welding or the like, a conductive sheet 2 is arranged so as to cover a joint part from above the cathode tab 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は高率(ハイレート)充放電特性を向上した小型の非水電解質二次電池に関する。   The present invention relates to a small nonaqueous electrolyte secondary battery having improved high rate (high rate) charge / discharge characteristics.

小型電子機器の電源として各種の電池が使用され、携帯電話、ノートパソコン等の電源として、小型で大容量の電池が用いられ、近年ではエネルギー密度の向上や、高率放電特性の向上が強く求められており、リチウムイオン電池等の非水電解質二次電池が用いられている。   Various batteries are used as power sources for small electronic devices, and small and large-capacity batteries are used as power sources for mobile phones and laptop computers. In recent years, there has been a strong demand for improvements in energy density and high-rate discharge characteristics. Non-aqueous electrolyte secondary batteries such as lithium ion batteries are used.

非水電解質電池において、小型の角形電池缶やラミネート外装体を用いた電池は、携帯電話やノート型パーソナルコンピュータ等の機器に効率よく装着できる。このような用途において、市場からはエネルギー密度が大きく、横幅の狭い小型の電池を強く要望されている。更なる小型の電池の要求が高まり、充電、放電時に特に充電時に高率電流でも動作する二次電池が要求されている。   In a nonaqueous electrolyte battery, a battery using a small rectangular battery can or a laminate outer package can be efficiently mounted on a device such as a mobile phone or a notebook personal computer. In such applications, there is a strong demand from the market for small batteries with high energy density and narrow width. There is a growing demand for smaller batteries, and there is a demand for secondary batteries that operate at high rate currents during charging and discharging, particularly during charging.

このような中、小型の角形電池缶やラミネート外装体を用いた電池は、高い体積エネルギー密度と高率電流特性が求められている。これらの電池は、巻回構造あるいは積層構造の電極体を収納している。さらに扁平状の巻回構造は、電流導出端子となる正極タブあるいは負極タブからなる電極タブの取り出し方法によっても、巻回方向に垂直に電極タブを接続する方法と、巻回方向に平行に電極タブを接続あるいは最外周の電極の集電体露出部を導出端子にする方法がある。   Under such circumstances, a battery using a small prismatic battery can or a laminate outer package is required to have high volume energy density and high rate current characteristics. These batteries contain an electrode body having a wound structure or a laminated structure. In addition, the flat winding structure can be obtained by connecting the electrode tabs perpendicular to the winding direction and the electrodes parallel to the winding direction by the method of taking out the electrode tab comprising the positive electrode tab or the negative electrode tab serving as the current lead-out terminal. There is a method of connecting a tab or using a current collector exposed portion of the outermost electrode as a lead-out terminal.

巻回方向に垂直に電極タブを接続して導出端子とする方法の巻回電極体の場合、高率電流特性を向上させるためには、内部抵抗の低減が必要である。内部抵抗低減のためには電極板の面積の増加、電流導出部の抵抗の低減が有効である。電流導出部の抵抗の低減には、電極タブの断面積を大きくすることや、電極タブの本数を増やすことが有効であるが、集電体上の電極タブを配置する部分では電極活物質層の形成ができなくなるので、電池容量には不利になる。   In the case of a wound electrode body in which electrode tabs are connected perpendicularly to the winding direction to form a lead-out terminal, it is necessary to reduce internal resistance in order to improve high-rate current characteristics. In order to reduce the internal resistance, it is effective to increase the area of the electrode plate and reduce the resistance of the current deriving portion. To reduce the resistance of the current deriving section, it is effective to increase the cross-sectional area of the electrode tab or increase the number of electrode tabs. However, in the portion where the electrode tab is arranged on the current collector, the electrode active material layer This is disadvantageous for the battery capacity.

一方、積層構造の電極体においては集電体露出部を切り出した箔部(集電箔)を、電流の導出部として電極板1枚毎に配置して、正極、負極毎に重ねて接合して、電極体を構成している。電流導出部の抵抗の低減には、集電箔の幅を広くすることが有効である。電極板1枚毎に電流導出部としての集電箔があるため、巻回構造より高率電流特性に有利である。高率電流特性をさらに向上させるため、集電箔部の電気抵抗を下げるには、集電箔の断面積を増やすために、箔の幅を広くすることが有効である。   On the other hand, in an electrode body having a laminated structure, a foil part (current collector foil) obtained by cutting out an exposed part of the current collector is disposed for each electrode plate as a current deriving part, and is overlapped and bonded to each of the positive electrode and the negative electrode. Thus, an electrode body is configured. Increasing the width of the current collector foil is effective for reducing the resistance of the current deriving portion. Since there is a current collecting foil as a current deriving portion for each electrode plate, it is more advantageous for high-rate current characteristics than a wound structure. In order to further improve the high-rate current characteristics, to reduce the electrical resistance of the current collector foil portion, it is effective to increase the width of the foil in order to increase the cross-sectional area of the current collector foil.

巻回型、積層型のいずれにおいても電池の小型化には、巻回構造では、正・負極タブ、積層構造では、電極板毎の集電箔の電流導出部の正・負極の絶縁を保ち、間隔を狭める等、導出部の設計も重要な要素となる。たとえば、小型化していくには、正負の電極タブの導出部を反対側にして、異なる方向から導出することで電極タブの幅を確保することができるが、逆に、電極体のスペースが小さくなるため、電池容量が小さくなる。そのため、正負極タブの導出部側で間隔を狭め、正負極タブ自体の幅を狭める必要がある。   To reduce the size of the battery in both the wound type and the laminated type, the positive and negative electrode tabs are used in the wound structure, and in the laminated structure, the positive and negative insulations of the current deriving portion of the current collector foil for each electrode plate are maintained. The design of the derivation unit is also an important factor, such as reducing the interval. For example, in order to reduce the size, the width of the electrode tab can be secured by deriving the electrode tab from the opposite direction with the lead-out portion of the positive and negative electrode tabs on the opposite side. Therefore, the battery capacity is reduced. Therefore, it is necessary to narrow the interval on the lead-out side of the positive and negative electrode tabs and to narrow the width of the positive and negative electrode tabs themselves.

積層構造においても、集電箔の幅を狭めることになると、機械的強度が低下する。集電箔の強度を保つためには、電極タブでの補強が必要となる。そこでまた、集電体と電極タブでの接続が必要となる。   Even in the laminated structure, the mechanical strength decreases when the width of the current collector foil is reduced. In order to maintain the strength of the current collector foil, reinforcement with an electrode tab is required. Therefore, connection between the current collector and the electrode tab is necessary.

上述のように、特に、電極板と電極タブを溶接するタイプの電極体において、巻回する巻き幅を狭くする方法により、電池の小型化をする場合には、巻回した電極体の正極タブと負極のタブの接触を防ぐために電極タブの幅狭化をする必要性があり、接続方法としては、公知の方法としてハトメによる機械的な接続、超音波溶接等があるが、電極タブと集電体との接続には、接続面積が必要となるため、電極タブが幅狭化すると接続面積の低下により強度、導電性に問題が出てくる。   As described above, in particular, in the case of an electrode body of a type in which the electrode plate and the electrode tab are welded, when the battery is downsized by the method of narrowing the winding width, the positive electrode tab of the wound electrode body In order to prevent contact between the electrode tab and the negative electrode tab, it is necessary to reduce the width of the electrode tab. As a connection method, known methods include mechanical connection by eyelet and ultrasonic welding. Since a connection area is required for connection with an electric body, if the electrode tab is narrowed, a problem arises in strength and conductivity due to a decrease in the connection area.

