JP2009074719A - Hot water supply system - Google Patents

Hot water supply system Download PDF

Info

Publication number
JP2009074719A
JP2009074719A JP2007242281A JP2007242281A JP2009074719A JP 2009074719 A JP2009074719 A JP 2009074719A JP 2007242281 A JP2007242281 A JP 2007242281A JP 2007242281 A JP2007242281 A JP 2007242281A JP 2009074719 A JP2009074719 A JP 2009074719A
Authority
JP
Japan
Prior art keywords
hot water
water supply
circuit
temperature
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007242281A
Other languages
Japanese (ja)
Other versions
JP4925983B2 (en
Inventor
Shinsuke Ise
伸介 伊勢
Toshiro Abe
敏郎 阿部
Masayoshi Obayashi
誠善 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007242281A priority Critical patent/JP4925983B2/en
Publication of JP2009074719A publication Critical patent/JP2009074719A/en
Application granted granted Critical
Publication of JP4925983B2 publication Critical patent/JP4925983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact hot water supply system capable of supplying a large amount of hot water while using a small hot water storage tank, in an instantaneous hot water supply system in which a pipe is kept warm by circulating the hot water in the pipe. <P>SOLUTION: A circulation circuit 5 is constituted to circulate a going-pipe 2, a circulation pump 3 and a returning-pipe 4 from the hot water storage tank 1, a bypass circuit 6 is disposed between the going-pipe 2 and the returning-pipe 4, and a valve 9 is disposed on the way of the bypass circuit 6. A water supply circuit 7 is connected on the way of the circulation circuit 5 at a downstream position with respect to a connecting portion of the going-pipe 2 and the bypass circuit 6, and an upstream position with respect to a connecting portion of the returning-pipe 4 and the bypass circuit 6. Further a hot water supply valve 8 is connected on the way of the circulation circuit 5 at a downstream position with respect to a connecting portion of the circulation circuit 5 and the water supply circuit 7, and an upstream position with respect to a connecting portion of the returning-pipe 4 and the bypass circuit 6 to supply hot water from a terminal end of the hot water supply valve 8. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、給湯システムに関するもので、特に貯湯槽の湯を配管内に循環させて配管内を保温する即湯式の給湯システムに関するものである。   The present invention relates to a hot water supply system, and more particularly, to an instant hot water supply system for keeping hot water in a pipe by circulating hot water in a hot water tank.

従来の給湯システムは、貯湯槽の湯をポンプ駆動により給湯配管に導き、給湯配管の終端から戻り配管で貯湯槽に戻す循環回路を設け、循環回路の途中に出湯口を設けている(例えば、特許文献1参照。)。
このような給湯システムでは、循環回路内に貯湯槽からの湯が循環しているため、配管から外部への放熱があっても、循環回路内の温度は充分に高く保温されている。そのため、出湯口を開くと、即時に高い温度の湯が出湯される利点がある。
A conventional hot water supply system has a circulation circuit that guides hot water in a hot water tank to a hot water supply pipe by driving a pump, returns the hot water from the end of the hot water supply pipe to the hot water tank by a return pipe, and has a hot water outlet in the middle of the circulation circuit (for example, (See Patent Document 1).
In such a hot water supply system, since the hot water from the hot water tank circulates in the circulation circuit, the temperature in the circulation circuit is kept sufficiently high even if heat is radiated from the pipe to the outside. Therefore, when the tap is opened, there is an advantage that hot water at a high temperature is immediately poured out.

特開昭63−91453号公報(第3〜4頁、図)Japanese Patent Laid-Open No. 63-91453 (pages 3-4, figure)

従来の給湯システムでは、出湯可能な湯の量は、貯湯槽に貯められた湯の量に限られる。そのため、大量の湯を出湯する必要がある場合には、大容量の貯湯槽を備える必要がある。一般に、貯湯槽が設置される場所は、建物の屋上など限られた空間であることが多い。そのため、設置空間の制限から大容量の貯湯槽を設置することができず、大量の湯の供給ができない場合があるという課題があった。
この発明は、上記のよう課題を解決するためになされたもので、主な目的は比較的小さな貯湯槽を用いながら大量の出湯が可能となる、コンパクトな給湯システムを得るものである。
In the conventional hot water supply system, the amount of hot water that can be discharged is limited to the amount of hot water stored in the hot water storage tank. Therefore, when it is necessary to discharge a large amount of hot water, it is necessary to provide a large-capacity hot water storage tank. In general, the place where the hot water tank is installed is often a limited space such as the roof of a building. Therefore, there was a problem that a large-capacity hot water storage tank could not be installed due to the limited installation space, and a large amount of hot water could not be supplied.
The present invention has been made to solve the above-described problems, and a main object of the present invention is to obtain a compact hot water supply system capable of discharging a large amount of hot water while using a relatively small hot water storage tank.

この発明に係る給湯システムは、
貯湯槽と、
貯湯槽内部の湯を導入する行き配管と、
行き配管の湯を吸入し、加圧送出する循環ポンプと、
循環ポンプが送出した湯を貯湯槽に戻す戻り配管とを備え、
行き配管、循環ポンプ、戻り配管からなる循環回路を形成し、
行き配管と戻り配管をつなぐバイパス回路と、
行き配管とバイパス回路の接続部より下流、かつ、戻り配管とバイパス回路との接続部より上流の循環回路上に接続された給水回路と、
循環回路と給水回路の接続部より下流、かつ、戻り配管とバイパス回路との接続部より上流の循環回路上に接続された出湯口を持ち、
バイパス回路に、バイパス回路を通る湯量を制限する流量制限手段を設け、
給水回路に、給水量を制限する給水制限手段とを備えるものである。
The hot water supply system according to the present invention is:
A hot water tank,
A piping for introducing hot water inside the hot water tank,
A circulation pump that draws in hot water from the outgoing pipe and delivers it under pressure;
A return pipe for returning the hot water sent out by the circulation pump to the hot water storage tank,
Form a circulation circuit consisting of outgoing piping, circulation pump, and return piping,
A bypass circuit connecting the outgoing and return pipes;
A water supply circuit connected on the circulation circuit downstream from the connecting portion between the outgoing piping and the bypass circuit and upstream from the connecting portion between the return piping and the bypass circuit;
It has a hot water outlet connected on the circulation circuit downstream from the connection part between the circulation circuit and the water supply circuit and upstream from the connection part between the return pipe and the bypass circuit,
The bypass circuit is provided with a flow rate limiting means for limiting the amount of hot water passing through the bypass circuit,
The water supply circuit is provided with water supply restriction means for restricting the amount of water supply.

この発明の給湯システムは、貯湯槽内の湯の温度を出湯する湯の温度より高くすることができるため、必要な出湯量よりも少ない容量の貯湯槽を用いることができるという効果がある。
また、循環回路内に湯を循環させて保温する保温温度を、貯湯槽内の湯の温度より低くすることができるので、出湯口を開いた直後に、高温の湯が出湯されることを防ぐことができる。
The hot water supply system of the present invention can increase the temperature of the hot water in the hot water storage tank higher than the temperature of the hot water to be discharged, so that it is possible to use a hot water storage tank having a smaller capacity than the required amount of hot water.
In addition, the temperature of the hot water circulating in the circulation circuit can be kept lower than the temperature of the hot water in the hot water tank, so that hot water is not discharged immediately after the hot water outlet is opened. be able to.

実施の形態1.
図1はこの発明の実施の形態1における給湯システムの配管回路を示すものである。
図において、貯湯槽1には行き配管2が接続され、行き配管2の終端は循環ポンプ3の吸入口に接続され、循環ポンプ3の吐出口には戻り配管4が接続され、戻り配管4の終端は貯湯槽1に接続され、行き配管2と循環ポンプ3と戻り配管4とからなる循環回路5(図示せず)を構成している。
行き配管2と戻り配管4の間には、バイパス回路6が設けられ、バイパス回路6の途中には流量制限手段である弁9が設けられている。
循環回路5の途中で、行き配管2とバイパス回路6の接続部よりも下流、かつ、戻り配管4とバイパス回路6の接続部よりも上流の位置、即ち、循環回路の内、バイアパス回路との接続部より循環ポンプ側の位置に、給水回路7が接続される。給水回路7は、市水を導入し、逆止弁12と減圧弁10(給水制限手段)を有している。
循環回路5の途中で、循環回路5と給水回路7の接続部よりも下流、かつ、戻り配管4とバイパス回路6の接続部よりも上流位置に、出湯弁8が接続され、出湯弁8の終端が出湯口となっている。
Embodiment 1 FIG.
FIG. 1 shows a piping circuit of a hot water supply system according to Embodiment 1 of the present invention.
In the figure, a going pipe 2 is connected to the hot water tank 1, an end of the going pipe 2 is connected to the suction port of the circulation pump 3, a return pipe 4 is connected to the discharge port of the circulation pump 3, and the return pipe 4 The end is connected to the hot water tank 1 and constitutes a circulation circuit 5 (not shown) including an outgoing pipe 2, a circulation pump 3 and a return pipe 4.
A bypass circuit 6 is provided between the outgoing pipe 2 and the return pipe 4, and a valve 9 serving as a flow restriction means is provided in the middle of the bypass circuit 6.
In the middle of the circulation circuit 5, a position downstream of the connection portion between the outgoing pipe 2 and the bypass circuit 6 and upstream of a connection portion between the return pipe 4 and the bypass circuit 6, that is, within the circulation circuit and the via-pass circuit The water supply circuit 7 is connected to the position closer to the circulation pump than the connection portion. The water supply circuit 7 introduces city water and has a check valve 12 and a pressure reducing valve 10 (water supply restriction means).
In the middle of the circulation circuit 5, a tap valve 8 is connected downstream of the connection between the circulation circuit 5 and the water supply circuit 7 and upstream of the connection between the return pipe 4 and the bypass circuit 6. The end is a tap.

次に動作について説明する。ここでは、貯湯槽1の貯湯温度を80℃としたときに、出湯温度を60℃とすることが可能であることを説明する。
給水回路7の逆止弁12により貯湯槽の湯が市水に逆流することは防止される。また、減圧弁10は二次側圧力が貯湯槽1のヘッドよりも小さいものを使用し、それにより、出湯しないときに給水が循環回路5に入ることを防いでいる。この例では、貯湯槽1のヘッドを10m、減圧弁10の二次側圧力(ヘッド)を9mとする。
貯湯槽1には、高温の湯が蓄えられている。この湯の温度をTaであらわし、Ta=80℃とする。
循環ポンプ3の駆動により、貯湯槽1の湯は、行き配管2に流れ込み、循環ポンプ3と戻り配管4を通り貯湯槽1に戻る。また、循環ポンプ3から戻り配管4に入った湯の一部は、バイパス回路6を通り、行き配管2に流れ込む。
Next, the operation will be described. Here, it will be described that when the hot water storage temperature of the hot water tank 1 is 80 ° C., the hot water temperature can be 60 ° C.
The check valve 12 of the water supply circuit 7 prevents the hot water in the hot water tank from flowing back into the city water. Further, the pressure reducing valve 10 uses a secondary side pressure smaller than that of the head of the hot water tank 1, thereby preventing water supply from entering the circulation circuit 5 when no hot water is discharged. In this example, the head of the hot water tank 1 is 10 m, and the secondary pressure (head) of the pressure reducing valve 10 is 9 m.
Hot water is stored in the hot water tank 1. The temperature of this hot water is expressed as Ta, and Ta = 80 ° C.
When the circulation pump 3 is driven, the hot water in the hot water tank 1 flows into the outgoing pipe 2 and returns to the hot water tank 1 through the circulation pump 3 and the return pipe 4. Further, part of the hot water that has entered the return pipe 4 from the circulation pump 3 flows into the outgoing pipe 2 through the bypass circuit 6.

出湯弁8が閉じられ、出湯口からの出湯がないときを考える。
行き配管2に流れ込む湯の、貯湯槽1からの量とバイパス回路6からの量の比率は、弁9の開度によって決まる。弁9の開度が小さければ、バイパス回路6からの流量が少なくなり、貯湯槽1からの湯が多くなる。逆に弁9の開度が大きければ、バイパス回路6からの流量が多くなり、貯湯槽1からの湯が少なくなる。ここでは、貯湯槽1からの量(Qa)とバイパス回路6からの量(Qb)の比が、
Qa:Qb=1:2
となるように弁9の開度が調整されている。
Consider a case where the tap valve 8 is closed and there is no tap from the tap.
The ratio of the amount of hot water flowing into the outgoing pipe 2 from the hot water storage tank 1 and the amount from the bypass circuit 6 is determined by the opening of the valve 9. If the opening degree of the valve 9 is small, the flow rate from the bypass circuit 6 decreases and the hot water from the hot water tank 1 increases. On the contrary, if the opening degree of the valve 9 is large, the flow rate from the bypass circuit 6 increases and the hot water from the hot water storage tank 1 decreases. Here, the ratio of the amount (Qa) from the hot water tank 1 to the amount (Qb) from the bypass circuit 6 is
Qa: Qb = 1: 2
The opening of the valve 9 is adjusted so that

配管から外部への放熱により、循環回路5を流れる湯の温度は低下する。戻り配管4とバイパス回路6の接続部の温度をTbであらわし、この温度が放熱によりTb=50℃まで低下するとする。バイパス回路6での放熱を無視すれば、行き配管2とバイパス回路6の接続部の直後の温度Tcは、以下で求まる。
Tc=( Ta×Qa + Tb×Qb )÷(Qa+Qb)
=(80×1+50×2)÷(1+2)
= 60 [℃]
The temperature of the hot water flowing through the circulation circuit 5 decreases due to heat radiation from the pipe to the outside. The temperature of the connection portion between the return pipe 4 and the bypass circuit 6 is represented by Tb, and this temperature is assumed to decrease to Tb = 50 ° C. due to heat radiation. If heat dissipation in the bypass circuit 6 is ignored, the temperature Tc immediately after the connecting portion between the outgoing pipe 2 and the bypass circuit 6 is obtained as follows.
Tc = (Ta × Qa + Tb × Qb) ÷ (Qa + Qb)
= (80 x 1 + 50 x 2) ÷ (1 + 2)
= 60 [℃]

循環回路5の、出湯弁8が接続された位置は、行き配管2とバイパス回路6の接続部よりも下流、かつ、戻り配管4とバイパス回路6の接続部よりも上流であるため、この位置の湯の温度は50〜60℃の範囲に保温されている。したがって、出湯弁8を開くと、50〜60℃の湯が即時に出湯される。   The position of the circulation circuit 5 where the outlet valve 8 is connected is downstream of the connecting part of the outgoing pipe 2 and the bypass circuit 6 and upstream of the connecting part of the return pipe 4 and the bypass circuit 6. The temperature of the hot water is kept in the range of 50-60 ° C. Therefore, when the tap valve 8 is opened, hot water of 50 to 60 ° C. is immediately poured out.

次に、出湯弁8が開けられ、出湯口から連続して出湯しているときを考える。
出湯量は充分に多く、バイパス回路6から行き配管2に流れ込む量や循環回路5から貯湯槽1に戻る量は無視できるとする。
貯湯槽1からの給湯のヘッドはHa=10mであり、給水については市水の供給圧が減圧弁10により減圧されHd=9mとなる。貯湯槽1から循環回路5と給水回路7との接続部までの流路抵抗R1、循環回路5と給水回路7との接続部から出湯口までの流路抵抗R2とし、R1とR2の比を
R1:R2=1:4
となるように配管を構成する。貯湯槽1から供給されて出湯口から出る湯量をQa、給水回路7から供給されて出湯口から出る湯量をQd=α×Qaとする。貯湯槽1から給水回路7との接続部までの圧力と流量の式は、ベルヌーイの定理より、
Ha−Hd=R1×Qa2
となる。また、給水回路7との接続部から出湯口までの圧力と流量の式は、同様にして、
Hd=R2×(1+α)2×Qa2
となる。これら2つの式に設定した値を入れ、αについて解くと、
α=0.5
となり、貯湯槽1からの流量と、給水回路7からの流量との比は、
Qa:Qd=1:α=1:0.5=2:1
になる。給水回路7から供給される給水温度をTd=20℃とすれば、出湯口から出る出湯温度Teは以下で求まる。
Te=( Ta×Qa + Td×Qd )÷(Qa+Qd)
=(80×2+20×1)÷(1+2)
= 60 [℃]
すなわち、出湯温度は60℃となる。
Next, consider the case where the tap valve 8 is opened and the hot water is continuously discharged from the tap.
It is assumed that the amount of discharged hot water is sufficiently large, and the amount flowing into the outgoing pipe 2 from the bypass circuit 6 and the amount returning from the circulation circuit 5 to the hot water tank 1 can be ignored.
The hot water supply head from the hot water storage tank 1 has Ha = 10 m, and the supply pressure of city water is reduced by the pressure reducing valve 10 for water supply, so that Hd = 9 m. The flow resistance R1 from the hot water tank 1 to the connection between the circulation circuit 5 and the water supply circuit 7 and the flow resistance R2 from the connection between the circulation circuit 5 and the water supply circuit 7 to the hot water outlet, and the ratio of R1 and R2 R1: R2 = 1: 4
The piping is configured so that Let Qa denote the amount of hot water supplied from the hot water tank 1 and exit from the hot water outlet, and let Qd = α × Qa denote the amount of hot water supplied from the water supply circuit 7 and emitted from the hot water outlet. From the Bernoulli's theorem, the pressure and flow equations from the hot water tank 1 to the connection with the water supply circuit 7 are
Ha−Hd = R1 × Qa2
It becomes. Moreover, the expression of the pressure and the flow rate from the connection part with the water supply circuit 7 to the hot water outlet is the same,
Hd = R2 × (1 + α) 2 × Qa2
It becomes. Put the values set in these two equations and solve for α,
α = 0.5
The ratio of the flow rate from the hot water tank 1 to the flow rate from the water supply circuit 7 is
Qa: Qd = 1: α = 1: 0.5 = 2: 1
become. If the feed water temperature supplied from the feed water circuit 7 is Td = 20 ° C., the tapping temperature Te that comes out from the tapping tap is obtained as follows.
Te = (Ta × Qa + Td × Qd) ÷ (Qa + Qd)
= (80 × 2 + 20 × 1) ÷ (1 + 2)
= 60 [℃]
That is, the tapping temperature is 60 ° C.

以上のように、貯湯槽1の湯の温度を80℃としても、出湯時の出湯温度を60℃にすることができる。これにより、出湯に必要な湯の全量を出湯温度と等しい60℃で貯湯槽に貯める場合に比べて、少ない容量の貯湯槽を使用することができ、コンパクトな給湯システムを構成できるという効果が得られる。
また、循環回路内に湯を循環させて保温する保温温度を、貯湯槽内の湯の温度より低くすることができるので、出湯口を開いた直後に、高温の湯が出湯されることを防ぐことができる。
As described above, even when the temperature of the hot water in the hot water storage tank 1 is 80 ° C., the temperature of the hot water at the time of hot water can be set to 60 ° C. As a result, compared to the case where the total amount of hot water required for hot water is stored in the hot water storage tank at 60 ° C., which is equal to the hot water temperature, a hot water storage tank with a smaller capacity can be used, and a compact hot water supply system can be constructed. It is done.
In addition, the temperature of the hot water circulating in the circulation circuit can be kept lower than the temperature of the hot water in the hot water tank, so that hot water is not discharged immediately after the hot water outlet is opened. be able to.

実施の形態2.
以上の実施の形態1では、貯湯槽1内の温度より低い出湯温度や保温温度を得るようにしたものであった。しかし、配管放熱や給水温度は季節や天候により変動し、また、貯湯槽のヘッドも湯の消費量により変化する。そのため、出湯温度や保温温度は必ずしも安定して得られるとは限らない。そこで、ここでは、上記の変動要因の影響を抑え、出湯温度や保温温度を安定して得る実施の形態を示す。
Embodiment 2. FIG.
In the first embodiment described above, a hot water temperature and a heat retaining temperature lower than the temperature in the hot water storage tank 1 are obtained. However, the heat radiation of the piping and the temperature of the water supply fluctuate depending on the season and weather, and the head of the hot water tank also changes depending on the amount of hot water consumed. Therefore, the tapping temperature and the heat retention temperature are not always obtained stably. Therefore, here, an embodiment in which the influence of the above-described fluctuation factors is suppressed and the hot water temperature and the heat insulation temperature are stably obtained will be described.

図2は、このような場合の、給湯システムの配管回路を示すものである。
貯湯槽1には80℃の湯が貯められている。貯湯槽1には行き配管2が接続され、行き配管2の終端は循環ポンプ3の吸入口に接続され、循環ポンプ3の吐出口には戻り配管4が接続され、戻り配管4の終端は貯湯槽1に接続され、行き配管2と循環ポンプ3と戻り配管4とからなる循環回路5を構成している。
FIG. 2 shows a piping circuit of the hot water supply system in such a case.
Hot water at 80 ° C. is stored in the hot water tank 1. The hot water storage tank 1 is connected to the outgoing pipe 2, the end of the outgoing pipe 2 is connected to the suction port of the circulation pump 3, the return pipe 4 is connected to the discharge port of the circulation pump 3, and the end of the return pipe 4 is the hot water storage. A circulation circuit 5 which is connected to the tank 1 and includes an outgoing pipe 2, a circulation pump 3 and a return pipe 4 is constituted.

行き配管2と戻り配管4の間には、バイパス回路6が設けられている。行き配管2とバイパス回路6の接続部は、貯湯槽1と行き配管2との接続部の直後の位置としている。バイパス回路6の途中には、電動で開度が変化可能な流量制御弁13(流量制限手段)が設けられている。また、戻り配管4とバイパス回路6の接続部と戻り配管4と貯湯槽1の接続部の間には抵抗調整弁(抵抗要素)14が設けられている。抵抗調整弁14は開度を変えることでその抵抗が変更可能となっている。   A bypass circuit 6 is provided between the outgoing pipe 2 and the return pipe 4. The connecting part between the outgoing pipe 2 and the bypass circuit 6 is located immediately after the connecting part between the hot water tank 1 and the outgoing pipe 2. In the middle of the bypass circuit 6, a flow control valve 13 (flow rate limiting means) is provided that can be electrically changed in opening. Further, a resistance adjustment valve (resistance element) 14 is provided between a connection portion between the return pipe 4 and the bypass circuit 6 and a connection portion between the return pipe 4 and the hot water tank 1. The resistance of the resistance adjusting valve 14 can be changed by changing the opening.

循環回路5の途中で、行き配管2とバイパス回路6の接続部よりも下流、かつ、戻り配管4とバイパス回路6の接続部よりも上流位置に、給水回路7が接続される。ここでは、給水回路7は、ヘッドが一定に保たれる高架水槽15と、電動で開度が変化可能な給水制御弁16(給水制限手段)を有している。
循環回路5の途中で、循環回路5と給水回路7の接続部よりも下流、かつ、戻り配管4とバイパス回路6の接続部よりも上流位置に、出湯弁8が接続され、出湯弁8の終端が出湯口となっている。
In the middle of the circulation circuit 5, the water supply circuit 7 is connected downstream of the connecting portion between the outgoing pipe 2 and the bypass circuit 6 and upstream of the connecting portion between the return pipe 4 and the bypass circuit 6. Here, the water supply circuit 7 has an elevated water tank 15 in which the head is kept constant, and a water supply control valve 16 (water supply restriction means) whose opening degree can be changed electrically.
In the middle of the circulation circuit 5, a tap valve 8 is connected downstream of the connection between the circulation circuit 5 and the water supply circuit 7 and upstream of the connection between the return pipe 4 and the bypass circuit 6. The end is a tap.

行き配管2とバイパス回路6の接続部と、循環回路5と給水回路7との接続部の間には、この位置の配管内の水温を計る保温温度センサ17が設けられている。循環回路5と給水回路7との接続部と、循環回路5と出湯弁8との接続部の間には、この位置の配管内部の水温を計る出湯温度センサ18が設けられている。   Between the connecting part of the outgoing pipe 2 and the bypass circuit 6 and the connecting part of the circulation circuit 5 and the water supply circuit 7, a heat retention temperature sensor 17 for measuring the water temperature in the pipe at this position is provided. Between the connection part of the circulation circuit 5 and the water supply circuit 7 and the connection part of the circulation circuit 5 and the tap water valve 8, the hot water temperature sensor 18 which measures the water temperature inside the piping of this position is provided.

図3は、保温温度センサ17からの信号の流れを示すブロック図である。
保温温度センサ17の信号は保温制御器19(流量制御手段)に入力される。保温温度設定器20には、たとえば操作盤からの入力や、メモリーへの書き込みにより、保温温度の設定値として55℃が設定される。保温温度センサ17の信号と保温温度設定器20の設定値が保温制御器19に入力され、保温制御器19は流量制御弁13を駆動する出力を出す。
FIG. 3 is a block diagram showing the flow of signals from the heat retention temperature sensor 17.
A signal from the heat retention temperature sensor 17 is input to a heat retention controller 19 (flow rate control means). For example, 55 ° C. is set as the set value of the heat insulation temperature in the heat insulation temperature setting device 20 by, for example, input from the operation panel or writing to the memory. The signal of the heat insulation temperature sensor 17 and the set value of the heat insulation temperature setter 20 are input to the heat insulation controller 19, and the heat insulation controller 19 outputs an output for driving the flow rate control valve 13.

