JP2009074964A - Wiring board for mounting x-ray detecting element and x-ray detector - Google Patents

Wiring board for mounting x-ray detecting element and x-ray detector Download PDF

Info

Publication number
JP2009074964A
JP2009074964A JP2007244924A JP2007244924A JP2009074964A JP 2009074964 A JP2009074964 A JP 2009074964A JP 2007244924 A JP2007244924 A JP 2007244924A JP 2007244924 A JP2007244924 A JP 2007244924A JP 2009074964 A JP2009074964 A JP 2009074964A
Authority
JP
Japan
Prior art keywords
conductor
ray detection
interlayer
detection element
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007244924A
Other languages
Japanese (ja)
Other versions
JP4722103B2 (en
Inventor
Naohito Ide
尚人 井手
Sadakatsu Yoshida
定功 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007244924A priority Critical patent/JP4722103B2/en
Publication of JP2009074964A publication Critical patent/JP2009074964A/en
Application granted granted Critical
Publication of JP4722103B2 publication Critical patent/JP4722103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high image quality X-ray detector that suppresses the effect of X-ray reflected from back side of a wiring board for mounting X-ray detecting elements. <P>SOLUTION: The X-ray detector comprises a base 1 formed of laminating insulating layers 1a to 1f and an internal wiring 4 containing penetration conductors 1a, 1b that connect a connection pad 2 and a terminal electrode 3 for carrying out flip chip packaging of the X-ray detecting element 5; in which interlayer conductor layers 6 of a plurality of layers having apertures corresponding to the penetration conductors 1a, 1b are formed between the insulating layers 1a to 1e so that a packaging area 5a is included within projection area to upper face of the base 1; and penetration conductors 4a, 4b penetrate the interlayer conductor layers 6 with providing insulating areas 6a to 6d between the interlayer conductor layers 6 within the apertures and have a cross-section larger than an aperture of interlayer conductor layers 6, 6 situating upper or lower the interlayer between the insulating layer 1d and its upper and lower insulating layers 1c, 1e in at least one layer of insulating layer 1d. Since reflected X-ray can be shielded by the interlayer conductor layers 6, the effect by the reflected X-ray can be suppressed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、X線検出素子搭載用配線基板およびそれを用いたX線検出装置に関するものである。   The present invention relates to an X-ray detection element mounting wiring board and an X-ray detection apparatus using the same.

近年の半導体技術の進歩に伴い、X線機器のデジタル化が進んでいる。また、X線画像の表示,記録や保存については、従来はフィルム等にX線画像を記録し保存していたのに対して、リアルタイムの画像表示や画像データの保存や転送が容易になっている。このようなX線機器として、例えば歯科用のX線カメラには、外部から照射されたX線を画像情報に変換するためのX線検出素子が搭載されている。   With recent advances in semiconductor technology, digitalization of X-ray equipment is progressing. Also, with regard to the display, recording and storage of X-ray images, X-ray images are conventionally recorded and stored on film or the like, but real-time image display and image data storage and transfer are facilitated. Yes. As such an X-ray apparatus, for example, a dental X-ray camera is equipped with an X-ray detection element for converting X-rays irradiated from the outside into image information.

X線検出素子は、その上面に配列形成された多数のフォトダイオードとその上に形成されたシンチレータとで主に構成されており、X線検出素子に照射されたX線がシンチレータで蛍光に変換され、この光により各フォトダイオードの電圧電流特性が変化し、この変化をX線画像情報として取り出すものである。   The X-ray detection element is mainly composed of a large number of photodiodes arranged on the upper surface thereof and a scintillator formed thereon, and the X-rays irradiated on the X-ray detection element are converted into fluorescence by the scintillator. This light changes the voltage-current characteristics of each photodiode, and this change is extracted as X-ray image information.

このようなX線検出素子は、これを搭載するための酸化アルミニウム質焼結体等のセラミック基体とタングステン(W)等のメタライズ配線導体とからなるX線検出素子搭載用配線基板に搭載されてX線機器に組み込まれている。しかしながら、セラミック基体を構成する酸化アルミニウム質焼結体は、X線を透過させやすい性質を有していることから、X線検出素子を搭載してX線カメラの撮像部として用いた場合に、X線検出素子の上面に被写体を透してX線を照射すると、撮像部の後方に位置する他の部材等で反射したX線がセラミック基体を透ってX線検出素子に裏面側から侵入し、これがX線検出素子に被写体と異なる不要な映像を重畳させてしまい、そのため、この不要な映像までもがX線画像情報として変換されてしまい、その結果、正確かつ鮮明な被写体の画像が得られにくいという問題点を有していた。   Such an X-ray detection element is mounted on a wiring board for mounting an X-ray detection element comprising a ceramic substrate such as an aluminum oxide sintered body for mounting the X-ray detection element and a metallized wiring conductor such as tungsten (W). Built in X-ray equipment. However, since the aluminum oxide sintered body constituting the ceramic base has the property of easily transmitting X-rays, when an X-ray detection element is mounted and used as an imaging unit of an X-ray camera, When X-rays are irradiated through the subject through the top surface of the X-ray detection element, X-rays reflected by other members located behind the imaging unit penetrate the ceramic substrate and enter the X-ray detection element from the back side. However, this causes an unnecessary image different from the subject to be superimposed on the X-ray detection element, so that even the unnecessary image is converted as X-ray image information, and as a result, an accurate and clear image of the subject is obtained. There was a problem that it was difficult to obtain.

このため、従来のX線検出素子搭載用配線基板は、例えば図9に断面図で示すように、その上面中央部にX線検出素子105を搭載するための実装領域105aを有する基体101と、この基体101の実装領域105a周辺から下面にかけて導出する複数の内部配線104と、下面からの反射したX線を遮蔽するための遮蔽用メタライズ層106から構成されていた。このX線検出素子搭載用配線基板にX線検出素子105を搭載してX線検出素子105の端子電極と接続パッド102とをボンディングワイヤ107を介して電気的に接続し、端子電極103と外部の電気回路に接続される外部接続用ケーブル109とを接続するとともに、これらを密閉容器内に密閉することにより、X線カメラの撮像部としていた。これによれば、遮蔽用メタライズ層106により反射したX線がX線検出素子105の下面から侵入するのを遮蔽することができるので明瞭なX線画像を得ることができるというものであった(例えば、特許文献1を参照)。
特開2001−94139号公報
For this reason, the conventional X-ray detection element mounting wiring board includes, for example, a base 101 having a mounting region 105a for mounting the X-ray detection element 105 at the center of the upper surface thereof, as shown in a sectional view in FIG. The substrate 101 is composed of a plurality of internal wirings 104 led out from the periphery of the mounting region 105a to the lower surface, and a shielding metallized layer 106 for shielding X-rays reflected from the lower surface. The X-ray detection element 105 is mounted on the wiring board for mounting the X-ray detection element, the terminal electrode of the X-ray detection element 105 and the connection pad 102 are electrically connected via the bonding wire 107, and the terminal electrode 103 is connected to the outside. The external connection cable 109 connected to the electrical circuit is connected, and these are hermetically sealed in an airtight container, thereby forming an imaging unit of the X-ray camera. According to this, since the X-ray reflected by the shielding metallization layer 106 can be shielded from entering from the lower surface of the X-ray detection element 105, a clear X-ray image can be obtained ( For example, see Patent Document 1).
Japanese Patent Laid-Open No. 2001-94139

近年のX線機器に求められる高解像度化に対応するために、X線検出素子は端子数が増加してフリップチップ実装されるようになり、これに対応するX線検出素子搭載用配線基板は、増加する外部の電気回路に接続するための接続端子の数を増やすために基板の下面全体に縦横の並びにアレイ状に接続端子を形成することが必要となっている。また、従来の静止画像のみならず、動画の撮影を行なうことでより情報量を増やし、診断の精度を上げることも要求されている。   In order to cope with the high resolution required for X-ray equipment in recent years, the number of terminals of X-ray detection elements has increased and flip-chip mounting has been achieved. The corresponding wiring board for mounting X-ray detection elements is In order to increase the number of connection terminals for connecting to an increasing number of external electric circuits, it is necessary to form the connection terminals in the form of arrays in the vertical and horizontal directions on the entire lower surface of the substrate. In addition to conventional still images, it is also required to increase the amount of information and improve diagnosis accuracy by shooting moving images.

しかしながら、従来のX線検出素子搭載用配線基板は、基体101の実装領域105aの下にX線を遮蔽するためだけの遮蔽用メタライズ層106を形成しているため、この遮蔽用メタライズ層106を避けて内部配線102を展開して形成しなければならなくなり、設計が複雑になり層数を増やす必要が出るので小型化・薄型化が困難になるとともに、内部配線104の配線長が長くなることにより高解像度のX線での動画撮影に要求される高速動作も困難となってしまうという問題点があった。   However, since the conventional X-ray detection element mounting wiring board is formed with the shielding metallized layer 106 only for shielding X-rays under the mounting region 105a of the base 101, the shielding metallized layer 106 is not provided. As a result, the internal wiring 102 must be expanded and formed, the design becomes complicated and the number of layers needs to be increased, making it difficult to reduce the size and thickness, and to increase the wiring length of the internal wiring 104. Therefore, there is a problem that high-speed operation required for moving image shooting with high-resolution X-rays becomes difficult.

また、遮蔽用メタライズ層106を避けずに内部配線104を展開するには、内部配線104の貫通導体が遮蔽用メタライズ層106と絶縁されて遮蔽用メタライズ層106を貫通するように、貫通導体と遮蔽用メタライズ層106との間に絶縁領域(隙間)を設ければよい。しかしながら、絶縁層101を垂直に(絶縁層101の積層方向に平行に)貫通する通常の貫通導体を形成して絶縁領域を設けると、上下に位置する複数の絶縁領域が上面視で重なるので、この部分ではX線検出素子搭載用配線基板の下面から上面にかけて遮蔽用メタライズ層106が存在しなくなってしまい、反射したX線がここを通過してX線検出素子に侵入してしまうという問題点があった。   Further, in order to expand the internal wiring 104 without avoiding the shielding metallization layer 106, the through-conductor is formed so that the through-conductor of the internal wiring 104 is insulated from the shielding metallization layer 106 and penetrates the shielding metallization layer 106. An insulating region (gap) may be provided between the shielding metallized layer 106. However, when an insulating region is provided by forming a normal through conductor that penetrates the insulating layer 101 vertically (parallel to the laminating direction of the insulating layer 101), a plurality of upper and lower insulating regions overlap in a top view. In this portion, the shielding metallization layer 106 does not exist from the lower surface to the upper surface of the wiring board for mounting the X-ray detection element, and the reflected X-ray passes through the X-ray detection element and enters the X-ray detection element. was there.