正極、負極集電体と正極、負極タブの接合に関しては、上述のハトメや超音波溶接のほかに、特許文献1では導電性樹脂を用いた技術が提案されている。この技術の場合、電極タブと集電体の間に導電性樹脂が介在することになり、接続面積は、電極タブの面積に限定されるため、幅を狭くしたタブの接続強度は限られてしまう。また、巻回軸芯方向に集電露出部を互いに反対側に突出させてなる突出端部を備えた巻回体においては、巻回体の集電体突出端部の隙間に導電性の部材を配置した技術が特許文献2で提案されている。しかしながら、その導電性部材配置部分を大きくすることで、電気抵抗を低減することができるが、その分電極活物質の配置スペースが小さくなるために、電気容量の向上には向いていない。さらに、アルカリ二次電池用電極に関して、集電体と端子の接続にエンボス加工した金属テープを介することで超音波溶接での溶接強度を向上させることが特許文献3で提案されている。しかしながら、接続面積は、タブの面積に限定されるため、幅を狭くしたタブの接続強度は限られてしまう。   Regarding the joining of the positive electrode and the negative electrode current collector to the positive electrode and the negative electrode tab, in addition to the eyelet and ultrasonic welding described above, Patent Document 1 proposes a technique using a conductive resin. In this technique, a conductive resin is interposed between the electrode tab and the current collector, and since the connection area is limited to the area of the electrode tab, the connection strength of the tab with a narrow width is limited. End up. Further, in the wound body provided with the projecting end portion in which the current collector exposed portion projects to the opposite sides in the winding axis direction, a conductive member is provided in the gap between the current collector projecting end portions of the wound body. Japanese Patent Application Laid-Open No. H11-228707 proposes a technique in which the above is arranged. However, although the electrical resistance can be reduced by enlarging the conductive member arrangement portion, the arrangement space for the electrode active material is reduced correspondingly, so that it is not suitable for improving the electric capacity. Furthermore, regarding the electrode for an alkaline secondary battery, Patent Document 3 proposes to improve the welding strength in ultrasonic welding by using a metal tape embossed to connect the current collector and the terminal. However, since the connection area is limited to the tab area, the connection strength of the tab having a narrow width is limited.

特開2005−93145号公報JP 2005-93145 A 特開2004−22339号公報JP 2004-22339 A 特開2005−149921号公報JP 2005-149921 A

本発明の課題は、高率充放電特性を向上した小型の非水電解質二次電池を提供することにある。   The subject of this invention is providing the small nonaqueous electrolyte secondary battery which improved the high rate charge / discharge characteristic.

上記課題を解決するため本発明の非水電解質二次電池は、正極集電体上に正極活物質層が形成され、前記正極集電体上の正極活物質層の非形成部に正極タブが接合された正極と、負極集電体上に負極活物質層が形成され、前記負極集電体上の負極活物質層の非形成部に負極タブが接合された負極とを、セパレータを介して積層または扁平状に巻回した電極体が外装体に収納されてなる非水電解質二次電池であって、前記正極タブと前記正極集電体、前記負極タブと前記負極集電体の少なくとも一方の接合部を導電シートで被覆したことを特徴とする。   In order to solve the above problems, the non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode active material layer formed on a positive electrode current collector, and a positive electrode tab on a non-formation portion of the positive electrode active material layer on the positive electrode current collector. A bonded positive electrode and a negative electrode in which a negative electrode active material layer is formed on a negative electrode current collector, and a negative electrode tab is bonded to a non-formation part of the negative electrode active material layer on the negative electrode current collector, via a separator A non-aqueous electrolyte secondary battery in which an electrode body wound in a laminated or flat shape is housed in an exterior body, wherein at least one of the positive electrode tab and the positive electrode current collector, the negative electrode tab and the negative electrode current collector This is characterized in that the joint portion is covered with a conductive sheet.

また、本発明の非水電解質二次電池は、前記導電シートが、金属からなっていてもよいし、導電性の粘着剤を有していてもよいし、導電材と粘着剤からなり前記導電材の一部が前記接合部において、前記正極集電体または負極集電体と接続していてもよい。   In the nonaqueous electrolyte secondary battery of the present invention, the conductive sheet may be made of metal, may have a conductive adhesive, or is made of a conductive material and a pressure sensitive adhesive. A part of the material may be connected to the positive electrode current collector or the negative electrode current collector at the joint.

扁平な巻回電極体を有する電池の設計において巻回電極体の正負極タブ(以下電極タブと称す)の幅の設計は、巻回電極体の幅、電極タブの接続先となる外部電極の状態によって制限を受ける。電極タブを幅狭にすると設計の自由度が広がる。従来、3〜5mm幅の電極タブが用いられている。電極タブの幅を狭くすることにより、電池の小型化を進めることができる。タブが狭くなることによる接合、接触面積の低下のための集電体とタブの接合部分の電気抵抗の上昇を抑えることと、接合強度の確保がこの小型化のために必要不可欠である。本発明は、接合部分の接合強度の確保と、電気的な接続抵抗の低減を実現することで、小型で、高率電流特性を高めることが可能な電池を提供するものである。   In the design of a battery having a flat wound electrode body, the width of the positive and negative electrode tabs (hereinafter referred to as electrode tabs) of the wound electrode body is determined by the width of the wound electrode body and the external electrode to which the electrode tab is connected. Limited by state. If the electrode tabs are narrowed, the degree of freedom in design increases. Conventionally, 3 to 5 mm wide electrode tabs are used. By reducing the width of the electrode tab, the size of the battery can be reduced. In order to reduce the size, it is indispensable to suppress the increase in the electrical resistance of the junction between the current collector and the tab due to the reduction in the contact area and the contact area due to the narrowing of the tab and to ensure the junction strength. The present invention provides a battery that is small in size and capable of enhancing high-rate current characteristics by ensuring the bonding strength of the bonding portion and reducing the electrical connection resistance.

また、扁平な巻回電極体の幅が狭くなると電極タブの接近した設計が必要になる。電極タブの幅を狭くすると電極タブ間の間隔を確保した設計が可能となる。しかし、電極タブの幅が狭くなると、集電体との接続面積が少なくなるため、接合方法が難しくなる。即ち、ハトメの場合は電極タブの幅が狭いとハトメを電極タブの内側に形成することが難しくなる。超音波溶接においても安定した接合状態の確保が難しくなり、溶接面積が低下するため、接続抵抗の増加が避けられない。本発明は、この接合強度の確保と接合部の接続抵抗の低減のために導電シートで接合部を被覆したものである。また本発明は、電極タブが幅狭の場合特に有効であるが、電極タブの機械強度の低下する電極タブが薄い場合にも有効である。   Further, when the width of the flat wound electrode body is narrowed, a design in which the electrode tabs are close to each other is required. If the width of the electrode tabs is narrowed, a design that secures an interval between the electrode tabs becomes possible. However, if the width of the electrode tab is reduced, the connection area with the current collector is reduced, and the joining method becomes difficult. That is, in the case of eyelets, if the width of the electrode tab is narrow, it is difficult to form the eyelet inside the electrode tab. Even in ultrasonic welding, it is difficult to ensure a stable joined state, and the welding area is reduced, so an increase in connection resistance is inevitable. In the present invention, in order to ensure the bonding strength and reduce the connection resistance of the bonding portion, the bonding portion is covered with a conductive sheet. The present invention is particularly effective when the electrode tab is narrow, but is also effective when the electrode tab whose mechanical strength of the electrode tab is reduced is thin.