図4は、出湯温度センサ18からの信号の流れを示すブロック図である。
出湯温度センサ18の信号は給水制御器21(給水制御手段)に入力される。出湯温度設定器22には、たとえば操作盤からの入力や、メモリーへの書き込みにより、出湯温度の設定値として60℃が設定される。出湯温度センサ18の信号と出湯温度設定器22の設定値が給水制御器21に入力され、給水制御器21は給水制御弁16を駆動する出力を出す。
FIG. 4 is a block diagram showing the flow of signals from the hot water temperature sensor 18.
The signal from the hot water temperature sensor 18 is input to the water supply controller 21 (water supply control means). In the tapping temperature setting unit 22, for example, 60 ° C. is set as a tapping temperature setting value by input from the operation panel or writing to the memory. A signal from the hot water temperature sensor 18 and a set value from the hot water temperature setting device 22 are input to the water supply controller 21, and the water supply controller 21 outputs an output for driving the water supply control valve 16.

次に動作について説明する。
循環ポンプ3の駆動により、貯湯槽1の湯は、行き配管2に流れ込み、循環ポンプ3と戻り配管4を通り貯湯槽1に戻る。また、循環ポンプ3から戻り配管4に入った湯の一部は、バイパス回路6を通り、行き配管2に流れ込む。
行き配管2に流れ込む湯の、貯湯槽1からの量とバイパス回路6からの量の比率は、図3の保温制御器19により制御される。保温制御器19は保温温度センサ17が測定した温度(出湯がない場合に、この温度が循環回路5の保温温度となる)と、保温温度設定器20で設定された保温温度設定値とを比較し、測定した保温温度が保温温度設定値よりも低いときは、これに対処するために流量制御弁13の開度を小さくし、バイパス回路6からの流量が少なく、貯湯槽1からの湯が多くなるようにして保温温度を上昇させ、保温温度が保温温度設定値と等しくなるように制御する。
Next, the operation will be described.
When the circulation pump 3 is driven, the hot water in the hot water tank 1 flows into the outgoing pipe 2 and returns to the hot water tank 1 through the circulation pump 3 and the return pipe 4. Further, part of the hot water that has entered the return pipe 4 from the circulation pump 3 flows into the outgoing pipe 2 through the bypass circuit 6.
The ratio of the amount of hot water flowing into the outgoing pipe 2 from the hot water storage tank 1 and the amount from the bypass circuit 6 is controlled by the heat retention controller 19 of FIG. The insulation controller 19 compares the temperature measured by the insulation temperature sensor 17 (this temperature becomes the insulation temperature of the circulation circuit 5 when there is no hot water) and the insulation temperature setting value set by the insulation temperature setting device 20. When the measured heat retention temperature is lower than the heat retention temperature set value, the opening degree of the flow rate control valve 13 is reduced to cope with this, the flow rate from the bypass circuit 6 is small, and the hot water from the hot water tank 1 is discharged. The heat retention temperature is increased so as to increase, and the heat retention temperature is controlled to be equal to the heat retention temperature set value.

行き配管2とバイパス回路6の接続部を、貯湯槽1と行き配管2との接続部の直後としたときのように、貯湯槽1から行き配管2とバイパス回路6の接続部までの長さが短くて流路抵抗が非常に小さい場合には、貯湯槽1からの湯が多すぎて、保温温度の制御が困難になる場合がある。そこで、このときは、戻り配管4とバイパス回路6の接続部と、戻り配管4と貯湯槽1の接続部の間に抵抗調整弁14を設けることで、貯湯槽1からの湯が多すぎないように調節する。   The length from the hot water tank 1 to the connecting part of the outgoing pipe 2 and the bypass circuit 6 as when the connecting part of the outgoing pipe 2 and the bypass circuit 6 is immediately after the connected part of the hot water tank 1 and the outgoing pipe 2 If the flow path resistance is very small, there may be too much hot water from the hot water storage tank 1 and it may be difficult to control the heat retention temperature. Therefore, at this time, there is not too much hot water from the hot water tank 1 by providing the resistance adjusting valve 14 between the connection part of the return pipe 4 and the bypass circuit 6 and the connection part of the return pipe 4 and the hot water tank 1. Adjust as follows.

経年変化による配管の流路抵抗の変化の影響や、季節による放熱条件の変化の影響で、保温制御器19や流量制御弁13の制御範囲内で保温温度の制御が困難になった場合には、抵抗調整弁14の開度を調整することで、流量バランスを調整し、保温制御器19や流量制御弁13の制御範囲内で保温温度の制御ができるようにする。   When it becomes difficult to control the heat insulation temperature within the control range of the heat insulation controller 19 and the flow rate control valve 13 due to the influence of the change in the flow resistance of the piping due to secular change and the influence of the change in the heat radiation condition due to the season. The flow rate balance is adjusted by adjusting the opening degree of the resistance adjustment valve 14 so that the heat insulation temperature can be controlled within the control range of the heat insulation controller 19 and the flow control valve 13.

給水回路7から循環回路5に流れ込む給水量は図4の給水制御器21により制御される。給水制御器21は出湯温度センサ18が測定した温度(出湯しているときは、この温度が出湯温度になる)と、出湯温度設定器22で設定された出湯温度設定値とを比較し、測定した出湯温度が出湯温度設定値よりも高いときは、これに対処するために給水制御弁16の開度を大きくし、給水回路7から循環回路5に流れ込む給水量を多くして出湯温度を低下させて、出湯温度が出湯温度設定値と等しくなるように制御する。なお、出湯温度センサ18が測定した湯の温度が出湯温度設定値よりも低いときは、給水制御弁16の開度を全閉として給水を停止し、湯の温度がさらに低下することを防ぐ。   The amount of water supplied from the water supply circuit 7 to the circulation circuit 5 is controlled by the water supply controller 21 shown in FIG. The feed water controller 21 compares the temperature measured by the tapping temperature sensor 18 (when it is tapped, this temperature becomes the tapping temperature) with the tapping temperature set value set by the tapping temperature setting unit 22 to measure the temperature. When the tapping temperature is higher than the tapping temperature set value, the opening of the feed water control valve 16 is increased to cope with this, and the tapping temperature is lowered by increasing the amount of feed water flowing into the circulation circuit 5 from the feed water circuit 7. Thus, the hot water temperature is controlled to be equal to the hot water temperature set value. When the hot water temperature measured by the hot water temperature sensor 18 is lower than the hot water temperature set value, the opening of the water supply control valve 16 is fully closed to stop the water supply and prevent the hot water temperature from further decreasing.

出湯弁8が閉じられ、出湯口からの出湯がないときを考える。行き配管2とバイパス回路6の接続部の下流の湯の温度は、先に述べた保温制御器19や流量制御弁13の働きで、保温温度設定値である55℃に制御されている。そのため、出湯温度センサ18が測定する温度は55℃となる。この温度は、出湯温度設定値の60℃よりも低い。給水制御器21は、給水制御弁16の開度を全閉として給水を停止するため、循環回路5および貯湯槽1に給水が入ることはない。従って、循環回路5および貯湯槽1の温度低下を起こすことはない。循環回路5の保温温度は55℃に保たれ、この状態から出湯弁8を開くと、55℃の湯が即時に出湯される。   Consider a case where the tap valve 8 is closed and there is no tap from the tap. The temperature of the hot water downstream of the connecting portion between the outgoing pipe 2 and the bypass circuit 6 is controlled to 55 ° C., which is the heat insulation temperature setting value, by the action of the heat insulation controller 19 and the flow rate control valve 13 described above. Therefore, the temperature measured by the tapping temperature sensor 18 is 55 ° C. This temperature is lower than the tapping temperature set value of 60 ° C. Since the water supply controller 21 stops the water supply with the opening of the water supply control valve 16 fully closed, the water supply does not enter the circulation circuit 5 and the hot water tank 1. Accordingly, the temperature of the circulation circuit 5 and the hot water tank 1 is not lowered. The heat retention temperature of the circulation circuit 5 is maintained at 55 ° C. When the hot water outlet valve 8 is opened from this state, hot water at 55 ° C. is immediately discharged.

出湯弁8が開けられ、出湯口から連続して出湯しているときは、貯湯槽1から行き配管2に大量の湯が流入する。保温温度センサ17が測定する温度は、貯湯温度80℃となる。この温度は、保温温度設定値の55℃より高いため、保温制御器19は流量制御弁13の開度を大きくするが、バイパス回路6を流れる循環流量よりも貯湯槽1からの出湯流量が大きいため、影響は小さい。そのため、行き配管2とバイパス回路6の接続部の下流でも、湯の温度は80℃とみなされる。この湯が、給水回路7との接続部を通過し、給水と混合される。給水の動作は、先に説明したように、給水制御器21により制御されるため、給水回路7との接続部より下流の湯の温度は60℃となり、この60℃の湯が出湯口から出湯される。   When the hot water valve 8 is opened and hot water is being continuously discharged from the hot water outlet, a large amount of hot water flows from the hot water storage tank 1 into the outgoing pipe 2. The temperature measured by the heat retention temperature sensor 17 is a hot water storage temperature of 80 ° C. Since this temperature is higher than the heat retention temperature set value of 55 ° C., the heat retention controller 19 increases the opening of the flow control valve 13, but the hot water flow rate from the hot water storage tank 1 is larger than the circulation flow rate flowing through the bypass circuit 6. Therefore, the impact is small. Therefore, the temperature of the hot water is regarded as 80 ° C. even downstream of the connecting portion between the outgoing pipe 2 and the bypass circuit 6. This hot water passes through the connection with the water supply circuit 7 and is mixed with the water supply. As described above, since the operation of the water supply is controlled by the water supply controller 21, the temperature of the hot water downstream from the connection portion with the water supply circuit 7 is 60 ° C., and this 60 ° C. hot water is discharged from the outlet. Is done.

以上のように、貯湯槽1の湯の温度を80℃としても、出湯時の出湯温度を60℃にすることができ、さらに、出湯温度を測定して制御しているため、季節や天候によらず、安定した出湯温度を得ることができる。これにより、出湯に必要な湯の全量を出湯温度と等しい60℃で貯湯槽に貯める場合に比べて、少ない容量の貯湯槽を使用することができ、コンパクトな給湯システムを構成できるという効果が得られる。
また、循環回路内に湯を循環させて保温する保温温度を55℃に保つことができ、出湯口を開いた直後から充分に温かくかつ熱すぎない温度で出湯が可能となる。
また、給水制御器21の制御目標である出湯温度設定値を、保温制御器19の制御目標である保温温度設定値よりも高く設定しているので、保温時には給水が行われず、循環回路5および貯湯槽1の温度低下を防ぐことができる。
また、行き配管2とバイパス回路6の接続部が、貯湯槽1と行き配管2との接続部の直後の位置であるため、流量制御弁13の開度を小さく変更してから、貯湯槽1の熱い湯が行き配管2とバイパス回路6の接続部に到達するまでの、時間差が小さいため良好な保温温度制御が行える。
また、戻り配管4とバイパス回路6の接続部と戻り配管4と貯湯槽1の接続部の間に抵抗調整弁14を設けているので、貯湯槽1から行き配管2とバイパス回路6の接続部までの長さが短くて流路抵抗が非常に小さい場合でも、保温温度の制御が可能となる。
また、抵抗調整弁14の抵抗を変更可能としているので、経年変化や放熱条件の変化の影響で保温温度の制御が困難になった場合には、抵抗調整弁14の開度を調整することで、保温温度の制御が可能となる。
As described above, even when the temperature of the hot water in the hot water storage tank 1 is 80 ° C., the temperature of the hot water at the time of hot water can be set to 60 ° C. Furthermore, since the temperature of the hot water is measured and controlled, Regardless, a stable tapping temperature can be obtained. As a result, compared to the case where the total amount of hot water required for hot water is stored in the hot water storage tank at 60 ° C., which is equal to the hot water temperature, a hot water storage tank with a smaller capacity can be used, and a compact hot water supply system can be constructed. It is done.
In addition, the heat-retaining temperature at which the hot water is circulated in the circulation circuit can be maintained at 55 ° C., and the hot water can be discharged at a temperature that is sufficiently warm and not too hot immediately after the hot water outlet is opened.
Moreover, since the hot water temperature setting value that is the control target of the water supply controller 21 is set higher than the heat retention temperature setting value that is the control target of the heat retention controller 19, water supply is not performed during the heat retention, and the circulation circuit 5 and The temperature drop of the hot water tank 1 can be prevented.
Moreover, since the connection part of the outgoing pipe 2 and the bypass circuit 6 is a position immediately after the connection part of the hot water tank 1 and the outgoing pipe 2, the hot water tank 1 is changed after the opening degree of the flow control valve 13 is changed small. Since the time difference until the hot water reaches the connecting portion between the going pipe 2 and the bypass circuit 6 is small, good temperature control can be performed.
Moreover, since the resistance adjustment valve 14 is provided between the connection part of the return pipe 4 and the bypass circuit 6 and the connection part of the return pipe 4 and the hot water tank 1, the connection part of the outgoing pipe 2 and the bypass circuit 6 from the hot water tank 1. Even when the length up to is short and the flow path resistance is very small, the heat insulation temperature can be controlled.
In addition, since the resistance of the resistance adjustment valve 14 can be changed, when the control of the heat insulation temperature becomes difficult due to the influence of secular change or change of the heat radiation condition, the opening of the resistance adjustment valve 14 can be adjusted. It is possible to control the heat insulation temperature.

実施の形態3.
以上の実施の形態2では、保温温度を測定して保温温度を制御し、出湯温度を測定して出湯温度を制御したものであった。この場合、以下に述べる不具合が生じる可能性がある。
保温制御器19が、保温温度の制御を行う方式として、例えばPI制御が用いられる。PI制御の追従性を高めるには、制御ゲインを大きく設定するが、このとき、オーバーシュートが発生する。オーバーシュート発生により、一時的に配管内の保温温度が出湯温度設定値を超えることがある。この出湯温度設定値を超えた湯が、出湯温度センサ18に達すると、これに対処するために、出湯温度センサ18の信号を受けた給水制御器21は給水制御弁16を開き、循環回路5に水を供給する。循環回路5には、出湯温度設定値を超えた高温の湯と、給水回路7からの給水が混合された低温の湯が連続して流れることになる。高温の湯と低温の湯の連続が、循環して保温温度センサ17に達すると、急激な温度変動の信号が保温制御器19に送られ、保温制御器19の制御がハンチングを起こし、保温温度が不安定になる。
Embodiment 3 FIG.
In Embodiment 2 described above, the temperature of the hot water is controlled by measuring the temperature of the hot water, and the temperature of the hot water is controlled by measuring the temperature of the hot water. In this case, the following problems may occur.
For example, PI control is used as a method in which the heat retention controller 19 controls the heat retention temperature. In order to improve the followability of PI control, a large control gain is set, but at this time, an overshoot occurs. Due to the occurrence of overshoot, the heat insulation temperature in the pipe may temporarily exceed the tapping temperature setting value. When hot water that exceeds this hot water temperature setting value reaches the hot water temperature sensor 18, the water supply controller 21 that has received a signal from the hot water temperature sensor 18 opens the water supply control valve 16 to deal with this, and the circulation circuit 5 To supply water. In the circulation circuit 5, high-temperature hot water exceeding the set temperature of the hot water and low-temperature hot water in which the water supplied from the water supply circuit 7 is mixed flow continuously. When a series of hot water and low temperature hot water circulates and reaches the heat insulation temperature sensor 17, a signal of rapid temperature fluctuation is sent to the heat insulation controller 19, and the control of the heat insulation controller 19 causes hunting and the heat insulation temperature. Becomes unstable.

そこで、ここでは、上記不具合を回避する実施の形態を示す。これは、出湯温度の制御において、保温温度の制御情報もあわせて利用するものである。
図5は、保温温度と出湯温度を制御する制御系のブロック図である。なお、給湯システムの配管回路は、実施の形態2と同じで、図2に示すものである。
保温温度センサ17の信号は保温制御器19に入力される。保温温度設定器20には、たとえば操作盤からの入力や、メモリーの書き込みにより、保温温度の設定値として55℃が設定される。保温温度センサ17の信号と保温温度設定器20の設定値が保温制御器19に入力され、保温制御器19は、保温温度センサ17が検出した保温温度が設定値になるように流量制御弁13を駆動する出力を出す。
出湯温度センサ18の信号は給水制御器21に入力される。出湯温度設定器22には、たとえば操作盤からの入力や、メモリーへの書き込みにより、出湯温度の設定値として60℃が設定される。
給水制御器21には、出湯温度センサ18の信号と出湯温度設定器22の設定値、さらに、保温制御器19からの信号が入力され、給水制御器21は出湯温度センサ18が検出した出湯温度が設定値60℃になるように給水制御弁16を駆動する出力を出す。
保温制御器19から給水制御器21に入力する信号は、オーバーシュートの発生の有無を示す信号(例えば積分器のデータが保温温度を上昇させる値であるかどうか)である。
給水制御器21は、保温制御器19からオーバーシュート発生を示す信号を受けた場合、これに対処するために給水制御弁16を閉じたままとする制御を行う。
Therefore, here, an embodiment for avoiding the above-described problems will be described. This also uses the control information of the heat retention temperature in the control of the tapping temperature.
FIG. 5 is a block diagram of a control system for controlling the heat retention temperature and the tapping temperature. The piping circuit of the hot water supply system is the same as that of the second embodiment and is shown in FIG.
A signal from the heat insulation temperature sensor 17 is input to the heat insulation controller 19. For example, 55 ° C. is set as a set value of the heat insulation temperature in the heat insulation temperature setting device 20 by, for example, input from the operation panel or writing in the memory. The signal of the heat insulation temperature sensor 17 and the set value of the heat insulation temperature setter 20 are input to the heat insulation controller 19, and the heat insulation controller 19 sets the flow rate control valve 13 so that the heat insulation temperature detected by the heat insulation temperature sensor 17 becomes the set value. Outputs driving.
The signal from the hot water temperature sensor 18 is input to the water supply controller 21. In the tapping temperature setting unit 22, for example, 60 ° C. is set as a tapping temperature setting value by input from the operation panel or writing to the memory.
The feed water controller 21 receives a signal from the hot water temperature sensor 18, a set value from the hot water temperature setter 22, and a signal from the heat retention controller 19, and the feed water controller 21 detects the hot water temperature detected by the hot water temperature sensor 18. Gives an output for driving the water supply control valve 16 so that the set value becomes 60 ° C.
The signal input from the heat retention controller 19 to the water supply controller 21 is a signal indicating whether or not an overshoot has occurred (for example, whether or not the integrator data is a value that increases the heat retention temperature).
When the water supply controller 21 receives a signal indicating the occurrence of overshoot from the heat retention controller 19, the water supply controller 21 performs control to keep the water supply control valve 16 closed in order to cope with this.

以上のような構成と制御動作としているため、オーバーシュートが発生した場合、保温制御器19から給水制御器21にオーバーシュート発生を示す信号が入力されているので、出湯温度センサ18が60℃を超える温度を測定したとしても、給水制御器21は給水制御弁16を閉じたままとし、循環回路5の温度変動を小さく抑える。これにより、制御のハンチングを予防し、安定した制御が可能となる。   Since the configuration and the control operation are as described above, when overshoot occurs, a signal indicating the occurrence of overshoot is input from the heat retention controller 19 to the water supply controller 21, so that the tapping temperature sensor 18 is set to 60 ° C. Even if the temperature exceeding the temperature is measured, the water supply controller 21 keeps the water supply control valve 16 closed to keep the temperature fluctuation of the circulation circuit 5 small. This prevents control hunting and enables stable control.

実施の形態4.
先に述べた実施の形態2のオーバーシュートの不具合を回避する、別の実施の形態を示す。これは、保温温度の制御において、出湯温度の制御情報もあわせて利用するものである。
図6は、保温温度と出湯温度を制御する制御系のブロック図である。なお、給湯システムの配管回路は、実施の形態2と同じで、図2に示すものである。
保温温度センサ17の信号は保温制御器19に入力される。保温温度設定器20には、たとえば操作盤からの入力や、メモリーの書き込みにより、保温温度の設定値として55℃が設定される。
出湯温度センサ18の信号は給水制御器21に入力される。出湯温度設定器22には、たとえば操作盤からの入力や、メモリーの書き込みにより、出湯温度の設定値として60℃が設定される。出湯温度センサ18の信号と出湯温度設定器22の設定値が給水制御器21に入力され、給水制御器21は給水制御弁16を駆動する出力を出す。
Embodiment 4 FIG.
Another embodiment for avoiding the overshoot defect of the second embodiment described above will be described. In this case, the control information of the tapping temperature is also used in the control of the heat retention temperature.
FIG. 6 is a block diagram of a control system that controls the heat retention temperature and the tapping temperature. The piping circuit of the hot water supply system is the same as that of the second embodiment and is shown in FIG.
A signal from the heat insulation temperature sensor 17 is input to the heat insulation controller 19. For example, 55 ° C. is set as a set value of the heat insulation temperature in the heat insulation temperature setting device 20 by, for example, input from the operation panel or writing in the memory.
The signal from the hot water temperature sensor 18 is input to the water supply controller 21. For example, 60 ° C. is set as the set value of the tapping temperature in the tapping temperature setting device 22 by, for example, input from the operation panel or writing in the memory. A signal from the hot water temperature sensor 18 and a set value from the hot water temperature setting device 22 are input to the water supply controller 21, and the water supply controller 21 outputs an output for driving the water supply control valve 16.

保温制御器19には、保温温度センサ17の信号と保温温度設定器20の設定値、さらに、給水制御器21からの信号が入力され、保温制御器19は流量制御弁13を駆動する出力を出す。
給水制御器21から保温制御器19に入力する信号は、オーバーシュートに対応した給水の発生の有無を示す信号(例えば短時間の給湯動作の発生の有無)である。
保温制御器19は、給水制御器21からオーバーシュートに対応した給水発生を示す信号を受けた場合、これに対処するために制御ゲインを小さくして制御を行う。
A signal from the heat retention temperature sensor 17, a set value from the heat retention temperature setting device 20, and a signal from the water supply controller 21 are input to the heat retention controller 19, and the heat retention controller 19 outputs an output for driving the flow control valve 13. put out.
The signal input from the water supply controller 21 to the heat retention controller 19 is a signal indicating whether or not the water supply corresponding to the overshoot occurs (for example, whether or not a short time hot water supply operation occurs).
When the heat retention controller 19 receives a signal indicating the occurrence of water supply corresponding to the overshoot from the water supply controller 21, the heat retention controller 19 performs control by reducing the control gain to cope with this.

以上のような構成と制御動作としているため、オーバーシュートの影響で給水回路7からの給水が発生した場合、給水制御器21から保温制御器19に給水発生を示す信号が入力されるので、保温温度センサ17が急激な温度変動測定したとしても、保温制御器19は制御ゲインを小さくし、循環回路5の温度変動を小さく抑える。これにより、制御のハンチングを予防し、安定した制御が可能となる。   Since the above-described configuration and control operation are performed, when water supply from the water supply circuit 7 occurs due to the influence of overshoot, a signal indicating the occurrence of water supply is input from the water supply controller 21 to the heat retention controller 19. Even if the temperature sensor 17 measures an abrupt temperature fluctuation, the heat retention controller 19 reduces the control gain and keeps the temperature fluctuation of the circulation circuit 5 small. This prevents control hunting and enables stable control.

実施の形態5.
以上の実施の形態2〜4では、バイパス回路に流量制御弁を設けたものであるが、戻り配管に流量制御弁を設けた場合の実施の形態を示す。
図7は、このような場合の、給湯システムの配管回路を示すものである。
貯湯槽1には80℃の湯が貯められている。貯湯槽1には行き配管2が接続され、行き配管2の終端は循環ポンプ3の吸入口に接続され、循環ポンプ3の吐出口には戻り配管4が接続され、戻り配管4の終端は貯湯槽1に接続され、行き配管2と循環ポンプ3と戻り配管4とからなる循環回路5を構成している。
Embodiment 5 FIG.
In the above second to fourth embodiments, the flow rate control valve is provided in the bypass circuit, but an embodiment in which the flow rate control valve is provided in the return pipe is shown.
FIG. 7 shows a piping circuit of the hot water supply system in such a case.
Hot water at 80 ° C. is stored in the hot water tank 1. The hot water storage tank 1 is connected to the outgoing pipe 2, the end of the outgoing pipe 2 is connected to the suction port of the circulation pump 3, the return pipe 4 is connected to the discharge port of the circulation pump 3, and the end of the return pipe 4 is the hot water storage. A circulation circuit 5 which is connected to the tank 1 and includes an outgoing pipe 2, a circulation pump 3 and a return pipe 4 is constituted.

行き配管2と戻り配管4の間には、バイパス回路6が設けられている。行き配管2とバイパス回路6の接続部は、貯湯槽1と行き配管2との接続部の直後の位置としている。バイパス回路6の途中には抵抗調整弁14が設けられている。抵抗調整弁14は開度を変えることでその抵抗が変更可能となっている。また、戻り配管4とバイパス回路6の接続部と戻り配管4と貯湯槽1の接続部の間には、電動で開度が変化可能な流量制御弁13が設けられている。   A bypass circuit 6 is provided between the outgoing pipe 2 and the return pipe 4. The connecting part between the outgoing pipe 2 and the bypass circuit 6 is located immediately after the connecting part between the hot water tank 1 and the outgoing pipe 2. A resistance adjustment valve 14 is provided in the middle of the bypass circuit 6. The resistance of the resistance adjusting valve 14 can be changed by changing the opening. In addition, a flow rate control valve 13 whose opening degree can be changed electrically is provided between a connection portion between the return pipe 4 and the bypass circuit 6 and a connection portion between the return pipe 4 and the hot water tank 1.