本発明はかかる従来の問題点に鑑み案出されたものであり、その目的は、X線検出素子の上面に被写体を透してX線を照射した際に、X線検出素子搭載用配線基板の下方に位置する他の部材等でX線が反射したとしても、反射したX線がX線検出素子に裏面側から侵入することがなく、小型かつ薄型であり、高解像度で高速な動作が可能なX線検出素子搭載用配線基板、およびこれを用いたX線検出装置を提供することにある。   The present invention has been devised in view of such conventional problems, and an object of the present invention is to provide an X-ray detection element mounting wiring board when X-rays are irradiated through a subject through the upper surface of the X-ray detection element. Even if X-rays are reflected by other members located below the X-rays, the reflected X-rays do not enter the X-ray detection element from the back side, are small and thin, and operate at high resolution and high speed. An object is to provide a possible wiring board for mounting an X-ray detection element and an X-ray detection apparatus using the same.

本発明のX線検出素子搭載用配線基板は、複数の絶縁層が積層されてなる基体と、該基体の上面のX線検出素子の実装領域に形成された前記X線検出素子をフリップチップ実装するための複数の接続パッドと、前記基体の外面に形成された複数の端子電極と、前記基体の内部に形成され、前記実装領域の下方に配置された複数の貫通導体を含む、前記複数の接続パッドと前記複数の端子電極とを接続する複数の内部配線とを有するX線検出素子搭載用配線基板であって、前記複数の貫通導体に対応する開口を有する複数層の層間導体層が、前記基体の前記上面への投影領域に前記実装領域が含まれるように前記絶縁層間に形成され、前記複数の貫通導体は、前記開口内で前記層間導体層との間に絶縁領域を設けて前記層間導体層を貫通するとともに、前記層間導体層に接する前記絶縁層のうち少なくとも1層において、その絶縁層とその上下の絶縁層との層間よりも上または下に位置する層間の前記層間導体層の前記開口より横断面が大きいことを特徴とするものである。   A wiring board for mounting an X-ray detection element according to the present invention includes a substrate in which a plurality of insulating layers are laminated, and the X-ray detection element formed in the X-ray detection element mounting region on the upper surface of the substrate is flip-chip mounted. A plurality of connection pads, a plurality of terminal electrodes formed on an outer surface of the base, and a plurality of through conductors formed inside the base and disposed below the mounting region. A wiring board for mounting an X-ray detection element having a plurality of internal wirings connecting a connection pad and the plurality of terminal electrodes, and a plurality of interlayer conductor layers having openings corresponding to the plurality of through conductors, The insulating layer is formed between the insulating layers so that the mounting region is included in the projected region on the upper surface of the base body, and the plurality of through conductors are provided with an insulating region between the interlayer conductor layers in the openings. When it penetrates the interlayer conductor layer In addition, in at least one of the insulating layers in contact with the interlayer conductor layer, crossing from the opening of the interlayer conductor layer between layers located above or below the interlayer between the insulating layer and the upper and lower insulating layers. It is characterized by a large surface.

また、本発明のX線検出素子搭載用配線基板は、上記構成において、前記貫通導体は、前記貫通導体の横断面より大きい層間接続導体を間に介して接続されていることを特徴とするものである。   In addition, the wiring board for mounting an X-ray detection element according to the present invention is characterized in that, in the above configuration, the through conductor is connected via an interlayer connection conductor that is larger in cross section than the through conductor. It is.

また、本発明のX線検出素子搭載用配線基板は、上記構成において、前記開口より横断面が大きい前記貫通導体は、その上下で横断面の大きさが異なることを特徴とするものである。   In addition, the X-ray detection element mounting wiring board of the present invention is characterized in that, in the above-described configuration, the through conductor having a cross section larger than the opening has different cross sections in the upper and lower sides.

また、本発明のX線検出素子搭載用配線基板は、上記構成において、前記開口より横断面が大きい前記貫通導体の上下に位置する前記層間接続導体は、上下で横断面の大きさが異なることを特徴とするものである。   In the X-ray detection element mounting wiring board of the present invention, in the above configuration, the interlayer connection conductors located above and below the through conductor having a cross section larger than the opening have different cross section sizes in the vertical direction. It is characterized by.

また、本発明のX線検出装置は、上記いずれかのX線検出素子搭載用配線基板にX線検出素子がフリップチップ実装されていることを特徴とするものである。   The X-ray detection apparatus of the present invention is characterized in that the X-ray detection element is flip-chip mounted on any of the above-described wiring boards for mounting the X-ray detection element.

本発明のX線検出素子搭載用配線基板によれば、複数の貫通導体に対応する開口を有する複数層の層間導体層が、基体の上面への投影領域に実装領域が含まれるように絶縁層間に形成され、複数の貫通導体は、開口内で層間導体層との間に絶縁領域を設けて層間導体層を貫通するとともに、層間導体層に接する絶縁層のうち少なくとも1層において、その絶縁層とその上下の絶縁層との層間よりも上または下に位置する層間の層間導体層の開口より横断面が大きいことから、上下に位置する複数の絶縁領域のうち少なくとも1つの絶縁領域は上面視で他の絶縁領域と重なることがないので配線基板の裏面から侵入してくるX線のほとんどを遮蔽することができるとともに、X線を遮蔽するための層間導体層を避けて内部配線を形成しないので、X線画像の高解像度化に対応するためにX線検出素子の端子数が増えたとしても内部配線の展開が容易となり、配線長を長くする必要がないので、小型かつ薄型であり、高解像度でX線検出素子をより高速で動作させることが可能なX線検出素子搭載用配線基板となる。   According to the wiring board for mounting the X-ray detection element of the present invention, the plurality of interlayer conductor layers having openings corresponding to the plurality of through conductors are arranged so that the mounting area is included in the projection area on the upper surface of the substrate. The plurality of through conductors are provided with an insulating region between the interlayer conductor layers in the opening to penetrate the interlayer conductor layers, and at least one of the insulating layers in contact with the interlayer conductor layers includes the insulating layer. Since the cross section is larger than the opening of the interlayer conductor layer located above or below the interlayer between the upper and lower insulating layers, at least one insulating region of the plurality of upper and lower insulating regions is viewed from above. Since it does not overlap with other insulating regions, most of the X-rays entering from the back surface of the wiring board can be shielded, and internal wiring is not formed by avoiding an interlayer conductor layer for shielding X-rays. Because Even if the number of terminals of the X-ray detection element is increased in order to cope with the higher resolution of the X-ray image, it is easy to deploy the internal wiring, and it is not necessary to increase the wiring length. Thus, an X-ray detection element mounting wiring board capable of operating the X-ray detection element at a higher speed is obtained.

また、本発明のX線検出素子搭載用配線基板によれば、上記構成において、貫通導体が貫通導体の横断面より大きい層間接続導体を間に介して接続されている場合には、層間の位置ずれが発生したとしても上下の貫通導体の接続が容易となるとともに、小さい絶縁領域をより容易に形成することができるので、よりX線の遮蔽効果の高いものとなる。   According to the X-ray detection element mounting wiring board of the present invention, in the above configuration, when the through conductor is connected via an interlayer connection conductor larger than the cross section of the through conductor, the position between the layers Even if a deviation occurs, the upper and lower through conductors can be easily connected and a small insulating region can be formed more easily, so that the X-ray shielding effect is higher.

また、本発明のX線検出素子搭載用配線基板によれば、上記構成において、開口より横断面が大きい貫通導体がその上下で横断面の大きさが異なる場合には、開口より横断面が大きい貫通導体が形成された絶縁層の上下に位置する層間に形成された層間導体層の開口内の絶縁領域が、上面視で互いに完全に重なることがないので、よりX線の遮蔽効果の高いものとなる。   Further, according to the wiring board for mounting an X-ray detection element of the present invention, in the above configuration, when the through conductor having a cross section larger than the opening has a different cross section size, the cross section is larger than the opening. Since the insulating regions in the openings of the interlayer conductor layers formed between the layers located above and below the insulating layer in which the through conductors are formed do not completely overlap each other in a top view, the X-ray shielding effect is higher It becomes.

また、本発明のX線検出素子搭載用配線基板によれば、上記構成において、開口より横断面が大きい貫通導体の上下に位置する層間接続導体が上下で横断面の大きさが異なる場合には、横断面が上下で同じで、開口より大きい貫通導体が絶縁層に対して略垂直に形成されていても、層間導体層を取り囲むように外側に設けられている絶縁領域は上面視で互いに完全に重なることがないので、よりX線の遮蔽効果の高いものとなる。   Further, according to the wiring board for mounting an X-ray detection element of the present invention, in the above configuration, when the interlayer connection conductors located above and below the through conductor having a cross section larger than the opening have different cross section sizes in the top and bottom Even when through conductors that are the same in the upper and lower cross sections and are larger than the opening are formed substantially perpendicular to the insulating layer, the insulating regions provided on the outside so as to surround the interlayer conductor layer are completely mutually in top view. Therefore, the X-ray shielding effect is higher.

本発明のX線検出装置によれば、X線検出素子搭載用配線基板にX線検出素子がフリップチップ実装されていることから、小型薄型のX線検出素子搭載用配線基板であっても、反射した不要なX線を十分に遮蔽できるので、小型化かつ薄型化が可能で高画質のX線検出装置となる。   According to the X-ray detection device of the present invention, since the X-ray detection element is flip-chip mounted on the X-ray detection element mounting wiring board, even if it is a small and thin X-ray detection element mounting wiring board, Since the reflected unnecessary X-rays can be sufficiently shielded, the X-ray detection apparatus can be miniaturized and thinned and has high image quality.

次に、本発明のX線検出素子搭載用配線基板を添付の図面を参照しつつ詳細に説明する。   Next, the X-ray detection element mounting wiring board of the present invention will be described in detail with reference to the accompanying drawings.

図1(a)は、本発明のX線検出素子搭載用基板の実施の形態の一例を示す断面図であり、図1(b)は図1(a)のA部を拡大して上面視した断面図である。   FIG. 1A is a cross-sectional view showing an example of an embodiment of a substrate for mounting an X-ray detection element according to the present invention, and FIG. 1B is an enlarged view of a portion A in FIG. FIG.

図1において、1a〜1fは絶縁層、1は複数の絶縁層1a〜1fが積層されてなる基体、2は接続パッド、3は端子電極、4は内部配線、4a,4b,4cは貫通導体、4dは内部配線層、5はX線検出素子、5aはX線検出素子の実装領域、6は層間導体層、6a〜6dは貫通導体4a,4bと層間導体層6との間に設けられた絶縁領域、7は接合材である。   In FIG. 1, 1a to 1f are insulating layers, 1 is a substrate formed by laminating a plurality of insulating layers 1a to 1f, 2 is a connection pad, 3 is a terminal electrode, 4 is an internal wiring, 4a, 4b and 4c are through conductors. 4d is an internal wiring layer, 5 is an X-ray detection element, 5a is an X-ray detection element mounting area, 6 is an interlayer conductor layer, and 6a to 6d are provided between the through conductors 4a and 4b and the interlayer conductor layer 6. The insulating region 7 is a bonding material.