本発明の非水電解質二次電池によれば、電極タブと正負極集電体との接合部を導電シートで被覆することにより、抵抗が低減し、充電時、放電時に発生する発熱が抑制され、発熱による電池の劣化を抑えることができ、高率充電、高率放電特性を向上させることができる。   According to the nonaqueous electrolyte secondary battery of the present invention, the joint between the electrode tab and the positive and negative electrode current collector is covered with the conductive sheet, so that the resistance is reduced and the heat generated during charging and discharging is suppressed. Thus, deterioration of the battery due to heat generation can be suppressed, and high rate charge and high rate discharge characteristics can be improved.

次に、本発明の実施の形態を図面を参照して説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の非水電解質二次電池の第一の実施の形態による正極の正極集電体と正極タブの接合部を示す図であり、図1(a)は正面図、図1(b)は正極タブを通る断面図である。巻回前の正極は帯状の正極集電体1上に正極活物質層5が形成され、正極活物質層の非形成部6に正極タブ3が接合され、接合部を導電シート2で被覆した構造となっている。この正極と、帯状の負極集電体上に負極活物質層が形成され、負極活物質層の非形成部に負極タブが接合され接合部を導電シートで被覆した負極とを、セパレータを介して巻回した電極巻回体が外装体に収納されて非水電解質二次電池が製造される。なお、導電シートによる接合部の被覆は必ずしも正極と負極の両方で行う必要はなく少なくとも一方で行えばよい。   FIG. 1 is a diagram showing a joint between a positive electrode current collector and a positive electrode tab of a positive electrode according to a first embodiment of the non-aqueous electrolyte secondary battery of the present invention. FIG. 1 (a) is a front view, FIG. (B) is sectional drawing which passes along a positive electrode tab. In the positive electrode before winding, the positive electrode active material layer 5 is formed on the belt-like positive electrode current collector 1, the positive electrode tab 3 is bonded to the non-formed portion 6 of the positive electrode active material layer, and the bonded portion is covered with the conductive sheet 2. It has a structure. The positive electrode and a negative electrode in which a negative electrode active material layer is formed on a strip-shaped negative electrode current collector, a negative electrode tab is bonded to a non-formed portion of the negative electrode active material layer, and the bonded portion is covered with a conductive sheet are interposed via a separator. The wound electrode winding body is housed in the exterior body to manufacture a nonaqueous electrolyte secondary battery. Note that it is not always necessary to cover the bonding portion with the conductive sheet on both the positive electrode and the negative electrode.

正極は、集電体として厚さ10〜25μmのアルミニウム箔あるいはアルミ合金箔に、リチウムをドープ及び脱ドープ可能な、LixMO2(ただしMは、少なくとも1種の遷移金属を表す。)である複合酸化物、例えば、LixCoO2、LixNiO2、LixMn24、LixMnO3、LixNiyCo(1-y)2などを 、カーボンブラック等の導電性物質と、ポリフッ化ビニリデン(PVDF)等の結着剤をN−メチル−2−ピロリドン(NMP)等の溶剤とを分散混練した調製した正極塗布液を塗布装置で塗布して乾燥し、所定の厚みに圧縮し、裁断装置にて所定の幅に裁断して得る。 The positive electrode is Li x MO 2 (wherein M represents at least one transition metal) capable of doping and dedoping lithium to an aluminum foil or aluminum alloy foil having a thickness of 10 to 25 μm as a current collector. Some composite oxides, such as Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4 , Li x MnO 3 , Li x Ni y Co (1-y) O 2 , etc., are conductive such as carbon black. A cathode coating solution prepared by dispersing and kneading a substance and a binder such as polyvinylidene fluoride (PVDF) in a solvent such as N-methyl-2-pyrrolidone (NMP) is applied with a coating apparatus and dried. It is obtained by compressing to a thickness and cutting to a predetermined width with a cutting device.

負極は、集電体として厚さ6〜20μmの銅箔あるいは銅合金箔に、リチウムをドープ及び脱ドープ可能な、天然黒鉛、人造黒鉛、熱分解炭素類、ピッチコークス、ニードルコークス、石油コークスなどのコークス類、グラファイト類、ガラス状炭素類、フェノール樹脂、フラン樹脂などを焼成した有機高分子化合物焼成体、炭素繊維、活性炭などの炭素質材料と、ポリアセチレン、ポリピロール等の導電性高分子材料等をカーボンブラックなどの導電性物質、PVDF等の結着剤をNMP等の溶剤とを分散混練した調製した負極塗布液を塗布装置で塗布して乾燥し、所定の厚みに圧縮し、裁断装置にて所定の幅に裁断して得る。   The negative electrode is made of natural graphite, artificial graphite, pyrolytic carbons, pitch coke, needle coke, petroleum coke, etc., capable of doping and undoping lithium on a copper foil or copper alloy foil having a thickness of 6-20 μm as a current collector Coke, graphite, glassy carbon, phenolic resin, furan resin, organic polymer compound fired body, carbon fiber, activated carbon, and other carbonaceous materials, and polyacetylene, polypyrrole, and other conductive polymer materials, etc. A negative electrode coating solution prepared by dispersing and kneading a conductive material such as carbon black and a binder such as PVDF with a solvent such as NMP is applied with a coating device, dried, compressed to a predetermined thickness, and applied to a cutting device. To obtain a predetermined width.

導電シートによる接合部の被覆は、特に接合強度の確保が難しくなる電極タブの幅が3.0mm以下、特に2.7mm以下となる幅の狭いタブを使用する際に有効になる。   Covering the joint portion with the conductive sheet is particularly effective when using a narrow tab having a width of 3.0 mm or less, particularly 2.7 mm or less, which makes it difficult to ensure the joining strength.

導電シートは、正負極集電体と電極タブの重なり部分の少なくとも一部、好ましくは全体を覆うように配置することが望ましい。   The conductive sheet is desirably arranged so as to cover at least a part, preferably the whole, of the overlapping part of the positive and negative electrode current collector and the electrode tab.