循環回路5の途中で、行き配管2とバイパス回路6の接続部よりも下流、かつ、戻り配管4とバイパス回路6の接続部よりも上流位置に、給水回路7が接続される。ここでは、給水回路7は、ヘッドが一定に保たれる高架水槽15と、電動で開度が変化可能な給水制御弁16を有している。
循環回路5の途中で、循環回路5と給水回路7の接続部よりも下流、かつ、戻り配管4とバイパス回路6の接続部よりも上流位置に、出湯弁8が接続され、出湯弁8の終端が出湯口となっている。
In the middle of the circulation circuit 5, the water supply circuit 7 is connected downstream of the connecting portion between the outgoing pipe 2 and the bypass circuit 6 and upstream of the connecting portion between the return pipe 4 and the bypass circuit 6. Here, the water supply circuit 7 has an elevated water tank 15 in which the head is kept constant, and a water supply control valve 16 whose opening degree can be changed electrically.
In the middle of the circulation circuit 5, a tap valve 8 is connected downstream of the connection between the circulation circuit 5 and the water supply circuit 7 and upstream of the connection between the return pipe 4 and the bypass circuit 6. The end is a tap.

行き配管2とバイパス回路6の接続部と、循環回路5と給水回路7との接続部の間には、この位置の配管内の水温を計る保温温度センサ17が設けられている。循環回路5と給水回路7との接続部と、循環回路5と出湯弁8との接続部の間には、この位置の配管内部の水温を計る出湯温度センサ18が設けられている。
保温温度センサ17からの信号の流れを示すブロック図は、実施の形態2と同一で、図3に示される。
出湯温度センサ18からの信号の流れを示すブロック図は、実施の形態2と同一で、図4に示される。
Between the connecting part of the outgoing pipe 2 and the bypass circuit 6 and the connecting part of the circulation circuit 5 and the water supply circuit 7, a heat retention temperature sensor 17 for measuring the water temperature in the pipe at this position is provided. Between the connection part of the circulation circuit 5 and the water supply circuit 7 and the connection part of the circulation circuit 5 and the tap water valve 8, the hot water temperature sensor 18 which measures the water temperature inside the piping of this position is provided.
A block diagram showing the flow of signals from the heat insulation temperature sensor 17 is the same as that of the second embodiment, and is shown in FIG.
A block diagram showing a flow of signals from the tapping temperature sensor 18 is the same as that of the second embodiment and is shown in FIG.

次に動作について説明する。
循環ポンプ3の駆動により、貯湯槽1の湯は、行き配管2に流れ込み、循環ポンプ3と戻り配管4を通り貯湯槽1に戻る。また、循環ポンプ3から戻り配管4に入った湯の一部は、バイパス回路6を通り、行き配管2に流れ込む。
行き配管2に流れ込む湯の、貯湯槽1からの量とバイパス回路6からの量の比率は、保温制御器19により制御される。保温制御器19は保温温度センサ17が測定した温度(出湯がない場合に、この温度が循環回路5の保温温度となる)と、保温温度設定器20で設定された保温温度設定値とを比較し、測定した保温温度が保温温度設定値よりも低いときは、これに対処するために流量制御弁13の開度を大きくし、貯湯槽1からの湯が多く、バイパス回路6からの流量が少なくなるようにして保温温度を上昇させ、保温温度が保温温度設定値と等しくなるように制御する。また、測定した保温温度が保温温度設定値よりも高いときは、流量制御弁13を全閉とすることで、貯湯槽1からの湯を使用することなく、バイパス回路6のみを使った循環とし、保温温度を低下させ、保温温度が保温温度設定値と等しくなるように制御する。
Next, the operation will be described.
When the circulation pump 3 is driven, the hot water in the hot water tank 1 flows into the outgoing pipe 2 and returns to the hot water tank 1 through the circulation pump 3 and the return pipe 4. Further, part of the hot water that has entered the return pipe 4 from the circulation pump 3 flows into the outgoing pipe 2 through the bypass circuit 6.
The ratio of the amount of hot water flowing into the outgoing pipe 2 from the hot water storage tank 1 and the amount from the bypass circuit 6 is controlled by a heat retention controller 19. The insulation controller 19 compares the temperature measured by the insulation temperature sensor 17 (this temperature becomes the insulation temperature of the circulation circuit 5 when there is no hot water) and the insulation temperature setting value set by the insulation temperature setting device 20. When the measured heat retention temperature is lower than the heat retention temperature set value, the opening degree of the flow control valve 13 is increased in order to cope with this, the amount of hot water from the hot water tank 1 is large, and the flow rate from the bypass circuit 6 is increased. The heat retention temperature is increased so as to decrease, and the heat retention temperature is controlled to be equal to the heat retention temperature set value. In addition, when the measured temperature is higher than the temperature setting value, the flow control valve 13 is fully closed so that circulation from the bypass circuit 6 alone is performed without using hot water from the hot water tank 1. Then, the heat insulation temperature is lowered, and the heat insulation temperature is controlled to be equal to the heat insulation temperature set value.

バイパス回路6の長さが短く、バイパス回路6の流路抵抗が非常に小さい場合には、バイパス回路6から行き配管2に流れ込む湯が多すぎて、保温温度の制御が困難になる場合がある。そこで、このときは、バイパス回路6に抵抗調整弁14を設けることで、バイパス回路6からの湯が多すぎないように調節する。   When the length of the bypass circuit 6 is short and the flow path resistance of the bypass circuit 6 is very small, there is a case where there is too much hot water flowing into the outgoing pipe 2 from the bypass circuit 6 and it becomes difficult to control the heat insulation temperature. . Therefore, at this time, the resistance adjustment valve 14 is provided in the bypass circuit 6 so that the amount of hot water from the bypass circuit 6 is adjusted so as not to be excessive.

経年変化による配管の流路抵抗の変化の影響や、季節による放熱条件の変化の影響で、保温制御器19や流量制御弁13の制御範囲内で保温温度の制御が困難になった場合には、抵抗調整弁14の開度を調整することで、流量バランスを調整し、保温制御器19や流量制御弁13の制御範囲内で保温温度の制御ができるようにする。   When it becomes difficult to control the heat insulation temperature within the control range of the heat insulation controller 19 and the flow rate control valve 13 due to the influence of the change in the flow resistance of the piping due to secular change and the influence of the change in the heat radiation condition due to the season. The flow rate balance is adjusted by adjusting the opening degree of the resistance adjustment valve 14 so that the heat insulation temperature can be controlled within the control range of the heat insulation controller 19 and the flow control valve 13.

給水回路7から循環回路5に流れ込む給水量は図4の給水制御器21により制御される。給水制御器21は出湯温度センサ18が測定した温度(出湯しているときは、この温度が出湯温度になる)と、出湯温度設定器22で設定された出湯温度設定値とを比較し、測定した出湯温度が出湯温度設定値よりも高いときは、これに対処するために給水制御弁16の開度を大きくし、給水回路7から循環回路5に流れ込む給水量を多くして出湯温度を低下させて、出湯温度が出湯温度設定値と等しくなるように制御する。なお、出湯温度センサ18が測定した湯の温度が出湯温度設定値よりも低いときは、給水制御弁16の開度を全閉として給水を停止し、湯の温度がさらに低下することを防ぐ。   The amount of water supplied from the water supply circuit 7 to the circulation circuit 5 is controlled by the water supply controller 21 shown in FIG. The feed water controller 21 compares the temperature measured by the tapping temperature sensor 18 (when it is tapped, this temperature becomes the tapping temperature) with the tapping temperature set value set by the tapping temperature setting unit 22 to measure the temperature. When the tapping temperature is higher than the tapping temperature set value, the opening of the feed water control valve 16 is increased to cope with this, and the tapping temperature is lowered by increasing the amount of feed water flowing into the circulation circuit 5 from the feed water circuit 7. Thus, the hot water temperature is controlled to be equal to the hot water temperature set value. When the hot water temperature measured by the hot water temperature sensor 18 is lower than the hot water temperature set value, the opening of the water supply control valve 16 is fully closed to stop the water supply and prevent the hot water temperature from further decreasing.

出湯弁8が閉じられ、出湯口からの出湯がないときを考える。行き配管2とバイパス回路6の接続部の下流の湯の温度は、先に述べた保温制御器19や流量制御弁13の働きで、保温温度設定値である55℃に制御されている。そのため、出湯温度センサ18が測定する温度は55℃となる。この温度は、出湯温度設定値の60℃よりも低い。図4の給水制御器21は、給水制御弁16の開度を全閉として給水を停止するため、循環回路5および貯湯槽1に給水が入ることはない。従って、循環回路5および貯湯槽1の温度低下を起こすことはない。このため、循環回路5の保温温度は55℃に保たれ、この状態から出湯弁8を開くと、55℃の湯が即時に出湯される。   Consider a case where the tap valve 8 is closed and there is no tap from the tap. The temperature of the hot water downstream of the connecting portion between the outgoing pipe 2 and the bypass circuit 6 is controlled to 55 ° C., which is the heat insulation temperature setting value, by the action of the heat insulation controller 19 and the flow rate control valve 13 described above. Therefore, the temperature measured by the tapping temperature sensor 18 is 55 ° C. This temperature is lower than the tapping temperature set value of 60 ° C. Since the water supply controller 21 in FIG. 4 stops the water supply with the opening of the water supply control valve 16 fully closed, the water supply does not enter the circulation circuit 5 and the hot water tank 1. Accordingly, the temperature of the circulation circuit 5 and the hot water tank 1 is not lowered. For this reason, the heat retention temperature of the circulation circuit 5 is maintained at 55 ° C. When the hot water valve 8 is opened from this state, hot water at 55 ° C. is immediately discharged.

出湯弁8が開けられ、出湯口から連続して出湯しているときは、貯湯槽1から行き配管2に大量の湯が流入する。保温温度センサ17が測定する温度は、貯湯温度80℃となる。この温度は、保温温度設定値の55℃より高いため、保温制御器19は流量制御弁13の開度を小さくするが、バイパス回路6を流れる循環流量よりも貯湯槽1からの出湯流量が大きいため、影響は小さい。そのため、行き配管2とバイパス回路6の接続部の下流でも、湯の温度は80℃とみなされる。この湯が、給水回路7との接続部を通過し、給水と混合される。給水の動作は、先に説明したように、給水制御器21により制御されるため、給水回路7との接続部より下流の湯の温度は60℃となり、この60℃の湯が出湯口から出湯される。   When the hot water valve 8 is opened and hot water is being continuously discharged from the hot water outlet, a large amount of hot water flows from the hot water storage tank 1 into the outgoing pipe 2. The temperature measured by the heat retention temperature sensor 17 is a hot water storage temperature of 80 ° C. Since this temperature is higher than the heat retention temperature set value of 55 ° C., the heat retention controller 19 reduces the opening degree of the flow control valve 13, but the hot water flow rate from the hot water tank 1 is larger than the circulation flow rate flowing through the bypass circuit 6. Therefore, the impact is small. Therefore, the temperature of the hot water is regarded as 80 ° C. even downstream of the connecting portion between the outgoing pipe 2 and the bypass circuit 6. This hot water passes through the connection with the water supply circuit 7 and is mixed with the water supply. As described above, since the operation of the water supply is controlled by the water supply controller 21, the temperature of the hot water downstream from the connection portion with the water supply circuit 7 is 60 ° C., and this 60 ° C. hot water is discharged from the outlet. Is done.

以上のように、貯湯槽1の湯の温度を80℃としても、出湯時の出湯温度を60℃にすることができ、さらに、出湯温度を測定して制御しているため、季節や天候によらず、安定した出湯温度を得ることができる。これにより、出湯に必要な湯の全量を出湯温度と等しい60℃で貯湯槽に貯める場合に比べて、少ない容量の貯湯槽を使用することができ、コンパクトな給湯システムを構成できるという効果が得られる。
また、循環回路内に湯を循環させて保温する保温温度を55℃に保つことができ、出湯口を開いた直後から充分に温かくかつ熱すぎない温度で出湯が可能となる。
As described above, even when the temperature of the hot water in the hot water storage tank 1 is 80 ° C., the temperature of the hot water at the time of hot water can be set to 60 ° C. Furthermore, since the temperature of the hot water is measured and controlled, Regardless, a stable tapping temperature can be obtained. As a result, compared to the case where the total amount of hot water required for hot water is stored in the hot water storage tank at 60 ° C., which is equal to the hot water temperature, a hot water storage tank with a smaller capacity can be used, and a compact hot water supply system can be constructed. It is done.
In addition, the heat-retaining temperature at which the hot water is circulated in the circulation circuit can be maintained at 55 ° C., and the hot water can be discharged at a temperature that is sufficiently warm and not too hot immediately after the hot water outlet is opened.

さらに、流量制御弁13を、戻り配管4とバイパス回路6の接続部と戻り配管4と貯湯槽1の接続部の間に設けたことで、出湯がないときの保温温度が保温温度設定値よりも高いときは、流量制御弁13を全閉とすることで、貯湯槽1の湯を全く使用せず、貯湯槽1の貯湯温度を高く保つことができる。
また、行き配管2とバイパス回路6の接続部が、貯湯槽1と行き配管2との接続部の直後の位置であるため、流量制御弁13の開度を大きく変更してから、貯湯槽1の熱い湯が行き配管2とバイパス回路6の接続部に到達するまでの、時間差が小さいため良好な保温温度制御が行える。
また、バイパス回路6に抵抗調整弁14を設けているので、バイパス回路6の長さが短くて流路抵抗が非常に小さい場合でも、保温温度の制御が可能となる。
また、抵抗調整弁14の抵抗を変更可能としているので、経年変化や放熱条件の変化の影響で保温温度の制御が困難になった場合には、抵抗調整弁14の開度を調整することで、保温温度の制御が可能となる。
Furthermore, by providing the flow rate control valve 13 between the connection part of the return pipe 4 and the bypass circuit 6 and the connection part of the return pipe 4 and the hot water tank 1, the heat insulation temperature when there is no hot water is higher than the heat insulation temperature set value. If it is too high, the flow rate control valve 13 is fully closed, so that the hot water in the hot water tank 1 is not used at all, and the hot water temperature in the hot water tank 1 can be kept high.
Moreover, since the connection part of the outgoing pipe 2 and the bypass circuit 6 is a position immediately after the connection part of the hot water storage tank 1 and the outgoing pipe 2, the opening degree of the flow control valve 13 is largely changed before the hot water storage tank 1 Since the time difference until the hot water reaches the connecting portion between the going pipe 2 and the bypass circuit 6 is small, good temperature control can be performed.
Further, since the resistance adjusting valve 14 is provided in the bypass circuit 6, even when the length of the bypass circuit 6 is short and the flow path resistance is very small, the heat insulation temperature can be controlled.
In addition, since the resistance of the resistance adjustment valve 14 can be changed, when the control of the heat insulation temperature becomes difficult due to the influence of secular change or change of the heat radiation condition, the opening of the resistance adjustment valve 14 can be adjusted. It is possible to control the heat insulation temperature.

なお、保温温度の変動がある程度許容されるのであれば、流量制御弁13の開度を固定としてもよい。同様に、出湯温度の変動がある程度許容されるのであれば、給水制御弁16に代えて逆止弁と減圧弁を用いて出湯時の給水量を一定とすることも可能である。
また、図5に示すように、給水制御器21には、出湯温度センサ18の信号と出湯温度設定器22の設定値、さらに、保温制御器19からの信号が入力され、給水制御器21は給水制御弁16を駆動する出力を出す構成としてもよい。実施の形態3と同様に、温度制御の安定性の向上が可能となる。
Note that the opening degree of the flow control valve 13 may be fixed as long as the variation in the heat retention temperature is allowed to some extent. Similarly, if the fluctuation of the tapping temperature is allowed to some extent, it is possible to use a check valve and a pressure reducing valve in place of the feed water control valve 16 to make the water supply amount at the time of tapping hot water constant.
As shown in FIG. 5, the feed water controller 21 receives a signal from the hot water temperature sensor 18, a set value from the hot water temperature setter 22, and a signal from the heat retention controller 19. It is good also as a structure which outputs the output which drives the water supply control valve 16. FIG. As in the third embodiment, the stability of temperature control can be improved.

さらに、図6に示すように、保温制御器19には、保温温度センサ17の信号と保温温度設定器20の設定値、さらに、給水制御器21からの信号が入力され、保温制御器19は流量制御弁13を駆動する出力を出す構成としてもよい。実施の形態4と同様に、温度制御の安定性の向上が可能となる。   Further, as shown in FIG. 6, a signal from the heat retention temperature sensor 17, a set value from the heat retention temperature setter 20, and a signal from the water supply controller 21 are input to the heat retention controller 19. It is good also as a structure which outputs the output which drives the flow control valve 13. FIG. Similar to the fourth embodiment, the stability of temperature control can be improved.

実施の形態6.
以上の実施の形態1〜5では、循環回路の保温のために貯湯槽の湯を直接循環回路に流入させていたが、循環回路を循環する湯と貯湯槽内の湯との熱交換により保温する場合の実施の形態を示す。
図8は、このような場合の、給湯システムの配管回路を示すものである。
貯湯槽1には80℃の湯が貯められている。貯湯槽1の内部には、熱交換器23が設けられ、熱交換器23の出口には行き配管2が接続され、行き配管2の終端は循環ポンプ3の吸入口に接続され、循環ポンプ3の吐出口には戻り配管4が接続され、戻り配管4の終端は熱交換器23の入口に接続され、行き配管2と循環ポンプ3と戻り配管4とからなる循環回路5を構成している。
Embodiment 6 FIG.
In Embodiments 1 to 5 described above, hot water in the hot water tank is directly flowed into the circulation circuit in order to keep the circulation circuit warm, but the heat is maintained by heat exchange between the hot water circulating in the circulation circuit and the hot water in the hot water tank. The embodiment in the case where it does is shown.
FIG. 8 shows a piping circuit of a hot water supply system in such a case.
Hot water at 80 ° C. is stored in the hot water tank 1. A heat exchanger 23 is provided inside the hot water tank 1, and the outgoing pipe 2 is connected to the outlet of the heat exchanger 23, and the end of the outgoing pipe 2 is connected to the suction port of the circulation pump 3. A return pipe 4 is connected to the discharge port, and an end of the return pipe 4 is connected to an inlet of the heat exchanger 23 to constitute a circulation circuit 5 including the outgoing pipe 2, the circulation pump 3, and the return pipe 4. .

行き配管2と戻り配管4の間には、バイパス回路6が設けられている。行き配管2とバイパス回路6の接続部は、熱交換器23と行き配管2との接続部の直後の位置としている。バイパス回路6の途中には、電動で開度が変化可能な流量制御弁13が設けられている。また、戻り配管4とバイパス回路6の接続部と戻り配管4と熱交換器23の接続部の間には抵抗調整弁14が設けられている。抵抗調整弁14は開度を変えることでその抵抗が変更可能となっている。   A bypass circuit 6 is provided between the outgoing pipe 2 and the return pipe 4. The connecting portion between the outgoing pipe 2 and the bypass circuit 6 is located immediately after the connecting portion between the heat exchanger 23 and the outgoing pipe 2. In the middle of the bypass circuit 6, a flow control valve 13 whose opening degree can be changed electrically is provided. Further, a resistance adjusting valve 14 is provided between the connection portion of the return pipe 4 and the bypass circuit 6 and the connection portion of the return pipe 4 and the heat exchanger 23. The resistance of the resistance adjusting valve 14 can be changed by changing the opening.

循環回路5の途中で、行き配管2とバイパス回路6の接続部よりも下流、かつ、戻り配管4とバイパス回路6の接続部よりも上流位置に、給湯回路24が接続される。給湯回路24は、逆止弁11を介して貯湯槽1に接続され、貯湯槽1の湯を循環回路5に供給する。
給湯回路24の途中には、給水回路7が接続される。ここでは、給水回路7は、ヘッドが一定に保たれる高架水槽15と、電動で開度が変化可能な給水制御弁16を有している。
循環回路5の途中で、循環回路5と給湯回路24の接続部よりも下流、かつ、戻り配管4とバイパス回路6の接続部よりも上流位置に、出湯弁8が接続され、出湯弁8の終端が出湯口となっている。
In the middle of the circulation circuit 5, the hot water supply circuit 24 is connected downstream of the connecting portion between the outgoing pipe 2 and the bypass circuit 6 and upstream of the connecting portion between the return pipe 4 and the bypass circuit 6. The hot water supply circuit 24 is connected to the hot water tank 1 via the check valve 11 and supplies hot water from the hot water tank 1 to the circulation circuit 5.
A water supply circuit 7 is connected in the middle of the hot water supply circuit 24. Here, the water supply circuit 7 has an elevated water tank 15 in which the head is kept constant, and a water supply control valve 16 whose opening degree can be changed electrically.
In the middle of the circulation circuit 5, a tap valve 8 is connected downstream of the connection portion of the circulation circuit 5 and the hot water supply circuit 24 and upstream of the connection portion of the return pipe 4 and the bypass circuit 6. The end is a tap.

行き配管2とバイパス回路6の接続部と、循環回路5と給湯回路24との接続部の間には、この位置の配管内の水温を計る保温温度センサ17が設けられている。給湯回路24と給水回路7との接続部と、循環回路5と給湯回路24との接続部の間には、この位置の配管内部の水温を計る出湯温度センサ18が設けられている。
保温温度センサ17からの信号の流れを示すブロック図は、実施の形態2と同一で、図3に示される。
出湯温度センサ18からの信号の流れを示すブロック図は、実施の形態2と同一で、図4に示される。
Between the connecting part of the outgoing pipe 2 and the bypass circuit 6 and the connecting part of the circulation circuit 5 and the hot water supply circuit 24, a heat retaining temperature sensor 17 for measuring the water temperature in the pipe at this position is provided. Between the connection part of the hot water supply circuit 24 and the water supply circuit 7 and the connection part of the circulation circuit 5 and the hot water supply circuit 24, a hot water temperature sensor 18 for measuring the water temperature inside the pipe at this position is provided.
A block diagram showing the flow of signals from the heat insulation temperature sensor 17 is the same as that of the second embodiment, and is shown in FIG.
A block diagram showing a flow of signals from the tapping temperature sensor 18 is the same as that of the second embodiment and is shown in FIG.

次に動作について説明する。
循環ポンプ3の駆動により、循環回路5の湯が熱交換器23に送られる。熱交換器23を通り、貯湯槽1と熱交換を行って、高温となった湯は、行き配管2に流れ込み、循環ポンプ3と戻り配管4を通り、熱交換器23に送られる。また、循環ポンプ3から戻り配管4に入った湯の一部は、バイパス回路6を通り、行き配管2に流れ込む。
行き配管2に流れ込む湯の、熱交換器23からの量とバイパス回路6からの量の比率は、保温制御器19により制御される。保温制御器19は保温温度センサ17が測定した温度(循環回路5の保温温度)と、保温温度設定器20で設定された保温温度設定値(55℃)とを比較し、測定した保温温度が保温温度設定値よりも低いときは、これに対処するために流量制御弁13の開度を小さくし、バイパス回路6からの流量が少なく、熱交換器23からの湯が多くなるようにして保温温度を上昇させ、保温温度が保温温度設定値と等しくなるように制御する。
Next, the operation will be described.
The hot water in the circulation circuit 5 is sent to the heat exchanger 23 by driving the circulation pump 3. The hot water that has passed through the heat exchanger 23 and exchanged heat with the hot water tank 1 and has reached a high temperature flows into the outgoing pipe 2, passes through the circulation pump 3 and the return pipe 4, and is sent to the heat exchanger 23. Further, part of the hot water that has entered the return pipe 4 from the circulation pump 3 flows into the outgoing pipe 2 through the bypass circuit 6.
The ratio of the amount of hot water flowing into the outgoing pipe 2 from the heat exchanger 23 and the amount from the bypass circuit 6 is controlled by the heat retention controller 19. The insulation controller 19 compares the temperature measured by the insulation temperature sensor 17 (the insulation temperature of the circulation circuit 5) with the insulation temperature set value (55 ° C.) set by the insulation temperature setting device 20, and the measured insulation temperature is When the temperature is lower than the set temperature, the opening of the flow rate control valve 13 is reduced to cope with this, so that the flow rate from the bypass circuit 6 is small and hot water from the heat exchanger 23 is increased. The temperature is raised and controlled so that the temperature is equal to the temperature setting value.

行き配管2とバイパス回路6の接続部を、熱交換器23と行き配管2との接続部の直後としたときのように、熱交換器23から行き配管2とバイパス回路6の接続部までの長さが短くて流路抵抗が非常に小さい場合には、熱交換器23からの湯が多すぎて、保温温度の制御が困難になる場合がある。そこで、このときは、戻り配管4とバイパス回路6の接続部と、戻り配管4と貯湯槽1の接続部の間に抵抗調整弁14を設けることで、熱交換器23からの湯が多すぎないように調節する。   The connecting portion between the outgoing pipe 2 and the bypass circuit 6 is immediately after the connecting portion between the heat exchanger 23 and the outgoing pipe 2, from the heat exchanger 23 to the connecting portion between the outgoing pipe 2 and the bypass circuit 6. If the length is short and the flow path resistance is very small, there may be too much hot water from the heat exchanger 23, making it difficult to control the heat retention temperature. Therefore, at this time, there is too much hot water from the heat exchanger 23 by providing the resistance adjustment valve 14 between the connection part of the return pipe 4 and the bypass circuit 6 and the connection part of the return pipe 4 and the hot water tank 1. Adjust so that there is no.