図1に示す例では、基体1の上面のX線検出素子5の実装領域5aに形成された複数の接続パッド2に、X線検出素子5が接合材7を介してフリップチップ実装されており、これによりX線検出装置が構成されている。層間導体層6に接する絶縁層1a〜1eに設けられた貫通導体4a,4bと、内部配線層4dと、内部配線層4dと端子電極3とを接続する貫通導体4cとから内部配線4は構成されている。層間導体層6は、内部配線4とは絶縁されており、X線を遮蔽する機能を有する。絶縁層1aの上にさらに絶縁層を設けてその絶縁層と絶縁層1aとの層間および絶縁層内に内部配線層4dおよびこの内部配線層4dと接続パッド2とを接続する貫通導体4cを設けてもよい。   In the example shown in FIG. 1, the X-ray detection element 5 is flip-chip mounted on the plurality of connection pads 2 formed in the mounting region 5 a of the X-ray detection element 5 on the upper surface of the substrate 1 through the bonding material 7. Thus, an X-ray detection apparatus is configured. The internal wiring 4 is composed of through conductors 4 a and 4 b provided in the insulating layers 1 a to 1 e in contact with the interlayer conductor layer 6, an internal wiring layer 4 d, and a through conductor 4 c connecting the internal wiring layer 4 d and the terminal electrode 3. Has been. The interlayer conductor layer 6 is insulated from the internal wiring 4 and has a function of shielding X-rays. An insulating layer is further provided on the insulating layer 1a, and an internal wiring layer 4d and a through conductor 4c for connecting the internal wiring layer 4d and the connection pad 2 are provided between the insulating layer and the insulating layer 1a and in the insulating layer. May be.

本発明のX線検出素子搭載用配線基板は、複数の絶縁層1a〜1fが積層されてなる基体1と、基体1の上面のX線検出素子5の実装領域5aに形成されたX線検出素子5をフリップチップ実装するための複数の接続パッド2と、基体1の外面に形成された複数の端子電極3と、基体1の内部に形成され、実装領域5aの下方に配置された複数の貫通導体4a,4b,4cを含む、複数の接続パッド2と複数の端子電極3とを接続する複数の内部配線4とを有するX線検出素子搭載用配線基板であって、複数の貫通導体1a,1bに対応する開口を有する複数層の層間導体層6が、基体1の上面への投影領域に実装領域5aが含まれるように絶縁層1a・1b,1b・1c,1c・1d,1d・1e間に形成され、複数の貫通導体4a,4bは、開口内で層間導体層6との間に絶縁領域6a〜6dを設けて層間導体層6を貫通するとともに、層間導体層6,6,6,6に接する絶縁層1b〜1dのうち少なくとも1層1dにおいて、その絶縁層1dとその上下の絶縁層1c,1eとの層間よりも上または下に位置する層間の層間導体層6,6の開口より横断面が大きいことを特徴とするものである。   The wiring board for mounting an X-ray detection element of the present invention has an X-ray detection formed in a base 1 in which a plurality of insulating layers 1 a to 1 f are laminated and a mounting region 5 a of an X-ray detection element 5 on the upper surface of the base 1. A plurality of connection pads 2 for flip-chip mounting the element 5, a plurality of terminal electrodes 3 formed on the outer surface of the base 1, and a plurality of terminals formed inside the base 1 and disposed below the mounting region 5a An X-ray detection element mounting wiring board having a plurality of connection pads 2 and a plurality of internal wirings 4 connecting a plurality of terminal electrodes 3 including through conductors 4a, 4b, 4c, and a plurality of through conductors 1a , 1b, the plurality of interlayer conductor layers 6 have insulating layers 1a, 1b, 1b, 1c, 1c, 1d, 1d, so that the mounting area 5a is included in the projected area on the upper surface of the substrate 1. 1e, a plurality of through conductors 4a, 4b Insulating regions 6a to 6d are provided between the interlayer conductor layers 6 in the openings to penetrate the interlayer conductor layers 6, and at least one of the insulating layers 1b to 1d in contact with the interlayer conductor layers 6, 6, 6, 6 The layer 1d is characterized in that the cross section is larger than the opening of the interlayer conductor layers 6 and 6 between the layers located above or below the interlayer between the insulating layer 1d and the upper and lower insulating layers 1c and 1e. is there.

このことから、上下に位置する複数の絶縁領域6a〜6dのうち少なくとも1つの絶縁領域6a,6cは上面視で他の絶縁領域6d,6eと完全に重なることがないので配線基板の裏面から侵入してくるX線のほとんどを遮蔽することができるとともに、X線を遮蔽するための層間導体層6を避けて内部配線4を形成しないので、X線画像の高解像度化に対応するためにX線検出素子5の端子数が増えたとしても、内部配線4の展開が容易となり、配線長を長くする必要がないので、小型かつ薄型であり、X線検出素子5をより高速で動作させることが可能なX線検出素子搭載用配線基板となる。   For this reason, at least one insulating region 6a, 6c among the plurality of insulating regions 6a-6d positioned above and below does not completely overlap with the other insulating regions 6d, 6e in top view, so that it enters from the back surface of the wiring board. In addition to being able to shield most of the incoming X-rays and avoiding the interlayer conductor layer 6 for shielding the X-rays, the internal wiring 4 is not formed. Even if the number of terminals of the line detection element 5 increases, the expansion of the internal wiring 4 is facilitated, and there is no need to increase the wiring length. Therefore, the X-ray detection element 5 can be operated at a higher speed because it is small and thin. This is a wiring board for mounting an X-ray detection element.

ここで実装領域5aとは、X線検出素子5をX線検出素子搭載用配線基板にフリップチップ実装した状態での、X線検出素子5の基体1の上面への投影領域のことである。図1(b)においては、実装領域5aはX線検出素子5の外形と同じ形状および寸法で1点鎖線で示してある。X線検出素子5の受光部がX線検出素子5の外形に対して小さい場合は、X線検出素子5の受光部の基体1の上面への投影領域であればよいが、不要なX線を確実に遮蔽するためにはX線検出素子5の基体1の上面への投影領域とするのがよい。   Here, the mounting region 5a is a projection region of the X-ray detection element 5 onto the upper surface of the substrate 1 in a state where the X-ray detection element 5 is flip-chip mounted on the wiring board for mounting the X-ray detection element. In FIG. 1 (b), the mounting region 5 a has the same shape and dimensions as the outer shape of the X-ray detection element 5 and is indicated by a one-dot chain line. When the light receiving part of the X-ray detection element 5 is smaller than the outer shape of the X-ray detection element 5, it may be a projection region on the upper surface of the base 1 of the light receiving part of the X-ray detection element 5, but unnecessary X-rays In order to reliably shield the X-ray detection element 5, a projection region on the upper surface of the base 1 of the X-ray detection element 5 is preferably used.

図1に示す例では、4層の層間導体層6,6,6,6が形成され、上下に接続された貫通導体4a・4bが層間導体層6,6,6,6を貫通している。層間導体層6・6・6・6は貫通導体4a・4b(の平面方向の配置)に対応した開口を有しており、貫通導体4a・4bは開口内で層間導体層6,6,6,6との間に絶縁領域6a〜6dを設けて層間導体層6,6,6,6を貫通している。貫通導体4bの径は、層間導体層6・6の間に位置する絶縁層1b,1c,1dのうち最下層の絶縁層1dにおいて、この絶縁層1dより上の絶縁層間1a・1b,1b・1c,1c・1d間の層間導体層6,6の開口(絶縁領域6a,6b)の径より大きい。この例の場合は、上2層の層間導体層6,6に設けられた絶縁領域6a,6bの大きさが同じで、層間導体層6・6に設けられた絶縁領域6c,6dの大きさが同じなので、上面視で下2層の絶縁領域6c,6dは上2層の層間導体層6a,6bと完全に重なり、上2層の絶縁領域6a,6bは最下層の絶縁層1dの貫通導体4bと完全に重なる。これにより配線基板の下面で反射したX線は、平面視した貫通導体4a,4bの周辺では、最下層の絶縁層1dの貫通導体4bまたは上2層の層間導体層6,6により遮蔽されることとなる。貫通導体4bの厚みは層間導体層6に比べて通常5倍以上の厚みであるので、1層であってもX線を十分に遮蔽することができる。   In the example shown in FIG. 1, four interlayer conductor layers 6, 6, 6, and 6 are formed, and through conductors 4a and 4b that are connected to each other pass through the interlayer conductor layers 6, 6, 6, and 6. . The interlayer conductor layers 6, 6, 6, 6 have openings corresponding to the through conductors 4 a, 4 b (arrangement in the plane direction thereof), and the through conductors 4 a, 4 b are within the openings in the interlayer conductor layers 6, 6, 6. , 6 are provided between the insulating regions 6a to 6d and penetrate through the interlayer conductor layers 6, 6, 6 and 6, respectively. The diameter of the through conductor 4b is such that the insulating layer 1a, 1b, 1b. It is larger than the diameter of the openings (insulating regions 6a and 6b) of the interlayer conductor layers 6 and 6 between 1c, 1c and 1d. In this example, the insulating regions 6a and 6b provided in the upper two interlayer conductor layers 6 and 6 have the same size, and the insulating regions 6c and 6d provided in the interlayer conductor layers 6 and 6 have the same size. Therefore, the lower two insulating regions 6c and 6d completely overlap with the upper two interlayer conductor layers 6a and 6b in the top view, and the upper two insulating regions 6a and 6b penetrate the lower insulating layer 1d. It completely overlaps with the conductor 4b. As a result, the X-rays reflected on the lower surface of the wiring board are shielded by the through conductor 4b of the lowermost insulating layer 1d or the upper two interlayer conductor layers 6 and 6 around the through conductors 4a and 4b in plan view. It will be. Since the thickness of the through conductor 4b is usually five times or more that of the interlayer conductor layer 6, even one layer can sufficiently shield X-rays.

図2は本発明のX線検出素子搭載用基板の実施の形態の一例を示す断面図であり、図2において8は層間接続導体を示す。   FIG. 2 is a cross-sectional view showing an example of an embodiment of the substrate for mounting an X-ray detection element of the present invention. In FIG. 2, 8 indicates an interlayer connection conductor.