導電シートの被覆方法は、例えば、(a)ゴム系、アクリル系、シリコーン系の樹脂中に炭素材料や金属からなる粉末の導電性材料を分散してなる導電性樹脂を接合部に塗布し、シート状に被覆する方法、(b)シートの基材にポリオレフィン系樹脂、ポリイミド系樹脂、ポリフェニレンサルファイド系樹脂等の樹脂を用い、基材の表面に形成した導電性粘着剤により接合部に貼り付ける方法、(c)金属シート、すなわち負極には銅、ニッケルもしくはその合金を、正極にはアルミニウムもしくはその合金を基材として表面に形成した導電性粘着剤により接合部に貼り付ける方法、(d)金属シートを直接あるいは導電性粘着剤を形成した金属シートを超音波溶接等の溶接により接合部に取り付ける方法、(e)表面を粗した金属シートまたは導電性樹脂シートの表面に非導電性の粘着剤を形成した粘着剤付金属シートまたは導電性樹脂シートを接合部に貼り付ける方法、例えば、粘着面まで部分的に露出し、その間は凹み部分を有する立体構造のある銅箔シートの凹み部分に非導電性の粘着剤を配して銅箔テープを貼り付ける方法などがある。   The conductive sheet coating method is, for example, (a) applying a conductive resin obtained by dispersing a conductive material of a powder made of a carbon material or a metal into a rubber-based, acrylic-based, or silicone-based resin, Method of coating in sheet form, (b) Using a resin such as polyolefin resin, polyimide resin, polyphenylene sulfide resin, etc. for the base material of the sheet, and sticking it to the joint with a conductive adhesive formed on the surface of the base material A method, (c) a metal sheet, that is, a method in which copper, nickel or an alloy thereof is applied to the negative electrode and aluminum or an alloy thereof is applied to the positive electrode as a base material, and a bonding adhesive is applied to the bonding portion, (d) A method of attaching a metal sheet directly or with a conductive adhesive-formed metal sheet to the joint by welding such as ultrasonic welding, or (e) a metal sheet with a rough surface. Is a method of affixing a metal sheet with adhesive or a conductive resin sheet with a non-conductive adhesive formed on the surface of the conductive resin sheet, for example, partially exposing up to the adhesive surface, with a dent in between For example, there is a method in which a non-conductive pressure-sensitive adhesive is disposed in a recessed portion of a copper foil sheet having a three-dimensional structure and a copper foil tape is attached.

まず被覆方法(a)について説明する。ゴム系、アクリル系、シリコーン系樹脂については、この群から選択されるものであれば特に種類に制限はなく、また熱硬化性でも熱可塑性でもよく、必要であればこれらの混合変性樹脂を用いてもよい。変性樹脂は、単に溶解混合してもよいし、加熱反応により部分的に結合させたものでもよい。また、反応に必要であれば、樹脂の反応機構に応じた硬化剤や硬化促進剤を使用することもできる。   First, the coating method (a) will be described. The rubber type, acrylic type, and silicone type resin are not particularly limited as long as they are selected from this group, and may be thermosetting or thermoplastic. If necessary, these mixed modified resins are used. May be. The modified resin may be simply dissolved and mixed, or may be partially bonded by a heating reaction. Further, if necessary for the reaction, a curing agent or a curing accelerator corresponding to the reaction mechanism of the resin can be used.

ゴム系では、天然ゴム系、ポリブタジエンゴム系、スチレン−ブタジエンゴム系、ポリイソブチレンゴム系、イソプレンゴム系、ブチルゴム系等がある。アクリル系では、1種以上のアクリル酸エステルを有機溶媒中で溶液重合したものが特に好ましい。シリコーン系では、ビニルシリコーンゴム、フェニルメチルシリコーンゴム、フェニルビニルシリコーンゴム、エポキシ変性シリコーンやポリイミド変性シリコーン等の各種変性シリコーン等を使用できる。   Examples of rubber systems include natural rubber systems, polybutadiene rubber systems, styrene-butadiene rubber systems, polyisobutylene rubber systems, isoprene rubber systems, and butyl rubber systems. In the acrylic type, one obtained by solution polymerization of one or more acrylic esters in an organic solvent is particularly preferable. In the silicone type, vinyl silicone rubber, phenylmethyl silicone rubber, phenyl vinyl silicone rubber, various modified silicones such as epoxy-modified silicone and polyimide-modified silicone can be used.

これらの樹脂は、ペースト製造前に、あらかじめ溶剤で溶解混合させておくことが望ましい。ここで用いる溶剤としては、これらの樹脂を溶解することができるものであり、具体的には、例えば、ジオキサン、ヘキサン、トルエン、エチルセロソルブ、シクロヘキサノン、ベンジルアルコール、α‐テルピネオール、ブチルセロソルブ、ブチルセロソルブアセテート、ブチルカルビトールアセテート、ジエチレングリコールジエチルエーテル、ジアセトンアルコール、N‐メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、γ‐ブチロラクトン、1,3‐ジメチル‐2‐イミダゾリジノン等が挙げられ、これらは単独又は2種以上混合して使用することができる。   These resins are desirably dissolved and mixed with a solvent in advance before producing the paste. As the solvent used here, those resins can be dissolved, and specifically, for example, dioxane, hexane, toluene, ethyl cellosolve, cyclohexanone, benzyl alcohol, α-terpineol, butyl cellosolve, butyl cellosolve acetate, Examples include butyl carbitol acetate, diethylene glycol diethyl ether, diacetone alcohol, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, γ-butyrolactone, 1,3-dimethyl-2-imidazolidinone, and these may be used alone or in combination They can be used in combination.

粉末の導電性材料としては、例えば、銀粉末、銀コート銅粉のような表面に銀層を有する粉末、銅粉末、ニッケル粉末、カーボン等が挙げられ、これらは単独又は2種以上混合して使用することができる。ここで、この導電性充填剤は少なくとも銀粉、銀コート銅粉のような表面に銀層を有する導電性充填剤を含むことが必要である。該導電性充填剤の粒子形状は、特に制限はないが、平均粒径(D50)は30μm以下のもので、好ましくは平均粒径が5〜15μmのものを使用する。 Examples of the conductive material of the powder include silver powder, powder having a silver layer on the surface such as silver-coated copper powder, copper powder, nickel powder, carbon, etc., and these may be used alone or in combination of two or more. Can be used. Here, the conductive filler needs to contain at least a conductive filler having a silver layer on the surface, such as silver powder and silver-coated copper powder. The particle shape of the conductive filler is not particularly limited, but the average particle diameter (D 50 ) is 30 μm or less, and preferably the average particle diameter is 5 to 15 μm.

導電性材料の配合量は、 導電性材料の比率が60〜90重量% の範囲であることが望ましい。配合割合が60重量% 未満では導電剤の配合量が少な過ぎて十分な導電性が得られない。また、90重量%を超えると接着性が失われてしまい、電極との密着性が保てなくなる。   As for the compounding quantity of an electroconductive material, it is desirable that the ratio of an electroconductive material is the range of 60 to 90 weight%. If the blending ratio is less than 60% by weight, the blending amount of the conductive agent is too small and sufficient conductivity cannot be obtained. On the other hand, if it exceeds 90% by weight, the adhesion is lost, and the adhesion with the electrode cannot be maintained.

樹脂、導電性材料を成分とする導電シートは、本発明の目的に反しない限り、また、必要に応じて溶剤またはモノマー、硬化触媒、消泡剤、カップリング剤、その他の添加剤を配合することができる。この導電性ペーストは、常法に従い上述した各成分を十分混合した後、さらにニーダー、三本ロールミル等により混練処理を行い、その後、減圧脱泡して製造することができる。   The conductive sheet containing a resin or a conductive material as a component is blended with a solvent or a monomer, a curing catalyst, an antifoaming agent, a coupling agent, and other additives as necessary unless it is contrary to the object of the present invention. be able to. This conductive paste can be produced by sufficiently mixing the above-described components according to a conventional method, further kneading with a kneader, a three-roll mill or the like, and then degassing under reduced pressure.

被覆方法(a)の導電性樹脂を接合部に塗布する被覆方法について説明する。導電性樹脂を電極タブを覆うようにドクターブレード法、スクリーン印刷法等の従来公知の塗布方法で、乾燥後の膜厚が30〜150μmになるように塗布し、所定の条件で乾燥または硬化させる。   The coating method for applying the conductive resin of the coating method (a) to the joint will be described. A conductive resin is applied so as to cover the electrode tab by a conventionally known coating method such as a doctor blade method or a screen printing method so that the film thickness after drying becomes 30 to 150 μm, and is dried or cured under predetermined conditions. .