経年変化による配管の流路抵抗の変化の影響や、季節による放熱条件の変化の影響で、保温制御器19や流量制御弁13の制御範囲内で保温温度の制御が困難になった場合には、抵抗調整弁14の開度を調整することで、流量バランスを調整し、保温制御器19や流量制御弁13の制御範囲内で保温温度の制御ができるようにする。   When it becomes difficult to control the heat insulation temperature within the control range of the heat insulation controller 19 and the flow rate control valve 13 due to the influence of the change in the flow resistance of the piping due to secular change and the influence of the change in the heat radiation condition due to the season. The flow rate balance is adjusted by adjusting the opening degree of the resistance adjustment valve 14 so that the heat insulation temperature can be controlled within the control range of the heat insulation controller 19 and the flow control valve 13.

給水回路7から給湯回路24に流れ込む給水量は給水制御器21により制御される。給水制御器21は出湯温度センサ18が測定した温度(出湯温度)と、出湯温度設定器22で設定された出湯温度設定値(60℃)とを比較し、測定した出湯温度が出湯温度設定値よりも高いときは、これに対処するために給水制御弁16の開度を大きくし、給水回路7から循環回路5に流れ込む給水量を多くして出湯温度を低下させて、出湯温度が出湯温度設定値と等しくなるように制御する。   The amount of water supplied from the water supply circuit 7 to the hot water supply circuit 24 is controlled by the water supply controller 21. The water supply controller 21 compares the temperature measured by the tapping temperature sensor 18 (tapping temperature) with the tapping temperature setting value (60 ° C.) set by the tapping temperature setting device 22, and the measured tapping temperature is the tapping temperature setting value. If it is higher, the opening of the water supply control valve 16 is increased to cope with this, and the amount of water supplied from the water supply circuit 7 to the circulation circuit 5 is increased to lower the hot water temperature. Control to be equal to the set value.

出湯弁8が閉じられ、出湯口からの出湯がないときを考える。行き配管2とバイパス回路6の接続部の下流の湯の温度は、先に述べた保温制御器19や流量制御弁13の働きで、保温温度設定値に制御されている。この状態から出湯弁8を開くと、保温温度設定値に制御された湯が即時に出湯される。
また、仮に給水制御弁16が開いた状態であっても、循環回路5から外部への出湯がなされないため、給水が循環回路5に入り込むことはない。従って、循環回路5の温度低下を起こすことはない。さらに、貯湯槽1と給湯回路24の間には逆止弁11があるため、給水が貯湯槽1に入り込むことはない。従って、貯湯槽1の温度低下を起こすことがない。
Consider a case where the tap valve 8 is closed and there is no tap from the tap. The temperature of the hot water downstream of the connecting portion between the outgoing pipe 2 and the bypass circuit 6 is controlled to the heat insulation temperature set value by the functions of the heat insulation controller 19 and the flow rate control valve 13 described above. When the hot water valve 8 is opened from this state, the hot water controlled to the heat retention temperature set value is immediately discharged.
Even if the water supply control valve 16 is open, the hot water is not discharged from the circulation circuit 5 to the outside, so that the water supply does not enter the circulation circuit 5. Therefore, the temperature of the circulation circuit 5 does not decrease. Furthermore, since the check valve 11 is provided between the hot water tank 1 and the hot water supply circuit 24, water supply does not enter the hot water tank 1. Therefore, the temperature of the hot water tank 1 is not lowered.

出湯弁8が開けられ、出湯口から連続して出湯しているときは、貯湯槽1から給湯回路24に流入した湯に、給水が混合され、先に述べた出湯温度設定器22の制御により出湯温度設定値になる。この湯は、循環回路5に流入し、循環回路5を循環する湯と混合されるが、給湯回路24からの湯の量が多いため、混合後の湯の温度は、出湯温度設定器22で制御された温度(60℃)とみなされる。この60℃の湯が出湯口から出湯される。   When the hot water valve 8 is opened and the hot water is continuously discharged from the hot water outlet, the hot water flowing from the hot water storage tank 1 into the hot water supply circuit 24 is mixed with the hot water, and the control of the hot water temperature setting unit 22 described above is performed. It becomes the tapping temperature setting value. This hot water flows into the circulation circuit 5 and is mixed with the hot water circulating through the circulation circuit 5, but since the amount of hot water from the hot water supply circuit 24 is large, the temperature of the hot water after mixing is determined by the tapping temperature setting device 22. It is considered a controlled temperature (60 ° C.). This 60 ° C. hot water is discharged from the hot water outlet.

以上のように、貯湯槽1の湯の温度を80℃としても、出湯時の出湯温度を60℃にすることができ、さらに、出湯温度を測定して制御しているため、季節や天候によらず、安定した出湯温度を得ることができる。これにより、出湯に必要な湯の全量を出湯温度と等しい60℃で貯湯槽に貯める場合に比べて、少ない容量の貯湯槽を使用することができ、コンパクトな給湯システムを構成できるという効果が得られる。
また、循環回路内に湯を循環させて保温する保温温度を55℃に保つことができ、出湯口を開いた直後から充分に温かくかつ熱すぎない温度で出湯が可能となる。
As described above, even when the temperature of the hot water in the hot water storage tank 1 is 80 ° C., the temperature of the hot water at the time of hot water can be set to 60 ° C. Furthermore, since the temperature of the hot water is measured and controlled, Regardless, a stable tapping temperature can be obtained. As a result, compared to the case where the total amount of hot water required for hot water is stored in the hot water storage tank at 60 ° C., which is equal to the hot water temperature, a hot water storage tank with a smaller capacity can be used, and a compact hot water supply system can be constructed. It is done.
In addition, the heat-retaining temperature at which the hot water is circulated in the circulation circuit can be maintained at 55 ° C., and the hot water can be discharged at a temperature that is sufficiently warm and not too hot immediately after the hot water outlet is opened.

出湯口からの出湯がないときは循環回路5から外部への出湯がなされないため、給水が循環回路5に入り込むことはなく、さらに、貯湯槽1と給湯回路24の間には逆止弁11があるため、給水が貯湯槽1に入り込むことがない。このため、循環回路5および貯湯槽1の温度低下を防ぐことができる。
また、行き配管2とバイパス回路6の接続部が、熱交換器23と行き配管2との接続部の直後の位置であるため、流量制御弁13の開度を小さく変更してから、熱交換器23からの熱い湯が行き配管2とバイパス回路6の接続部に到達するまでの、時間差が小さいため良好な保温温度制御が行える。
また、戻り配管4とバイパス回路6の接続部と戻り配管4と貯湯槽1の接続部の間に抵抗調整弁14を設けているので、貯湯槽1から行き配管2とバイパス回路6の接続部までの長さが短くて流路抵抗が非常に小さい場合でも、保温温度の制御が可能となる。
また、抵抗調整弁14の抵抗を変更可能としているので、経年変化や放熱条件の変化の影響で保温温度の制御が困難になった場合には、抵抗調整弁14の開度を調整することで、保温温度の制御が可能となる。
When there is no hot water from the hot water outlet, no hot water is discharged from the circulation circuit 5 to the outside, so that the water supply does not enter the circulation circuit 5, and the check valve 11 is interposed between the hot water tank 1 and the hot water supply circuit 24. Therefore, the water supply does not enter the hot water tank 1. For this reason, the temperature fall of the circulation circuit 5 and the hot water tank 1 can be prevented.
Moreover, since the connection part of the outgoing pipe 2 and the bypass circuit 6 is a position immediately after the connection part of the heat exchanger 23 and the outgoing pipe 2, after changing the opening degree of the flow control valve 13 small, heat exchange is carried out. Since the time difference until the hot water from the vessel 23 reaches the connecting portion between the going pipe 2 and the bypass circuit 6 is small, good temperature control can be performed.
Moreover, since the resistance adjustment valve 14 is provided between the connection part of the return pipe 4 and the bypass circuit 6 and the connection part of the return pipe 4 and the hot water tank 1, the connection part of the outgoing pipe 2 and the bypass circuit 6 from the hot water tank 1. Even when the length up to is short and the flow path resistance is very small, the heat insulation temperature can be controlled.
In addition, since the resistance of the resistance adjustment valve 14 can be changed, when the control of the heat insulation temperature becomes difficult due to the influence of secular change or change of the heat radiation condition, the opening of the resistance adjustment valve 14 can be adjusted. It is possible to control the heat insulation temperature.

なお、ここでは保温温度を55℃として説明したが、実施の形態2のように出湯温度と保温温度の設定に関係を持たせる必要はなく、これら2つの温度は独立して設定可能である。
なお、保温温度の変動がある程度許容されるのであれば、流量制御弁13の開度を固定としてもよい。同様に、出湯温度の変動がある程度許容されるのであれば、給水制御弁16に代えて逆止弁と減圧弁を用いて出湯時の給水量を一定とすることも可能である。
In addition, although the heat retention temperature was demonstrated here as 55 degreeC, it does not need to be related to the setting of tapping temperature and heat retention temperature like Embodiment 2, and these two temperatures can be set independently.
Note that the opening degree of the flow control valve 13 may be fixed as long as the variation in the heat retention temperature is allowed to some extent. Similarly, if the fluctuation of the tapping temperature is allowed to some extent, it is possible to use a check valve and a pressure reducing valve in place of the feed water control valve 16 to make the water supply amount at the time of tapping hot water constant.

実施の形態7.
以上の実施の形態6では、バイパス回路に流量制御弁を設けたものであるが、戻り配管に流量制御弁を設けた場合の実施の形態を示す。
図9は、このような場合の、給湯システムの配管回路を示すものである。
貯湯槽1には80℃の湯が貯められている。貯湯槽1の内部には、熱交換器23が設けられ、熱交換器23の出口には行き配管2が接続され、行き配管2の終端は循環ポンプ3の吸入口に接続され、循環ポンプ3の吐出口には戻り配管4が接続され、戻り配管4の終端は熱交換器23の入口に接続され、行き配管2と循環ポンプ3と戻り配管4とからなる循環回路5を構成している。
Embodiment 7 FIG.
In the sixth embodiment described above, the flow rate control valve is provided in the bypass circuit, but an embodiment in which the flow rate control valve is provided in the return pipe will be described.
FIG. 9 shows a piping circuit of the hot water supply system in such a case.
Hot water at 80 ° C. is stored in the hot water tank 1. A heat exchanger 23 is provided inside the hot water tank 1, and the outgoing pipe 2 is connected to the outlet of the heat exchanger 23, and the end of the outgoing pipe 2 is connected to the suction port of the circulation pump 3. A return pipe 4 is connected to the discharge port, and an end of the return pipe 4 is connected to an inlet of the heat exchanger 23 to constitute a circulation circuit 5 including the outgoing pipe 2, the circulation pump 3, and the return pipe 4. .

行き配管2と戻り配管4の間には、バイパス回路6が設けられている。行き配管2とバイパス回路6の接続部は、熱交換器23と行き配管2との接続部の直後の位置としている。バイパス回路6の途中には抵抗調整弁14が設けられている。抵抗調整弁14は開度を変えることでその抵抗が変更可能となっている。また、戻り配管4とバイパス回路6の接続部と戻り配管4と熱交換器23の接続部の間には、電動で開度が変化可能な流量制御弁13が設けられている。   A bypass circuit 6 is provided between the outgoing pipe 2 and the return pipe 4. The connecting portion between the outgoing pipe 2 and the bypass circuit 6 is located immediately after the connecting portion between the heat exchanger 23 and the outgoing pipe 2. A resistance adjustment valve 14 is provided in the middle of the bypass circuit 6. The resistance of the resistance adjusting valve 14 can be changed by changing the opening. Further, a flow rate control valve 13 whose opening degree can be changed electrically is provided between a connection portion between the return pipe 4 and the bypass circuit 6 and a connection portion between the return pipe 4 and the heat exchanger 23.

循環回路5の途中で、行き配管2とバイパス回路6の接続部よりも下流、かつ、戻り配管4とバイパス回路6の接続部よりも上流位置に、給湯回路24が接続される。給湯回路24は、逆止弁11を介して貯湯槽1に接続され、貯湯槽1の湯を循環回路5に供給する。
給湯回路24の途中には、給水回路7が接続される。ここでは、給水回路7は、ヘッドが一定に保たれる高架水槽15と、電動で開度が変化可能な給水制御弁16を有している。
循環回路5の途中で、循環回路5と給湯回路24の接続部よりも下流、かつ、戻り配管4とバイパス回路6の接続部よりも上流位置に、出湯弁8が接続され、出湯弁8の終端が出湯口となっている。
In the middle of the circulation circuit 5, the hot water supply circuit 24 is connected downstream of the connecting portion between the outgoing pipe 2 and the bypass circuit 6 and upstream of the connecting portion between the return pipe 4 and the bypass circuit 6. The hot water supply circuit 24 is connected to the hot water tank 1 via the check valve 11 and supplies hot water from the hot water tank 1 to the circulation circuit 5.
A water supply circuit 7 is connected in the middle of the hot water supply circuit 24. Here, the water supply circuit 7 has an elevated water tank 15 in which the head is kept constant, and a water supply control valve 16 whose opening degree can be changed electrically.
In the middle of the circulation circuit 5, a tap valve 8 is connected downstream of the connection portion of the circulation circuit 5 and the hot water supply circuit 24 and upstream of the connection portion of the return pipe 4 and the bypass circuit 6. The end is a tap.

行き配管2とバイパス回路6の接続部と、循環回路5と給湯回路24との接続部の間には、この位置の配管内の水温を計る保温温度センサ17が設けられている。給湯回路24と給水回路7との接続部と、循環回路5と給湯回路24との接続部の間には、この位置の配管内部の水温を計る出湯温度センサ18が設けられている。   Between the connecting part of the outgoing pipe 2 and the bypass circuit 6 and the connecting part of the circulation circuit 5 and the hot water supply circuit 24, a heat retaining temperature sensor 17 for measuring the water temperature in the pipe at this position is provided. Between the connection part of the hot water supply circuit 24 and the water supply circuit 7 and the connection part of the circulation circuit 5 and the hot water supply circuit 24, a hot water temperature sensor 18 for measuring the water temperature inside the pipe at this position is provided.

保温温度センサ17からの信号の流れを示すブロック図は、実施の形態2と同一で、図3に示される。
出湯温度センサ18からの信号の流れを示すブロック図は、実施の形態2と同一で、図4に示される。
A block diagram showing the flow of signals from the heat insulation temperature sensor 17 is the same as that of the second embodiment, and is shown in FIG.
A block diagram showing a flow of signals from the tapping temperature sensor 18 is the same as that of the second embodiment and is shown in FIG.

次に動作について説明する。
循環ポンプ3の駆動により、循環回路5の湯が熱交換器23に送られる。熱交換器23を通り、貯湯槽1と熱交換を行って、高温となった湯は、行き配管2に流れ込み、循環ポンプ3と戻り配管4を通り、熱交換器23に送られる。また、循環ポンプ3から戻り配管4に入った湯の一部は、バイパス回路6を通り、行き配管2に流れ込む。
行き配管2に流れ込む湯の、熱交換器23からの量とバイパス回路6からの量の比率は、保温制御器19により制御される。保温制御器19は保温温度センサ17が測定した温度(循環回路5の保温温度)と、保温温度設定器20で設定された保温温度設定値(55℃)とを比較し、測定した保温温度が保温温度設定値よりも低いときは、これに対処するために流量制御弁13の開度を大きくし、バイパス回路6からの流量が少なく、熱交換器23からの湯が多くなるようにして保温温度を上昇させ、保温温度が保温温度設定値と等しくなるように制御する。
Next, the operation will be described.
The hot water in the circulation circuit 5 is sent to the heat exchanger 23 by driving the circulation pump 3. The hot water that has passed through the heat exchanger 23 and exchanged heat with the hot water tank 1 and has reached a high temperature flows into the outgoing pipe 2, passes through the circulation pump 3 and the return pipe 4, and is sent to the heat exchanger 23. Further, part of the hot water that has entered the return pipe 4 from the circulation pump 3 flows into the outgoing pipe 2 through the bypass circuit 6.
The ratio of the amount of hot water flowing into the outgoing pipe 2 from the heat exchanger 23 and the amount from the bypass circuit 6 is controlled by the heat retention controller 19. The insulation controller 19 compares the temperature measured by the insulation temperature sensor 17 (the insulation temperature of the circulation circuit 5) with the insulation temperature set value (55 ° C.) set by the insulation temperature setting device 20, and the measured insulation temperature is When the temperature is lower than the set temperature, the opening of the flow control valve 13 is increased in order to cope with this, so that the flow from the bypass circuit 6 is small and the hot water from the heat exchanger 23 is increased. The temperature is raised and controlled so that the temperature is equal to the temperature setting value.

バイパス回路6の長さが短く、バイパス回路6の流路抵抗が非常に小さい場合には、バイパス回路6から行き配管2に流れ込む湯が多すぎて、保温温度の制御が困難になる場合がある。そこで、このときは、バイパス回路6に抵抗調整弁14を設けることで、バイパス回路6からの湯が多すぎないように調節する。   When the length of the bypass circuit 6 is short and the flow path resistance of the bypass circuit 6 is very small, there is a case where there is too much hot water flowing into the outgoing pipe 2 from the bypass circuit 6 and it becomes difficult to control the heat insulation temperature. . Therefore, at this time, the resistance adjustment valve 14 is provided in the bypass circuit 6 so that the amount of hot water from the bypass circuit 6 is adjusted so as not to be excessive.

経年変化による配管の流路抵抗の変化の影響や、季節による放熱条件の変化の影響で、保温制御器19や流量制御弁13の制御範囲内で保温温度の制御が困難になった場合には、抵抗調整弁14の開度を調整することで、流量バランスを調整し、保温制御器19や流量制御弁13の制御範囲内で保温温度の制御ができるようにする。   When it becomes difficult to control the heat insulation temperature within the control range of the heat insulation controller 19 and the flow rate control valve 13 due to the influence of the change in the flow resistance of the piping due to secular change and the influence of the change in the heat radiation condition due to the season. The flow rate balance is adjusted by adjusting the opening degree of the resistance adjustment valve 14 so that the heat insulation temperature can be controlled within the control range of the heat insulation controller 19 and the flow control valve 13.

給水回路7から給湯回路24に流れ込む給水量は給水制御器21により制御される。給水制御器21は出湯温度センサ18が測定した温度(出湯温度)と、出湯温度設定器22で設定された出湯温度設定値(60℃)とを比較し、測定した出湯温度が出湯温度設定値よりも高いときは、これに対処するために給水制御弁16の開度を大きくし、給水回路7から循環回路5に流れ込む給水量を多くして出湯温度を低下させて、出湯温度が出湯温度設定値と等しくなるように制御する。   The amount of water supplied from the water supply circuit 7 to the hot water supply circuit 24 is controlled by the water supply controller 21. The water supply controller 21 compares the temperature measured by the tapping temperature sensor 18 (tapping temperature) with the tapping temperature setting value (60 ° C.) set by the tapping temperature setting device 22, and the measured tapping temperature is the tapping temperature setting value. If it is higher, the opening of the water supply control valve 16 is increased to cope with this, and the amount of water supplied from the water supply circuit 7 to the circulation circuit 5 is increased to lower the hot water temperature. Control to be equal to the set value.

出湯弁8が閉じられ、出湯口からの出湯がないときを考える。行き配管2とバイパス回路6の接続部の下流の湯の温度は、先に述べた保温制御器19や流量制御弁13の働きで、保温温度設定値に制御されている。この状態から出湯弁8を開くと、保温温度設定値に制御された湯が即時に出湯される。
また、仮に給水制御弁16が開いた状態であっても、循環回路5から外部への出湯がなされないため、給水が循環回路5に入り込むことはない。従って、循環回路5の温度低下を起こすことはない。さらに、貯湯槽1と給湯回路24の間には逆止弁11があるため、給水が貯湯槽1に入り込むことはない。従って、貯湯槽1の温度低下を起こすことがない。
Consider a case where the tap valve 8 is closed and there is no tap from the tap. The temperature of the hot water downstream of the connecting portion between the outgoing pipe 2 and the bypass circuit 6 is controlled to the heat insulation temperature set value by the functions of the heat insulation controller 19 and the flow rate control valve 13 described above. When the hot water valve 8 is opened from this state, the hot water controlled to the heat retention temperature set value is immediately discharged.
Even if the water supply control valve 16 is open, the hot water is not discharged from the circulation circuit 5 to the outside, so that the water supply does not enter the circulation circuit 5. Therefore, the temperature of the circulation circuit 5 does not decrease. Furthermore, since the check valve 11 is provided between the hot water tank 1 and the hot water supply circuit 24, water supply does not enter the hot water tank 1. Therefore, the temperature of the hot water tank 1 is not lowered.

出湯弁8が開けられ、出湯口から連続して出湯しているときは、貯湯槽1から給湯回路24に流入した湯に、給水が混合され、先に述べた出湯温度設定器22の制御により出湯温度設定値になる。この湯は、循環回路5に流入し、循環回路5を循環する湯と混合されるが、給湯回路24からの湯の量が多いため、混合後の湯の温度は、出湯温度設定器22で制御された温度(60℃)とみなされる。この60℃の湯が出湯口から出湯される。   When the hot water valve 8 is opened and the hot water is continuously discharged from the hot water outlet, the hot water flowing from the hot water storage tank 1 into the hot water supply circuit 24 is mixed with the hot water, and the control of the hot water temperature setting unit 22 described above is performed. It becomes the tapping temperature setting value. This hot water flows into the circulation circuit 5 and is mixed with the hot water circulating through the circulation circuit 5, but since the amount of hot water from the hot water supply circuit 24 is large, the temperature of the hot water after mixing is determined by the tapping temperature setting device 22. It is considered a controlled temperature (60 ° C.). This 60 ° C. hot water is discharged from the hot water outlet.

以上のように、貯湯槽1の湯の温度を80℃としても、出湯時の出湯温度を60℃にすることができ、さらに、出湯温度を測定して制御しているため、季節や天候によらず、安定した出湯温度を得ることができる。これにより、出湯に必要な湯の全量を出湯温度と等しい60℃で貯湯槽に貯める場合に比べて、少ない容量の貯湯槽を使用することができ、コンパクトな給湯システムを構成できるという効果が得られる。
また、循環回路内に湯を循環させて保温する保温温度を55℃に保つことができ、出湯口を開いた直後から充分に温かくかつ熱すぎない温度で出湯が可能となる。
As described above, even when the temperature of the hot water in the hot water storage tank 1 is 80 ° C., the temperature of the hot water at the time of hot water can be set to 60 ° C. Furthermore, since the temperature of the hot water is measured and controlled, Regardless, a stable tapping temperature can be obtained. As a result, compared to the case where the total amount of hot water required for hot water is stored in the hot water storage tank at 60 ° C., which is equal to the hot water temperature, a hot water storage tank with a smaller capacity can be used, and a compact hot water supply system can be constructed. It is done.
In addition, the heat-retaining temperature at which the hot water is circulated in the circulation circuit can be maintained at 55 ° C., and the hot water can be discharged at a temperature that is sufficiently warm and not too hot immediately after the hot water outlet is opened.

出湯口からの出湯がないときは循環回路5から外部への出湯がなされないため、給水が循環回路5に入り込むことはなく、さらに、貯湯槽1と給湯回路24の間には逆止弁11があるため、給水が貯湯槽1に入り込むことがないため、循環回路5および貯湯槽1の温度低下を防ぐことができる。
さらに、流量制御弁13を、戻り配管4とバイパス回路6の接続部と戻り配管4と熱交換器23の接続部の間に設けたことで、出湯がないときの保温温度が保温温度設定値よりも高いときは、流量制御弁13を全閉とすることで、貯湯槽1の湯との熱交換を全く行わず、貯湯槽1の貯湯温度を高く保つことができる。
また、行き配管2とバイパス回路6の接続部が、熱交換器23と行き配管2との接続部の直後の位置であるため、流量制御弁13の開度を大きく変更してから、貯湯槽1の熱い湯が行き配管2とバイパス回路6の接続部に到達するまでの、時間差が小さいため良好な保温温度制御が行える。
また、バイパス回路6に抵抗調整弁14を設けているので、バイパス回路6の長さが短くて流路抵抗が非常に小さい場合でも、保温温度の制御が可能となる。
また、抵抗調整弁14の抵抗を変更可能としているので、経年変化や放熱条件の変化の影響で保温温度の制御が困難になった場合には、抵抗調整弁14の開度を調整することで、保温温度の制御が可能となる。
When there is no hot water from the hot water outlet, no hot water is discharged from the circulation circuit 5 to the outside, so that the water supply does not enter the circulation circuit 5, and the check valve 11 is interposed between the hot water tank 1 and the hot water supply circuit 24. Therefore, since the water supply does not enter the hot water tank 1, the temperature reduction of the circulation circuit 5 and the hot water tank 1 can be prevented.
Furthermore, by providing the flow rate control valve 13 between the connection part of the return pipe 4 and the bypass circuit 6 and the connection part of the return pipe 4 and the heat exchanger 23, the heat insulation temperature when there is no hot water is the heat insulation temperature set value. When the temperature is higher, the flow rate control valve 13 is fully closed, so that heat exchange with the hot water in the hot water tank 1 is not performed at all, and the hot water temperature in the hot water tank 1 can be kept high.
Moreover, since the connection part of the outgoing pipe 2 and the bypass circuit 6 is a position immediately after the connection part of the heat exchanger 23 and the outgoing pipe 2, the hot water storage tank after changing the opening degree of the flow control valve 13 largely. Since the time difference until the hot water No. 1 reaches the connecting portion between the going pipe 2 and the bypass circuit 6 is small, good temperature control can be performed.
Further, since the resistance adjusting valve 14 is provided in the bypass circuit 6, even when the length of the bypass circuit 6 is short and the flow path resistance is very small, the heat insulation temperature can be controlled.
In addition, since the resistance of the resistance adjustment valve 14 can be changed, when the control of the heat insulation temperature becomes difficult due to the influence of secular change or change of the heat radiation condition, the opening of the resistance adjustment valve 14 can be adjusted. It is possible to control the heat insulation temperature.