図2に示す例のように、上記構成において、上下に位置する貫通導体4a,4b,4cは、貫通導体4a,4b,4cの横断面より大きい層間接続導体8を間に介して互いに接続されていることが好ましい。これにより、X線検出素子搭載用配線基板を作製する際に絶縁層1a・1b,1b・1c,1c・1d,1d・1e間の位置ずれが発生したとしても上下の貫通導体4a,4b,4cの接続が容易となるとともに、小さい絶縁領域6a,6b,6c,6dをより容易に形成することができるので、よりX線の遮蔽効果の高いものとなる。層間接続導体8を形成しない場合は、貫通導体4aと層間導体層6との間の絶縁領域6a,6b,6c,6dの大きさは、絶縁性を確保するのに必要な寸法に貫通導体4aと層間導体層6との位置ずれ量を加えた大きさとしなければならないのに対して、間に層間接続導体8を形成する場合は、層間導体層6と層間接続導体8とを導体ペーストの印刷により同時に形成することで絶縁性を確保するのに必要な寸法だけにすることができる。また、貫通導体4a,4b,4cの上に層間接続導体8があることで、貫通導体4a,4b,4cの上面とその周囲に形成された層間導体層6の上面との高さの差がなくなるので、セラミックグリーンシートを積層して作製する際に上下層の貫通導体4a・4a,4a・4b,4b・4c同士の接続が容易となるとともに、複数の絶縁層1a〜1fを積層した際にこの高さの差が累積されて配線基板の上面の平坦性が低下することがないので、X線検出素子の実装信頼性も向上する。   As in the example shown in FIG. 2, in the above configuration, the through conductors 4a, 4b, 4c positioned above and below are connected to each other via an interlayer connection conductor 8 that is larger in cross section than the through conductors 4a, 4b, 4c. It is preferable. As a result, even when a displacement between the insulating layers 1a, 1b, 1b, 1c, 1c, 1d, 1d, and 1e occurs when the X-ray detection element mounting wiring board is manufactured, the upper and lower through conductors 4a, 4b, 4c can be easily connected, and the small insulating regions 6a, 6b, 6c, and 6d can be formed more easily, so that the X-ray shielding effect is higher. When the interlayer connection conductor 8 is not formed, the size of the insulating regions 6a, 6b, 6c, 6d between the through conductor 4a and the interlayer conductor layer 6 is set to a dimension necessary for ensuring insulation. In the case where the interlayer connection conductor 8 is formed between them, the interlayer conductor layer 6 and the interlayer connection conductor 8 are printed with a conductive paste. By forming them simultaneously, it is possible to make only the dimensions necessary to ensure insulation. Further, since the interlayer connection conductor 8 is provided on the through conductors 4a, 4b, and 4c, there is a difference in height between the upper surface of the through conductors 4a, 4b, and 4c and the upper surface of the interlayer conductor layer 6 formed therearound. Therefore, when the ceramic green sheets are laminated, the upper and lower through conductors 4a, 4a, 4a, 4b, 4b, 4c can be easily connected to each other, and the plurality of insulating layers 1a to 1f are laminated. In addition, since the height difference is not accumulated and the flatness of the upper surface of the wiring board does not deteriorate, the mounting reliability of the X-ray detection element is also improved.

また、図3に図1(a)と同様の断面図で示すように、上記構成において、開口より横断面が大きい貫通導体4bは、その上下で横断面の大きさが異なることが好ましい。これにより、開口より横断面が大きい貫通導体4bが形成された絶縁層1dの上下に位置する層間に形成された層間導体層6,6の開口内の絶縁領域6c,6dが、上面視で互いに完全に重なることがないので、よりX線の遮蔽効果の高いものとなる。   In addition, as shown in FIG. 3 with a cross-sectional view similar to FIG. 1A, in the above configuration, the through conductor 4b having a cross section larger than the opening preferably has a different cross section size at the top and bottom. As a result, the insulating regions 6c and 6d in the openings of the interlayer conductor layers 6 and 6 formed between the upper and lower layers of the insulating layer 1d in which the through conductors 4b having a cross section larger than the openings are formed are mutually viewed in a top view. Since they do not overlap completely, the X-ray shielding effect is higher.

図3に示す例では、開口より横断面が大きい貫通導体4bの下側の横断面は、上側の横断面より大きく、また、貫通導体4bが形成された絶縁層1dとその上の絶縁層1cとの層間に形成された層間導体層6の開口よりも大きい。これにより配線基板の下面で反射したX線は、平面視した貫通導体4a,4bの周辺では、最下層の絶縁層1dの貫通導体4bにより、または上2層の層間導体層6,6と最下層の絶縁層1dの貫通導体4bとにより、あるいは上3層の層間導体層6,6,6により遮蔽されることとなる。図1や図2に示す例と比較すると、少なくとも3層の層間導体層6,6,6かそれ以上の厚みの最下層の絶縁層1dの貫通導体4bによりX線を遮蔽するので、より遮蔽効果の高いものとなる。上下で横断面の大きさが異なる貫通導体4bは、図3に示す例とは逆に、上側の横断面を下側の横断面より大きくしてもよい。また、図3に示す例では貫通導体4bの上側の横断面の大きさはその上の貫通導体4aの横断面の大きさより大きいが、この貫通導体4bの上側の横断面の大きさを上の貫通導体4aの横断面の大きさ以下にしてもよい。このようにすると、貫通導体4bの下側の横断面の大きさがそれより上の開口より大きければ同様の効果が得られるとともに、層間導体層6を形成する際に用いるマスクの、開口径の違いによる種類を少なくすることができる。   In the example shown in FIG. 3, the lower cross section of the through conductor 4b whose cross section is larger than the opening is larger than the upper cross section, and the insulating layer 1d on which the through conductor 4b is formed and the insulating layer 1c thereon. It is larger than the opening of the interlayer conductor layer 6 formed between the layers. As a result, the X-rays reflected on the lower surface of the wiring board are formed in the vicinity of the through conductors 4a and 4b in plan view by the through conductor 4b of the lowermost insulating layer 1d or the upper two interlayer conductor layers 6 and 6. It is shielded by the through conductor 4b of the lower insulating layer 1d or by the upper three interlayer conductor layers 6, 6 and 6. Compared with the example shown in FIGS. 1 and 2, X-rays are shielded by the through conductor 4b of the lowermost insulating layer 1d having at least three interlayer conductor layers 6, 6, 6 or more in thickness. It will be highly effective. In the through conductors 4b whose upper and lower cross sections have different sizes, the upper cross section may be larger than the lower cross section, contrary to the example shown in FIG. Further, in the example shown in FIG. 3, the size of the upper cross section of the through conductor 4b is larger than the size of the cross section of the through conductor 4a above it. You may make it below the magnitude | size of the cross section of the through-conductor 4a. In this way, the same effect can be obtained if the size of the lower cross section of the through conductor 4b is larger than the opening above it, and the opening diameter of the mask used in forming the interlayer conductor layer 6 can be obtained. The number of types due to differences can be reduced.

また、図4に図1(a)と同様の断面図で示すように、上記構成において、開口より横断面が大きい貫通導体4bの上下に位置する層間接続導体8・8は、上下で横断面の大きさが異なることが好ましい。これにより、横断面の大きさが上下で同じで、開口より大きい貫通導体4bが絶縁層1dに対して略垂直に形成されていても、層間導体層6を取り囲むように外側に設けられている絶縁領域6a,6b,6c,6dは、上面視で互いに完全に重なることがないので、よりX線の遮蔽効果の高いものとなる。   In addition, as shown in FIG. 4 in a cross-sectional view similar to FIG. 1 (a), in the above configuration, the interlayer connection conductors 8 and 8 positioned above and below the through conductor 4b whose cross section is larger than the opening are It is preferable that the sizes of are different. As a result, even though the through conductor 4b having the same cross-sectional size in the vertical direction and larger than the opening is formed substantially perpendicular to the insulating layer 1d, it is provided outside so as to surround the interlayer conductor layer 6. Since the insulating regions 6a, 6b, 6c, and 6d do not completely overlap each other when viewed from above, the X-ray shielding effect is higher.

図4に示す例では、開口より横断面が大きい貫通導体4bの下側に接続された層間接続導体8の横断面は、上側の層間接続導体8の横断面、および上側の層間接続導体8の周囲の開口(貫通導体4bが形成された絶縁層1dとその上の絶縁層1cとの層間に形成された層間導体層6の開口)よりも大きい。これにより配線基板の下面で反射したX線は、平面視した貫通導体4a,4bの周辺では、最下層の絶縁層1dの貫通導体4bとその上下の層間接続導体8・8により、または上2層の層間導体層6,6,最下層の絶縁層1dの貫通導体4bおよびその上下の層間接続導体8・8により、または上2層の層間導体層6a,6bおよび最下層の絶縁層1dの貫通導体4bの上下の層間接続導体8・8により、あるいは上3層の層間導体層6,6,6により、遮蔽されることとなる。図1や図2に示す例と比較すると、少なくとも3層の層間導体層6,6,6によりX線を遮蔽するので、より遮蔽効果の高いものとなる。   In the example shown in FIG. 4, the cross section of the interlayer connection conductor 8 connected to the lower side of the through conductor 4 b whose cross section is larger than the opening is the cross section of the upper interlayer connection conductor 8 and the upper interlayer connection conductor 8. It is larger than the surrounding opening (opening of the interlayer conductor layer 6 formed between the insulating layer 1d in which the through conductor 4b is formed and the insulating layer 1c thereon). As a result, the X-rays reflected from the lower surface of the wiring board are transmitted by the through conductor 4b of the lowermost insulating layer 1d and the upper and lower interlayer connection conductors 8 and 8 in the vicinity of the through conductors 4a and 4b in a plan view. Interlayer conductor layers 6 and 6, through conductor 4b of lowermost insulating layer 1d and upper and lower interlayer connecting conductors 8 and 8, or upper interlayer conductor layers 6a and 6b and lowermost insulating layer 1d It is shielded by the upper and lower interlayer connection conductors 8 and 8 of the through conductor 4b or by the upper three interlayer conductor layers 6, 6 and 6. Compared with the example shown in FIGS. 1 and 2, the X-rays are shielded by at least three interlayer conductor layers 6, 6 and 6, so that the shielding effect is higher.

層間接続導体8は、絶縁層1c・1d,1d・1e間の位置ずれによる接続不良という観点からは横断面の大きい貫通導体4bの上下では必要でない場合がある。この場合でも、図5に図4と同様の断面図で示す例ように、横断面の大きい貫通導体4bの下側だけに層間接続導体8を設け、その横断面の大きさを横断面の大きい貫通導体4bの上の層間に形成された層間導体層6の開口(絶縁領域6c)よりも大きくすると、上2層の層間導体層6,6と層間接続導体8または上3層の層間導体層6,6,6の少なくとも3層によりX線を遮蔽することができるので好ましい。この場合は、横断面の大きい貫通導体4bの上側だけに層間接続導体8を設け、その横断面の大きさを横断面の大きい貫通導体4bの下の層間に形成された層間導体層6の開口(絶縁領域6c)よりも大きくしてもよい。上述したように小さい絶縁領域をより容易に形成するという観点からは、図2に示す例のように、また図6に図3と同様に示す例のように、横断面の大きい貫通導体4bの上下にも層間接続導体8を設けるのが好ましい。   The interlayer connection conductor 8 may not be necessary above and below the through conductor 4b having a large cross section from the viewpoint of poor connection due to misalignment between the insulating layers 1c, 1d, 1d, and 1e. Even in this case, as shown in the cross-sectional view similar to FIG. 4 in FIG. 5, the interlayer connection conductor 8 is provided only on the lower side of the through conductor 4b having a large cross section, and the size of the cross section is large. When larger than the opening (insulating region 6c) of the interlayer conductor layer 6 formed between the layers above the through conductor 4b, the upper two layers of interlayer conductor layers 6 and 6 and the interlayer connection conductor 8 or the upper three layers of interlayer conductor layers It is preferable because X-rays can be shielded by at least three layers of 6, 6, and 6. In this case, the interlayer connection conductor 8 is provided only on the upper side of the through conductor 4b having a large cross section, and the size of the cross section is the opening of the interlayer conductor layer 6 formed between the layers below the through conductor 4b having a large cross section. It may be larger than (insulating region 6c). As described above, from the viewpoint of forming a small insulating region more easily, as in the example shown in FIG. 2 and in the example shown in FIG. It is preferable to provide interlayer connection conductors 8 also on the upper and lower sides.