導電性樹脂層の厚みは、30〜150μmが好ましい。厚さが30μm未満では、密着性が十分に保てなくなり、また厚みが150μmを超えると導電性が低下し、部分的に抵抗値が高くなることがあるため好ましくない。   The thickness of the conductive resin layer is preferably 30 to 150 μm. If the thickness is less than 30 μm, sufficient adhesion cannot be maintained, and if the thickness exceeds 150 μm, the conductivity is lowered and the resistance value may be partially increased.

次に被覆方法(b)の導電シートは絶縁性の樹脂からなる基材シートの接合部側に導電性粘着剤を形成したものである。この場合、導電シートの接合部側の反対側を絶縁材にすることにより、対極との絶縁機能を付加することができるため、絶縁用の保護テープを削減することができる。被覆方法(d)の導電性粘着剤を形成した金属シートからなる導電シートを用いる場合には粘着剤による接着に加えて、溶接手段を用いることにより、さらに接合強度を増加させることができる。被覆方法(e)においては基材に金属材、導電性樹脂等の導電性のある材料を使用し、表面に基材が露出する構造の粘着剤付導電シートとして使用する。   Next, the conductive sheet of the coating method (b) is obtained by forming a conductive adhesive on the bonding portion side of the base material sheet made of an insulating resin. In this case, an insulating function with respect to the counter electrode can be added by using an insulating material on the side opposite to the joint portion side of the conductive sheet, so that a protective tape for insulation can be reduced. In the case of using a conductive sheet made of a metal sheet on which a conductive pressure-sensitive adhesive is formed in the coating method (d), the bonding strength can be further increased by using welding means in addition to adhesion by the pressure-sensitive adhesive. In the coating method (e), a conductive material such as a metal material or a conductive resin is used for the base material, and it is used as a conductive sheet with an adhesive having a structure in which the base material is exposed on the surface.

図2は、本発明の非水電解質二次電池の第二の実施の形態による正極の正極集電体と正極タブの接合部を示す図であり、図2(a)は正面図、図2(b)は断面図である。正極タブ3が正極集電体1から導出しているところで、正極タブと対極となる負極との絶縁性を確保するために、絶縁のためのテープがタブの保護テープ4として正極タブ3の周りに巻くことがある。図2に示すように電極タブの保護テープ4と導電シート2の位置関係は、保護テープ4の上に導電シート2が重ならないことが望ましいが、保護テープ4の上から導電シート2の上に配置してもかまわない。   FIG. 2 is a view showing a joint portion between a positive electrode current collector and a positive electrode tab of a positive electrode according to a second embodiment of the nonaqueous electrolyte secondary battery of the present invention. FIG. 2 (a) is a front view, FIG. (B) is sectional drawing. Where the positive electrode tab 3 is led out from the positive electrode current collector 1, in order to ensure insulation between the positive electrode tab and the negative electrode that is the counter electrode, an insulating tape is used as a protective tape 4 around the positive electrode tab 3. It may be wound around. As shown in FIG. 2, the positional relationship between the protective tape 4 of the electrode tab and the conductive sheet 2 is preferably such that the conductive sheet 2 does not overlap the protective tape 4, but from above the protective tape 4 to the conductive sheet 2. May be arranged.

図3は、本発明の非水電解質二次電池の第三の実施の形態による正極の正極集電体と正極タブの接合部を示す図であり、図3(a)は正面図、図3(b)は断面図である。導電シート2が正極集電体1上の電極活物質層の非形成部全体を覆うことにより、高率充放電の際に発生する正極タブ、正極集電体上の電極活物質層の非形成部での発熱を抑えることができるため、セパレータの熱変形を抑えることができ、高率充放電時の信頼性を向上させることができる。さらに、正極集電体の反対側の電極活物質層の非形成部も導電シートで覆うことにより、さらに抑制効果が大きくなる。また巻回型電極体で説明したが積層型電極体でも使用できる。   FIG. 3 is a view showing a joint portion of the positive electrode current collector and the positive electrode tab according to the third embodiment of the nonaqueous electrolyte secondary battery of the present invention, and FIG. (B) is sectional drawing. The conductive sheet 2 covers the entire non-formation part of the electrode active material layer on the positive electrode current collector 1, so that the positive electrode tab generated at the time of high rate charge / discharge and the non-formation of the electrode active material layer on the positive electrode current collector Since heat generation at the portion can be suppressed, thermal deformation of the separator can be suppressed, and reliability during high rate charge / discharge can be improved. Furthermore, the non-formation part of the electrode active material layer on the opposite side of the positive electrode current collector is also covered with the conductive sheet, thereby further increasing the suppression effect. Further, although described with the wound electrode body, a laminated electrode body can also be used.

以下に本発明の実施例を図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施例1)
本発明の非水電解質二次電池の第一の実施の形態として説明した図1、および第二の実施の形態として説明した図2を参照して説明する。なお図2において第二の実施の形態では正極として説明したが、実施例1では負極として置き換えて説明する。実施例1の正極は、図1に示すように帯状の正極集電体1上に正極活物質層5が形成され、正極活物質層の非形成部6に正極タブ3が接合され、接合部を導電シート2で被覆した構造となっている。実施例1の負極は図2に示すように、帯状の負極集電体1上に負極活物質層5が形成され、負極活物質層の非形成部6に負極タブ3が接合され、接合部を導電シート2で被覆した構造となっている。負極タブには、集電体から突出しているところで、保護テープ4が負極タブの周りに巻かれている。この正極と負極とを、セパレータを介して巻回した電極巻回体が外装体に収納されて非水電解質二次電池を製造した。
Example 1
The non-aqueous electrolyte secondary battery of the present invention will be described with reference to FIG. 1 described as the first embodiment and FIG. 2 described as the second embodiment. In FIG. 2, the second embodiment has been described as the positive electrode, but in the first embodiment, it will be described as a negative electrode. In the positive electrode of Example 1, a positive electrode active material layer 5 is formed on a strip-shaped positive electrode current collector 1 as shown in FIG. 1, and a positive electrode tab 3 is bonded to a non-forming portion 6 of the positive electrode active material layer. Is covered with a conductive sheet 2. As shown in FIG. 2, in the negative electrode of Example 1, the negative electrode active material layer 5 is formed on the strip-shaped negative electrode current collector 1, the negative electrode tab 3 is bonded to the non-formed portion 6 of the negative electrode active material layer, and the bonded portion Is covered with a conductive sheet 2. On the negative electrode tab, the protective tape 4 is wound around the negative electrode tab at a position protruding from the current collector. An electrode winding body in which the positive electrode and the negative electrode are wound through a separator is housed in an exterior body to manufacture a nonaqueous electrolyte secondary battery.