なお、ここでは保温温度を55℃として説明したが、実施の形態2のように出湯温度と保温温度の設定に関係を持たせる必要はなく、これら2つの温度は独立して設定可能である。
なお、保温温度の変動がある程度許容されるのであれば、流量制御弁13の開度を固定としてもよい。同様に、出湯温度の変動がある程度許容されるのであれば、給水制御弁16に代えて逆止弁と減圧弁を用いて出湯時の給水量を一定とすることも可能である。
In addition, although the heat retention temperature was demonstrated here as 55 degreeC, it does not need to be related to the setting of tapping temperature and heat retention temperature like Embodiment 2, and these two temperatures can be set independently.
Note that the opening degree of the flow control valve 13 may be fixed as long as the variation in the heat retention temperature is allowed to some extent. Similarly, if the fluctuation of the tapping temperature is allowed to some extent, it is possible to use a check valve and a pressure reducing valve in place of the feed water control valve 16 to make the water supply amount at the time of tapping hot water constant.

実施の形態8.
循環回路に給水が入り込む恐れがなく、出湯温度より高い貯湯温度とすることのできる、別の実施の形態を示す。
図10は、このような場合の、給湯システムの配管回路を示すものである。
貯湯槽1には80℃の湯が貯められている。貯湯槽1には行き配管2が接続され、行き配管2の終端は循環ポンプ3の吸入口に接続され、循環ポンプ3の吐出口には戻り配管4が接続され、戻り配管4の終端は貯湯槽1に接続され、行き配管2と循環ポンプ3と戻り配管4とからなる循環回路5を構成している。
Embodiment 8 FIG.
Another embodiment is shown in which there is no fear that feed water enters the circulation circuit, and the hot water storage temperature can be higher than the hot water temperature.
FIG. 10 shows a piping circuit of a hot water supply system in such a case.
Hot water at 80 ° C. is stored in the hot water tank 1. The hot water storage tank 1 is connected to the outgoing pipe 2, the end of the outgoing pipe 2 is connected to the suction port of the circulation pump 3, the return pipe 4 is connected to the discharge port of the circulation pump 3, and the end of the return pipe 4 is the hot water storage. A circulation circuit 5 which is connected to the tank 1 and includes an outgoing pipe 2, a circulation pump 3 and a return pipe 4 is constituted.

循環回路5の途中に、出湯回路26が接続される。出湯回路26は、逆止弁11を介して循環回路5からの湯を取り込み、出湯弁8を通して出湯する。
出湯回路26の逆止弁11より下流、かつ、出湯弁8よりも上流位置に、給水回路7が接続される。ここでは、給水回路7は、ヘッドが一定に保たれる高架水槽15と、電動で開度が変化可能な給水制御弁16を有している。
出湯弁8の出湯口は、高架水槽15からの水を出水する出水弁27の出水口と共通のもので、出湯弁8と出水弁27をあわせて、いわゆる混合水栓を成している。
In the middle of the circulation circuit 5, a tapping circuit 26 is connected. The hot water circuit 26 takes in hot water from the circulation circuit 5 through the check valve 11 and discharges hot water through the hot water valve 8.
The water supply circuit 7 is connected to a position downstream of the check valve 11 of the hot water circuit 26 and upstream of the hot water valve 8. Here, the water supply circuit 7 has an elevated water tank 15 in which the head is kept constant, and a water supply control valve 16 whose opening degree can be changed electrically.
The outlet of the tap valve 8 is the same as the outlet of the outlet valve 27 that drains water from the elevated water tank 15, and the outlet valve 8 and the outlet valve 27 together form a so-called mixed faucet.

出湯回路26と給水回路7との接続部と、出湯弁8との間には、この位置の配管内部の水温を計る出湯温度センサ18が設けられている。
出湯温度センサ18からの信号の流れを示すブロック図は、実施の形態2と同一で、図4に示される。
Between the connecting part of the hot water circuit 26 and the water supply circuit 7 and the hot water valve 8, the hot water temperature sensor 18 which measures the water temperature inside the piping of this position is provided.
A block diagram showing a flow of signals from the tapping temperature sensor 18 is the same as that of the second embodiment and is shown in FIG.

次に動作について説明する。
循環ポンプ3の駆動により、貯湯槽1の湯は、行き配管2に流れ込み、循環ポンプ3と戻り配管4を通り貯湯槽1に戻る。
給水回路7から出湯回路26に流れ込む給水量は給水制御器21により制御される。給水制御器21は出湯温度センサ18が測定した温度(出湯温度)と、出湯温度設定器22で設定された出湯温度設定値(60℃)とを比較し、測定した出湯温度が出湯温度設定値よりも高いときは、これに対処するために給水制御弁16の開度を大きくし、給水回路7から循環回路5に流れ込む給水量を多くして出湯温度を低下させて、出湯温度が出湯温度設定値と等しくなるように制御する。
Next, the operation will be described.
When the circulation pump 3 is driven, the hot water in the hot water tank 1 flows into the outgoing pipe 2 and returns to the hot water tank 1 through the circulation pump 3 and the return pipe 4.
The amount of water supplied from the water supply circuit 7 to the hot water circuit 26 is controlled by the water supply controller 21. The water supply controller 21 compares the temperature measured by the tapping temperature sensor 18 (tapping temperature) with the tapping temperature setting value (60 ° C.) set by the tapping temperature setting device 22, and the measured tapping temperature is the tapping temperature setting value. If it is higher, the opening of the water supply control valve 16 is increased to cope with this, and the amount of water supplied from the water supply circuit 7 to the circulation circuit 5 is increased to lower the hot water temperature. Control to be equal to the set value.

循環回路5と出湯回路26の間には逆止弁11があるため、仮に給水制御弁16が開いた状態であっても、給水が循環回路5に入り込むことはない。従って、循環回路5および貯湯槽1の温度低下を起こすことはない。さらに、循環回路5に給水が入り込まないため、給水が貯湯槽1に入り込むこともなく、貯湯槽1の温度低下を起こすことがない。   Since the check valve 11 is provided between the circulation circuit 5 and the hot water circuit 26, even if the water supply control valve 16 is opened, the water supply does not enter the circulation circuit 5. Accordingly, the temperature of the circulation circuit 5 and the hot water tank 1 is not lowered. Further, since the water supply does not enter the circulation circuit 5, the water supply does not enter the hot water tank 1, and the temperature of the hot water tank 1 does not decrease.

循環回路5には貯湯槽1からの高温の湯が循環している。この状態から出湯弁8を開くと、循環回路5から出湯回路26に高温の湯が流入する。出湯温度センサ18が測定する温度が上昇し、先に述べた制御により、給水回路7からの給水が行われ、出湯温度設定値(60℃)となった湯が出湯弁8を通して出湯される。
このとき、出水弁27を操作して給水を加えることで、60℃を上限として出湯の温度を任意に変化させることができる。
Hot water from the hot water tank 1 circulates in the circulation circuit 5. When the hot water valve 8 is opened from this state, hot water flows from the circulation circuit 5 into the hot water circuit 26. The temperature measured by the tapping temperature sensor 18 rises, and water is supplied from the water supply circuit 7 by the control described above, and the hot water that has reached the tapping temperature set value (60 ° C.) is discharged through the tapping valve 8.
At this time, by operating the water outlet valve 27 to add water, the temperature of the hot water can be arbitrarily changed up to 60 ° C.

出湯弁8を開いてから、温度の高い湯が出湯されるまでの時間は、出湯回路26の長さに依存する。循環回路5などの配管の引き回しは比較的自由に行えるため、出湯弁8の位置に対応して配管し、出湯回路26の長さを短くすることは可能である。この場合、出湯弁8を開いて、充分に短時間で、充分に温度の高い湯が出湯される。   The time from when the tap valve 8 is opened until hot water is poured out depends on the length of the tap circuit 26. Since piping such as the circulation circuit 5 can be routed relatively freely, it is possible to shorten the length of the tapping circuit 26 by piping according to the position of the tapping valve 8. In this case, the hot water valve 8 is opened, and hot water having a sufficiently high temperature is discharged in a sufficiently short time.

以上のように、貯湯槽1の湯の温度を80℃としても、出湯時の出湯温度を60℃にすることや、混合水栓使用の場合は出湯の上限温度を60℃とすることができる。さらに、出湯温度を測定して制御しているため、季節や天候によらず、安定した出湯温度を得ることができる。これにより、出湯に必要な湯の全量を出湯温度と等しい60℃で貯湯槽に貯める場合に比べて、少ない容量の貯湯槽を使用することができ、コンパクトな給湯システムを構成できるという効果が得られる。
また、配管の引き回しが比較的自由にできる循環回路から湯取り出すため、出湯弁を開いてから、充分に短時間で、充分に温度の高い湯を出湯することが可能となる。
As described above, even when the temperature of the hot water in the hot water storage tank 1 is 80 ° C., the temperature of the hot water at the time of hot water can be set to 60 ° C., or the upper limit temperature of the hot water can be set to 60 ° C. in the case of using a mixed tap. . Furthermore, since the tapping temperature is measured and controlled, a stable tapping temperature can be obtained regardless of the season or weather. As a result, compared to the case where the total amount of hot water required for hot water is stored in the hot water storage tank at 60 ° C., which is equal to the hot water temperature, a hot water storage tank with a smaller capacity can be used, and a compact hot water supply system can be constructed. It is done.
Moreover, since hot water is taken out from a circulation circuit in which piping can be routed relatively freely, hot water having a sufficiently high temperature can be discharged in a sufficiently short time after the hot water valve is opened.

循環回路5と出湯回路26の間には逆止弁11があるため、給水が循環回路5や貯湯槽1に入り込むことがなく、循環回路5および貯湯槽1の温度低下を防ぐことができる。
なお、出湯温度の変動がある程度許容されるのであれば、給水制御弁16に代えて逆止弁と減圧弁を用いて出湯時の給水量を一定とすることも可能である。
Since the check valve 11 is provided between the circulation circuit 5 and the hot water circuit 26, water supply does not enter the circulation circuit 5 and the hot water tank 1, and temperature reduction of the circulation circuit 5 and the hot water tank 1 can be prevented.
If the variation in the temperature of the hot water is allowed to some extent, it is possible to make the amount of water supplied at the time of hot water constant by using a check valve and a pressure reducing valve instead of the water supply control valve 16.

実施の形態9.
循環回路に給水が入り込む恐れがなく、出湯温度より高い貯湯温度とすることのできる、別の実施の形態を示す。
図11は、このような場合の、給湯システムの配管回路を示すものである。
貯湯槽1には80℃の湯が貯められている。貯湯槽1には行き配管2が接続され、行き配管2の終端は循環ポンプ3の吸入口に接続され、循環ポンプ3の吐出口には戻り配管4が接続され、戻り配管4の終端は貯湯槽1に接続され、行き配管2と循環ポンプ3と戻り配管4とからなる循環回路5を構成している。
Embodiment 9 FIG.
Another embodiment is shown in which there is no fear that feed water enters the circulation circuit, and the hot water storage temperature can be higher than the hot water temperature.
FIG. 11 shows a piping circuit of a hot water supply system in such a case.
Hot water at 80 ° C. is stored in the hot water tank 1. The hot water storage tank 1 is connected to the outgoing pipe 2, the end of the outgoing pipe 2 is connected to the suction port of the circulation pump 3, the return pipe 4 is connected to the discharge port of the circulation pump 3, and the end of the return pipe 4 is the hot water storage. A circulation circuit 5 which is connected to the tank 1 and includes an outgoing pipe 2, a circulation pump 3 and a return pipe 4 is constituted.

行き配管2と戻り配管4の間には、バイパス回路6が設けられている。行き配管2とバイパス回路6の接続部は、貯湯槽1と行き配管2との接続部の直後の位置としている。バイパス回路6の途中には、電動で開度が変化可能な流量制御弁13が設けられている。また、戻り配管4とバイパス回路6の接続部と、戻り配管4と貯湯槽1の接続部の間には抵抗調整弁14が設けられている。抵抗調整弁14は開度を変えることでその抵抗が変更可能となっている。   A bypass circuit 6 is provided between the outgoing pipe 2 and the return pipe 4. The connecting part between the outgoing pipe 2 and the bypass circuit 6 is located immediately after the connecting part between the hot water tank 1 and the outgoing pipe 2. In the middle of the bypass circuit 6, a flow control valve 13 whose opening degree can be changed electrically is provided. Further, a resistance adjusting valve 14 is provided between a connection portion between the return pipe 4 and the bypass circuit 6 and a connection portion between the return pipe 4 and the hot water tank 1. The resistance of the resistance adjusting valve 14 can be changed by changing the opening.

循環回路5の途中で、行き配管2とバイパス回路6の接続部よりも下流、かつ、戻り配管4とバイパス回路6の接続部よりも上流位置に、出湯回路26が接続される。出湯回路26は、逆止弁11を介して循環回路5からの湯を取り込み、出湯弁8を通して出湯する。
出湯回路26の逆止弁11より下流、かつ、出湯弁8より上流位置に、給水回路7が接続される。ここでは、給水回路7は、ヘッドが一定に保たれる高架水槽15と、電動で開度が変化可能な給水制御弁16を有している。
出湯弁8の出湯口は、高架水槽15からの水を出水する出水弁27の出水口と共通のもので、出湯弁8と出水弁27をあわせて、いわゆる混合水栓を成している。
In the middle of the circulation circuit 5, a hot water discharge circuit 26 is connected downstream of the connecting portion between the outgoing pipe 2 and the bypass circuit 6 and upstream of the connecting portion between the return pipe 4 and the bypass circuit 6. The hot water circuit 26 takes in hot water from the circulation circuit 5 through the check valve 11 and discharges hot water through the hot water valve 8.
A water supply circuit 7 is connected to a position downstream of the check valve 11 of the hot water circuit 26 and upstream of the hot water valve 8. Here, the water supply circuit 7 has an elevated water tank 15 in which the head is kept constant, and a water supply control valve 16 whose opening degree can be changed electrically.
The outlet of the tap valve 8 is the same as the outlet of the outlet valve 27 that drains water from the elevated water tank 15, and the outlet valve 8 and the outlet valve 27 together form a so-called mixed faucet.

行き配管2とバイパス回路6の接続部と、循環回路5と出湯回路26との接続部の間には、この位置の配管内の水温を計る保温温度センサ17が設けられている。出湯回路26と給水回路7との接続部と、出湯弁8との間には、この位置の配管内部の水温を計る出湯温度センサ18が設けられている。
保温温度センサ17からの信号の流れを示すブロック図は、実施の形態2と同一で、図3に示される。
出湯温度センサ18からの信号の流れを示すブロック図は、実施の形態2と同一で、図4に示される。
ここでは、保温温度設定器20に設定された保温温度設定値は65℃、出湯温度設定器22に設定された出湯温度設定値は60℃である。
Between the connecting part of the outgoing pipe 2 and the bypass circuit 6 and the connecting part of the circulation circuit 5 and the hot water circuit 26, a heat retaining temperature sensor 17 for measuring the water temperature in the pipe at this position is provided. Between the connecting part of the hot water circuit 26 and the water supply circuit 7 and the hot water valve 8, the hot water temperature sensor 18 which measures the water temperature inside the piping of this position is provided.
A block diagram showing the flow of signals from the heat insulation temperature sensor 17 is the same as that of the second embodiment, and is shown in FIG.
A block diagram showing a flow of signals from the tapping temperature sensor 18 is the same as that of the second embodiment and is shown in FIG.
Here, the heat insulation temperature setting value set in the heat insulation temperature setting device 20 is 65 ° C., and the hot water temperature setting value set in the hot water temperature setting device 22 is 60 ° C.

次に動作について説明する。
循環ポンプ3の駆動により、貯湯槽1の湯は、行き配管2に流れ込み、循環ポンプ3と戻り配管4を通り貯湯槽1に戻る。また、循環ポンプ3から戻り配管4に入った湯の一部は、バイパス回路6を通り、行き配管2に流れ込む。
行き配管2に流れ込む湯の、貯湯槽1からの量とバイパス回路6からの量の比率は、保温制御器19により制御される。保温制御器19は保温温度センサ17が測定した温度(循環回路5の保温温度)と、保温温度設定器20で設定された保温温度設定値(65℃)とを比較し、測定した保温温度が保温温度設定値よりも低いときは、これに対処するために流量制御弁13の開度を小さくし、バイパス回路6からの流量が少なく、貯湯槽1からの湯が多くなるようにして保温温度を上昇させ、保温温度が保温温度設定値(65℃)と等しくなるように制御する。
Next, the operation will be described.
When the circulation pump 3 is driven, the hot water in the hot water tank 1 flows into the outgoing pipe 2 and returns to the hot water tank 1 through the circulation pump 3 and the return pipe 4. Further, part of the hot water that has entered the return pipe 4 from the circulation pump 3 flows into the outgoing pipe 2 through the bypass circuit 6.
The ratio of the amount of hot water flowing into the outgoing pipe 2 from the hot water storage tank 1 and the amount from the bypass circuit 6 is controlled by a heat retention controller 19. The insulation controller 19 compares the temperature measured by the insulation temperature sensor 17 (the insulation temperature of the circulation circuit 5) with the insulation temperature set value (65 ° C.) set by the insulation temperature setting device 20, and the measured insulation temperature is When the temperature is lower than the set temperature, the opening temperature of the flow rate control valve 13 is reduced to cope with this, so that the flow rate from the bypass circuit 6 is small and the hot water from the hot water tank 1 is increased. And the temperature is controlled so that the temperature is equal to the temperature setting value (65 ° C.).

行き配管2とバイパス回路6の接続部を、貯湯槽1と行き配管2との接続部の直後としたときのように、貯湯槽1から行き配管2とバイパス回路6の接続部までの長さが短くて流路抵抗が非常に小さい場合には、貯湯槽1からの湯が多すぎて、保温温度の制御が困難になる場合がある。そこで、このときは、戻り配管4とバイパス回路6の接続部と、戻り配管4と貯湯槽1の接続部の間に抵抗調整弁14を設けることで、貯湯槽1からの湯が多すぎないように調節する。   The length from the hot water tank 1 to the connecting part of the outgoing pipe 2 and the bypass circuit 6 as when the connecting part of the outgoing pipe 2 and the bypass circuit 6 is immediately after the connected part of the hot water tank 1 and the outgoing pipe 2 If the flow path resistance is very small, there may be too much hot water from the hot water storage tank 1 and it may be difficult to control the heat retention temperature. Therefore, at this time, there is not too much hot water from the hot water tank 1 by providing the resistance adjusting valve 14 between the connection part of the return pipe 4 and the bypass circuit 6 and the connection part of the return pipe 4 and the hot water tank 1. Adjust as follows.

経年変化による配管の流路抵抗の変化の影響や、季節による放熱条件の変化の影響で、保温制御器19や流量制御弁13の制御範囲内で保温温度の制御が困難になった場合には、抵抗調整弁14の開度を調整することで、流量バランスを調整し、保温制御器19や流量制御弁13の制御範囲内で保温温度の制御ができるようにする。   When it becomes difficult to control the heat insulation temperature within the control range of the heat insulation controller 19 and the flow rate control valve 13 due to the influence of the change in the flow resistance of the piping due to secular change and the influence of the change in the heat radiation condition due to the season. The flow rate balance is adjusted by adjusting the opening degree of the resistance adjustment valve 14 so that the heat insulation temperature can be controlled within the control range of the heat insulation controller 19 and the flow control valve 13.

給水回路7から出湯回路26に流れ込む給水量は給水制御器21により制御される。給水制御器21は出湯温度センサ18が測定した温度(出湯温度)と、出湯温度設定器22で設定された出湯温度設定値(60℃)とを比較し、測定した出湯温度が出湯温度設定値よりも高いときは、これに対処するために給水制御弁16の開度を大きくし、給水回路7から出湯回路26に流れ込む給水量を多くして出湯温度を低下させて、出湯温度が出湯温度設定値と等しくなるように制御する。   The amount of water supplied from the water supply circuit 7 to the hot water circuit 26 is controlled by the water supply controller 21. The water supply controller 21 compares the temperature measured by the tapping temperature sensor 18 (tapping temperature) with the tapping temperature setting value (60 ° C.) set by the tapping temperature setting device 22, and the measured tapping temperature is the tapping temperature setting value. When the temperature is higher, the opening of the water supply control valve 16 is increased to cope with this, the amount of water supplied from the water supply circuit 7 to the hot water circuit 26 is increased to lower the hot water temperature, and the hot water temperature becomes the hot water temperature. Control to be equal to the set value.

循環回路5と出湯回路26の間には逆止弁11があるため、仮に給水制御弁16が開いた状態であっても、給水が循環回路5に入り込むことはない。従って、循環回路5の温度低下を起こすことはない。さらに、循環回路5に給水が入り込まないため、給水が貯湯槽1に入り込むこともなく、貯湯槽1の温度低下を起こすことがない。
循環回路5には、保温制御器19により制御され、保温温度設定値(65℃)となった湯が循環している。この状態から出湯弁8を開くと、循環回路5から出湯回路26に65℃の湯が流入する。出湯温度センサ18が測定する温度が上昇し、先に述べた制御により、給水回路7からの給水が行われ、出湯温度設定値(60℃)となった湯が出湯弁8を通して出湯される。
このとき、出水弁27を操作して給水を加えることで、60℃を上限として出湯の温度を任意に変化させることができる。
Since the check valve 11 is provided between the circulation circuit 5 and the hot water circuit 26, even if the water supply control valve 16 is opened, the water supply does not enter the circulation circuit 5. Therefore, the temperature of the circulation circuit 5 does not decrease. Further, since the water supply does not enter the circulation circuit 5, the water supply does not enter the hot water tank 1, and the temperature of the hot water tank 1 does not decrease.
The circulating circuit 5 is circulated with hot water that has been controlled by the heat retention controller 19 and has reached the heat retention temperature set value (65 ° C.). When the hot water valve 8 is opened from this state, 65 ° C. hot water flows from the circulation circuit 5 into the hot water circuit 26. The temperature measured by the tapping temperature sensor 18 rises, and water is supplied from the water supply circuit 7 by the control described above, and the hot water that has reached the tapping temperature set value (60 ° C.) is discharged through the tapping valve 8.
At this time, by operating the water outlet valve 27 to add water, the temperature of the hot water can be arbitrarily changed up to 60 ° C.

出湯弁8を開いてから、温度の高い湯が出湯されるまでの時間は、出湯回路26の長さに依存する。循環回路5などの配管の引き回しは比較的自由に行えるため、出湯弁8の位置に対応して配管し、出湯回路26の長さを短くすることは可能である。この場合、出湯弁8を開いて、充分に短時間で、充分に温度の高い湯が出湯される。   The time from when the tap valve 8 is opened until hot water is poured out depends on the length of the tap circuit 26. Since piping such as the circulation circuit 5 can be routed relatively freely, it is possible to shorten the length of the tapping circuit 26 by piping according to the position of the tapping valve 8. In this case, the hot water valve 8 is opened, and hot water having a sufficiently high temperature is discharged in a sufficiently short time.

以上のように、貯湯槽1の湯の温度を80℃としても、出湯時の出湯温度を60℃にすることや、混合水栓使用の場合は出湯の上限温度を60℃とすることができる。さらに、出湯温度を測定して制御しているため、季節や天候によらず、安定した出湯温度を得ることができる。これにより、出湯に必要な湯の全量を出湯温度と等しい60℃で貯湯槽に貯める場合に比べて、少ない容量の貯湯槽を使用することができ、コンパクトな給湯システムを構成できるという効果が得られる。   As described above, even when the temperature of the hot water in the hot water storage tank 1 is set to 80 ° C., the temperature of the hot water at the time of hot water can be set to 60 ° C. . Furthermore, since the tapping temperature is measured and controlled, a stable tapping temperature can be obtained regardless of the season or weather. As a result, compared to the case where the total amount of hot water required for hot water is stored in the hot water storage tank at 60 ° C., which is equal to the hot water temperature, a hot water storage tank with a smaller capacity can be used, and a compact hot water supply system can be constructed. It is done.