また、横断面の大きい貫通導体4bは、図1〜図6に示す例のように1つの絶縁層1dに形成する必要はなく、図7に図1と同様の断面図で示す例のように、2つの絶縁層1b,1dあるいはそれ以上の複数の絶縁層1a〜1eに分けて配置してもよい。1層の絶縁層1a,1b,1c,1d,1e内に横断面の大きい貫通導体4bを平面視で縦横に高密度に配置した場合には、X線検出素子搭載用配線基板を作製する際に、セラミックグリーンシートに貫通導体4b用の貫通孔を形成すると、貫通孔間のセラミックグリーンシートの幅が小さく、セラミックグリーンシートの面積に対する貫通孔の面積の割合が大きくなるので、セラミックグリーンシートが変形し易く、また貫通孔間にクラックが発生しやすくなり、その後の取り扱いが困難となり、また貫通導体4b・4b間の絶縁性が低下する場合がある。図7に示す例のように、横断面の大きい貫通導体4bを、複数の絶縁層1a〜1eに分けて1層の絶縁層1b,1d内で縦横に隣り合わないように配置すると、このようなことを防止することができる。この場合は、図7に示す例のように、1層の絶縁層1b、1d内での横断面の大きい貫通導体4bの配置が平面視で偏りがないようにするのが好ましい。   Further, the through conductor 4b having a large transverse section does not need to be formed in one insulating layer 1d as in the examples shown in FIGS. 1 to 6, but as in the example shown in the sectional view similar to FIG. 1 in FIG. Two insulating layers 1b, 1d or a plurality of insulating layers 1a-1e may be arranged separately. When through-conductors 4b having a large transverse section are arranged in a single insulating layer 1a, 1b, 1c, 1d, 1e at high density in the vertical and horizontal directions in plan view, a wiring board for mounting an X-ray detection element is produced. Further, when the through hole for the through conductor 4b is formed in the ceramic green sheet, the width of the ceramic green sheet between the through holes is small, and the ratio of the area of the through hole to the area of the ceramic green sheet is large. It is easy to deform and cracks are likely to occur between the through holes, making subsequent handling difficult, and the insulation between the through conductors 4b and 4b may be reduced. When the through conductor 4b having a large transverse section is divided into a plurality of insulating layers 1a to 1e and arranged so as not to be vertically and horizontally adjacent to each other in the insulating layers 1b and 1d as in the example shown in FIG. This can prevent anything. In this case, as in the example shown in FIG. 7, it is preferable that the arrangement of the through conductors 4b having a large cross section in the single insulating layers 1b and 1d is not biased in plan view.

また、1つの絶縁層1a,1b,1c,1d,1e内で横断面の大きい貫通導体4b・4b同士が隣り合わないように配置すると、貫通導体を小さい間隔で高密度に配置することができ、X線検出素子搭載用配線基板を小型のものにすることができる。図7に示す例のように、横断面の大きい貫通導体4bを配置した2つの絶縁層1b・1dの間に1層以上の絶縁層1cを設けるようにすると、貫通導体4a・4b間の間隔を小さくしても横断面の大きい貫通導体4b・4b同士が接続されることがないので、より高密度に配置することができる。さらに、図8に図1と同様の断面図で示す例のように、横断面の大きい貫通導体4bを配置した2つの絶縁層1a・1dの間に2層以上の絶縁層1b・1cを設けるようにすると、隣り合う貫通導体4a・4b間の間隔を近付けることにより、上下に位置する横断面の大きい貫通導体4b・4bの周囲の絶縁領域6a・6d同士が重なっても、間に設けた2つの絶縁層1b・1cの層間に形成された層間導体層6によりX線を遮蔽することができるのでより好ましい。   Further, if the through conductors 4b and 4b having a large cross section are not adjacent to each other in one insulating layer 1a, 1b, 1c, 1d, and 1e, the through conductors can be arranged at a high density at a small interval. The wiring board for mounting the X-ray detection element can be made small. As shown in FIG. 7, when one or more insulating layers 1c are provided between two insulating layers 1b and 1d having through conductors 4b having a large cross section, the distance between the through conductors 4a and 4b is increased. Since the through conductors 4b and 4b having a large cross section are not connected to each other even when the size is reduced, the conductors can be arranged with higher density. Further, as in the example shown in the sectional view similar to FIG. 1 in FIG. 8, two or more insulating layers 1b and 1c are provided between the two insulating layers 1a and 1d in which the through conductors 4b having a large transverse section are arranged. As a result, by bringing the distance between adjacent through conductors 4a and 4b closer to each other, even if the insulating regions 6a and 6d around the through conductors 4b and 4b having a large cross section located above and below overlap each other, they are provided between them. It is more preferable because X-rays can be shielded by the interlayer conductor layer 6 formed between the two insulating layers 1b and 1c.

また、横断面が大きく厚みの厚い貫通導体4bが、上下に積層された複数の絶縁層1a〜1fのうちの上方あるいは下方の1層だけに偏って存在すると、セラミックグリーンシートと貫通導体となる導体ペーストとでは焼成収縮率が異なるので、焼成後にX線検出素子搭載用配線基板が反って変形してしまう場合がある。このようなことから、1つの絶縁層内だけに横断面の大きい貫通導体4bを配置する場合は、基体1の厚み方向の中心に近い絶縁層1c・1dに形成するのが好ましい。そして、横断面の大きい貫通導体4b・4bを2つの絶縁層1a〜1eに分けて配置する場合は、図8に示す例のように、基体1の厚み方向の中心から上下に同程度の位置にそれぞれ配置するのがよい。   In addition, if the through conductor 4b having a large cross section and a large thickness is biased to only one layer above or below the plurality of insulating layers 1a to 1f stacked above and below, a ceramic green sheet and a through conductor are formed. Since the firing shrinkage rate differs from that of the conductor paste, the X-ray detection element mounting wiring board may be warped and deformed after firing. For this reason, when the through conductor 4b having a large cross section is disposed only in one insulating layer, it is preferable to form the insulating layers 1c and 1d near the center of the base 1 in the thickness direction. And when penetrating conductors 4b and 4b having a large transverse section are arranged separately in two insulating layers 1a to 1e, the same positions as above and below from the center in the thickness direction of the substrate 1, as in the example shown in FIG. It is good to arrange each.

基体1は、複数のセラミックスから成る絶縁層1を積層して形成してなる、略四角平板状のものである。セラミックスは、例えば酸化アルミニウム質焼結体,窒化アルミニウム焼結体,窒化珪素質焼結体,ムライト質焼結体,ガラスセラミック質焼結体というような、従来よりセラミック配線基板に用いられている絶縁性のものを用いればよい。X線検出素子5を高速で動作させるために、内部配線として電気抵抗の小さい銅(Cu)や銀(Ag)等を用いる場合は、これらの金属と同時焼成可能なガラスセラミック質焼結体のような低温焼成セラミックスを用いるのが好ましい。   The substrate 1 has a substantially square plate shape formed by laminating a plurality of insulating layers 1 made of ceramics. Ceramics are conventionally used for ceramic wiring boards, such as aluminum oxide sintered bodies, aluminum nitride sintered bodies, silicon nitride sintered bodies, mullite sintered bodies, and glass ceramic sintered bodies. An insulating material may be used. In order to operate the X-ray detection element 5 at a high speed, when using copper (Cu), silver (Ag) or the like having a low electrical resistance as the internal wiring, a glass ceramic sintered body that can be fired simultaneously with these metals. It is preferable to use such a low-temperature fired ceramic.

基体1は、絶縁層1が酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム・酸化珪素・酸化マグネシウム・酸化カルシウム等の原料粉末に適当な有機バインダ・溶剤を添加混合してスラリーを作製するとともに、これをドクターブレード法等のシート形成方法によりシート状となして複数枚のセラミックグリーンシートを得て、次に、これらのセラミックグリーンシートに適当な打ち抜き加工を施すとともに上下に積層してセラミックグリーンシート積層体となし、最後にこのセラミックグリーンシート積層体を還元雰囲気中にて約1600℃の温度で焼成することによって製作される。   When the insulating layer 1 is made of an aluminum oxide sintered body, the substrate 1 is prepared by adding a suitable organic binder / solvent to a raw material powder such as aluminum oxide / silicon oxide / magnesium oxide / calcium oxide and mixing the slurry. This is made into a sheet by a sheet forming method such as a doctor blade method to obtain a plurality of ceramic green sheets. Next, these ceramic green sheets are subjected to appropriate punching processing and laminated vertically. The ceramic green sheet laminate is finally manufactured by firing the ceramic green sheet laminate in a reducing atmosphere at a temperature of about 1600 ° C.

接続パッド2,端子電極3,内部配線4,層間導体層6,および層間接続導体8は、基体1と同時焼成により形成される、タングステン(W)、モリブデン(Mo)、銅(Cu)、銀(Ag)等の金属粉末を主成分とするメタライズ導体層から成るものである。基体1との同時焼成により形成するために、各導体層は同種の金属粉末を主成分とするのが好ましい。これらが、例えばタングステンメタライズから成る場合であれば、平均粒径が1〜5μm程度のタングステン粉末に適当な有機バインダ・溶剤を、また必要に応じてセラミックスやガラスの粉末を添加混合して得た金属ペーストを絶縁層1となるセラミックグリーンシートにスクリーン印刷法等により印刷塗布しておき、セラミックグリーンシートと同時焼成することにより得られる。内部配線4の内、貫通導体4a,4b,4cは、スクリーン印刷法等により印刷塗布する前に、セラミックグリーンシートに金型やピンによる打ち抜き加工やレーザー加工により予め貫通孔を形成しておき、この貫通孔に金属ペーストを印刷法により充填しておけばよい。   The connection pad 2, the terminal electrode 3, the internal wiring 4, the interlayer conductor layer 6, and the interlayer connection conductor 8 are formed by simultaneous firing with the base 1, tungsten (W), molybdenum (Mo), copper (Cu), silver It consists of a metallized conductor layer whose main component is a metal powder such as (Ag). In order to form by simultaneous firing with the substrate 1, each conductor layer preferably contains the same kind of metal powder as a main component. If these are made of, for example, tungsten metallization, they are obtained by adding and mixing an appropriate organic binder / solvent with a tungsten powder having an average particle size of about 1 to 5 μm, and, if necessary, ceramic or glass powder. It can be obtained by printing and applying a metal paste on a ceramic green sheet to be the insulating layer 1 by screen printing or the like, and simultaneously firing the ceramic green sheet. Of the internal wiring 4, the through conductors 4a, 4b, and 4c are formed with through holes in advance by punching or laser processing with a mold or a pin in the ceramic green sheet before printing and coating by a screen printing method or the like. What is necessary is just to fill this through-hole with a metal paste by a printing method.