実施例1の非水電解質二次電池についてさらに詳細に説明する。正極は、集電体として厚さ20μmのアルミニウム箔を使用した。LixMn24からなる正極活物質を94重量%、カーボンブラックからなる導電性物質を3重量%、ポリフッ化ビニリデン(PVDF)の結着剤3重量%を、N−メチル−2−ピロリドン(NMP)で分散混練し、調製した正極塗布液を塗布装置で塗布、乾燥した。反対面も塗布、乾燥し、厚さ170μmに圧縮した後に、裁断装置によって電極を裁断し、長さ260(塗布部210+非塗布部50)mm、幅15mmの正極を作製した。 The nonaqueous electrolyte secondary battery of Example 1 will be described in further detail. For the positive electrode, an aluminum foil having a thickness of 20 μm was used as a current collector. 94% by weight of a positive electrode active material made of Li x Mn 2 O 4 , 3% by weight of a conductive material made of carbon black, 3% by weight of a binder of polyvinylidene fluoride (PVDF), N-methyl-2-pyrrolidone (NMP) was dispersed and kneaded, and the prepared positive electrode coating solution was applied and dried with a coating apparatus. The opposite surface was also applied, dried, and compressed to a thickness of 170 μm, and then the electrode was cut by a cutting device to produce a positive electrode having a length of 260 (applying part 210 + non-applying part 50) mm and a width of 15 mm.

負極は、集電体として厚さ10μmの銅箔を使用した。人造黒鉛を負極活物質として96重量%、カーボンブラックからなる導電性物質を1重量%、PVDFからなる結着剤3重量%を、NMPで分散混練し、調製した負極塗布液を塗布装置で塗布、乾燥した。反対面も塗布、乾燥し厚さ140μmに圧縮した後に、裁断装置によって電極を裁断し、長さ260(塗布部245+非塗布部15)mm、幅16mmの負極を作製した。   For the negative electrode, a copper foil having a thickness of 10 μm was used as a current collector. 96% by weight of artificial graphite as a negative electrode active material, 1% by weight of a conductive material made of carbon black, and 3% by weight of a binder made of PVDF are dispersed and kneaded with NMP, and the prepared negative electrode coating solution is applied with a coating device. , Dried. The opposite surface was also applied, dried and compressed to a thickness of 140 μm, and then the electrode was cut by a cutting device to prepare a negative electrode having a length of 260 (applied portion 245 + non-applied portion 15) mm and a width of 16 mm.

負極タブは、図2に示すように幅2.5mm、長さ12mm、厚さ0.1mmのNiからなる負極タブ3にポリプロピレンを基材、アクリル系粘着剤の保護テープ4を巻きつけ、負極集電体1に超音波溶接で接合した後、負極集電体1と負極タブ3の接合部を覆うように導電性樹脂をドクターブレード法で10mm×5mmのサイズで乾燥後の厚さが0.1mmになるように塗布し導電シート2で接合部を被覆した。   As shown in FIG. 2, the negative electrode tab is formed by wrapping a polypropylene base material and a protective tape 4 of acrylic adhesive around a negative electrode tab 3 made of Ni having a width of 2.5 mm, a length of 12 mm, and a thickness of 0.1 mm. After bonding to the current collector 1 by ultrasonic welding, the conductive resin is dried to a size of 10 mm × 5 mm by the doctor blade method so as to cover the bonded portion of the negative electrode current collector 1 and the negative electrode tab 3, and the thickness after drying is 0 The coated part was coated with a conductive sheet 2 so as to have a thickness of 1 mm.

正極タブは、幅2.5mm、長さ12mm、厚さ0.1mmのアルミからなる正極タブにポリプロピレンを基材、アクリル系粘着剤のタブ保護テープを巻きつけた導電タブを正極集電体に超音波溶接で接合して、負極タブ同様に集電体と導出タブの接合部を覆うように導電性樹脂をドクターブレード法で10mm×5mmのサイズで乾燥後の厚さが0.1mmになるように塗布し導電シートで接合部を被覆した。   The positive electrode tab is a positive electrode tab made of aluminum having a width of 2.5 mm, a length of 12 mm, and a thickness of 0.1 mm. Bonded by ultrasonic welding, the conductive resin is 10 mm x 5 mm in size by the doctor blade method so that the joint between the current collector and the lead-out tab is covered like the negative electrode tab, and the thickness after drying becomes 0.1 mm The joint portion was coated with a conductive sheet.

次いで、負極タブが接合された負極と、正極タブが接合された正極を厚さ20μm、幅18mmのポリオレフィン製の多孔性のセパレータを介して正極および負極の先端部を所定の位置に合わせて巻回して扁平状の巻回電極体を作製した。   Next, the negative electrode to which the negative electrode tab is bonded and the positive electrode to which the positive electrode tab are bonded are wound with a porous separator made of polyolefin having a thickness of 20 μm and a width of 18 mm so that the tips of the positive electrode and the negative electrode are aligned at predetermined positions. Turned to produce a flat wound electrode body.

作製した電極体をラミネート外装材に挿入して、封口して非水電解質二次電池を製造した。ラミネート外装体から導出した正負極タブをのぞく非水電解質二次電池の寸法は、21mm×26mmである。   The produced electrode body was inserted into a laminate exterior material and sealed to manufacture a nonaqueous electrolyte secondary battery. The dimensions of the nonaqueous electrolyte secondary battery excluding the positive and negative electrode tabs derived from the laminate outer package are 21 mm × 26 mm.

(実施例2)
実施例2は正極タブの接合部に導電シートを使用せず、負極タブの接合部のみに導電シートを使用した。それ以外は、実施例1と同様に非水電解質二次電池を製造した。
(Example 2)
In Example 2, the conductive sheet was not used for the joint portion of the positive electrode tab, and the conductive sheet was used only for the joint portion of the negative electrode tab. Other than that, the nonaqueous electrolyte secondary battery was manufactured similarly to Example 1.

(実施例3)
実施例3は実施例2の負極に使用した導電シートすなわち導電性樹脂を塗布した部分に代わりにポリプレピレン樹脂を基材とし炭素粉末を充填させたアクリル系導電樹脂を粘着剤とする導電シートを貼り付けた。導電シートの貼り付け寸法は、実施例1と同様に16mm×7mmとした。実施例2と同様に正極の正極タブの正極集電体の接合部には、導電シートを使用しない。それ以外は、実施例1と同様に非水電解質二次電池を製造した。
(Example 3)
In Example 3, instead of the conductive sheet used for the negative electrode of Example 2, that is, the portion coated with the conductive resin, a conductive sheet made of a polypropylene resin as a base material and an acrylic conductive resin filled with carbon powder was used as an adhesive. I attached. The attachment size of the conductive sheet was set to 16 mm × 7 mm as in Example 1. As in Example 2, a conductive sheet is not used for the joint portion of the positive electrode current collector of the positive electrode tab of the positive electrode. Other than that, the nonaqueous electrolyte secondary battery was manufactured similarly to Example 1.

(実施例4)
実施例4は実施例2の負極に使用した導電シートすなわち導電樹脂を塗布した部分に代わりに粘着剤のない厚さ30μmの銅箔シートを配置し、銅箔シートとNiタブ、集電体とを超音波溶接し銅箔シートからなる導電シートで負極タブと負極集電体の接合部を被覆した。実施例2と同様に正極の正極タブの正極集電体の接合部には、導電シートを使用しない。それ以外は、実施例1と同様に非水電解質二次電池を製造した。
Example 4
In Example 4, instead of the conductive sheet used for the negative electrode of Example 2, that is, the portion coated with the conductive resin, a copper foil sheet having a thickness of 30 μm without an adhesive was placed, and the copper foil sheet, Ni tab, current collector, Was joined by ultrasonic welding to cover the joint between the negative electrode tab and the negative electrode current collector with a conductive sheet made of a copper foil sheet. As in Example 2, a conductive sheet is not used for the joint portion of the positive electrode current collector of the positive electrode tab of the positive electrode. Other than that, the nonaqueous electrolyte secondary battery was manufactured similarly to Example 1.