また、循環回路5を循環する湯の温度を、貯湯槽1の貯湯温度よりも低い温度とすることができ、循環回路5の配管から放熱する放熱ロスを削減することができる。
また、配管の引き回しが比較的自由にできる循環回路から湯を取り出すため、出湯弁を開いてから、充分に短時間で、充分に温度の高い湯を出湯することが可能となる。
循環回路5と出湯回路26の間には逆止弁11があるため、給水が循環回路5や貯湯槽1に入り込むことがなく、循環回路5および貯湯槽1の温度低下を防ぐことができる。
Moreover, the temperature of the hot water circulating through the circulation circuit 5 can be set to a temperature lower than the hot water storage temperature of the hot water tank 1, and a heat radiation loss radiating heat from the piping of the circulation circuit 5 can be reduced.
Moreover, since hot water is taken out from a circulation circuit in which piping can be routed relatively freely, hot water having a sufficiently high temperature can be discharged in a sufficiently short time after the hot water valve is opened.
Since the check valve 11 is provided between the circulation circuit 5 and the hot water circuit 26, water supply does not enter the circulation circuit 5 and the hot water tank 1, and temperature reduction of the circulation circuit 5 and the hot water tank 1 can be prevented.

また、行き配管2とバイパス回路6の接続部が、貯湯槽1と行き配管2との接続部の直後の位置であるため、流量制御弁13の開度を小さく変更してから、貯湯槽1の熱い湯が行き配管2とバイパス回路6の接続部に到達するまでの、時間差が小さいため良好な保温温度制御が行える。
また、戻り配管4とバイパス回路6の接続部と戻り配管4と貯湯槽1の接続部の間に抵抗調整弁14を設けているので、貯湯槽1から行き配管2とバイパス回路6の接続部までの長さが短くて流路抵抗が非常に小さい場合でも、保温温度の制御が可能となる。
また、抵抗調整弁14の抵抗を変更可能としているので、経年変化や放熱条件の変化の影響で保温温度の制御が困難になった場合には、抵抗調整弁14の開度を調整することで、保温温度の制御が可能となる。
Moreover, since the connection part of the outgoing pipe 2 and the bypass circuit 6 is a position immediately after the connection part of the hot water tank 1 and the outgoing pipe 2, the hot water tank 1 is changed after the opening degree of the flow control valve 13 is changed small. Since the time difference until the hot water reaches the connecting portion between the going pipe 2 and the bypass circuit 6 is small, good temperature control can be performed.
Moreover, since the resistance adjustment valve 14 is provided between the connection part of the return pipe 4 and the bypass circuit 6 and the connection part of the return pipe 4 and the hot water tank 1, the connection part of the outgoing pipe 2 and the bypass circuit 6 from the hot water tank 1. Even when the length up to is short and the flow path resistance is very small, the heat insulation temperature can be controlled.
In addition, since the resistance of the resistance adjustment valve 14 can be changed, when the control of the heat insulation temperature becomes difficult due to the influence of secular change or change of the heat radiation condition, the opening of the resistance adjustment valve 14 can be adjusted. It is possible to control the heat insulation temperature.

なお、保温温度の変動がある程度許容されるのであれば、流量制御弁13の開度を固定としてもよい。同様に、出湯温度の変動がある程度許容されるのであれば、給水制御弁16に代えて逆止弁と減圧弁を用いて出湯時の給水量を一定とすることも可能である。   Note that the opening degree of the flow control valve 13 may be fixed as long as the variation in the heat retention temperature is allowed to some extent. Similarly, if the fluctuation of the tapping temperature is allowed to some extent, it is possible to use a check valve and a pressure reducing valve in place of the feed water control valve 16 to make the water supply amount at the time of tapping hot water constant.

実施の形態10.
循環回路に給水が入り込む恐れがなく、出湯温度より高い貯湯温度とすることのできる、別の実施の形態を示す。
図12は、このような場合の、給湯システムの配管回路を示すものである。
貯湯槽1には80℃の湯が貯められている。貯湯槽1には行き配管2が接続され、行き配管2の終端は循環ポンプ3の吸入口に接続され、循環ポンプ3の吐出口には戻り配管4が接続され、戻り配管4の終端は貯湯槽1に接続され、行き配管2と循環ポンプ3と戻り配管4とからなる循環回路5を構成している。
Embodiment 10 FIG.
Another embodiment is shown in which there is no fear that feed water enters the circulation circuit, and the hot water storage temperature can be higher than the hot water temperature.
FIG. 12 shows a piping circuit of a hot water supply system in such a case.
Hot water at 80 ° C. is stored in the hot water tank 1. The hot water storage tank 1 is connected to the outgoing pipe 2, the end of the outgoing pipe 2 is connected to the suction port of the circulation pump 3, the return pipe 4 is connected to the discharge port of the circulation pump 3, and the end of the return pipe 4 is the hot water storage. A circulation circuit 5 which is connected to the tank 1 and includes an outgoing pipe 2, a circulation pump 3 and a return pipe 4 is constituted.

行き配管2と戻り配管4の間には、バイパス回路6が設けられている。行き配管2とバイパス回路6の接続部は、貯湯槽1と行き配管2との接続部の直後の位置としている。バイパス回路6の途中には抵抗調整弁14が設けられている。抵抗調整弁14は開度を変えることでその抵抗が変更可能となっている。また、戻り配管4とバイパス回路6の接続部と、戻り配管4と熱交換器23の接続部の間には、電動で開度が変化可能な流量制御弁13が設けられている。   A bypass circuit 6 is provided between the outgoing pipe 2 and the return pipe 4. The connecting part between the outgoing pipe 2 and the bypass circuit 6 is located immediately after the connecting part between the hot water tank 1 and the outgoing pipe 2. A resistance adjustment valve 14 is provided in the middle of the bypass circuit 6. The resistance of the resistance adjusting valve 14 can be changed by changing the opening. Further, a flow rate control valve 13 whose opening degree can be changed electrically is provided between a connection portion between the return pipe 4 and the bypass circuit 6 and a connection portion between the return pipe 4 and the heat exchanger 23.

循環回路5の途中で、行き配管2とバイパス回路6の接続部よりも下流、かつ、戻り配管4とバイパス回路6の接続部よりも上流位置に、出湯回路26が接続される。出湯回路26は、逆止弁11を介して循環回路5からの湯を取り込み、出湯弁8を通して出湯する。
出湯回路26の逆止弁11より下流、かつ、出湯弁8より上流位置に、給水回路7が接続される。ここでは、給水回路7は、ヘッドが一定に保たれる高架水槽15と、電動で開度が変化可能な給水制御弁16を有している。
出湯弁8の出湯口は、高架水槽15からの水を出水する出水弁27の出水口と共通のもので、出湯弁8と出水弁27をあわせて、いわゆる混合水栓を成している。
In the middle of the circulation circuit 5, a hot water discharge circuit 26 is connected downstream of the connecting portion between the outgoing pipe 2 and the bypass circuit 6 and upstream of the connecting portion between the return pipe 4 and the bypass circuit 6. The hot water circuit 26 takes in hot water from the circulation circuit 5 through the check valve 11 and discharges hot water through the hot water valve 8.
A water supply circuit 7 is connected to a position downstream of the check valve 11 of the hot water circuit 26 and upstream of the hot water valve 8. Here, the water supply circuit 7 has an elevated water tank 15 in which the head is kept constant, and a water supply control valve 16 whose opening degree can be changed electrically.
The outlet of the tap valve 8 is the same as the outlet of the outlet valve 27 that drains water from the elevated water tank 15, and the outlet valve 8 and the outlet valve 27 together form a so-called mixed faucet.

行き配管2とバイパス回路6の接続部と、循環回路5と出湯回路26との接続部の間には、この位置の配管内の水温を計る保温温度センサ17が設けられている。出湯回路26と給水回路7との接続部と、出湯弁8との間には、この位置の配管内部の水温を計る出湯温度センサ18が設けられている。
保温温度センサ17からの信号の流れを示すブロック図は、実施の形態2と同一で、図3に示される。
出湯温度センサ18からの信号の流れを示すブロック図は、実施の形態2と同一で、図4に示される。
ここでは、保温温度設定器20に設定された保温温度設定値は65℃、出湯温度設定器22に設定された出湯温度設定値は60℃である。
Between the connecting part of the outgoing pipe 2 and the bypass circuit 6 and the connecting part of the circulation circuit 5 and the hot water circuit 26, a heat retaining temperature sensor 17 for measuring the water temperature in the pipe at this position is provided. Between the connecting part of the hot water circuit 26 and the water supply circuit 7 and the hot water valve 8, the hot water temperature sensor 18 which measures the water temperature inside the piping of this position is provided.
A block diagram showing the flow of signals from the heat insulation temperature sensor 17 is the same as that of the second embodiment, and is shown in FIG.
A block diagram showing a flow of signals from the tapping temperature sensor 18 is the same as that of the second embodiment and is shown in FIG.
Here, the heat insulation temperature setting value set in the heat insulation temperature setting device 20 is 65 ° C., and the hot water temperature setting value set in the hot water temperature setting device 22 is 60 ° C.

次に動作について説明する。
循環ポンプ3の駆動により、貯湯槽1の湯は、行き配管2に流れ込み、循環ポンプ3と戻り配管4を通り貯湯槽1に戻る。また、循環ポンプ3から戻り配管4に入った湯の一部は、バイパス回路6を通り、行き配管2に流れ込む。
行き配管2に流れ込む湯の、貯湯槽1からの量とバイパス回路6からの量の比率は、保温制御器19により制御される。保温制御器19は保温温度センサ17が測定した温度(循環回路5の保温温度)と、保温温度設定器20で設定された保温温度設定値(65℃)とを比較し、測定した保温温度が保温温度設定値よりも低いときは、これに対処するために流量制御弁13の開度を大きくし、バイパス回路6からの流量が少なく、貯湯槽1からの湯が多くなるようにして保温温度を上昇させ、保温温度が保温温度設定値(65℃)と等しくなるように制御する。
Next, the operation will be described.
When the circulation pump 3 is driven, the hot water in the hot water tank 1 flows into the outgoing pipe 2 and returns to the hot water tank 1 through the circulation pump 3 and the return pipe 4. Further, part of the hot water that has entered the return pipe 4 from the circulation pump 3 flows into the outgoing pipe 2 through the bypass circuit 6.
The ratio of the amount of hot water flowing into the outgoing pipe 2 from the hot water storage tank 1 and the amount from the bypass circuit 6 is controlled by a heat retention controller 19. The insulation controller 19 compares the temperature measured by the insulation temperature sensor 17 (the insulation temperature of the circulation circuit 5) with the insulation temperature set value (65 ° C.) set by the insulation temperature setting device 20, and the measured insulation temperature is When the temperature is lower than the set temperature, the opening temperature of the flow control valve 13 is increased to cope with this, so that the flow rate from the bypass circuit 6 is small and the hot water from the hot water tank 1 is increased. And the temperature is controlled so that the temperature is equal to the temperature setting value (65 ° C.).

バイパス回路6の長さが短く、バイパス回路6の流路抵抗が非常に小さい場合には、バイパス回路6から行き配管2に流れ込む湯が多すぎて、保温温度の制御が困難になる場合がある。そこで、このときは、バイパス回路6に抵抗調整弁14を設けることで、バイパス回路6からの湯が多すぎないように調節する。   When the length of the bypass circuit 6 is short and the flow path resistance of the bypass circuit 6 is very small, there is a case where there is too much hot water flowing into the outgoing pipe 2 from the bypass circuit 6 and it becomes difficult to control the heat insulation temperature. . Therefore, at this time, the resistance adjustment valve 14 is provided in the bypass circuit 6 so that the amount of hot water from the bypass circuit 6 is adjusted so as not to be excessive.

経年変化による配管の流路抵抗の変化の影響や、季節による放熱条件の変化の影響で、保温制御器19や流量制御弁13の制御範囲内で保温温度の制御が困難になった場合には、抵抗調整弁14の開度を調整することで、流量バランスを調整し、保温制御器19や流量制御弁13の制御範囲内で保温温度の制御ができるようにする。   When it becomes difficult to control the heat insulation temperature within the control range of the heat insulation controller 19 and the flow rate control valve 13 due to the influence of the change in the flow resistance of the piping due to secular change and the influence of the change in the heat radiation condition due to the season. The flow rate balance is adjusted by adjusting the opening degree of the resistance adjustment valve 14 so that the heat insulation temperature can be controlled within the control range of the heat insulation controller 19 and the flow control valve 13.

給水回路7から出湯回路26に流れ込む給水量は給水制御器21により制御される。給水制御器21は出湯温度センサ18が測定した温度(出湯温度)と、出湯温度設定器22で設定された出湯温度設定値(60℃)とを比較し、測定した出湯温度が出湯温度設定値よりも高いときは、これに対処するために給水制御弁16の開度を大きくし、給水回路7から出湯回路26に流れ込む給水量を多くして出湯温度を低下させて、出湯温度が出湯温度設定値と等しくなるように制御する。   The amount of water supplied from the water supply circuit 7 to the hot water circuit 26 is controlled by the water supply controller 21. The water supply controller 21 compares the temperature measured by the tapping temperature sensor 18 (tapping temperature) with the tapping temperature setting value (60 ° C.) set by the tapping temperature setting device 22, and the measured tapping temperature is the tapping temperature setting value. When the temperature is higher, the opening of the water supply control valve 16 is increased to cope with this, the amount of water supplied from the water supply circuit 7 to the hot water circuit 26 is increased to lower the hot water temperature, and the hot water temperature becomes the hot water temperature. Control to be equal to the set value.

循環回路5と出湯回路26の間には逆止弁11があるため、仮に給水制御弁16が開いた状態であっても、給水が循環回路5に入り込むことはない。従って、循環回路5の温度低下を起こすことはない。さらに、循環回路5に給水が入り込まないため、給水が貯湯槽1に入り込むこともなく、貯湯槽1の温度低下を起こすことがない。   Since the check valve 11 is provided between the circulation circuit 5 and the hot water circuit 26, even if the water supply control valve 16 is opened, the water supply does not enter the circulation circuit 5. Therefore, the temperature of the circulation circuit 5 does not decrease. Further, since the water supply does not enter the circulation circuit 5, the water supply does not enter the hot water tank 1, and the temperature of the hot water tank 1 does not decrease.

循環回路5には、保温制御器19により制御され、保温温度設定値(65℃)となった湯が循環している。この状態から出湯弁8を開くと、循環回路5から出湯回路26に65℃の湯が流入する。出湯温度センサ18が測定する温度が上昇し、先に述べた制御により、給水回路7からの給水が行われ、出湯温度設定値(60℃)となった湯が出湯弁8を通して出湯される。
このとき、出水弁27を操作して給水を加えることで、60℃を上限として出湯の温度を任意に変化させることができる。
The circulating circuit 5 is circulated with hot water that has been controlled by the heat retention controller 19 and has reached the heat retention temperature set value (65 ° C.). When the hot water valve 8 is opened from this state, 65 ° C. hot water flows from the circulation circuit 5 into the hot water circuit 26. The temperature measured by the tapping temperature sensor 18 rises, and water is supplied from the water supply circuit 7 by the control described above, and the hot water that has reached the tapping temperature set value (60 ° C.) is discharged through the tapping valve 8.
At this time, by operating the water outlet valve 27 to add water, the temperature of the hot water can be arbitrarily changed up to 60 ° C.

出湯弁8を開いてから、温度の高い湯が出湯されるまでの時間は、出湯回路26の長さに依存する。循環回路5などの配管の引き回しは比較的自由に行えるため、出湯弁8の位置に対応して配管し、出湯回路26の長さを短くすることは可能である。この場合、出湯弁8を開いて、充分に短時間で、充分に温度の高い湯が出湯される。   The time from when the tap valve 8 is opened until hot water is poured out depends on the length of the tap circuit 26. Since piping such as the circulation circuit 5 can be routed relatively freely, it is possible to shorten the length of the tapping circuit 26 by piping according to the position of the tapping valve 8. In this case, the hot water valve 8 is opened, and hot water having a sufficiently high temperature is discharged in a sufficiently short time.

以上のように、貯湯槽1の湯の温度を80℃としても、出湯時の出湯温度を60℃にすることや、混合水栓使用の場合は出湯の上限温度を60℃とすることができる。さらに、出湯温度を測定して制御しているため、季節や天候によらず、安定した出湯温度を得ることができる。これにより、出湯に必要な湯の全量を出湯温度と等しい60℃で貯湯槽に貯める場合に比べて、少ない容量の貯湯槽を使用することができ、コンパクトな給湯システムを構成できるという効果が得られる。
また、循環回路5を循環する湯の温度を、貯湯槽1の貯湯温度よりも低い温度とすることができ、循環回路5の配管から放熱する放熱ロスを削減することができる。
As described above, even when the temperature of the hot water in the hot water storage tank 1 is 80 ° C., the temperature of the hot water at the time of hot water can be set to 60 ° C., or the upper limit temperature of the hot water can be set to 60 ° C. in the case of using a mixed tap. . Furthermore, since the tapping temperature is measured and controlled, a stable tapping temperature can be obtained regardless of the season or weather. As a result, compared to the case where the total amount of hot water required for hot water is stored in the hot water storage tank at 60 ° C., which is equal to the hot water temperature, a hot water storage tank with a smaller capacity can be used, and a compact hot water supply system can be constructed. It is done.
Moreover, the temperature of the hot water circulating through the circulation circuit 5 can be set to a temperature lower than the hot water storage temperature of the hot water tank 1, and a heat radiation loss radiating heat from the piping of the circulation circuit 5 can be reduced.

また、配管の引き回しが比較的自由にできる循環回路から湯取り出すため、出湯弁を開いてから、充分に短時間で、充分に温度の高い湯を出湯することが可能となる。
循環回路5と出湯回路26の間には逆止弁11があるため、給水が循環回路5や貯湯槽1に入り込むことがなく、循環回路5および貯湯槽1の温度低下を防ぐことができる。
さらに、流量制御弁13を、戻り配管4とバイパス回路6の接続部と戻り配管4と貯湯槽1の接続部の間に設けたことで、出湯がないときの保温温度が保温温度設定値よりも高いときは、流量制御弁13を全閉とすることで、貯湯槽1の湯を全く使用せず、貯湯槽1の貯湯温度を高く保つことができる。
Moreover, since hot water is taken out from a circulation circuit in which piping can be routed relatively freely, hot water having a sufficiently high temperature can be discharged in a sufficiently short time after the hot water valve is opened.
Since the check valve 11 is provided between the circulation circuit 5 and the hot water circuit 26, water supply does not enter the circulation circuit 5 and the hot water tank 1, and temperature reduction of the circulation circuit 5 and the hot water tank 1 can be prevented.
Furthermore, by providing the flow rate control valve 13 between the connection part of the return pipe 4 and the bypass circuit 6 and the connection part of the return pipe 4 and the hot water tank 1, the heat insulation temperature when there is no hot water is higher than the heat insulation temperature set value. If it is too high, the flow rate control valve 13 is fully closed, so that the hot water in the hot water tank 1 is not used at all, and the hot water temperature in the hot water tank 1 can be kept high.

また、行き配管2とバイパス回路6の接続部が、貯湯槽1と行き配管2との接続部の直後の位置であるため、流量制御弁13の開度を大きく変更してから、貯湯槽1の熱い湯が行き配管2とバイパス回路6の接続部に到達するまでの、時間差が小さいため良好な保温温度制御が行える。
また、バイパス回路6に抵抗調整弁14を設けているので、バイパス回路6の長さが短くて流路抵抗が非常に小さい場合でも、保温温度の制御が可能となる。
また、抵抗調整弁14の抵抗を変更可能としているので、経年変化や放熱条件の変化の影響で保温温度の制御が困難になった場合には、抵抗調整弁14の開度を調整することで、保温温度の制御が可能となる。
Moreover, since the connection part of the outgoing pipe 2 and the bypass circuit 6 is a position immediately after the connection part of the hot water storage tank 1 and the outgoing pipe 2, the opening degree of the flow control valve 13 is largely changed before the hot water storage tank 1 Since the time difference until the hot water reaches the connecting portion between the going pipe 2 and the bypass circuit 6 is small, good temperature control can be performed.
Further, since the resistance adjusting valve 14 is provided in the bypass circuit 6, even when the length of the bypass circuit 6 is short and the flow path resistance is very small, the heat insulation temperature can be controlled.
In addition, since the resistance of the resistance adjustment valve 14 can be changed, when the control of the heat insulation temperature becomes difficult due to the influence of secular change or change of the heat radiation condition, the opening of the resistance adjustment valve 14 can be adjusted. It is possible to control the heat insulation temperature.

なお、保温温度の変動がある程度許容されるのであれば、流量制御弁13の開度を固定としてもよい。同様に、出湯温度の変動がある程度許容されるのであれば、給水制御弁16に代えて逆止弁と減圧弁を用いて出湯時の給水量を一定とすることも可能である。   Note that the opening degree of the flow control valve 13 may be fixed as long as the variation in the heat retention temperature is allowed to some extent. Similarly, if the fluctuation of the tapping temperature is allowed to some extent, it is possible to use a check valve and a pressure reducing valve in place of the feed water control valve 16 to make the water supply amount at the time of tapping hot water constant.

実施の形態11.
循環回路に給水が入り込む恐れがなく、出湯温度より高い貯湯温度とすることのできる、別の実施の形態を示す。
図13は、このような場合の、給湯システムの配管回路を示すものである。
貯湯槽1には80℃の湯が貯められている。貯湯槽1には行き配管2が接続され、行き配管2の終端は循環ポンプ3の吸入口に接続され、循環ポンプ3の吐出口には戻り配管4が接続され、戻り配管4の終端は貯湯槽1に接続され、行き配管2と循環ポンプ3と戻り配管4とからなる循環回路5を構成している。
Embodiment 11 FIG.
Another embodiment is shown in which there is no fear that feed water enters the circulation circuit, and the hot water storage temperature can be higher than the hot water temperature.
FIG. 13 shows a piping circuit of a hot water supply system in such a case.
Hot water at 80 ° C. is stored in the hot water tank 1. The hot water storage tank 1 is connected to the outgoing pipe 2, the end of the outgoing pipe 2 is connected to the suction port of the circulation pump 3, the return pipe 4 is connected to the discharge port of the circulation pump 3, and the end of the return pipe 4 is the hot water storage. A circulation circuit 5 which is connected to the tank 1 and includes an outgoing pipe 2, a circulation pump 3 and a return pipe 4 is constituted.

行き配管2と戻り配管4の間には、バイパス回路6が設けられている。行き配管2とバイパス回路6の接続部は、貯湯槽1と行き配管2との接続部の直後の位置としている。バイパス回路6の途中には、電動で開度が変化可能な流量制御弁13が設けられている。また、戻り配管4とバイパス回路6の接続部と戻り配管4と貯湯槽1の接続部の間には抵抗調整弁14が設けられている。抵抗調整弁14は開度を変えることでその抵抗が変更可能となっている。   A bypass circuit 6 is provided between the outgoing pipe 2 and the return pipe 4. The connecting part between the outgoing pipe 2 and the bypass circuit 6 is located immediately after the connecting part between the hot water tank 1 and the outgoing pipe 2. In the middle of the bypass circuit 6, a flow control valve 13 whose opening degree can be changed electrically is provided. In addition, a resistance adjustment valve 14 is provided between a connection portion between the return pipe 4 and the bypass circuit 6 and a connection portion between the return pipe 4 and the hot water tank 1. The resistance of the resistance adjusting valve 14 can be changed by changing the opening.

循環回路5の途中で、行き配管2とバイパス回路6の接続部よりも下流、かつ、戻り配管4とバイパス回路6の接続部よりも上流位置に、第1の出湯回路28および第2の出湯回路37が接続される。
第1の出湯回路28は、第1の逆止弁29を介して循環回路5からの湯を取り込み、第1の出湯弁31を通して出湯する。
第1の出湯回路28の第1の逆止弁29より下流、かつ、第1の出湯弁31より上流位置に、第1の給水回路33が接続される。第1の給水回路33は、ヘッドが一定に保たれる高架水槽15と、電動で開度が変化可能な第1の給水制御弁34を有している。
In the middle of the circulation circuit 5, the first hot water circuit 28 and the second hot water are located downstream of the connecting portion between the outgoing pipe 2 and the bypass circuit 6 and upstream of the connecting portion between the return pipe 4 and the bypass circuit 6. A circuit 37 is connected.
The first hot water circuit 28 takes in hot water from the circulation circuit 5 through the first check valve 29 and discharges hot water through the first hot water valve 31.
A first water supply circuit 33 is connected to a position downstream of the first check valve 29 of the first hot water circuit 28 and upstream of the first hot water valve 31. The first water supply circuit 33 includes an elevated water tank 15 in which the head is kept constant, and a first water supply control valve 34 whose opening degree can be changed electrically.