開口より横断面が大きい貫通導体4bがその上下で横断面の大きさが異なる場合は、パンチの径とダイスの穴の径とのクリアランスを大きく設定した打ち抜き金型を用いてセラミックグリーンシートを打ち抜くことによって、貫通導体4bを形成する貫通孔を形成すればよい。このようにすることで、セラミックグリーンシートを一方の主面側から他方の主面側に向けて打ち抜く際に、セラミックグリーンシートはパンチとの接触面の縁からダイスの穴との接触面の縁に向けて剪断されて、貫通孔が一方の主面側から他方の主面側に広がるように形成される。グリーンシートの厚み等に応じてパンチの径とダイスの穴の径とのクリアランスを設定することで、グリーンシートに形成される貫通孔の広がり角度(貫通導体4bの上下の横断面の大きさの差)は調節される。また、通常のパンチの径とダイスの穴の径とのクリアランスの小さい打ち抜き金型による加工により上下の開口径が同程度の貫通導体用の貫通孔を形成した後に、貫通孔の内側面に型を押し当てることでも形成することはできるが、上述の方法は打ち抜き加工のみで形成できることから生産性が高く、型を押し当てた際のセラミックグリーンシートの変形等の影響が少ないので好ましい。レーザー加工によって貫通孔を形成する場合は、レーザーの出力や照射時間等の加工条件を調整することにより可能となる。上下の開口径が同程度の貫通導体4a,4c用の貫通孔を形成する条件よりレーザーの出力を大きくしたり、レーザーの照射時間を長くしたりすればよい。または、貫通導体4a,4c用の貫通孔を形成するレーザーよりスポット径の大きいレーザーを用いて、レーザーの出力を小さくしたり、レーザーの照射時間を長く短くしたりしてもよい。上下で開口径の異なる貫通孔に金属ペーストを充填する際は、開口径の大きいほうから充填する方が充填不足になりにくいので好ましい。   When the through conductor 4b whose cross section is larger than the opening has different cross section sizes, the ceramic green sheet is punched using a punching die in which the clearance between the punch diameter and the die hole diameter is set large. Thus, a through hole for forming the through conductor 4b may be formed. In this way, when the ceramic green sheet is punched from one main surface side to the other main surface side, the ceramic green sheet has an edge of the contact surface with the hole of the die from the edge of the contact surface with the punch. The through hole is formed so as to spread from one main surface side to the other main surface side. By setting the clearance between the diameter of the punch and the diameter of the hole of the die according to the thickness of the green sheet, the spread angle of the through hole formed in the green sheet (the size of the upper and lower cross sections of the through conductor 4b) Difference) is adjusted. In addition, after forming a through hole for a through conductor having the same upper and lower opening diameters by processing with a punching die having a small clearance between the diameter of the normal punch and the diameter of the die, a mold is formed on the inner surface of the through hole. However, the above method is preferable because it can be formed only by punching and has high productivity and is less affected by the deformation of the ceramic green sheet when the die is pressed. When the through hole is formed by laser processing, it can be achieved by adjusting processing conditions such as laser output and irradiation time. The laser output may be increased or the laser irradiation time may be made longer than the conditions for forming the through holes for the through conductors 4a and 4c having the same upper and lower opening diameters. Alternatively, a laser having a spot diameter larger than that of the laser forming the through holes for the through conductors 4a and 4c may be used to reduce the output of the laser or shorten the irradiation time of the laser. When filling the through holes having different opening diameters in the upper and lower sides, it is preferable to fill the metal paste from the larger opening diameter because filling is less likely to be insufficient.

貫通孔を形成する際に1種類のピンや加工条件を用いて効率的に製造するためには、1つの絶縁層1a〜1fに形成される貫通導体4a〜4cの横断面は同じ形状で同じ大きさのものが好ましい。図7に示す例のように、1つの絶縁層1b、1dに横断面の大きさの異なる2つの貫通導体1a,1bを形成する場合は、金型で一括して貫通孔を形成するのが効率的でよい。   In order to efficiently manufacture using one kind of pins and processing conditions when forming the through holes, the cross sections of the through conductors 4a to 4c formed in one insulating layer 1a to 1f have the same shape and the same A size is preferred. When two through conductors 1a and 1b having different cross-sectional sizes are formed in one insulating layer 1b and 1d as in the example shown in FIG. 7, the through holes are collectively formed by a mold. Efficient and good.

貫通導体4a〜4cの横断面形状は、図1〜図8に示すような円形以外の多角形や楕円形でもよく、同一の絶縁層1内または異なる絶縁層1・1間で貫通導体4a〜4cの横断面の形状は同じでもよいし、異なっていてもよい。貫通孔を近接して多数形成すると、貫通孔間のセラミックグリーンシートにクラックが発生しやすくなるので、横断面形状が多角形の場合はクラックの発生しやすい角部の角度が大きい六角形以上の多角形が好ましく、角部を有さない円形や楕円形はクラックが発生しにくく、また金型の偏磨耗も発生しにくいのでより好ましい。   The cross-sectional shape of the through conductors 4a to 4c may be a polygon or an ellipse other than a circle as shown in FIGS. 1 to 8, and the through conductors 4a to 4 in the same insulating layer 1 or between different insulating layers 1 and 1. The shape of the cross section of 4c may be the same or different. If a large number of through-holes are formed close to each other, cracks are likely to occur in the ceramic green sheet between the through-holes. Polygons are preferred, and circles and ellipses that do not have corners are more preferred because cracks are less likely to occur and uneven wear of the mold is less likely to occur.

層間導体層6および層間接続導体8は、タングステン(W),モリブデン(Mo),銅(Cu),銀(Ag)などの金属材料が耐熱性や導電性等の点で好適に使用される。X線の遮蔽効果は、用いる金属材料の原子量に応じて異なり、原子量が大きいほど遮蔽効果が高い。タングステン,モリブデン,銅,銀の原子量は、それぞれ、約184,約96,約64,約108である。なお、裏面からのX線の反射に対しては、原子量が約184のタングステンでは裏面からのX線の反射を遮蔽するには0.05mm厚みがあれば十分であるが、原子量が約64である銅の場合は約3倍の厚みである0.15mmの厚みが必要となるので、1層当たりの層厚みを厚くしたり、層間導体層6の層数を増やす必要がある。基体1にガラスセラミックスを用いる場合は、層間導体層6等に銅よりX線の遮蔽効果の高い銀を用いるとX線検出素子搭載用配線基板を薄型にすることができるので好ましい。   For the interlayer conductor layer 6 and the interlayer connection conductor 8, a metal material such as tungsten (W), molybdenum (Mo), copper (Cu), silver (Ag) is preferably used in terms of heat resistance and conductivity. The X-ray shielding effect varies depending on the atomic weight of the metal material used, and the shielding effect is higher as the atomic weight is larger. The atomic weights of tungsten, molybdenum, copper, and silver are about 184, about 96, about 64, and about 108, respectively. For the reflection of X-rays from the back surface, with a tungsten having an atomic weight of about 184, a thickness of 0.05 mm is sufficient to shield the reflection of X-rays from the back surface, but the atomic weight is about 64. In the case of copper, a thickness of 0.15 mm, which is about three times the thickness, is required, so it is necessary to increase the layer thickness per layer or increase the number of interlayer conductor layers 6. In the case of using glass ceramics for the substrate 1, it is preferable to use silver having a higher X-ray shielding effect than copper for the interlayer conductor layer 6 and the like because the X-ray detection element mounting wiring board can be made thin.

層間導体層6および層間接続導体8の1層当たりの厚さは、厚くすればするほど層数を少なくすることができ、X線検出素子搭載用配線基板を薄型にすることができるので好ましいが、厚く形成するとセラミックグリーンシートとの段差が大きくなり、セラミックグリーンシートを積層した際に、層間導体層6や層間接続導体8の周囲に隙間ができて焼成時に剥がれたり、外部と連通した空隙となることで水分等が浸入して絶縁不良や内部配線4が腐食してしまったりすることがある。このため、1層の厚さは30μm程度とするのが好ましい。また、グリーンシート上に導体ペーストを印刷して乾燥した後に金型によるプレス加工を施して導体層をグリーンシートに埋没させたり、導体層の周辺にセラミックグリーンシートを作製するためのスラリーと同様のものを印刷することにより段差をなくしたりするとよい。あるいは、導体ペーストを印刷した樹脂フィルム等の基体上にスラリーを塗布することによりセラミックグリーンシートを成形して導体層が埋没したグリーンシートを作製してもよい。   The thickness per layer of the interlayer conductor layer 6 and the interlayer connection conductor 8 is preferable because the thickness can be reduced as the thickness is increased, and the wiring board for mounting the X-ray detection element can be made thinner. When the ceramic green sheet is laminated, a gap is formed around the interlayer conductor layer 6 and the interlayer connection conductor 8 and peeled off during firing, or a gap communicating with the outside. As a result, moisture or the like may enter and insulation failure or internal wiring 4 may be corroded. Therefore, the thickness of one layer is preferably about 30 μm. Also, after the conductor paste is printed on the green sheet and dried, press working with a mold is performed to embed the conductor layer in the green sheet, or the same slurry as the slurry for producing the ceramic green sheet around the conductor layer It is better to eliminate the step by printing things. Alternatively, a ceramic green sheet may be formed by applying a slurry on a substrate such as a resin film on which a conductor paste is printed to produce a green sheet in which the conductor layer is buried.

層間導体層6は、X線を遮蔽するためのものであるので、その基体1の上面への投影領域が実装領域5aに対応するように形成されている。図1や図2に示す例のように、実装領域5aより一回り大きいベタパターンとすることで、X線検出素子搭載用配線基板の上面に対して斜めに侵入してくるX線を遮蔽することができるので好ましい。また、貫通導体4aとの間に絶縁領域6a〜6dを設けるために貫通導体4aや層間接続導体8より一回り大きい開口を有する。貫通導体4aや層間接続導体8と層間導体層6との間の絶縁領域の大きさは、X線を遮蔽するためにはできるだけ小さい方がよいので、開口は貫通導体4aや層間接続導体8の横断面形状と相似形とし、絶縁性を考慮すると貫通導体4aや層間接続導体8の外周から約50μm以上の間隔を有するものとするのが好ましい。   Since the interlayer conductor layer 6 is for shielding X-rays, it is formed so that the projection area on the upper surface of the substrate 1 corresponds to the mounting area 5a. As in the example shown in FIGS. 1 and 2, the X-ray entering obliquely with respect to the upper surface of the X-ray detection element mounting wiring board is shielded by forming a solid pattern that is slightly larger than the mounting region 5a. This is preferable. Further, in order to provide the insulating regions 6 a to 6 d with the through conductor 4 a, an opening that is slightly larger than the through conductor 4 a and the interlayer connection conductor 8 is provided. Since the size of the insulating region between the through conductor 4a or the interlayer connection conductor 8 and the interlayer conductor layer 6 is preferably as small as possible in order to shield X-rays, the opening is formed in the through conductor 4a or the interlayer connection conductor 8. It is preferable that the cross-sectional shape is similar to that of the cross-sectional shape, and has an interval of about 50 μm or more from the outer periphery of the through conductor 4a and the interlayer connection conductor 8 in consideration of insulation.