(実施例5)
実施例5は実施例4の銅箔シートのNiタブとの対向部分を除く、集電体との対向部分のみ超音波溶接し銅箔シートからなる導電シートで負極タブと負極集電体の接合部を被覆した。実施例2と同様に正極の正極タブの正極集電体の接合部には、導電シートを使用しない。それ以外は、実施例1と同様に非水電解質二次電池を製造した。
(Example 5)
Example 5 is a conductive sheet composed of a copper foil sheet that is ultrasonically welded only to the part facing the current collector, excluding the part facing the Ni tab of the copper foil sheet of Example 4, and joining the negative electrode tab and the negative electrode current collector. The part was covered. As in Example 2, a conductive sheet is not used for the joint portion of the positive electrode current collector of the positive electrode tab of the positive electrode. Other than that, the nonaqueous electrolyte secondary battery was manufactured similarly to Example 1.

(比較例1)
比較例1は、正極、負極ともに導電シートを使用していないもので、それ以外は、実施例1と同様に非水電解質二次電池を製造した。
(Comparative Example 1)
In Comparative Example 1, neither a positive electrode nor a negative electrode was used, and a non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 except that the conductive sheet was not used.

(比較例2)
比較例2は、実施例2の負極に使用した導電性樹脂を塗布した部分に基材をポリプレピレン樹脂とし粘着剤に導電性のないアクリル系樹脂を用いた絶縁性テープを貼り付けた。また、正極タブには、実施例2同様に導電シートを使用しない。それ以外は、実施例1と同様に非水電解質二次電池を製造した。
(Comparative Example 2)
In Comparative Example 2, an insulating tape using a polypropylene resin as a base material and a non-conductive acrylic resin as an adhesive was applied to a portion where the conductive resin used in the negative electrode of Example 2 was applied. Moreover, a conductive sheet is not used for a positive electrode tab like Example 2. FIG. Other than that, the nonaqueous electrolyte secondary battery was manufactured similarly to Example 1.

実施例1〜5、比較例1、2で作製した非水電解質二次電池それぞれ5個について1kHzでの交流インピーダンス測定、充電特性評価、充電時の発熱温度測定を実施した。   For each of the five nonaqueous electrolyte secondary batteries prepared in Examples 1 to 5 and Comparative Examples 1 and 2, AC impedance measurement at 1 kHz, evaluation of charging characteristics, and measurement of heat generation temperature during charging were performed.

充電特性評価は、充電条件は、20℃、4.2V−3Cの定電流定電圧充電方式において、充電容量が定格容量の90%の容量に到達した時間と、充電時の最高温度(正極タブと負極タブ間のラミネート外装材の表面温度)を測定した。電流は、高率電流特性評価のため3Cとした。表1に結果(5個の平均値)をまとめた。   Charging characteristics are evaluated at 20 ° C and 4.2V-3C constant current and constant voltage charging. The time when the charging capacity reaches 90% of the rated capacity and the maximum temperature during charging (positive electrode tab) The surface temperature of the laminate outer packaging material between the electrode tab and the negative electrode tab) was measured. The current was 3C for high rate current characteristic evaluation. Table 1 summarizes the results (average value of 5).

Figure 2009076301
Figure 2009076301

実施例1〜5、比較例1、2でインピーダンスの違いは小さいが、実施例1〜5では3C充電時の90%充電到達時間が比較例1、2に比べ、2〜6分短くなり、充電特性が向上したことを示している。充電時の温度も3〜5℃程度下がった。実施例5で充電時間が実施例4に比べ長くなったのは、導電シートとしての銅箔と集電体としての銅箔との接合が充分ではなかったためと推測する。   Although the difference in impedance is small in Examples 1 to 5 and Comparative Examples 1 and 2, in Examples 1 to 5, the 90% charge arrival time during 3C charging is 2 to 6 minutes shorter than in Comparative Examples 1 and 2, It shows that the charging characteristics are improved. The temperature during charging also dropped by about 3 to 5 ° C. The reason why the charging time in Example 5 is longer than that in Example 4 is presumed that the bonding between the copper foil as the conductive sheet and the copper foil as the current collector was not sufficient.

本発明の非水電解質二次電池の第一の実施の形態による正極の正極集電体と正極タブの接合部を示す図、図1(a)は正面図、図1(b)は正極タブを通る断面図。The figure which shows the junction part of the positive electrode collector and positive electrode tab of the positive electrode by 1st embodiment of the nonaqueous electrolyte secondary battery of this invention, FIG. 1 (a) is a front view, FIG.1 (b) is a positive electrode tab FIG. 本発明の非水電解質二次電池の第二の実施の形態による正極の正極集電体と正極タブの接合部を示す図、図2(a)は正面図、図2(b)は断面図。The figure which shows the junction part of the positive electrode electrical power collector and positive electrode tab of the positive electrode by 2nd embodiment of the nonaqueous electrolyte secondary battery of this invention, Fig.2 (a) is a front view, FIG.2 (b) is sectional drawing. . 本発明の非水電解質二次電池の第三の実施の形態による正極の正極集電体と正極タブの接合部を示す図、図3(a)は正面図、図3(b)は断面図。The figure which shows the junction part of the positive electrode electrical power collector and positive electrode tab of the positive electrode by 3rd embodiment of the nonaqueous electrolyte secondary battery of this invention, Fig.3 (a) is a front view, FIG.3 (b) is sectional drawing. .

符号の説明Explanation of symbols

1 正(負)極集電体
2 導電シート
3 正(負)極タブ
4 保護テープ
5 正(負)極活物質層
6 (正極活物質層の)非形成部
1 Positive (Negative) Electrode Current Collector 2 Conductive Sheet 3 Positive (Negative) Electrode Tab 4 Protective Tape 5 Positive (Negative) Electrode Active Material Layer 6 (Positive Electrode Active Material Layer) Non-Forming Part

Claims (4)

正極集電体上に正極活物質層が形成され、前記正極集電体上の正極活物質層の非形成部に正極タブが接合された正極と、負極集電体上に負極活物質層が形成され、前記負極集電体上の負極活物質層の非形成部に負極タブが接合された負極とを、セパレータを介して積層または扁平状に巻回した電極体が外装体に収納されてなる非水電解質二次電池であって、前記正極タブと前記正極集電体、前記負極タブと前記負極集電体の少なくとも一方の接合部を導電シートで被覆したことを特徴とする非水電解質二次電池。   A positive electrode active material layer is formed on the positive electrode current collector, a positive electrode in which a positive electrode tab is joined to a non-formation part of the positive electrode active material layer on the positive electrode current collector, and a negative electrode active material layer on the negative electrode current collector An electrode body that is formed and laminated with a negative electrode having a negative electrode tab bonded to a non-formation part of a negative electrode active material layer on the negative electrode current collector, or laminated in a flat shape through a separator is housed in an outer package. A nonaqueous electrolyte secondary battery comprising: a positive electrode tab and a positive electrode current collector; and a negative electrode tab and the negative electrode current collector, wherein at least one junction is covered with a conductive sheet. Secondary battery. 前記導電シートが、金属からなることを特徴とする請求項1に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the conductive sheet is made of metal. 前記導電シートが、導電性の粘着剤を有することを特徴とする請求項1に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the conductive sheet has a conductive adhesive. 前記導電シートが導電材と粘着剤からなり前記導電材の一部が前記接合部において、前記正極集電体または前記負極集電体と接続していること特徴とする請求項1に記載の非水電解質二次電池。   The non-conductive sheet according to claim 1, wherein the conductive sheet is made of a conductive material and a pressure-sensitive adhesive, and a part of the conductive material is connected to the positive electrode current collector or the negative electrode current collector at the joint. Water electrolyte secondary battery.
JP2007243892A 2007-09-20 2007-09-20 Nonaqueous electrolyte secondary battery Active JP5163026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007243892A JP5163026B2 (en) 2007-09-20 2007-09-20 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007243892A JP5163026B2 (en) 2007-09-20 2007-09-20 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2009076301A true JP2009076301A (en) 2009-04-09
JP5163026B2 JP5163026B2 (en) 2013-03-13