第1の出湯弁31の出湯口は、高架水槽15からの水を出水する第1の出水弁32の出水口と共通のもので、第1の出湯弁31と第1の出水弁32をあわせて、いわゆる混合水栓を成している。
第2の出湯回路37は、第2の逆止弁38を介して循環回路5からの湯を取り込み、第2の出湯弁40を通して出湯する。
第2の出湯回路37の第2の逆止弁38より下流、かつ、第2の出湯弁40より上流位置に、第2の給水回路42が接続される。第2の給水回路42は、ヘッドが一定に保たれる高架水槽15(第1の給水回路と共通)と、電動で開度が変化可能な第2の給水制御弁43を有している。
第2の出湯弁40の出湯口は、高架水槽15からの水を出水する第2の出水弁41の出水口と共通のもので、第2の出湯弁40と第2の出水弁41をあわせて、いわゆる混合水栓を成している。
The outlet of the first outlet valve 31 is the same as the outlet of the first outlet valve 32 that discharges water from the elevated water tank 15. The first outlet valve 31 and the first outlet valve 32 are combined. The so-called mixed faucet.
The second hot water circuit 37 takes in hot water from the circulation circuit 5 through the second check valve 38 and discharges hot water through the second hot water valve 40.
A second water supply circuit 42 is connected to a position downstream of the second check valve 38 and upstream of the second hot water valve 40 of the second hot water circuit 37. The 2nd water supply circuit 42 has the elevated water tank 15 (common with a 1st water supply circuit) with which a head is kept constant, and the 2nd water supply control valve 43 which can change an opening degree electrically.
The outlet of the second outlet valve 40 is the same as the outlet of the second outlet valve 41 that discharges water from the elevated water tank 15, and the second outlet valve 40 and the second outlet valve 41 are combined. The so-called mixed faucet.

行き配管2とバイパス回路6の接続部と、循環回路5と第2の出湯回路37との接続部の間には、この位置の配管内の水温を計る保温温度センサ17が設けられている。第1の出湯回路28と第1の給水回路33との接続部と、第1の出湯弁31との間には、この位置の配管内部の水温を計る第1の出湯温度センサ30が設けられている。第2の出湯回路37と第2の給水回路42との接続部と、第2の出湯弁40との間には、この位置の配管内部の水温を計る第2の出湯温度センサ39が設けられている。
保温温度センサ17からの信号の流れを示すブロック図は、実施の形態2と同一で、図3に示される。ここでは、保温温度設定器20に設定された保温温度設定値は65℃である。
Between the connecting part of the outgoing pipe 2 and the bypass circuit 6 and the connecting part of the circulation circuit 5 and the second hot water circuit 37, a heat retaining temperature sensor 17 for measuring the water temperature in the pipe at this position is provided. Between the connection part of the 1st hot water circuit 28 and the 1st water supply circuit 33, and the 1st hot water valve 31, the 1st hot water temperature sensor 30 which measures the water temperature inside the piping of this position is provided. ing. Between the connection part of the 2nd hot water circuit 37 and the 2nd water supply circuit 42, and the 2nd hot water valve 40, the 2nd hot water temperature sensor 39 which measures the water temperature inside the piping of this position is provided. ing.
A block diagram showing the flow of signals from the heat insulation temperature sensor 17 is the same as that of the second embodiment, and is shown in FIG. Here, the heat insulation temperature set value set in the heat insulation temperature setting device 20 is 65 ° C.

図14は、第1の出湯温度センサ30、および、第2の出湯温度センサ39からの信号の流れを示すブロック図である。
第1の出湯温度センサ30の信号は第1の給水制御器35に入力される。第1の出湯温度設定器36には、たとえば操作盤からの入力や、メモリーへの書き込みにより、第1の出湯回路の出湯温度の設定値として60℃が設定される。第1の出湯温度センサ30の信号と第1の出湯温度設定器36の設定値が第1の給水制御器35に入力され、第1の給水制御器35は第1の給水制御弁34を駆動する出力を出す。
第2の出湯温度センサ39の信号は第2の給水制御器44に入力される。第2の出湯温度設定器45には、たとえば操作盤からの入力や、メモリーへの書き込みにより、第2の出湯回路の出湯温度の設定値として45℃が設定される。第2の出湯温度センサ39の信号と第2の出湯温度設定器45の設定値が第2の給水制御器44に入力され、第1の給水制御器44は第1の給水制御弁43を駆動する出力を出す。
FIG. 14 is a block diagram showing the flow of signals from the first hot water temperature sensor 30 and the second hot water temperature sensor 39.
A signal from the first hot water temperature sensor 30 is input to the first water supply controller 35. In the first tapping temperature setting device 36, 60 ° C. is set as a set value of the tapping temperature of the first tapping circuit by, for example, input from the operation panel or writing to the memory. The signal of the first hot water temperature sensor 30 and the set value of the first hot water temperature setting device 36 are input to the first water supply controller 35, and the first water supply controller 35 drives the first water supply control valve 34. To output.
The signal from the second hot water temperature sensor 39 is input to the second water supply controller 44. The second tapping temperature setting unit 45 is set to 45 ° C. as a set value for the tapping temperature of the second tapping circuit by, for example, input from the operation panel or writing to the memory. The signal from the second hot water temperature sensor 39 and the set value of the second hot water temperature setting device 45 are input to the second water supply controller 44, and the first water supply controller 44 drives the first water supply control valve 43. To output.

次に動作について説明する。
循環回路5の保温動作については、実施の形態9と同一であり、説明を省略する。
第1の給水回路33から第1の出湯回路28に流れ込む給水量は第1の給水制御器35により制御される。第1の給水制御器35は第1の出湯温度センサ30が測定した温度(第1の出湯温度)と、第1の出湯温度設定器36で設定された第1の出湯温度設定値(60℃)とを比較し、測定した第1の出湯温度が第1の出湯温度設定値よりも高いときは、これに対処するために第1の給水制御弁34の開度を大きくし、第1の給水回路33から第1の出湯回路28に流れ込む給水量を多くして出湯温度を低下させて、第1の出湯温度が第1の出湯温度設定値と等しくなるように制御する。
Next, the operation will be described.
The heat retaining operation of the circulation circuit 5 is the same as that of the ninth embodiment, and the description thereof is omitted.
The amount of water supplied from the first water supply circuit 33 to the first hot water circuit 28 is controlled by the first water supply controller 35. The first feed water controller 35 has a temperature measured by the first tapping temperature sensor 30 (first tapping temperature) and a first tapping temperature setting value (60 ° C.) set by the first tapping temperature setting unit 36. ), And when the measured first tapping temperature is higher than the first tapping temperature set value, in order to cope with this, the opening of the first feed water control valve 34 is increased, The amount of water supplied from the water supply circuit 33 to the first hot water circuit 28 is increased to lower the hot water temperature, and the first hot water temperature is controlled to be equal to the first hot water temperature set value.

循環回路5には、保温制御器19により制御され、保温温度設定値(65℃)となった湯が循環している。この状態から第1の出湯弁31を開くと、循環回路5から第1の出湯回路28に65℃の湯が流入する。第1の出湯温度センサ30が測定する温度が上昇し、先に述べた制御により、第1の給水回路33からの給水が行われ、第1の出湯温度設定値(60℃)となった湯が第1の出湯弁31を通して出湯される。
このとき、第1の出水弁32を操作して給水を加えることで、60℃を上限として出湯の温度を任意に変化させることができる。
The circulating circuit 5 is circulated with hot water that has been controlled by the heat retention controller 19 and has reached the heat retention temperature set value (65 ° C.). When the first hot water valve 31 is opened from this state, 65 ° C. hot water flows into the first hot water circuit 28 from the circulation circuit 5. Hot water whose temperature measured by the first hot water temperature sensor 30 is increased and water is supplied from the first water supply circuit 33 by the above-described control and becomes the first hot water temperature set value (60 ° C.). Is discharged through the first outlet valve 31.
At this time, by operating the first water discharge valve 32 to add water, the temperature of the hot water can be arbitrarily changed up to 60 ° C.

第2の給水回路42から第2の出湯回路37に流れ込む給水量は第2の給水制御器44により制御される。第2の給水制御器44は第2の出湯温度センサ39が測定した温度(第2の出湯温度)と、第2の出湯温度設定器45で設定された第2の出湯温度設定値(45℃)とを比較し、測定した第2の出湯温度が第2の出湯温度設定値よりも高いときは、これに対処するために第2の給水制御弁43の開度を大きくし、第2の給水回路42から第2の出湯回路37に流れ込む給水量を多くして出湯温度を低下させて、第2の出湯温度が第2の出湯温度設定値と等しくなるように制御する。   The amount of water supplied from the second water supply circuit 42 to the second hot water circuit 37 is controlled by the second water supply controller 44. The second feed water controller 44 has a temperature measured by the second tapping temperature sensor 39 (second tapping temperature) and a second tapping temperature set value (45 ° C.) set by the second tapping temperature setting unit 45. ), And when the measured second tapping temperature is higher than the second tapping temperature set value, in order to cope with this, the opening degree of the second water supply control valve 43 is increased, The amount of water supplied from the water supply circuit 42 to the second hot water circuit 37 is increased to lower the hot water temperature, and the second hot water temperature is controlled to be equal to the second hot water temperature set value.

循環回路5には、保温制御器19により制御され、保温温度設定値(65℃)となった湯が循環している。この状態から第2の出湯弁40を開くと、循環回路5から第2の出湯回路37に65℃の湯が流入する。第2の出湯温度センサ39が測定する温度が上昇し、先に述べた制御により、第2の給水回路42からの給水が行われ、第2の出湯温度設定値(45℃)となった湯が第2の出湯弁40を通して出湯される。
このとき、第2の出水弁41を操作して給水を加えることで、45℃を上限として出湯の温度を任意に変化させることができる。
The circulating circuit 5 is circulated with hot water that has been controlled by the heat retention controller 19 and has reached the heat retention temperature set value (65 ° C.). When the second hot water valve 40 is opened from this state, 65 ° C. hot water flows from the circulation circuit 5 into the second hot water circuit 37. The temperature measured by the second tapping temperature sensor 39 rises, and water is supplied from the second water supply circuit 42 by the control described above, and reaches the second tapping temperature setting value (45 ° C.). Is discharged through the second tap valve 40.
At this time, by operating the second water discharge valve 41 to add water, the temperature of the hot water can be arbitrarily changed up to 45 ° C.

以上のような給湯システムでは、複数の出湯回路を有し、それぞれの出湯回路の出湯温度を独自に設定することができ、混合水栓使用の場合は出湯の上限温度を独自に設定できる。たとえば、厨房での出湯は、その上限温度を60℃に制限し、浴室での出湯は、その上限温度を45℃に制限するというような設定が可能である。高温の出湯の必要のない所での出湯温度を低く制限することで、出湯弁の誤操作があったとしても、その影響を小さくできる効果がある。   The hot water supply system as described above has a plurality of hot water circuits, and the hot water temperature of each hot water circuit can be set uniquely. When a mixed tap is used, the upper limit temperature of the hot water can be set uniquely. For example, it is possible to set such that the upper limit temperature is limited to 60 ° C. for the hot water in the kitchen, and the upper limit temperature is limited to 45 ° C. for the hot water in the bathroom. By limiting the temperature of the hot water at a place where high temperature hot water is not required, even if the hot water valve is erroneously operated, the influence can be reduced.

この発明の実施の形態1を示す給湯システムの配管回路である。It is a piping circuit of the hot water supply system which shows Embodiment 1 of this invention. この発明の実施の形態2を示す給湯システムの配管回路である。It is a piping circuit of the hot water supply system which shows Embodiment 2 of this invention. この発明の実施の形態2の信号の流れを示すブロック図である。It is a block diagram which shows the flow of the signal of Embodiment 2 of this invention. この発明の実施の形態2の信号の流れを示すブロック図である。It is a block diagram which shows the flow of the signal of Embodiment 2 of this invention. この発明の実施の形態3の信号の流れを示すブロック図である。It is a block diagram which shows the flow of the signal of Embodiment 3 of this invention. この発明の実施の形態4の信号の流れを示すブロック図である。It is a block diagram which shows the flow of the signal of Embodiment 4 of this invention. この発明の実施の形態5を示す給湯システムの配管回路である。It is a piping circuit of the hot water supply system which shows Embodiment 5 of this invention. この発明の実施の形態6を示す給湯システムの配管回路である。It is a piping circuit of the hot water supply system which shows Embodiment 6 of this invention. この発明の実施の形態7を示す給湯システムの配管回路である。It is a piping circuit of the hot water supply system which shows Embodiment 7 of this invention. この発明の実施の形態8を示す給湯システムの配管回路である。It is a piping circuit of the hot water supply system which shows Embodiment 8 of this invention. この発明の実施の形態9を示す給湯システムの配管回路である。It is a piping circuit of the hot water supply system which shows Embodiment 9 of this invention. この発明の実施の形態10を示す給湯システムの配管回路である。It is a piping circuit of the hot water supply system which shows Embodiment 10 of this invention. この発明の実施の形態11を示す給湯システムの配管回路である。It is a piping circuit of the hot water supply system which shows Embodiment 11 of this invention. この発明の実施の形態11の信号の流れを示すブロック図である。It is a block diagram which shows the flow of a signal of Embodiment 11 of this invention.

符号の説明Explanation of symbols

1 貯湯槽、2 行き配管、3 循環ポンプ、4 戻り配管、5 循環回路、6 バイパス回路、7 給水回路、8 出湯弁、9 弁、10 減圧弁、11 逆止弁、12 逆止弁、13 流量制御弁、14 抵抗調整弁、15 高架水槽、16 給水制御弁、17 保温温度センサ、18 出湯温度センサ、19 保温制御器、20 保温温度設定器、21 給水制御器、22 出湯温度設定器、23 熱交換器、24 給湯回路、26 出湯回路、27 出水弁、28 第1の出湯回路、29 第1の逆止弁、30 第1の出湯温度センサ、31 第1の出湯弁、32 第1の出水弁、33 第1の給水回路、34 第1の給水制御弁、35 第1の給水制御器、36 第1の出湯温度設定器、37 第2の出湯回路、38 第2の逆止弁、39 第2の出湯温度センサ、40 第2の出湯弁、41 第2の出水弁、42 第2の給水回路、43 第2の給水制御弁、44 第2の給水制御器、45 第2の出湯温度設定器。   DESCRIPTION OF SYMBOLS 1 Hot water storage tank, 2 way piping, 3 Circulation pump, 4 Return piping, 5 Circulation circuit, 6 Bypass circuit, 7 Water supply circuit, 8 Hot water outlet valve, 9 valve, 10 Pressure reducing valve, 11 Check valve, 12 Check valve, 13 Flow control valve, 14 resistance adjustment valve, 15 elevated water tank, 16 water supply control valve, 17 heat retention temperature sensor, 18 hot water temperature sensor, 19 heat retention controller, 20 heat retention temperature setter, 21 water supply controller, 22 hot water temperature setter, DESCRIPTION OF SYMBOLS 23 Heat exchanger, 24 Hot-water supply circuit, 26 Hot-water supply circuit, 27 Outflow valve, 28 1st hot-water supply circuit, 29 1st non-return valve, 30 1st hot-water temperature sensor, 31 1st hot-water valve, 32 1st Water outlet valve, 33 first water supply circuit, 34 first water supply control valve, 35 first water supply controller, 36 first hot water temperature setting device, 37 second hot water circuit, 38 second check valve 39 Second hot water temperature center Sensor, 40 second tapping valve, 41 second tapping valve, 42 second feeding circuit, 43 second feeding control valve, 44 second feeding controller, 45 second tapping temperature setting device.

Claims (41)