層間接続導体8の形状は特に制限はないが、貫通導体4a〜4dの横断面形状と相似形に形成すると、どの方向に位置ずれしても同程度にカバーできるので好ましい。セラミックグリーンシートを積層する際の位置合わせ精度にもよるが、位置ずれ量を考慮すると、例えば貫通導体4a,4bの径より50μm程度以上大きくすればよい。   The shape of the interlayer connection conductor 8 is not particularly limited, but it is preferable to form the interlayer connection conductor 8 in a shape similar to the cross-sectional shape of the through conductors 4a to 4d because the cover can be covered to the same extent regardless of the direction of displacement. Although it depends on the alignment accuracy when the ceramic green sheets are laminated, considering the amount of displacement, for example, it may be larger than the diameter of the through conductors 4a and 4b by about 50 μm or more.

層間接続導体8は、通常、導体ペーストを印刷することにより層間導体層6と同時に形成される。これにより、層間接続導体8と層間導体層6との間に位置ずれが発生することがないので、印刷精度に応じた非常に小さい絶縁領域6a〜6dを形成することができる。   The interlayer connection conductor 8 is usually formed simultaneously with the interlayer conductor layer 6 by printing a conductor paste. As a result, no displacement occurs between the interlayer connection conductor 8 and the interlayer conductor layer 6, so that very small insulating regions 6 a to 6 d corresponding to the printing accuracy can be formed.

貫通導体4a,4bや層間導体層6の開口(絶縁領域6a〜6d)の大きさは、具体的には例えば図1に示す例の場合は、絶縁層1a〜1c,1eの貫通導体4aを直径100μmで形成し、上2層の層間導体層6の開口径を200μmとして、絶縁層1dの貫通導体4bを位置ずれを考慮して250μmと、下2層の層間導体層6の開口径を350μmとすればよい。この場合、縦横に隣り合う貫通導体の中心間距離は、下2層の層間導体層6の絶縁領域6c,6dが互いに重なる距離までは小さくすることができるので、最小で300μmとなる。また、図2に示す例のように層間接続導体8を設ける場合は、絶縁層1a〜1c,1eの貫通導体4aを同じく直径100μmで形成して上2層の層間接続導体8を150μmとすると、上2層の層間導体層6の開口径、絶縁層1dの貫通導体4bの径、および下2層の層間導体層6の開口径をそれぞれ50μmずつ大きくすればよく、縦横に隣り合う貫通導体の中心間距離は、最小で400μmとなる。また、図8に示す例の場合は、貫通導体4aおよび横断面の大きい貫通導体4bの径を上記と同様にそれぞれ100μmおよび250μmとして、それぞれに対応する開口径も同様に200μmおよび350μmとすると、縦横に隣り合う貫通導体4a・4bの中心間距離は、最小で225μmと小さいものとすることができる。上の絶縁層1bに形成された横断面の大きい貫通導体4bと下の絶縁層1eに形成された横断面の大きい貫通導体4bとは平面視で重なることになる。また、上の絶縁層1bの上下に位置する層間導体層6の絶縁領域6a・6bと下の絶縁層1eの上に位置する層間導体層6の絶縁領域6dとが一部重なることになるが、この絶縁領域6a,6b,6dの重なった部分と横断面の大きい貫通導体4bの形成されていない絶縁層1c・1d間に形成された層間導体層6とが平面視で重なるのでX線を遮蔽することができる。   Specifically, the size of the openings (insulating regions 6a to 6d) of the through conductors 4a and 4b and the interlayer conductor layer 6 is, for example, in the example shown in FIG. 1, the through conductors 4a of the insulating layers 1a to 1c and 1e. It is formed with a diameter of 100 μm, the opening diameter of the upper two interlayer conductor layers 6 is set to 200 μm, and the through conductor 4b of the insulating layer 1d is 250 μm in consideration of positional displacement, and the opening diameter of the lower two interlayer conductor layers 6 is It may be 350 μm. In this case, the distance between the centers of the through conductors adjacent to each other in the vertical and horizontal directions can be reduced to the distance where the insulating regions 6c and 6d of the lower two layers of the interlayer conductor layer 6 overlap each other, so that the minimum distance is 300 μm. When the interlayer connection conductor 8 is provided as in the example shown in FIG. 2, the through conductors 4a of the insulating layers 1a to 1c and 1e are similarly formed with a diameter of 100 μm, and the upper two layers of the interlayer connection conductor 8 are set to 150 μm. The opening diameter of the upper two interlayer conductor layers 6, the diameter of the through conductor 4b of the insulating layer 1d, and the opening diameter of the lower two interlayer conductor layers 6 may be increased by 50 μm, respectively. The center-to-center distance is 400 μm at the minimum. In the case of the example shown in FIG. 8, if the diameters of the through conductor 4a and the through conductor 4b having a large cross section are 100 μm and 250 μm, respectively, and the corresponding opening diameters are 200 μm and 350 μm, The distance between the centers of the through conductors 4a and 4b adjacent in the vertical and horizontal directions can be as small as 225 μm. The through conductor 4b having a large cross section formed in the upper insulating layer 1b and the through conductor 4b having a large cross section formed in the lower insulating layer 1e overlap in plan view. Further, the insulating regions 6a and 6b of the interlayer conductor layer 6 positioned above and below the upper insulating layer 1b and the insulating region 6d of the interlayer conductor layer 6 positioned above the lower insulating layer 1e partially overlap. Since the overlapping portions of the insulating regions 6a, 6b, and 6d overlap with the interlayer conductor layer 6 formed between the insulating layers 1c and 1d where the through conductor 4b having a large cross section is not formed, X-rays are generated. Can be shielded.

なお、基体1の外面に形成された接続パッド2および端子電極3の表面には、酸化腐食を防止するとともに接続パッド2とX線検出素子5の電極との接合および端子電極3と外部回路との接合を容易で強固なものとするために、半田等の接合材7との濡れ性に優れた、厚みが1〜10μm程度のニッケルめっきおよび厚みが0.1μm〜3μm程度の金めっきを電解めっき法や無電解めっき法により順次施すとよい。   Note that the surfaces of the connection pads 2 and the terminal electrodes 3 formed on the outer surface of the substrate 1 prevent oxidation corrosion, and join the connection pads 2 and the electrodes of the X-ray detection element 5 and the terminal electrodes 3 and external circuits. Electrolytic plating with nickel plating with a thickness of about 1 to 10 μm and gold plating with a thickness of about 0.1 μm to 3 μm, with excellent wettability with the bonding material 7 such as solder, etc. It may be applied sequentially by a method or an electroless plating method.

本発明のX線検出装置は、上記のようなX線検出素子搭載用配線基板にX線検出素子5がフリップチップ実装されていることを特徴とするものである。このことから、小型薄型のX線検出素子搭載用配線基板であっても、反射した不要なX線を十分に遮蔽できるので、小型化かつ薄型化できる高画質のX線検出装置となる。   The X-ray detection apparatus of the present invention is characterized in that the X-ray detection element 5 is flip-chip mounted on the wiring board for mounting the X-ray detection element as described above. For this reason, even a small and thin wiring board for mounting an X-ray detection element can sufficiently shield the reflected unnecessary X-rays, resulting in a high-quality X-ray detection apparatus that can be reduced in size and thickness.

X線検出素子5を実装領域5aにフリップチップ実装するには、電極パッド2への接合を周知の方法、例えば半田や導電性樹脂等の接合材7を用いた接合や、X線検出素子5に形成した金バンプ電極を用いた超音波接合により行なえばよい。   In order to flip-chip mount the X-ray detection element 5 on the mounting region 5a, bonding to the electrode pad 2 is performed by a known method, for example, bonding using a bonding material 7 such as solder or conductive resin, or the X-ray detection element 5 What is necessary is just to carry out by ultrasonic bonding using the gold bump electrode formed in this.

また、X線検出素子搭載用配線基板と、X線検出素子5とを同じ大きさに形成すると、X線検出装置を縦横に隙間なく配列することで、X線検出素子5が二次元的に隙間無く配列されることとなるので、1個のX線検出素子5の解像度の制限を受けずに高解像度の検出ができるものとすることができる。   Further, when the X-ray detection element mounting wiring board and the X-ray detection element 5 are formed in the same size, the X-ray detection elements 5 can be two-dimensionally arranged by arranging the X-ray detection devices vertically and horizontally without any gaps. Since they are arranged without a gap, high-resolution detection can be performed without being limited by the resolution of one X-ray detection element 5.

(a)は本発明のX線検出素子搭載用基板の実施の形態の一例を示す断面図であり、(b)は(a)におけるA部を上面視した断面図である。(A) is sectional drawing which shows an example of embodiment of the board | substrate for X-ray detection element mounting of this invention, (b) is sectional drawing which looked at the A section in (a). (a)は本発明のX線検出素子搭載用基板の実施の形態の一例を示す断面図であり、(b)は(a)におけるA部を上面視した断面図である。(A) is sectional drawing which shows an example of embodiment of the board | substrate for X-ray detection element mounting of this invention, (b) is sectional drawing which looked at the A section in (a). 本発明のX線検出素子搭載用基板の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the board | substrate for X-ray detection element mounting of this invention. 本発明のX線検出素子搭載用基板の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the board | substrate for X-ray detection element mounting of this invention. 本発明のX線検出素子搭載用基板の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the board | substrate for X-ray detection element mounting of this invention. 本発明のX線検出素子搭載用基板の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the board | substrate for X-ray detection element mounting of this invention. (a)は本発明のX線検出素子搭載用基板の実施の形態の一例を示す断面図であり、(b)は(a)におけるA部を上面視した断面図である。(A) is sectional drawing which shows an example of embodiment of the board | substrate for X-ray detection element mounting of this invention, (b) is sectional drawing which looked at the A section in (a). (a)は本発明のX線検出素子搭載用基板の実施の形態の一例を示す断面図であり、(b)は(a)におけるA部を上面視した断面図である。(A) is sectional drawing which shows an example of embodiment of the board | substrate for X-ray detection element mounting of this invention, (b) is sectional drawing which looked at the A section in (a). 従来のX線検出素子搭載用配線基板の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the conventional wiring board for X-ray detection element mounting.