Family

ID=40611087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007243892A Active JP5163026B2 (en) 2007-09-20 2007-09-20 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5163026B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283218A (en) * 2008-05-21 2009-12-03 Nec Tokin Corp Nonaqueous electrolyte secondary battery
WO2012053557A1 (en) * 2010-10-20 2012-04-26 三洋電機株式会社 Non-aqueous electrolyte secondary cell
WO2014034113A1 (en) * 2012-08-29 2014-03-06 昭和電工株式会社 Electricity storage device and method for producing same
EP2728648A1 (en) * 2012-10-30 2014-05-07 Sony Corporation Battery, electrode, battery pack, electronic device, electric vehicle, power storage device, and power system
JP2014207069A (en) * 2013-04-11 2014-10-30 株式会社Shカッパープロダクツ Tab lead with resin, continuum thereof and manufacturing method thereof
KR20200062767A (en) * 2018-11-27 2020-06-04 주식회사 엘지화학 Cylindrical type secondary battery
CN111937222A (en) * 2018-11-30 2020-11-13 株式会社Lg化学 Electrode assembly and secondary battery including the same
CN114039080A (en) * 2021-11-05 2022-02-11 宁德新能源科技有限公司 Electricity core, battery and power consumption device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218058A (en) * 1985-03-25 1986-09-27 Fuji Elelctrochem Co Ltd Battery
JPH05251073A (en) * 1991-04-30 1993-09-28 Nippon Telegr & Teleph Corp <Ntt> Cylindrical type nonaqueous electrolyte secondary battery
JPH11506264A (en) * 1996-03-04 1999-06-02 ベル コミュニケーションズ リサーチ,インコーポレイテッド Electrical connection to polymer stack battery structure
JP2000164196A (en) * 1998-11-25 2000-06-16 Japan Storage Battery Co Ltd Bonding structure between collector of pole plate for battery and lead
JP2000277159A (en) * 1999-03-29 2000-10-06 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218058A (en) * 1985-03-25 1986-09-27 Fuji Elelctrochem Co Ltd Battery
JPH05251073A (en) * 1991-04-30 1993-09-28 Nippon Telegr & Teleph Corp <Ntt> Cylindrical type nonaqueous electrolyte secondary battery
JPH11506264A (en) * 1996-03-04 1999-06-02 ベル コミュニケーションズ リサーチ,インコーポレイテッド Electrical connection to polymer stack battery structure
JP2000164196A (en) * 1998-11-25 2000-06-16 Japan Storage Battery Co Ltd Bonding structure between collector of pole plate for battery and lead
JP2000277159A (en) * 1999-03-29 2000-10-06 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283218A (en) * 2008-05-21 2009-12-03 Nec Tokin Corp Nonaqueous electrolyte secondary battery
WO2012053557A1 (en) * 2010-10-20 2012-04-26 三洋電機株式会社 Non-aqueous electrolyte secondary cell
US9478366B2 (en) 2012-08-29 2016-10-25 Showa Denka K.K. Electric storage device and method for producing the same
WO2014034113A1 (en) * 2012-08-29 2014-03-06 昭和電工株式会社 Electricity storage device and method for producing same
JP5468714B1 (en) * 2012-08-29 2014-04-09 昭和電工株式会社 Electric storage device and manufacturing method thereof
CN103891029A (en) * 2012-08-29 2014-06-25 昭和电工株式会社 Electricity storage device and method for producing same
JP2014116317A (en) * 2012-08-29 2014-06-26 Showa Denko Kk Electricity storage device and method for manufacturing the same
EP2728648A1 (en) * 2012-10-30 2014-05-07 Sony Corporation Battery, electrode, battery pack, electronic device, electric vehicle, power storage device, and power system
US10115969B2 (en) 2012-10-30 2018-10-30 Murata Manufacturing Co., Ltd. Battery, electrode, battery pack, electronic device, electric vehicle, power storage device, and power system
JP2014207069A (en) * 2013-04-11 2014-10-30 株式会社Shカッパープロダクツ Tab lead with resin, continuum thereof and manufacturing method thereof
KR20200062767A (en) * 2018-11-27 2020-06-04 주식회사 엘지화학 Cylindrical type secondary battery
CN112005416A (en) * 2018-11-27 2020-11-27 株式会社Lg化学 Cylindrical secondary battery
JP2021518039A (en) * 2018-11-27 2021-07-29 エルジー・ケム・リミテッド Cylindrical secondary battery
KR102459970B1 (en) * 2018-11-27 2022-10-26 주식회사 엘지에너지솔루션 Cylindrical type secondary battery
US11652261B2 (en) 2018-11-27 2023-05-16 Lg Energy Solution, Ltd. Cylindrical type secondary battery
CN111937222A (en) * 2018-11-30 2020-11-13 株式会社Lg化学 Electrode assembly and secondary battery including the same
CN114039080A (en) * 2021-11-05 2022-02-11 宁德新能源科技有限公司 Electricity core, battery and power consumption device
CN114039080B (en) * 2021-11-05 2022-07-19 宁德新能源科技有限公司 Electricity core, battery and power consumption device

Also Published As

Publication number Publication date
JP5163026B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5163026B2 (en) Nonaqueous electrolyte secondary battery
JP4892893B2 (en) Bipolar battery
JP3937422B2 (en) Lithium ion battery and manufacturing method thereof
WO2012153865A1 (en) Non-aqueous secondary battery, mounted unit, and method for manufacturing non-aqueous secondary battery
US7378183B2 (en) Sealed cell using film outer casing body
WO2018154989A1 (en) Secondary battery and method for producing same
JP2004134116A (en) Bipolar battery
JP5895827B2 (en) Solid battery and manufacturing method thereof
JPWO2009144919A1 (en) Cylindrical non-aqueous electrolyte secondary battery
JP6936670B2 (en) Separator for lithium-ion batteries
JP2017117672A (en) All-solid power storage device and method for manufacturing the same
JPWO2016051645A1 (en) Flexible battery
JP2001273929A (en) Polymer battery and its manufacturing method
KR20150081730A (en) Secondary battery
JP2019192564A (en) All-solid battery
JP7246196B2 (en) All-solid lithium secondary battery
JP2012164476A (en) Laminate type battery and lamination layer type battery with it
JP4055640B2 (en) Bipolar battery, bipolar battery manufacturing method, battery pack and vehicle
CN111697261A (en) Lithium secondary battery
WO2022004845A1 (en) Solid-state secondary battery
JP4438348B2 (en) Bipolar battery and battery pack
JP2002324542A (en) Thin battery
CN112335091B (en) Lithium ion secondary battery
JP7312969B2 (en) battery
JP2002289257A (en) Flat nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5163026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250