貯湯槽と、
この貯湯槽内部の湯を導入する行き配管と、
この行き配管の湯を吸入し、加圧送出する循環ポンプと、
この循環ポンプが送出した湯を前記貯湯槽に戻す戻り配管と、を備え、
前記行き配管、前記循環ポンプ、前記戻り配管からなる循環回路を形成し、
前記行き配管と前記戻り配管をつなぐバイパス回路と、
前記行き配管と前記バイパス回路の接続部より下流、かつ、前記戻り配管と前記バイパス回路との接続部より上流の前記循環回路上に接続された給水回路と、
前記循環回路と前記給水回路の接続部より下流、かつ、前記戻り配管と前記バイパス回路との接続部より上流の前記循環回路上に接続された出湯口を持ち、
前記バイパス回路に、このバイパス回路を通る湯量を制限する流量制限手段を設け、
前記給水回路に、給水量を制限する給水制限手段を設けたことを特徴とする給湯システム。
A hot water tank,
The outgoing piping that introduces hot water inside this hot water tank,
A circulation pump that draws in hot water from this outgoing pipe and sends it out under pressure;
A return pipe for returning the hot water sent out by the circulation pump to the hot water storage tank,
Forming a circulation circuit composed of the outgoing pipe, the circulation pump, and the return pipe;
A bypass circuit connecting the outgoing pipe and the return pipe;
A water supply circuit connected on the circulation circuit downstream from the connection part between the outgoing pipe and the bypass circuit and upstream from a connection part between the return pipe and the bypass circuit;
A hot water outlet connected to the circulation circuit downstream from the connection part between the circulation circuit and the water supply circuit and upstream from the connection part between the return pipe and the bypass circuit,
The bypass circuit is provided with a flow rate limiting means for limiting the amount of hot water passing through the bypass circuit,
A hot water supply system, wherein the water supply circuit is provided with water supply restriction means for restricting the amount of water supply.
前記循環回路の前記給水回路との接続部より上流で、かつ、前記行き配管の前記バイパス回路との接続部より下流の位置に設けられた保温温度センサと、
保温温度の目標値を設定する保温温度設定手段と、
前記保温温度センサの出力と前記保温温度設定手段により設定された保温温度目標値を取り込み、前記バイパス回路の流量制限手段を制御する流量制御手段と、
前記循環回路の前記給水回路との接続部より下流で、かつ、前記出湯口より上流の位置に設けられた出湯温度センサと、
出湯温度の目標値を設定する出湯温度設定手段と、
前記出湯温度センサの出力と前記出湯温度設定手段により設定された出湯温度目標値を取り込み、前記給水回路の給水制限手段を制御する給水制御手段と、
を備えたことを特徴とする請求項1記載の給湯システム。
A heat retention temperature sensor provided at a position upstream of the connection portion of the circulation circuit with the water supply circuit and downstream of the connection portion of the outgoing pipe with the bypass circuit;
Heat insulation temperature setting means for setting a target value of the heat insulation temperature;
A flow rate control means for taking in an output of the heat insulation temperature sensor and a heat insulation temperature target value set by the heat insulation temperature setting means and controlling a flow rate restriction means of the bypass circuit;
A tapping temperature sensor provided at a position downstream from the connection portion of the circulation circuit with the water supply circuit and upstream from the tapping outlet;
Tapping temperature setting means for setting a target value of tapping temperature;
A water supply control means for taking in an output of the hot water temperature sensor and a hot water temperature target value set by the hot water temperature setting means and controlling a water supply restriction means of the water supply circuit;
The hot water supply system according to claim 1, further comprising:
前記給水回路の給水制御手段の制御目標値を、前記バイパス回路の流量制御手段の制御目標値よりも高く設定して制御することを特徴とする請求項2記載の給湯システム。   The hot water supply system according to claim 2, wherein the control target value of the water supply control means of the water supply circuit is set to be higher than the control target value of the flow rate control means of the bypass circuit. 前記行き配管と前記バイパス回路との接続位置を、前記貯湯槽と前記行き配管との接続の直後としたことを特徴とする請求項2または請求項3に記載の給湯システム。   The hot water supply system according to claim 2 or 3, wherein a connection position between the outgoing pipe and the bypass circuit is set immediately after the hot water storage tank and the outgoing pipe are connected. 前記戻り配管の、前記バイパス回路との接続部より下流に、流路抵抗を増加させる抵抗要素を設けたことを特徴とする請求項2〜請求項4のいずれかに記載の給湯システム。   The hot water supply system according to any one of claims 2 to 4, wherein a resistance element for increasing flow path resistance is provided downstream of a connection portion of the return pipe with the bypass circuit. 前記抵抗要素の抵抗を可変としたことを特徴とする請求項5記載の給湯システム。   The hot water supply system according to claim 5, wherein the resistance of the resistance element is variable. 前記給水制御手段は、前記流量制御手段の制御情報を取り込んで制御することを特徴とする請求項2〜請求項6のいずれかに記載の給湯システム。   The hot water supply system according to any one of claims 2 to 6, wherein the water supply control means takes in control information of the flow rate control means. 前記流量制御手段は、前記給水制御手段の制御情報を取り込んで制御することを特徴とする請求項2〜請求項6のいずれかに記載の給湯システム。   The hot water supply system according to any one of claims 2 to 6, wherein the flow rate control means takes in control information of the water supply control means. 貯湯槽と、
この貯湯槽内部の湯を導入する行き配管と、
この行き配管の湯を吸入し、加圧送出する循環ポンプと、
この循環ポンプが送出した湯を前記貯湯槽に戻す戻り配管と、を備え、
前記行き配管、前記循環ポンプ、前記戻り配管からなる循環回路を形成し、
前記行き配管と前記戻り配管をつなぐバイパス回路と、
前記行き配管と前記バイパス回路の接続部より下流、かつ、前記戻り配管と前記バイパス回路との接続部より上流の循環回路上に接続された給水回路と、
前記循環回路と前記給水回路の接続部より下流、かつ、前記戻り配管と前記バイパス回路との接続部より上流の前記循環回路上に接続された出湯口を持ち、
前記戻り配管の前記バイパス回路との接続部より下流の位置に、前記戻り配管から前記貯湯槽に戻る湯量を制限する流量制限手段を設け、
前記給水回路に、給水量を制限する給水制限手段を設けたことを特徴とする給湯システム。
A hot water tank,
The outgoing piping that introduces hot water inside this hot water tank,
A circulation pump that draws in hot water from this outgoing pipe and sends it out under pressure;
A return pipe for returning the hot water sent out by the circulation pump to the hot water storage tank,
Forming a circulation circuit composed of the outgoing pipe, the circulation pump, and the return pipe;
A bypass circuit connecting the outgoing pipe and the return pipe;
A water supply circuit connected on the circulation circuit downstream from the connection part between the outgoing pipe and the bypass circuit and upstream from the connection part between the return pipe and the bypass circuit;
A hot water outlet connected to the circulation circuit downstream from the connection part between the circulation circuit and the water supply circuit and upstream from the connection part between the return pipe and the bypass circuit,
A flow rate limiting means for limiting the amount of hot water returning from the return pipe to the hot water tank is provided at a position downstream of the connection portion of the return pipe with the bypass circuit,
A hot water supply system, wherein the water supply circuit is provided with water supply restriction means for restricting the amount of water supply.
前記循環回路の前記給水回路との接続部より上流で、かつ、前記行き配管の前記バイパス回路との接続部より下流の位置に設けられた保温温度センサと、
保温温度の目標値を設定する保温温度設定手段と、
前記保温温度センサの出力と前記保温温度設定手段により設定された保温温度目標値を取り込み、前記戻り配管の流量制限手段を制御する流量制御手段と、
前記循環回路の前記給水回路との接続部より下流で、かつ、前記出湯口より上流の位置に設けられた出湯温度センサと、
出湯温度の目標値を設定する出湯温度設定手段と、
出湯温度センサの出力と出湯温度設定手段により設定された出湯温度目標値を取り込み、給水回路の給水制限手段を制御する給水制御手段と、
を備えたことを特徴とする請求項9記載の給湯システム。
A heat retention temperature sensor provided at a position upstream of the connection portion of the circulation circuit with the water supply circuit and downstream of the connection portion of the outgoing pipe with the bypass circuit;
Heat insulation temperature setting means for setting a target value of the heat insulation temperature;
A flow rate control unit that takes in an output of the heat retention temperature sensor and a heat insulation temperature target value set by the heat insulation temperature setting unit, and controls a flow rate restriction unit of the return pipe;
A tapping temperature sensor provided at a position downstream from the connection portion of the circulation circuit with the water supply circuit and upstream from the tapping outlet;
Tapping temperature setting means for setting a target value of tapping temperature;
A water supply control means for taking in the output of the hot water temperature sensor and the hot water temperature target value set by the hot water temperature setting means and controlling the water supply restriction means of the water supply circuit;
The hot water supply system according to claim 9, further comprising:
前記給水制御手段の制御目標値を、前記流量制御手段の制御目標値よりも高く設定して制御することを特徴とする請求項10記載の給湯システム。   The hot water supply system according to claim 10, wherein the control target value of the water supply control means is controlled to be set higher than the control target value of the flow rate control means. 前記行き配管と前記バイパス回路との接続位置を、前記貯湯槽と前記行き配管との接続の直後としたことを特徴とする請求項10または請求項11に記載の給湯システム。   The hot water supply system according to claim 10 or 11, wherein a connection position between the outgoing pipe and the bypass circuit is set immediately after connection between the hot water storage tank and the outgoing pipe. 前記バイパス回路に、流路抵抗を増加させる抵抗要素を設けたことを特徴とする請求項10〜請求項12のいずれかに記載の給湯システム。   The hot water supply system according to any one of claims 10 to 12, wherein a resistance element that increases flow path resistance is provided in the bypass circuit. 前記抵抗要素の抵抗を可変としたことを特徴とする請求項13記載の給湯システム。   The hot water supply system according to claim 13, wherein the resistance of the resistance element is variable. 前記給水制御手段は、前記流量制御手段の制御情報を取り込んで制御することを特徴とする請求項10〜請求項14のいずれかに記載の給湯システム。   The hot water supply system according to any one of claims 10 to 14, wherein the water supply control means takes in control information of the flow rate control means. 前記流量制御手段は、前記給水制御手段の制御情報を取り込んで制御することを特徴とする請求項10〜請求項14のいずれかに記載の給湯システム。   The hot water supply system according to any one of claims 10 to 14, wherein the flow rate control means takes in control information of the water supply control means. 貯湯槽と、
この貯湯槽内に設けた熱交換器と、
この熱交換器の湯を導入する行き配管と、
この行き配管の湯を吸入し、加圧送出する循環ポンプと、
この循環ポンプが送出した湯を前記熱交換器に戻す戻り配管とを備え、
前記行き配管、前記循環ポンプ、前記戻り配管からなる循環回路を形成し、
前記行き配管と前記戻り配管をつなぐバイパス回路と、
前記行き配管と前記バイパス回路の接続部より下流、かつ、前記戻り配管と前記バイパス回路との接続部より上流の前記循環回路上に接続され、前記貯湯槽の湯を前記循環回路に供給する給湯回路と、
前記貯湯槽から前記給湯回路への流れの逆流を防ぐ逆止弁と、
前記給湯回路に接続される給水回路と、
前記循環回路と前記給湯回路の接続部より下流、かつ、前記戻り配管と前記バイパス回路との接続部より上流の前記循環回路上に接続された出湯口を持ち、
前記バイパス回路に、このバイパス回路を通る湯量を制限する流量制限手段を設け、
前記給水回路に、給水量を制限する給水制限手段を設けたことを特徴とする給湯システム。
A hot water tank,
A heat exchanger provided in the hot water tank,
The outgoing piping that introduces the hot water of this heat exchanger,
A circulation pump that draws in hot water from this outgoing pipe and sends it out under pressure;
A return pipe for returning the hot water sent out by the circulation pump to the heat exchanger,
Forming a circulation circuit composed of the outgoing pipe, the circulation pump, and the return pipe;
A bypass circuit connecting the outgoing pipe and the return pipe;
Hot water supply for supplying hot water from the hot water storage tank to the circulation circuit, connected to the circulation circuit downstream from the connection portion between the outgoing pipe and the bypass circuit and upstream from the connection portion between the return pipe and the bypass circuit. Circuit,
A check valve that prevents backflow of the flow from the hot water tank to the hot water supply circuit;
A water supply circuit connected to the hot water supply circuit;
Having a hot water outlet connected on the circulation circuit downstream from the connection part between the circulation circuit and the hot water supply circuit and upstream from the connection part between the return pipe and the bypass circuit;
The bypass circuit is provided with a flow rate limiting means for limiting the amount of hot water passing through the bypass circuit,
A hot water supply system, wherein the water supply circuit is provided with water supply restriction means for restricting the amount of water supply.
前記循環回路の前記給湯回路との接続部より上流で、かつ、前記行き配管の前記バイパス回路との接続部より下流の位置に設けられた保温温度センサと、
保温温度の目標値を設定する保温温度設定手段と、
前記保温温度センサの出力と前記保温温度設定手段により設定された保温温度目標値を取り込み、前記流量制限手段を制御する流量制御手段と、
前記給湯回路の前記給水回路との接続部より下流で、かつ、前記出湯口より上流の位置に出湯温度センサと、
出湯温度の目標値を設定する出湯温度設定手段と、
前記出湯温度センサの出力と前記出湯温度設定手段により設定された出湯温度目標値を取り込み、前記給水制限手段を制御する給水制御手段と、
を備えたことを特徴とする請求項17記載の給湯システム。
A heat retention temperature sensor provided at a position upstream of the connection portion of the circulation circuit with the hot water supply circuit and downstream of the connection portion of the outgoing pipe with the bypass circuit;
Heat insulation temperature setting means for setting a target value of the heat insulation temperature;
A flow rate control means for taking in an output of the heat insulation temperature sensor and a heat insulation temperature target value set by the heat insulation temperature setting means and controlling the flow rate restriction means;
A hot water temperature sensor at a position downstream of the hot water supply circuit connected to the water supply circuit and upstream of the hot water outlet,
Tapping temperature setting means for setting a target value of tapping temperature;
A water supply control means for taking in an output of the hot water temperature sensor and a hot water temperature target value set by the hot water temperature setting means and controlling the water supply restriction means;
The hot water supply system according to claim 17, further comprising:
前記行き配管と前記バイパス回路との接続位置を、前記熱交換器と前記行き配管との接続の直後としたことを特徴とする請求項18記載の給湯システム。   The hot water supply system according to claim 18, wherein a connection position between the outgoing pipe and the bypass circuit is set immediately after the connection between the heat exchanger and the outgoing pipe. 前記戻り配管の、前記バイパス回路との接続部より下流に、流路抵抗を増加させる抵抗要素を設けたことを特徴とする請求項18または請求項19に記載の給湯システム。   20. The hot water supply system according to claim 18, wherein a resistance element that increases flow path resistance is provided downstream of a connection portion of the return pipe with the bypass circuit. 前記抵抗要素の抵抗を可変としたことを特徴とする請求項20記載の給湯システム。   The hot water supply system according to claim 20, wherein the resistance of the resistance element is variable. 貯湯槽と、
この貯湯槽内に設けた熱交換器と、
この熱交換器の湯を導入する行き配管と、
この行き配管の湯を吸入し、加圧送出する循環ポンプと、
この循環ポンプが送出した湯を前記熱交換器に戻す戻り配管とを備え、
前記行き配管、前記循環ポンプ、前記戻り配管からなる循環回路を形成し、
前記行き配管と前記戻り配管をつなぐバイパス回路と、
前記行き配管と前記バイパス回路の接続部より下流、かつ、前記戻り配管と前記バイパス回路との接続部より上流の前記循環回路上に接続され、前記貯湯槽の湯を前記循環回路に供給する給湯回路と、
前記貯湯槽から前記給湯回路への流れの逆流を防ぐ逆止弁と、
前記給湯回路に接続される給水回路と、
前記循環回路と前記給湯回路の接続部より下流、かつ、前記戻り配管と前記バイパス回路との接続部より上流の前記循環回路上に接続された出湯口を持ち、
前記戻り配管の前記バイパス回路との接続部より下流の位置に、前記戻り配管から前記貯湯槽に戻る湯量を制限する流量制御手段を設け、
前記給水回路に、給水量を制限する給水制限手段を設けたことを特徴とする給湯システム。
A hot water tank,
A heat exchanger provided in the hot water tank,
The outgoing piping that introduces the hot water of this heat exchanger,
A circulation pump that draws in hot water from this outgoing pipe and sends it out under pressure;
A return pipe for returning the hot water sent out by the circulation pump to the heat exchanger,
Forming a circulation circuit composed of the outgoing pipe, the circulation pump, and the return pipe;
A bypass circuit connecting the outgoing pipe and the return pipe;
Hot water supply for supplying hot water from the hot water storage tank to the circulation circuit, connected to the circulation circuit downstream from the connection portion between the outgoing pipe and the bypass circuit and upstream from the connection portion between the return pipe and the bypass circuit. Circuit,
A check valve that prevents backflow of the flow from the hot water tank to the hot water supply circuit;
A water supply circuit connected to the hot water supply circuit;
Having a hot water outlet connected on the circulation circuit downstream from the connection part between the circulation circuit and the hot water supply circuit and upstream from the connection part between the return pipe and the bypass circuit;
A flow rate control means for limiting the amount of hot water returning from the return pipe to the hot water storage tank is provided at a position downstream of the connection portion of the return pipe with the bypass circuit,
A hot water supply system, wherein the water supply circuit is provided with water supply restriction means for restricting the amount of water supply.
前記循環回路の前記給湯回路との接続部より上流で、かつ、前記行き配管の前記バイパス回路との接続部より下流の位置に設けられた保温温度センサと、
保温温度の目標値を設定する保温温度設定手段と、
前記保温温度センサの出力と前記保温温度設定手段により設定された保温温度目標値を取り込み、前記戻り配管の流量制限手段を制御する流量制御手段と、
前記給湯回路の前記給水回路との接続部より下流で、かつ、前記出湯口より上流の位置に設けられた出湯温度センサと、
出湯温度の目標値を設定する出湯温度設定手段と、
前記出湯温度センサの出力と前記出湯温度設定手段により設定された出湯温度目標値を取り込み、前記給水制限手段を制御する給水制御手段と、
を備えたことを特徴とする請求項22記載の給湯システム。
A heat retention temperature sensor provided at a position upstream of the connection portion of the circulation circuit with the hot water supply circuit and downstream of the connection portion of the outgoing pipe with the bypass circuit;
Heat insulation temperature setting means for setting a target value of the heat insulation temperature;
A flow rate control unit that takes in an output of the heat retention temperature sensor and a heat insulation temperature target value set by the heat insulation temperature setting unit, and controls a flow rate restriction unit of the return pipe;
A hot water temperature sensor provided downstream of the hot water supply circuit connected to the water supply circuit and upstream of the hot water outlet;
Tapping temperature setting means for setting a target value of tapping temperature;
A water supply control means for taking in an output of the hot water temperature sensor and a hot water temperature target value set by the hot water temperature setting means and controlling the water supply restriction means;
The hot water supply system according to claim 22, comprising:
前記行き配管と前記バイパス回路との接続位置を、前記熱交換器と前記行き配管との接続の直後としたことを特徴とする請求項23記載の給湯システム。   The hot water supply system according to claim 23, wherein a connection position between the outgoing pipe and the bypass circuit is immediately after the connection between the heat exchanger and the outgoing pipe. 前記バイパス回路に、流路抵抗を増加させる抵抗要素を設けたことを特徴とする請求項23または請求項24に記載の給湯システム。   The hot water supply system according to claim 23 or 24, wherein a resistance element that increases flow path resistance is provided in the bypass circuit. 前記抵抗要素の抵抗を可変としたことを特徴とする請求項25の給湯システム。   26. The hot water supply system according to claim 25, wherein the resistance of the resistance element is variable. 貯湯槽と、
この貯湯槽内部の湯を導入する行き配管と、
この行き配管の湯を吸入し、加圧送出する循環ポンプと、
この循環ポンプが送出した湯を前記貯湯槽に戻す戻り配管とを備え、
前記行き配管、前記循環ポンプ、前記戻り配管からなる循環回路を形成し、
前記循環回路上に接続され、前記循環回路の湯を出湯口へと導く出湯回路と、
前記循環回路から前記出湯回路への流れの逆流を防ぐ逆止弁と、
前記出湯回路に接続された給水回路を持ち、
この給水回路に、給水量を制限する給水制限手段を設けたことを特徴とする給湯システム。
A hot water tank,
The outgoing piping that introduces hot water inside this hot water tank,
A circulation pump that draws in hot water from this outgoing pipe and sends it out under pressure;
A return pipe for returning the hot water sent out by the circulation pump to the hot water storage tank,
Forming a circulation circuit composed of the outgoing pipe, the circulation pump, and the return pipe;
A tapping circuit connected to the circulation circuit, and leading the hot water of the circulation circuit to a tapping outlet;
A check valve that prevents backflow of the flow from the circulation circuit to the tapping circuit;
Having a water supply circuit connected to the hot water circuit,
A hot water supply system characterized in that a water supply restriction means for restricting a water supply amount is provided in the water supply circuit.
前記出湯回路の前記給水回路との接続部より下流で、かつ、前記出湯口より上流の位置に設けられた出湯温度センサと、
前記出湯温度の目標値を設定する出湯温度設定手段と、
前記出湯温度センサの出力と前記出湯温度設定手段により設定された出湯温度目標値を取り込み、前記給水制限手段を制御する給水制御手段と、
を備えたことを特徴とする請求項27記載の給湯システム。
A hot water temperature sensor provided at a position downstream from the connection portion of the hot water circuit with the water supply circuit and upstream from the hot water outlet;
Tapping temperature setting means for setting a target value of the tapping temperature;
A water supply control means for taking in an output of the hot water temperature sensor and a hot water temperature target value set by the hot water temperature setting means and controlling the water supply restriction means;
The hot water supply system according to claim 27, comprising:
貯湯槽と、
この貯湯槽内部の湯を導入する行き配管と、
この行き配管の湯を吸入し、加圧送出する循環ポンプと、
この循環ポンプが送出した湯を前記貯湯槽に戻す戻り配管とを備え、
前記行き配管、前記循環ポンプ、前記戻り配管からなる循環回路を形成し、
前記行き配管と前記戻り配管をつなぐバイパス回路と、
前記行き配管と前記バイパス回路の接続部より下流、かつ、前記戻り配管と前記バイパス回路との接続部より上流の前記循環回路上に接続され、この循環回路の湯を出湯口へと導く出湯回路と、
前記循環回路から前記出湯回路への流れの逆流を防ぐ逆止弁と、
前記出湯回路に接続された給水回路を持ち、
前記バイパス回路に、このバイパス回路を通る湯量を制限する流量制限手段を設け、
前記給水回路に、給水量を制限する給水制限手段を設けたことを特徴とする給湯システム。
A hot water tank,
The outgoing piping that introduces hot water inside this hot water tank,
A circulation pump that draws in hot water from this outgoing pipe and sends it out under pressure;
A return pipe for returning the hot water sent out by the circulation pump to the hot water storage tank,
Forming a circulation circuit composed of the outgoing pipe, the circulation pump, and the return pipe;
A bypass circuit connecting the outgoing pipe and the return pipe;
A discharge circuit that is connected to the circulation circuit downstream from the connection portion between the outgoing pipe and the bypass circuit and upstream from the connection portion between the return pipe and the bypass circuit and guides the hot water of the circulation circuit to the outlet. When,
A check valve that prevents backflow of the flow from the circulation circuit to the tapping circuit;
Having a water supply circuit connected to the hot water circuit,
The bypass circuit is provided with a flow rate limiting means for limiting the amount of hot water passing through the bypass circuit,
A hot water supply system, wherein the water supply circuit is provided with water supply restriction means for restricting the amount of water supply.
前記循環回路の前記出湯回路との接続部より上流で、かつ、前記行き配管の前記バイパス回路との接続部より下流の位置に設けられた保温温度センサと、
保温温度の目標値を設定する保温温度設定手段と、
前記保温温度センサの出力と前記保温温度設定手段により設定された保温温度目標値を取り込み、前記流量制限手段を制御する流量制御手段と、
前記出湯回路の前記給水回路との接続部より下流で、かつ、前記出湯口より上流の位置に設けられた出湯温度センサと、
出湯温度の目標値を設定する出湯温度設定手段と、
前記出湯温度センサの出力と前記出湯温度設定手段により設定された出湯温度目標値を取り込み、前記給水制限手段を制御する給水制御手段と、
を備えたことを特徴とする請求項29記載の給湯システム。
A heat retention temperature sensor provided at a position upstream of a connection portion of the circulation circuit with the hot water circuit and downstream of a connection portion of the outgoing pipe with the bypass circuit;
Heat insulation temperature setting means for setting a target value of the heat insulation temperature;
A flow rate control means for taking in an output of the heat insulation temperature sensor and a heat insulation temperature target value set by the heat insulation temperature setting means and controlling the flow rate restriction means;
A hot water temperature sensor provided at a position downstream from the connection portion of the hot water circuit with the water supply circuit and upstream from the hot water outlet;
Tapping temperature setting means for setting a target value of tapping temperature;
A water supply control means for taking in an output of the hot water temperature sensor and a hot water temperature target value set by the hot water temperature setting means and controlling the water supply restriction means;
30. The hot water supply system according to claim 29, further comprising:
前記行き配管と前記バイパス回路との接続位置を、前記貯湯槽と前記行き配管との接続の直後としたことを特徴とする請求項30記載の給湯システム。   The hot water supply system according to claim 30, wherein the connection position between the outgoing pipe and the bypass circuit is immediately after the hot water storage tank and the outgoing pipe are connected. 前記戻り配管の、前記バイパス回路との接続部より下流に、流路抵抗を増加させる抵抗要素を設けたことを特徴とする請求項30または請求項31に記載の給湯システム。   32. The hot water supply system according to claim 30 or 31, wherein a resistance element for increasing flow path resistance is provided downstream of a connection portion of the return pipe with the bypass circuit. 前記抵抗要素の抵抗を可変としたことを特徴とする請求項32記載の給湯システム。   The hot water supply system according to claim 32, wherein the resistance of the resistance element is variable. 貯湯槽と、
この貯湯槽内部の湯を導入する行き配管と、
この行き配管の湯を吸入し、加圧送出する循環ポンプと、
この循環ポンプが送出した湯を前記貯湯槽に戻す戻り配管とを備え、
前記行き配管、前記循環ポンプ、前記戻り配管からなる循環回路を形成し、
前記行き配管と前記戻り配管をつなぐバイパス回路と、
前記行き配管と前記バイパス回路の接続部より下流、かつ、前記戻り配管と前記バイパス回路との接続部より上流の前記循環回路上に接続され、この循環回路の湯を出湯口へと導く出湯回路と、
前記循環回路から前記出湯回路への流れの逆流を防ぐ逆止弁と、
前記出湯回路に接続された給水回路を持ち、
前記戻り配管の前記バイパス回路との接続部より下流の位置に、前記戻り配管から前記貯湯槽に戻る湯量を制限する流量制限手段を設け、
前記給水回路に、給水量を制限する給水制限手段を設けたことを特徴とする給湯システム。
A hot water tank,
The outgoing piping that introduces hot water inside this hot water tank,
A circulation pump that draws in hot water from this outgoing pipe and sends it out under pressure;
A return pipe for returning the hot water sent out by the circulation pump to the hot water storage tank,
Forming a circulation circuit composed of the outgoing pipe, the circulation pump, and the return pipe;
A bypass circuit connecting the outgoing pipe and the return pipe;
A discharge circuit that is connected to the circulation circuit downstream from the connection portion between the outgoing pipe and the bypass circuit and upstream from the connection portion between the return pipe and the bypass circuit and guides the hot water of the circulation circuit to the outlet. When,
A check valve that prevents backflow of the flow from the circulation circuit to the tapping circuit;
Having a water supply circuit connected to the hot water circuit,
A flow rate limiting means for limiting the amount of hot water returning from the return pipe to the hot water tank is provided at a position downstream of the connection portion of the return pipe with the bypass circuit,
A hot water supply system, wherein the water supply circuit is provided with water supply restriction means for restricting the amount of water supply.
前記循環回路の前記出湯回路との接続部より上流で、かつ、前記行き配管の前記バイパス回路との接続部より下流の位置に設けられた保温温度センサと、
保温温度の目標値を設定する保温温度設定手段と、
前記保温温度センサの出力と前記保温温度設定手段により設定された保温温度目標値を取り込み、前記戻り配管の流量制限手段を制御する流量制御手段と、
前記出湯回路の前記給水回路との接続部より下流で、かつ、前記出湯口より上流の位置に設けられた出湯温度センサと、
出湯温度の目標値を設定する出湯温度設定手段と、
前記出湯温度センサの出力と前記出湯温度設定手段により設定された出湯温度目標値を取り込み、前記給水制限手段を制御する給水制御手段と、
を備えたことを特徴とする請求項34記載の給湯システム。
A heat retention temperature sensor provided at a position upstream of a connection portion of the circulation circuit with the hot water circuit and downstream of a connection portion of the outgoing pipe with the bypass circuit;
Heat insulation temperature setting means for setting a target value of the heat insulation temperature;
A flow rate control unit that takes in an output of the heat retention temperature sensor and a heat insulation temperature target value set by the heat insulation temperature setting unit, and controls a flow rate restriction unit of the return pipe;
A hot water temperature sensor provided at a position downstream from the connection portion of the hot water circuit with the water supply circuit and upstream from the hot water outlet;
Tapping temperature setting means for setting a target value of tapping temperature;
A water supply control means for taking in an output of the hot water temperature sensor and a hot water temperature target value set by the hot water temperature setting means and controlling the water supply restriction means;
The hot water supply system according to claim 34, comprising:
前記行き配管と前記バイパス回路との接続位置を、前記貯湯槽と前記行き配管との接続の直後としたことを特徴とする請求項35記載の給湯システム。   36. The hot water supply system according to claim 35, wherein the connection position between the outgoing pipe and the bypass circuit is immediately after the hot water storage tank and the outgoing pipe are connected. 前記バイパス回路に、流路抵抗を増加させる抵抗要素を設けたことを特徴とする請求項35または請求項36に記載の給湯システム。   37. The hot water supply system according to claim 35 or 36, wherein the bypass circuit is provided with a resistance element that increases flow path resistance. 前記抵抗要素の抵抗を可変としたことを特徴とする請求項37記載の給湯システム。   The hot water supply system according to claim 37, wherein the resistance of the resistance element is variable. 複数の出湯回路を持ち、
それぞれの出湯回路に給水回路が接続され、
それぞれの給水回路に設けられた給水制限手段は、他の給水制限手段とは独立して給水量を制限可能としたことを特徴とする請求項27、請求項29および請求項34のいずれかに記載の給湯システム。
Have multiple hot water circuits,
A water supply circuit is connected to each tapping circuit,
The water supply restriction means provided in each water supply circuit is capable of restricting the amount of water supply independently of the other water supply restriction means, according to any one of claims 27, 29, and 34. The hot water supply system described.
複数の出湯回路を持ち、
それぞれの出湯回路に給水回路が接続され、
それぞれの給水回路に設けられた給水制御手段は、他の給水制御手段とは独立した目標値で給水量を制御可能としたことを特徴とする請求項28、請求項30および請求項35のいずれかに記載の給湯システム。
Have multiple hot water circuits,
A water supply circuit is connected to each tapping circuit,
The water supply control means provided in each water supply circuit is capable of controlling the amount of water supply with a target value independent of other water supply control means, according to any one of claims 28, 30 and 35. Hot water supply system according to crab.
前記出湯口に前記給水回路とは異なる別の給水回路を設けたことを特徴とする請求項1〜請求項40のいずれかに記載の給湯システム。   41. The hot water supply system according to any one of claims 1 to 40, wherein a different water supply circuit different from the water supply circuit is provided at the hot water outlet.
JP2007242281A 2007-09-19 2007-09-19 Hot water system Active JP4925983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007242281A JP4925983B2 (en) 2007-09-19 2007-09-19 Hot water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007242281A JP4925983B2 (en) 2007-09-19 2007-09-19 Hot water system

Publications (2)

Publication Number Publication Date
JP2009074719A true JP2009074719A (en) 2009-04-09
JP4925983B2 JP4925983B2 (en) 2012-05-09

Family

ID=40609869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007242281A Active JP4925983B2 (en) 2007-09-19 2007-09-19 Hot water system

Country Status (1)

Country Link
JP (1) JP4925983B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108361809A (en) * 2018-03-31 2018-08-03 柳州市展虹科技有限公司 A kind of small-sized household pipe network hot water regulating device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04222328A (en) * 1990-12-20 1992-08-12 Paloma Ind Ltd Instantaneous supply apparatus of hot water
JPH10141685A (en) * 1996-11-12 1998-05-29 Kajima Corp High temperature sterilizing type water heating and cooling water apparatus
JPH10205790A (en) * 1997-01-20 1998-08-04 Sanki Eng Co Ltd Hot water supply system
JP2005134041A (en) * 2003-10-30 2005-05-26 Denso Corp Storage type hot water supply device
JP2007017083A (en) * 2005-07-07 2007-01-25 Osaka Gas Co Ltd Circulating storage hot water supply system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04222328A (en) * 1990-12-20 1992-08-12 Paloma Ind Ltd Instantaneous supply apparatus of hot water
JPH10141685A (en) * 1996-11-12 1998-05-29 Kajima Corp High temperature sterilizing type water heating and cooling water apparatus
JPH10205790A (en) * 1997-01-20 1998-08-04 Sanki Eng Co Ltd Hot water supply system
JP2005134041A (en) * 2003-10-30 2005-05-26 Denso Corp Storage type hot water supply device
JP2007017083A (en) * 2005-07-07 2007-01-25 Osaka Gas Co Ltd Circulating storage hot water supply system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108361809A (en) * 2018-03-31 2018-08-03 柳州市展虹科技有限公司 A kind of small-sized household pipe network hot water regulating device
CN108361809B (en) * 2018-03-31 2024-02-06 广西科技大学 Small-size domestic pipe network hot water adjusting device

Also Published As

Publication number Publication date
JP4925983B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
KR101018774B1 (en) Hot water supply system for maintaining constantly a hot water temperature
JP2008145096A (en) Hot water supply system and hot water supply method
EP3412985B1 (en) Method for controlling water-heating system, and water-heating system
JP4752347B2 (en) Hot water storage water heater
JP5470520B2 (en) Multi-system cooling device and its water supply setting method
JP2008185470A (en) Fuel temperature adjusting device
JP4591221B2 (en) Hot water storage water heater
JP4925983B2 (en) Hot water system
JP4725202B2 (en) Hot water storage water heater
JP3968631B2 (en) Hot water system
JP4882438B2 (en) Heat pump water heater
JP2007139201A (en) Hot water storage type water heater
JP2009186065A (en) Hot water storage type water supply device
JP2006017417A (en) Storage water heater
US20060153550A1 (en) Semi-instantaneous water heater system
JP5901312B2 (en) Hot water storage system
JP2006010300A (en) Heat source device
JP4529801B2 (en) Hot water storage water heater
JP4424265B2 (en) Hot water storage water heater
JP2006078173A (en) Hot-water supply system
JP4529803B2 (en) Hot water storage water heater
JP4266780B2 (en) Thermal storage heat source equipment
CN220601654U (en) Water supply system
JP3836526B2 (en) Hot water system
JP5418824B2 (en) Water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4925983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250