符号の説明Explanation of symbols

1:基体
1a〜1f:絶縁層
2:接続パッド
3:端子電極
4:内部配線
4a,4b,4c:貫通導体
5:X線検出素子
5a:実装領域
6:層間導体層
6a〜6d:絶縁領域
7:接合材
8:層間接続導体
1: Base 1a-1f: Insulating layer 2: Connection pad 3: Terminal electrode 4: Internal wiring 4a, 4b, 4c: Through conductor 5: X-ray detection element 5a: Mounting area 6: Interlayer conductor layer 6a-6d: Insulating area 7: Joining material 8: Interlayer connection conductor

Claims (5)

複数の絶縁層が積層されてなる基体と、該基体の上面のX線検出素子の実装領域に形成された前記X線検出素子をフリップチップ実装するための複数の接続パッドと、前記基体の外面に形成された複数の端子電極と、前記基体の内部に形成され、前記実装領域の下方に配置された複数の貫通導体を含む、前記複数の接続パッドと前記複数の端子電極とを接続する複数の内部配線とを有するX線検出素子搭載用配線基板であって、前記複数の貫通導体に対応する開口を有する複数層の層間導体層が、前記基体の前記上面への投影領域に前記実装領域が含まれるように前記絶縁層間に形成され、前記複数の貫通導体は、前記開口内で前記層間導体層との間に絶縁領域を設けて前記層間導体層を貫通するとともに、前記層間導体層に接する前記絶縁層のうち少なくとも1層において、その絶縁層とその上下の絶縁層との層間よりも上または下に位置する層間の前記層間導体層の前記開口より横断面が大きいことを特徴とするX線検出素子搭載用配線基板。 A base body in which a plurality of insulating layers are stacked, a plurality of connection pads for flip-chip mounting the X-ray detection element formed in the X-ray detection element mounting region on the upper surface of the base body, and an outer surface of the base body A plurality of terminal electrodes formed in the substrate and a plurality of through conductors formed inside the base and disposed below the mounting region, the plurality of connection pads and the plurality of terminal electrodes being connected to each other A plurality of interlayer conductor layers having openings corresponding to the plurality of through conductors in the projection area on the upper surface of the base body. The plurality of through conductors pass through the interlayer conductor layer by providing an insulating region between the interlayer conductor layer and the interlayer conductor layer in the opening. Said insulation touching An X-ray detecting element characterized in that at least one of the layers has a larger cross section than the opening of the interlayer conductor layer between layers located above or below the interlayer between the insulating layer and the upper and lower insulating layers. Wiring board for mounting. 前記貫通導体は、前記貫通導体の横断面より大きい層間接続導体を間に介して接続されていることを特徴とする請求項1記載のX線検出素子搭載用配線基板。 2. The wiring board for mounting an X-ray detection element according to claim 1, wherein the through conductors are connected via an interlayer connection conductor larger than the cross section of the through conductor. 前記開口より横断面が大きい前記貫通導体は、その上下で横断面の大きさが異なることを特徴とする請求項1または請求項2に記載のX線検出素子搭載用配線基板。 3. The X-ray detection element mounting wiring board according to claim 1, wherein the through conductor having a larger cross-section than the opening has a cross-sectional size different from above and below. 前記開口より横断面が大きい前記貫通導体の上下に位置する前記層間接続導体は、上下で横断面の大きさが異なることを特徴とする請求項2または請求項3に記載のX線検出素子搭載用配線基板。 4. The X-ray detection element mounting according to claim 2, wherein the interlayer connection conductors located above and below the through conductor having a cross section larger than the opening have different cross section sizes in the top and bottom. Wiring board. 請求項1乃至請求項4のいずれかに記載のX線検出素子搭載用配線基板にX線検出素子がフリップチップ実装されていることを特徴とするX線検出装置。 An X-ray detection device, wherein the X-ray detection element is flip-chip mounted on the wiring board for mounting the X-ray detection element according to claim 1.
JP2007244924A 2007-09-21 2007-09-21 X-ray detector mounting circuit board and X-ray detector Expired - Fee Related JP4722103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007244924A JP4722103B2 (en) 2007-09-21 2007-09-21 X-ray detector mounting circuit board and X-ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007244924A JP4722103B2 (en) 2007-09-21 2007-09-21 X-ray detector mounting circuit board and X-ray detector

Publications (2)

Publication Number Publication Date
JP2009074964A true JP2009074964A (en) 2009-04-09
JP4722103B2 JP4722103B2 (en) 2011-07-13

Family

ID=40610069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007244924A Expired - Fee Related JP4722103B2 (en) 2007-09-21 2007-09-21 X-ray detector mounting circuit board and X-ray detector

Country Status (1)

Country Link
JP (1) JP4722103B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010011582A1 (en) * 2010-03-16 2011-09-22 Siemens Aktiengesellschaft Detector module for a radiation detector and radiation detector
WO2011129132A1 (en) * 2010-04-15 2011-10-20 浜松ホトニクス株式会社 Radiation detector module
WO2011129133A1 (en) * 2010-04-15 2011-10-20 浜松ホトニクス株式会社 Connection substrate
WO2012015045A1 (en) * 2010-07-30 2012-02-02 株式会社リガク Semiconductor x-ray detector
JP2012105967A (en) * 2010-10-20 2012-06-07 Toshiba Corp Das detector and x-ray computed tomography device
JP2012118073A (en) * 2010-11-30 2012-06-21 General Electric Co <Ge> Detector array with through-via interposer
JP2014181935A (en) * 2013-03-18 2014-09-29 Shimadzu Corp Flat panel type radiation detector and manufacturing method of the same
JP2018205031A (en) * 2017-05-31 2018-12-27 東芝電子管デバイス株式会社 Radiation detector
JP2019027887A (en) * 2017-07-28 2019-02-21 京セラ株式会社 Detection element mounted board, detector, and detection module
US20190235099A1 (en) * 2015-04-14 2019-08-01 Analogic Corporation Detector array for a radiation system, and related system
US11740367B2 (en) 2022-01-07 2023-08-29 Analogic Corporation Radiation detectors for scanning systems, and related scanning systems

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094139A (en) * 1999-09-24 2001-04-06 Kyocera Corp Wiring board for mounting x-ray detecting element
JP2002214352A (en) * 2001-01-19 2002-07-31 Canon Inc Radiation imaging device
JP2004071638A (en) * 2002-08-01 2004-03-04 Canon Inc Radiation imaging apparatus and radiation imaging system using same
JP2004219318A (en) * 2003-01-16 2004-08-05 Hamamatsu Photonics Kk Radiation detector
JP2004265883A (en) * 2003-01-08 2004-09-24 Hamamatsu Photonics Kk Wiring board and radiation detector employing it
JP2005043330A (en) * 2003-07-25 2005-02-17 Morita Mfg Co Ltd X-ray image detector
JP2005539232A (en) * 2002-09-18 2005-12-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray detector having a plurality of detector units

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094139A (en) * 1999-09-24 2001-04-06 Kyocera Corp Wiring board for mounting x-ray detecting element
JP2002214352A (en) * 2001-01-19 2002-07-31 Canon Inc Radiation imaging device
JP2004071638A (en) * 2002-08-01 2004-03-04 Canon Inc Radiation imaging apparatus and radiation imaging system using same
JP2005539232A (en) * 2002-09-18 2005-12-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray detector having a plurality of detector units
JP2004265883A (en) * 2003-01-08 2004-09-24 Hamamatsu Photonics Kk Wiring board and radiation detector employing it
JP2004219318A (en) * 2003-01-16 2004-08-05 Hamamatsu Photonics Kk Radiation detector
JP2005043330A (en) * 2003-07-25 2005-02-17 Morita Mfg Co Ltd X-ray image detector

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9322938B2 (en) 2010-03-16 2016-04-26 Siemens Aktiengesellschaft Detector module for a radiation detector and radiation detector
DE102010011582B4 (en) * 2010-03-16 2011-12-01 Siemens Aktiengesellschaft Detector module for a radiation detector and radiation detector
DE102010011582A1 (en) * 2010-03-16 2011-09-22 Siemens Aktiengesellschaft Detector module for a radiation detector and radiation detector
US8859975B2 (en) 2010-04-15 2014-10-14 Hamamatsu Photonics K.K. Radiation detector module
CN102870006A (en) * 2010-04-15 2013-01-09 浜松光子学株式会社 Connection substrate
JP2011226817A (en) * 2010-04-15 2011-11-10 Hamamatsu Photonics Kk Connection board
WO2011129132A1 (en) * 2010-04-15 2011-10-20 浜松ホトニクス株式会社 Radiation detector module
JP2011226816A (en) * 2010-04-15 2011-11-10 Hamamatsu Photonics Kk Radiation detector module
CN102844680A (en) * 2010-04-15 2012-12-26 浜松光子学株式会社 Radiation detector module
US9000388B2 (en) 2010-04-15 2015-04-07 Hamamatsu Photonics K. K. Connection substrate
WO2011129133A1 (en) * 2010-04-15 2011-10-20 浜松ホトニクス株式会社 Connection substrate
JP2012032292A (en) * 2010-07-30 2012-02-16 Rigaku Corp Semiconductor x-ray detector
WO2012015045A1 (en) * 2010-07-30 2012-02-02 株式会社リガク Semiconductor x-ray detector
JP2012105967A (en) * 2010-10-20 2012-06-07 Toshiba Corp Das detector and x-ray computed tomography device
JP2012118073A (en) * 2010-11-30 2012-06-21 General Electric Co <Ge> Detector array with through-via interposer
JP2014181935A (en) * 2013-03-18 2014-09-29 Shimadzu Corp Flat panel type radiation detector and manufacturing method of the same
US10802166B2 (en) * 2015-04-14 2020-10-13 Analogic Corporation Detector array for a radiation system, and related system
US11275187B2 (en) 2015-04-14 2022-03-15 Analogic Corporation Detector array for a radiation system, and related system
US20190235099A1 (en) * 2015-04-14 2019-08-01 Analogic Corporation Detector array for a radiation system, and related system
JP2018205031A (en) * 2017-05-31 2018-12-27 東芝電子管デバイス株式会社 Radiation detector
JP7007127B2 (en) 2017-07-28 2022-01-24 京セラ株式会社 Detection element mounting board, detection device and detection module
JP2019027887A (en) * 2017-07-28 2019-02-21 京セラ株式会社 Detection element mounted board, detector, and detection module
US11740367B2 (en) 2022-01-07 2023-08-29 Analogic Corporation Radiation detectors for scanning systems, and related scanning systems

Also Published As

Publication number Publication date
JP4722103B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4722103B2 (en) X-ray detector mounting circuit board and X-ray detector
JP4748161B2 (en) Multilayer wiring board and manufacturing method thereof
JP2009032936A (en) Wiring board for x-ray detecting element mounting, and x-ray detecting device
JP3266505B2 (en) Multilayer circuit board
JP5004669B2 (en) Imaging component, imaging unit, and manufacturing method thereof
TWI284402B (en) Build-up package and method of an optoelectronic chip
US10573591B2 (en) Electronic component mounting board, electronic device, and electronic module
CN110622300A (en) Electronic component mounting substrate, electronic device, and electronic module
JP5212359B2 (en) Multilayer wiring board and manufacturing method thereof
JP4722104B2 (en) X-ray detector mounting circuit board and X-ray detector
JP2014232851A (en) Electronic element mounting substrate and electronic device
JP2009054668A (en) Wiring board having x ray detecting element mounted thereon, and x ray detecting device
JP2019067973A (en) Substrate with built-in electronic component and method of manufacturing the same
JP2006270082A (en) Wiring board and electronic device using it
JP6605973B2 (en) Electronic component mounting package, electronic device and electronic module
JP6166194B2 (en) Wiring board, electronic device and electronic module
JP2014049590A (en) Wiring board and electronic device
JP2006185958A (en) Storage package for electronic components and electronic device
JP6666200B2 (en) Wiring board and electronic device
JP4057843B2 (en) Multilayer circuit board
JP6483526B2 (en) Electronic device substrate
JP6813379B2 (en) Detection element mounting board, detection device and detection module
JP6791771B2 (en) Detection element mounting board, detection device and detection module
JP7189061B2 (en) Circuit boards, probe cards and test equipment
JP7007127B2 (en) Detection element mounting board, detection device and detection module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees